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Onsets Coincidence for Cross-Modal Analysis

Zohar Barzelay and Yoav Y. Schechner

Abstract—Cross-modal analysis offers information beyond one
extracted from individual modalities. Consider a non-trivial
scene, that includes several moving visual objects, of which some
emit sounds. The scene is sensed by a camcorder havingiagle
microphone A task for audio-visual analysis is to assess the
number of independent audio-associated visual objects (AVOs),
pinpoint the AVOs’ spatial locations in the video and isolate each
corresponding audio component. We describe an approach that
helps handling this challenge. The approach does not inspect the
low-level data. Rather, it acknowledges the importance of mid-
level features in each modality, which are based on significant
temporal changes in each modality. A probabilistic formalism
identifies temporal coincidences between these features, yielding
cross-modal association and visual localization. This association
is further utilized in order to isolate sounds that correspond
to each of the localized visual features. This is of particular
benefit in harmonic sounds, as it enables subsequent isolation
of each audio source. We demonstrate this approach in chal-
lenging experiments. In these experiments, multiple objects move
simultaneously, creating motion distractions for one another, and
produce simultaneous sounds which mix.

Fig. 1. (a) A frame and the audio of a recorded scene. The single-
microphone soundtrack containing a mixture of sources. (b)+(c)
I. INTRODUCTION Automatic localization of visual objects that correspond to the

ROSS modal analysis draws a growing interest bofiund. The audio components of each source are extracted from the
computer-vision and in the signal-processing commaoundtraCk
nities. Such analysis aims to deal with scenarios in which
the available data is multi-modal by nature. Consequently,
co-processing of different modalities is expected to synergize
tasks that are traditionally faced separately. Moreover: such co-
processing enables new tasks, which cannot be accomplishethble results. First, the number of independent sources is
in a single-modal context, e.g. visually localizing an objeddlentified. Second, these principles enable tracking in the video
producing sound. Indeed, audio-visual analysis [1]-[3] ha¥ multiple spatial features, that move in synchrony with each
seen a growing expansion of research directions, includinfithe (still mixed) sound sources. This is done even in highly
lip-reading [4], [5], tracking [6], and spatial localization [7]-non stationary sequences. Third, aided by the video data, the
[10]. This also follows evidence of audio-visual cross-modaudio sources are successfully separated, even though only a
processing in biology [11]. single microphonés used. This completes the isolation of each
Let us focus on scenarios that are referred to in the literatuentributor in this complex audio-visual scene, as depicted
as acocktail party[5], [8], [12]. Multiple objects exist si- in Fig. 1. Some of the prior methods considered parts of
multaneously in multiple modalities. This simultaneity inhibit¢hese tasks. Others relied on complex audio-visual hardware,
the interpretation of each component (e.g. sound componest)ch as an array of microphones that are calibrated mutually
In a simple everyday example, a camera views multipend with respect to cameras [1], [6], [15]. This yields an
independent objects, e.g.: lips, music instruments, etc. Tapproximate spatial localization of audio sources. A single
objects move simultaneously, and some of them emit soundscrophone is simpler to set up, but it cannot, on its own,
In the microphone that records the scene, all these sounds mixavide accurate audio spatial localization. Hence, locating
This paper presents several principles that are very useful &dio sources using a camera and a single microphone poses a
dealing with this kind of complex scenarios. This approach @gnificant computational challenge. In this context, Refs. [9],
motivated by both computer-vision studies [13], and studies 0] spatially localize a single audio-associated visual object
the human auditory system [14]. In both fields, studies ha{&VO). Refs. [7], [16] localize multiple AVOs if their sound
shown the importance osignificant synchronous changesand motion are repetitive. Neither of these studies attempted
However, such events had rarely been inspected in a croasdio separation. A pioneering exploration of audio separa-
modal context. The principles we describe here yield sevet'wn [8] used complex optimization of mutual information
based on Parzen windows. It can automatically localize an
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by unrelated moving objects. When simultaneous sounds co-exist in a scene, auditory
The approach we propose here appears to better managene analysis (ASA) aims to separate them. The ASA prin-

obstacles faced by prior methods. It can use the simplegtle of old-plus-new{14] focuses on instances in whictew

hardware: a single microphone and a camera. To match the twemnds beginand how these sounds should be interpreted. The

modalities, we look for cross-modal temporal coincidencgsinciple states: “look for a continuation of what went before,

of events having significant change. We formulate a likeland then pay attention to what has been added to it” [14]. We

hood criterion, and use it in a framework that sequentiallyse this concept in Sec. V, where existing sounds that linger

localizes independent AVOs. Consequently, continuous audftem the past are subtracted from current sounds, in order to

visual association and tracking is achieved along with isolatiasentify the new commencing sounds.

