
4 Importance Sampling

Importance Sampling (IS) is the most basic and effective method for variance reduction

of Monte Carlo with iid samples. The idea is to sample X from a different distribution

than the original one, and to compensate for that by assigning weights to the samples.

As we shall see, the IS sampling distribution g(x) should ideally be proportional to

|H(x)|f(x).

4.1 The IS Estimator

Definition: Recall that we wish to estimate the expected value

ℓ = Ef (H(X)) =

∫
H(x)f(x)dx ,

(where dx = dx1 . . . dxn). Let g be a pdf that dominates f , in the sense that g(x) =

0 ⇒ f(x) = 0. Then

ℓ =

∫
H(x)

f(x)

g(x)
g(x)dx = Eg(H(X)

f(X)

g(X)
) .

Consequently, if X1, . . . , XN is an iid sample from g, then the following IS estimate

ℓ̂ =
1

N

N∑
i=1

H(Xi)
f(Xi)

g(Xi)

is an unbiased estimator for ℓ.

The pdf g is called the IS distribution, or trial distribution. The ratio

W (x) =
f(x)

g(x)

is the likelihood ratio of f and g (more formally, it is the Radon-Nikodym derivative of

the respective measures). Denoting wi =
f(Xi)
g(Xi)

, we can write the estimator as

ℓ̂ =
1

N

N∑
i=1

H(Xi)wi , wi =
f(Xi)

g(Xi)
, Xi ∼ g .

We refer the the wi’s as the IS weights, and to the sequence (Xi, wi) as a weighted sample

from g.
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We note that the same IS estimator can be be used under the relaxed condition that g

dominates Hf (rather than f alone), namely g(x) = 0 ⇒ H(x)f(x) = 0. In that case

we formally set 0 · ∞ = 0.

Bias and variance: The IS estimator is unbiased by construction, as

Eg(H(X)
f(X)

g(X)
) =

∫
H(X)

f(X)

g(X)
g(x)dx =

∫
H(X)f(X)dx = ℓ .

The sample variance is given by

Vg
△
= Varg(H(X)W (X))

= Eg(H(X)2W (X)2)− ℓ2

= Ef (H(X)2
f(X)

g(X)
)− ℓ2

Proposition 4.1 Vg is minimized by choosing g(x) proportional to |H(x)|f(x), namely

g∗(x) =
|H(x)|f(x)∫
|H(x)|f(x)dx

.

The minimal variance is

Vg∗ = (Ef |H(X)|)2 − ℓ2 .

Proof: Apply Jensen’s inequality to Eg((HW )2). �

We refer to g∗ as the optimal IS distribution.

In particular, if H(x) ≥ 0, we actually obtain Vg∗ = 0. This means that ℓ can be

precisely estimated using one sample!

Unfortunately, this observation is not useful. To see the problem, note that for H > 0,

g∗(x) = 1
ℓ
H(x)f(x), which directly involves ℓ. The “estimate” here is obtained by

sampling X1 from g∗, and then outputting H(Xi)W (X1) = ℓ. Clearly, sampling plays

no role here.

Our goal can therefore be stated as finding a trial distribution g which is easy to compute,

and roughly approximates g∗.

Normalized IS: It is often the case that f(x) is known only up to a multiplicative constant,

namely f(x) = Cf0(x) with C unknown (recall the Boltzmann distribution example).
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In that case we can use a normalized version of the IS estimator. Observe that Eg(W (X)) =

1, so that

ℓ = Eg(H(X)W (X)) =
Eg(H(X)W (X))

Eg(W (X))
.

This suggests the following so-called weighted sample estimator:

ℓ̂w =

∑N
i=1 H(Xi)wi∑N

i=1wi

, wi =
f(Xi)

g(Xi)
, Xi ∼ g .

Since the weights appear both in the nominator and the denominator, is enough to know

the wi’s (hence f and even g) up to a multiplicative constant.

Bias and Variance: It may be seen that the weighted sample estimator is no longer

unbiased. However, the bias decreases rapidly with N .

The variance of the estimator is also increased by the randomness in the denominator. A

rough estimate (which neglected dependence between the nominator and denominator)

can be seen to be

Var(ℓ̂) ≈ 1

N

Varg(H(X)W (X))

(EgW (X))2
(1 +

Varg(W (X))

(EgW (X))2
.

