Advanced Topics in Systems, Control and Learning 1 (048715)

Monte Carlo Methods for Computation and Optimization

Nahum Shimkin
Spring 2015

 

Syllabus (pdf)

 

2015 Lecture Notes:

§  Lecture 1 : Introduction

§  Lecture 2: Random Variable Generation

§  Lecture 3: Variance Reduction Methods, I

§  Lecture 4: Importance Sampling

§  Lecture 5: Sequetial Importance Sampling; Slides for section 5.3: Particle Filters

§  Lecture 6: Markov Chain Monte Carlo

§  Lecture 7: Some Topics in Brief

 

Final Assignments      

 

Homework:

·         Problem Set 1  Submission April 29.

·         Problem Set 2 (parts a+b). Submission June 3

·         Problem Set 3 Submission June 24

 

Homework and Assignment Grades

 

Slides of Student Presentations:

·         Ariel: Simulated Annealing for Constrained Global Optimization

·         Ayal: N-grams in MC Tree Search

·         Gal: Modern Floor Planning with Simulated Annealing

·         Nir: Reversible Jump Markov Chain Monte Carlo

·         Niv: MC Simulation of Security Prices

·         Oron: Computing Approximate Nash Equilibria

·         Noam: Cross Entropy for Monte Carlo Trees Search