of the sounds produced by each AVO. We present some

experimental demonstrations based on real recorded scenes. |[||. SIGNIFICANT VISUAL AND AUDIO EVENTS

Current limitations of the algorithm are also discussed. Partial

results of this research were published in [19]. How may we associate two modalities, where each changes

in time? Some prior methods use continuous valued variables
to represent each modality, e.g., a weighted sum of pixel val-
Il. PERCEPTUAL GROUPING ues. Maximal canonical correlation or mutual information was

Grouping audio and visual components may be considers@Udht between these variables [8], [9], [24]. That approach
as a case gperceptual groupingThe aim here is to formulate 'S analogous to mtensﬁy_-based image mat_chlng. It implicitly
rules, according to which sounds (in audio), and visual ever&SUmes some correlation (possibly nonlinear) between the
(in vision) are grouped. We now briefly review key observg@W data values in each modality. In this work we dot
tions in perceptual grouping, based on Refs. [14],[20]_[22§0k at the raw data values during the cross-modal association.

We elaborate on three of them that are utilized in this worit@ther, here we opt fofeature-basedmatching: we seek
They are: correspondence between significant features in each modality.

Interestingly, there is also evidence that biological neural
systems perform cross-modal association based on salient
features [25].

Which features are good? In computer-vision, feature-based

The human auditory system is usually able to parse @fage registration focuses on sharp spatial changes (edges
acoustic input, so that the components belonging to a SOUgGy corners) [13]. In cross-sensor image matching, Ref. [26]
are grouped together and form part of a single perceptyaghlighted sharp spatial changes by high-pass filtering. Audi-
stream. The perceptuakparationof the components arising tory studies [14] have also shown that one of the major cues
from diﬁerent sources iS aided by diﬁerent phySica| Cueﬁyr grouping together distinct Sounds is:ammon Changm
These include differences in fundamental frequency, onggbir frequency or temporal characteristics. Analogously, in our
disparities, contrast with previous sounds, drifts in frequengy,dio-visual matching problem, we use features having strong

and intensity, Spectro-temporal modulations [23] and SOU'EanoraIvariations in each of the modalities.
location [22].

In human vision, perceptual grouping has important func-
tions, such as segmentation. Grouping is affected by vario'ﬁs
rules [21]: proximity; similarity; continuation; closure; sym- We aim for a method that spatially localizes and tracks
metry; familiarity; common fate. Ref. [21] further states thamoving objects, and then isolates the sounds corresponding to
"the probability that a relation did not happen by accident i§iese objects. Consequently, we do not rely on pixel data alone.
the most important contributor to its significance”. ThereforA higher-level representation of the visual modality is sought.
it is very desirable to determine the statistical significance &uch a higher-level representation should enable tracking of
a grouping rule in a given scene. highly non-stationary objects, which move throughout the

The principle ofcommon fates the basis for our audio- Séquence.
visual association method. This principle was shown to applyA natural way to track exclusive objects in a scene is to
to vision, as well as to audition [14], [21]. Common faterform feature tracking. The method we used is that of the
prompts grouping of a subset of elements of a scene, whdef. [27], the implementation of which is given by Ref. [28].
changesare synchronous This segregates them from otherfhe method automatically locates image features in the scene.
elements of the scene which change in a different way. THethen tracks their spatial positions throughout the sequence.
underlying logic is that it is unlikely that unrelated element§he result of the tracker is a set d¥, visual features.
in a scene would undergo parallel changes accidently. RatHeach visual feature is indexed biye [1, Ny]. Each feature
it is more likely that such elements stem from the same phyRas a spatial trajectory(t) = [xi(t),:(t)]", wheret is
ical disturbance [14]. This observation, thetangesthat are the temporal index (in units of frames}, y are the image
synchronousre likely to belong together, is a key observation ,
that underlies the work presented here.