Note that each of these terms can be estimated using the weighted sample (Xi, wi).

Example. Consider estimating ℓ = P(X > γ), X ∼ Exp(µ), with µγ >> 1.

a. Compute κ2, the squared coefficient of variation, for crude MC.

b. Compute g∗.

c. For g(x) = θe−θ(x−γ)1{x≥γ}, compute κ2 as a function of α.

d. For g(x) = θe−θx1{x≥0}, find θ that minimizes the variance, and compute the

corresponding κ2.

4.2 Choosing g – The Variance Minimization Method

As choosing the trial distribution g equal to g∗, the optimal OS distribution, is infeasible,

we often try to choose g as the “best” distribution out of a specific set G of probability

distributions.
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For example, a common choice (in the one-dimensional case) is the set of exponentially

titled distributions,

G = {g(·, θ), θ ∈ Θ ⊂ R}, g(x, θ) = c(θ)e−θxf0(x) .

Here f0 is the basic distribution, possibly taken as f0 = f , and c(θ) is the normalization

constant.

More generally, G is often taken as an exponential family of probability distributions,

which has the following general form:

G ={g(·, v), v ∈ V ⊂ Rm0} ,
g(x, v) = c0(v)e

θ(v)·t(x)h(x) .

Here θ(v) = (θ1(v), . . . , θm(v)) is a vector of functions of the parameters v, t(x) =

(t1(x), . . . , tm(x)), h(x) ≥ 0, and c0(v) is the normalization constant.

By re-parameterization, any exponential family can be represented in the canonical form

of a Natural Exponential Family (NEF):

G ={g(·, θ), θ ∈ Θ ⊂ Rm} ,
g(x, θ) = c(θ)eθ·t(x)h(x) .

Many commonly used distributions belong to an exponential family, including Bernoulli,

binomial, Poisson, exponential, Pareto, Weibull, Laplace, chi-squared, normal, lognor-

mal, gamma, beta, multivariate normal, Dirichlet, and multinomial. Some univariate

examples:

1. Exponential Exp(λ): θ = −λ, t(x) = x, h(x) = 1, c(θ) = −λ

2. Poisson Poi(λ): θ = ln(λ), t(x) = x, h(x) = 1
x!
, c(θ) = exp(−eθ)

3. Geometric G(p): θ = ln(1− p), t(x) = x− 1, h(x) = 1, c(θ) = 1− eθ

4. Binomial Bin(n, p): θ = ln( p
1−p

), t(x) = x, h(x) =
(
n
x

)
, c(θ) = (1 + eθ)−n

5. Normal N(µ, σ2): θ = ( µ
σ2 ,− 1

2σ2 ), t(x) = (x, x2), h(x) = 1, c(θ) =
exp(θ21/4θ2)√

−π/θ2

The choice of G should be such that some member of G can well approximate the shape

of g∗ = c|H|f .
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Given the set G = {g(·, θ)}, we wish to find a parameter θ that minimizes the estimator

variance. This gives rise to the following (parametric) optimization problem:

min
θ∈Θ

Var(θ) ,

Var(θ)
△
= VarX∼g(·,θ)(H(X)W (X, θ)), W (x, θ) =

f(x)

g(x, θ)

Recall that

Var(θ) = IEX∼g(·,θ)(H(X)2W (X, θ)2)− ℓ2

= IEX∼f (H(X)2W (X, θ))− ℓ2 .

Since the mean ℓ does not depend on g, we obtain the following equivalent optimization

problem for θ:

min
θ∈Θ

V (θ) ,

V (θ)
△
= IEX∼f (H(X)2W (X, θ)) .

Such an optimization problem, which involves an expected value in the cost function,

is generally called a stochastic program. We refer to the specific problem here as the

Variance Minimization (VM) problem.

An analytic solution to the VM problem is seldom feasible. However, in many cases of

interest the function V (θ) is well behaved (e.g., convex and smooth), and can be mini-

mized numerically. Assuming that the derivative and expectation can be interchanged

(which holds under reasonable conditions), we obtain the gradient

∇V (θ) = IEf (H(X)2∇θW (X, θ)),

where

∇θW (x, θ) = ∇θ
f(x)

g(x, θ)
= −W (x, θ)∇θ ln g(x, θ) .

In some cases of interest the gradient can be computed in closed form. The first order

condition for optimality is ∇V (θ) = 0. This equation may then be solved numerically,

e.g., using gradient descent.

If the expected value in the cost (or its gradient) is not tractable, an alternative is to

use a sampled approximation of the VM problem. That is,

min
θ∈Θ

V̂ (θ) ,

V̂ (θ) =
1

K

K∑
k=1

H(Xk)
2W (Xk, θ) ,

4-5



where (X1, . . . , XK) is an iid sample from f . We refer to this problem as the sampled

VM program. Note that, once the Xk’s are available, we obtain a deterministic program.

This problem is typically solved numerically, with the gradient computed similarly to

the above.

A basic scheme that uses the sampled VM program proceeds as follows:

1. Obtain a test sample X1, . . . XK from f .

2. Choose θ by solving the sampled VM program.

3. Estimate ℓ using an IS estimator, with g = g(·, θ).

Iterated Procedure: In some cases it might be ineffective to obtain the test sample

X1, . . . XK from f , and we wish to take our test sample from some initial guess g0

which may be closer to g∗. To that end, observe that

V (θ) = IEX∼g0(H(X)2W (X, θ)W0(X)), W0(x)
△
=

f(x)

g0(x)
.

This leads to the sampled cost

V̂ (θ) =
1

K

K∑
k=1

H(Xk)
2W (Xk, θ)W0(Xk), Xk ∼ g0 ,

from which we obtain the test distribution g1 = g(·, θ∗). This procedure of optimizing

over θ may be repeated several times, each time sampling (Xk) from the test distribution

gi−1 obtained in the previous round.

Such iterative refinement methods should be used with care, to avoid degeneracy of the

distributions gi.

4.3 Choosing g – The Cross Entropy Method

An alternative to minimizing the variance directly, is to choose g which is close to

g∗(x) = c|H(x)|f(x). A standard measure for the distance between two probability

distributions is the Kullback-Leibler number (also known as the information divergence

or relative entropy),

DKL(f, g) = IEg(ln
f(X)

g(X)
) =

∫
f(x) ln

f(x)

g(x)
dx
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From Jensen’s inequality,

DKL(f, g) = −IEf (ln
g(X)

f(X)
) ≥ − ln IEf (

g(X)

f(X)
) = 0 ,

with equality only if f = g. We note however that DKL is not a metric, as it is not

commutative, and does not satisfy the triangle inequality. Observe also that

DKL(f, g) =

∫
f(x) ln(f(x))dx−

∫
f(x) ln(g(x))dx

= −H(f) +H(f, g) ,

where H(f) is the entropy of f , and H(f, g) the Cross Entropy (CE) between f and g.

Suppose that we wish to solve

min
θ∈Θ

DKL(g
∗, g(·, θ)) .

As g∗ is fixed, this is equivalent to

min
θ∈Θ

H(g∗, g(·, θ)) ,

which, in turn, is equivalent to

max
θ∈Θ

L(θ)

L(θ)
△
=

∫
|H(x)|f(x) ln g(x, θ)dx = Ef (|H(X)| ln g(X, θ))

(note that the normalization constant c in g∗ was dropped). The latter program is CE

optimization problem.

The solution may be obtained as in the previous (VM) problem. Assuming that the

derivative and expectation can be interchanged, we obtain the gradient

∇L(θ) = IEf (|H(X)|∇ ln g(X, θ)) .

The sampled CE optimization problem is given by

max
θ∈Θ

L̂(θ) ,

L̂(θ) =
1

K

K∑
k=1

|H(Xk)| ln g(Xk, θ) , Xk ∼ f .

We note that this program is similar to the MLE problem for estimating the parameter

θ from samples (Xk), with the addition of “weights” H(Xk).
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An iterative scheme may be obtained, as before, by noting that

L(θ) = Eg0(|H(X)|W0(X) ln g(X, θ)), W0(x) =
f(x)

g0(x)
.

An advantage of the CE method relative to the VM method is that analytical solutions

may be obtained in a wider set of problems. Numerical experiments show that the

CE method may also be more stable for numerical optimization, and provides similar

solutions (for θ) for moderate dimensions n of X, say n ≤ 50. However, for higher

dimensional problems, VM outperforms CE in terms of the resulting estimator variance.