« The significance othanges
« Synchronicityof events.
o The old-plus-newauditory heuristic.

Visual Features

As we experimented on relatively short scenes, this tracker suffices. All
of the features that are successfully tracked throughout the scene are used as
an input to the audio-visual association stage. In our experience, the features

1Some studies used an approach motivated by computer-vision in ordemiere tracked reliably. Occasionally, some depict a 'drift’ in the location (e.g
perform audio-only analysis [17], [18]. a feature located on the guitar string - see video [38]).



TABLE |
DETECTION OF VISUAL ONSETS

Input: the trajectory of feature: v, (¢) ‘
Initialization : null the output onsets vectar?™ (t) = 0 ‘
Pre-Processing Smoothv; (¢). Calculatesysu2!(¢) from Eq. (4) ‘
1. Perform adaptive thresholding @ij'su2!(t) (Eg. 5) ‘

2. Temporally prune candidate peaksayfsia!(t)

. . . 3. F h of th ini d
Fig. 2. An illustration of the feature tracking process. Features are or each of the remaining peaksdo

automatically located. Their spatial trajectories are tracked. Typically4- while there is a sufficient decreasedpi*"*!(¢;)
hundreds of features are tracked. ‘ 5. sett; =t; + 1
\ 6. The instanced™ = ¢; is a visual onset;

Consequently, setf™ (") = 1

coordinates, and denotes transposition. An illustration for] Output: The binary vectony™ of visual onsets corresponding to feature
tracking results is shown in Fig. 2. Typically, the tracker
successfully tracks hundreds of moving features.

We now aim to determine if any of the trajectories is
associated with the audio. To do this, significant features arg
first extracted from each trajectory. These features should
be informative, and correspond to significant events in the
motion of the tracked feature. We assume that such features al
characterized by instances stirong temporal variatior{29],
[30], which we termvisual onsets Each visual feature is
ascribed a binary vectov{™ that compactly summarizes its

visual onsets. Each of its elements is set as Fig. 3. Detection of visual onsets. [Left] The trajectory corresponds to
0 = { 1 if at ¢ featurei has a visual onset a feature on the violinist's hand. [Right] The instantaneous magnitude

Acceleration

time [frames]

on

: (1) of acceleration of the feature. [Circles] Instances of high acceleration

v .
0 otherwise magnitude are detected. [Crosses] Visual onsets.

For all features{i}, the corresponding vectons}™ have the
same lengthN¢, which is the number of frames. Next, we
describe how the visual onsets corresponding to a visual
feature are extracted. Next, we look for instances in whic}su2!(¢) has a strong
We are interested in locating instances of significant templocal peak. Such a peak hints at the existence of a visual onset.

ral variation in the motion of a visual feature. An appropriateocal peaks are found by adaptively thresholdijg ! (¢)
measure is the magnitude of the acceleration of the featunéthin a temporal window oRw frames. Following Ref. [31],
since it implies a significant change in the motion speed tre adaptive threshold is given by
direction of the feature. Formally, denote the velocity and the
acceleration of featuré at instancet by: B

5Vid60 (t) = 5ﬁxed + 5adapt : mediante[t—w,...,t+u]{6;,15“&1 (t)}

0i(t) = vi(t) —vi(t = 1), Gi(t)=0,(t) —o:(t—-1), (2 (5')
respectively. Then Here dfixea @Nnd dadape are positive constants. The first term
visual ) in Eq. (5) requiressy’su2!(¢) to exceed a minimal level. The
0, (t) = ||v:(t)]] () second term requiregs"#(¢) to exceed the local value of

is a measure of significant temporal variation in the motighy  (t)- Here the median provides a robust estimate to this

of feature i at time . From the measure}™™(t), we valug [31]. The instances in yvhicﬁ?[fs“al(t) exceedsﬁvide_o(t)
deduce the set of discrete instances in which a visual onBEgVide a discrete set afandidatevisual onsets for object
occurs. Roughly speaking, visual onsets are located right aff¥¢ denote this set of temporal instancesiy’.
instances in whichv{*"#!(¢) has local maxima. The process This set of candidate onsets may contain false positives.
of locating the visual onsets is summarized in Table |I. NeXtherefore, it is temporally pruned. The pruning process is
we go into further details. based on the assumption that the natural motion of an object is
1) Detection of Visual FeaturesThis section explains how piecewise temporally-coherent [32]-[34]. Hence, the analyzed
we locate visual onsets for each visual feature. For each featntetion trajectory should have visual onsets only rarely. Thus,

i, pre-processing normalizeg’s'2(¢) to the rang€0, 1]: pruning removes candidate onsets if they are closer&fgfl}
. ovisual () to another onset candidate having a higher peakyvral(t).

oysual(t) = —— L (4) Typically in our experimentsy?. " = 10 frames in video.

max; o] *(t) Hence, this implementation effectively can detect up21®

This is done in order to avoid a possible bias for visual featuresual events of a feature per second. To recap, the process is
highly accelerating. illustrated in Fig. 3.



exists in the scene, then ideally, there would be a one-to-one

Amplitude 1 audio-visual temporal correspondence, i€ = a°* for a
unique feature. Now, suppose there are several independent
H AVOs, where the onsets of each objecare exclusive, i.e.,
i they do not coincide with those of any other object. Then,
Fig. 4. Detection of audio onsets. The dots mark instances in which Z Vit =a”, )
a new sound commences in the soundtrack. The detection method is ieJ

explained in Sec. V-E. ] o
where 7 is the set of the indices of the true AVOs. features

that satisfies Eq. (7). If one assumes that the number of
, prominent visual features is small, the solution to Eq. (7)
B. Audio Features may be established by seeking a sparse set of visual features
We now aim to extract significant temporal variations froniSee [9], [36]).

the auditory data. We focus caudio onsetd14]. These are  However, cases of perfect correspondence usually do not
time instances in which a sound commences (over a possiblgur in practice. There are outliers in both modalities, due to
backgroundy. Audio onset detection is well studied [31], [35].clutter and imperfect detection of onsets, having false positives
Consequently, we briefly discuss it in Sec. V-E, where wgnd negatives. We may detect false audio onsets, which should
describe the audio peak measurement functitt*(t). We be overlooked, and on the other hand miss true audio onsets.
further extract binary peaks from'¥i(¢), in a manner we This is also true for detection of onsets in the visual modality.
describe in Sec. V-E. Similarly to the visual features, the audithus, the path we take is different. It is a sequential approach,
onsets instances are eventually expressed by a binary veetetivated in spirit bymatching pursuit[37]. We define a
a’" of length N;. Each of its elements is set as matching criterion that is based on a probabilistic argument
and enables imperfect matching. It favors coincidences and
penalizes for mismatches, as we describe in Sec. IV-B.
(6) Using a matching likelihood criterion, wsequentiallylo-
A new sound begins at instances in whi¢ht equalsl. This cate the visual features most likely to be associated with the

o (t) = 1 if an audio onset takes place at time
~ 1 0 otherwise ‘

is illustrated in Fig. 4. audio. First, the best matching visual feature is found. Then,
the audio onsets corresponding to this feature are removed
IV. A COINCIDENCE-BASED APPROACH from a°". This results in the vector of the residual audio

. . . . onsets. We then continue to find the next best matching visual
In the previous section, we explained thasual onsets . . . . L2
feature. This process re-iterates, until a stopping criterion is

and audio onsetsare extracted from the visual and auditor ) . . ) L
o . . . . et. In the next sections, we first derive a matching criterion
modalities. In this section we describe how the audio onsets gre o . . . L
t quantifies which visual feature has the highest likelihood

tempora_llly matc_hed to V|su_a_l Onsets. In_the speC|f_|c conte_xtt% be associated with the audio. We then incorporate this
the audio and visual modalities, the choice of audio and visual, ~~ . .
. . . S criterion in the sequential framework.
onsets is not arbitrary. These onsets indeed coincide in many
scenarios. For example: the sudden acceleration of a guitar
str@ng is accompanied by 'the beginning of thg sound of t@ Matching Criterion
string; a sudden deceleration of a hammer hitting a surface is ) o ) , )
a vowel. This may be seen as a generalization of the groupi@s @ corresponding visual onsets vestft, to be correlated

principle of common fatehat we reviewed in Sec. I. to the audio onsets vectaf™. Assume thav;(¢) is a random
Our approach for cross-modal association is based ¥afiable which follows the probability law

a simple assumption. Consider a pair of significant events VoR (1) = ao(¢)