Example: An analytic solution for exponential tilting. Consider the single-

parameter exponential family that corresponds to exponential tilting:

g(x, θ) = c(θ)exθg0(x) = exθ−ζ(θ)g0(x), θ ∈ R ,

where ζ(x) = − ln c(x). We wish to maximize L(θ). Then the first-order condition

∇L(θ) = 0 implies

ζ ′(θ) =
IEf (|H(X)|X)

IEf |H(X)|
.

Furthermore, if the parameter is chosen such that θ is the mean of g(·, θ), namely

Eθ(X) = θ, then ζ ′(θ) = θ, and consequently

θ∗ =
IEf (|H(X)|X)

IEf |H(X)|
.
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4.4 Bayesian Inference

Consider the Bayesian point-estimation of an RV X based on measurement Y . Given

are

fX(x) – prior distribution of X (the ’state variable’).

fY |X(y|x) – distribution of the measurement Y given state X = x

(the likelihood function).

We wish to compute the MMSE (Minimal Mean Square Error) estimate of X given Y :

X̂(y) = E(X|Y = y) .

Example: A familiar problem in the engineering context is the linear model with ad-

ditive noise:

Y = AX + V ,

where A is a known matrix, and V the additive noise which is independent of X. More

generally, we may consider the nonlinear model with additive noise,

Y = h(X) + V ,

where h is a given function.

Recall that

E(X|Y = y) =

∫
xfX|Y (x|y)dx ,

where f(x|y) can be calculated using Bayes formula

fX|Y (x|y) =
1

C(y)
fX(x)fY |X(y|x) ,

C(y) = fY (y) =

∫
fX(x)fY |X(y|x)dx .

An analytical expression for X̂(y) is available only in special cases, and in general we

require a numerical computation. Importance Sampling is one of the major tools used

for this purpose.

For a given measured value y, let gy(x) be a trial distribution (in x) which dominates

fX(x)fY |X(y|x). An IS estimate of X̂(y) is given by

ℓ̂ =
1

N

N∑
i=1

XiW (Xi) ,
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where (Xi) is an iid sample from g, and

W (x) =
fX|Y (x|y)
gy(x)

=
1

C(y)

fX(x)fY |X(y|x)
gy(x)

.

Since C(y) is often hard to compute, we can use the weighted IS estimate:

ℓ̂w =

∑N
i=1XiW̃ (Xi)∑N
i=1 W̃ (Xi)

, W̃ (x) =
fX(x)fY |X(y|x)

g(x)
.

The MSE of this estimator can be similarly estimated:

MSE = E(X − X̂(y))2|Y = y) ≈
∑N

i=1(Xi − ℓ̂w)
2W̃ (Xi)∑N

i=1 W̃ (Xi)

(possibly multiplied by N
N−1

). Note that this is a different quantity than the variance

Var(ℓ) of the MC estimator, that was discussed in Lecture 3.

Choosing g: The test distribution g may be simply chosen as the prior distribution fX :

g(x) = fX(x). This simplifies the calculation of the weights W̃ (Xi). Note however that

the optimal (minimum variance) test distribution is proportional to xf(x|y). Therefore,
if f(x|y) is significantly different from the prior f(x), it may be a good idea to compute

first a rough estimate of f(x|y) (e.g., by a Gaussian approximation), and use it for g.

Empirical Distribution: In some cases it is required to generate an estimate for the

entire posterior distribution, fX|Y (·|y). This is used, for example, in state estimation of

dynamic systems, using the so-called Particle Filter.

Using the weighted sample (Xi, wi) from g, let

f̂N(x) =
1

N

N∑
i=1

wiδXi
(x) .

Here δz is the delta function that puts unit mass at point z (in a continuous space this is

the Dirac delta function, δz(x) = δ(x−z), while for a discrete space this is the Kroeneker

delta). It is easy to see that f̂ is a probability distribution, and it provides an unbiased

representation of fX|Y (·|y) in the sense that, for any function H(x),

E(

∫
H(x)f̂N(x)dx) =

∫
H(x)fX|Y (x|y)dx

(verify that).
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