(onsets): one event per modality. We assume that if both eventsPr[v)" (¢)|a°" (¢)] = { ]lj—p ' vz’“(t) £ aon(t) (8)

coincide in time, then they are possibly related. If such a
coincidence re-occurs multiple times for the same feafuire|n other words, at each instance(t) has a probabilityy to
then the likelihood of cross-modal correspondence is highe equal ta:° (), and a(1 — p) probability to differ from it.
On the other hand, if there are many temporal mismatch@gsuming that the elements® (¢) are statistically independent
then the matching likelihood is inhibited. We formulate thigf each other, the matching likelihood of a vecia” is
principle in the following sections.

A. General Approach

Let us consider for the moment the correspondence of audio

and visual onsets in some ideal cases. If just a single Aeghote by Nagree the number of time instances in which
a®(t) = v9™(¢t). From Egs. (8,9),

3We opt not to rely on sound terminations for this purpose, as these are N NN
often not sufficiently fast and distinct. L(i) = pNesree . (1 — p)(Ne—Nagree) | (20)

N
L(i) = [ Prive(0)la*(1)] ©)
t=1



. . TABLE I
Both a°® and v{" are binary, hence the number of time CROSSMODAL ASSOCIATION ALGORITHM.

instances in which both are is (a°®)Tv¢™. The number of
instances in which both aeis (1 —a°*)" (1 —v$™), hence

nput: vectors{vo"}, a®™

e A list of AVOs and corresponding audio
onsets vectorgs;, m?" }.

0.  Initalize:l =0, ag” = a°?, m$" = 0.
Nagreo = ()0 + (1 =™ (1—v") . @1) |1 teae
2. l=1+1
Plugging Eqg. (11) in Eqg. (10) and re-arranging terms, } 3. a = af™ —mo", }
log [L(i)] = N¢log(1—p) + ‘ 4. i = arg max; {2(a?")Tvon — 1Tyon} ‘
\ 5. If {(ap™)Tvem > %1Tvgn} , then \
+ [(aon)TVf’“ +(1-a""(1- V?n)} log (lp . | 6. mf" = vor e aft ‘
p 12) ‘ 7. else ' ‘
We seek the featuré whose vectorvo™ maximizesL(i). | & quit |
Thus, we eliminate terms that do not depend-gt. This | Output: N |
yields an equivalent objective function &f e The estimated number of independent AVO$48 = [ — 1.

L() = {2[(2°)Tv;] —17vo"} log (1”Z)> . (13)
It is reasonable to assume that if featuns an AVO, then it 5y sing a single microphofieNote that in this sequence,
has more onset coincidences than mismatches. Consequegily.sound and motions of the guitar pose a distraction for the
we may assume that > 0.5. Hence,log[p/(1 —p)] > 0. \jgjin and vice versa. Onsets were obtained as we describe
Thus, we may omit the multiplicative tertag[p/ (1 —p)] from i sec \.E. Then, the visual feature that maximized Eq. (14)
Eq. (13). We can now finally rewrite the likelihood function, a5 thehand of the violin playerlts detection and tracking
as - . . were automatic.

L(i) = (@) vi" = (1—=a”")" vi". (14)  Now, the audio onsets that correspond to AV@re given

Eq. (14) has an intuitive interpretation. Let us begin witRY the vector o

the second term. Recall that, by definition® equals 1 m==a-ev;, (15)
when an audio onset occurs, and equalstherwise. Hence, wheree denotes the logical-AND operation per corresponding
(1—a°") equals1 when an audio onset does not occUkglement pair. Let us eliminate these corresponding onsets from

Consequently, the second term of Eq. (14) effectively courgs» The residualaudio onsets are represented by
the number of the visual onsets of featutbat donot coincide on

with audio onsets. This mismatch acts as a penalty term in aj’ = a” —m®. (16)

EQ. (14). On the other hand, the first term counts the nUMbgfe vector$™ becomes the input for a new iteration: it is used
of the visual onsets of featurethat do coincide with audio i, Eq. (14), instead ok°®. Consequently, a new candidate

onsets. Overall, Eq. (14) favors coincidences (which shoulo is found, this time optimizing the match to the residual
increase the matching likelihood of a feature), and penalizgggio vectorag®.

inconsistencies (which should inhibit this likelihood). In the This process re-iterates. It stops automatically when a
next section we describe how this criterion is embedded fandidate fails to be classified as an AVO. This indicates that
a framework which sequentially extracts the prominent visuile remaining visual features cannot “explain” the residual

features. audio onset vector. The main parameter in this framework is
the_mentioned classification threshold of the AVO. We set it
C. Sequential Matching to L(:) = 0. Based on Eq. (14),
Out of all the visual features € [1,N,], L(i) should 0> (a°)Tvom — (1 —a) " vor. (17)

be maximized by the one corresponding to an AVO.
visual feature that corresponds to the highest valué i a
candidateAVO. Let its indngbei. This candidate is classified (a9")Tvon < llTVQn. (18)
as an AVO, if its likelihoodL(z) is above a threshold. Note that ! i 2 i

by definition, L(i) < A_L(%) for all . Hence, if_L(i) is below  consequently, whedi(i) < 0, more than half of the onsets in

the threshold, neither nor any other feature is an AVO. yon gre not matched by audio ones. In other words, most of the
At th'f’ stage, a major goal has been accomplished. Onggpjficant visual events afare not accompanied by any new

feature: is classified as an AVO, it indicates audio-visuaoyng. We thus interpret this object ast audio-associated.

association not only at onsets, but for thatire trajectory recap, our matching algorithm is given in Table Il (here

v;(t), for all t. Hence, it marks a specific tracked feature as 88 5 column vector. all of whose elements are null).

AVO, and this AVO is visually traced continuously throughout e 0utput|/j\| estimates the number of independent AVOs.

the sequence. For example, consider viwin-guitar This algorithm is fast (linear in the number of AVOsY: |7 |
sequence, available online at [38], and one of whose frames

is shown in Figs. 1, 2. It was recorded by a simple camcorderThe sampling parameters of the audio and video are given in App. -B.

The .
rEanure to pass the threshold occurs when



iterations, each havin@(N¢N,) calculations. In the above A. Binary Masking

mentionedviolin-guitar sequence, this alg_orithm_auto- Let s(n) denote a sound signal, where is a discrete

matically detected two independent AVOs: theitar string  sample index of the sampled sound. This signal is analyzed

and the hand of theiolin player (marked as crosses in Fig.1)., short temporal windowss, each beingV,,-samples long.
Consecutive windows are shifted By, samples. The short-

D. Temporal Resolution time Fourier transform (STFT) of(n) is
The previous sections derived a framework for establishing N1
audio-visual association. It implies perfect temporal coinci- (t, f) = i s(n)w(tNugy — n)e—J/No)ns 1)

dences between audio and visual onsets: an audio onset is as-

sumed to be related to a visual onset, if both onsets take place , ) , )
where f is the frequency index antlis the temporal index

simultaneously(Table I, step 4). However, in practice, the1E h vzed i L q h litude of th
temporal resolution of our system is finite. As in any syster@! € analyzed instance. Let us denote the amplitude of the

the termscoincidenceand simultaneousare meaningful only STFT SyA(t’ f) =115(t, f)I|. The spectrogramis defined as

within a tolerance range of time. In the real—world,coincidenc‘é(t’f)' _ di ianal ai its ST
of two events at an infinitesimal temporal range has just 10 re-Synthesize a discrete signal given its ST, f),

an infinitesimal probability. Thus, in practice, corresponden(gge overlap-and-add (OLA) method may be used [39]:
between two modalities can be established only up to a finite N oo 1 Nwl
tolerance range. Our approach is no exception. Specificallg(n) = —= Z Z S (t, f)ed T /Nwnt | (22)

n=0

each onset is determined up to a finite resolution, and audio- W) =, | Nw f=0

visual onset coincidence should be allowed to take place withi Lo

a finite time window. This limits the temporal resolution o o0

coincidence detection. W)= > wn] (23)
Let t2* denote the temporal location of a visual onset. Let n=—o0

to™ denote the temporal location of an audio onset. Then tiy&gr gl 7

visual onset may be related to the audio onset if i [Ny — ] = W(0) (24)

e — 13 < o1 (19) e Note

In our experiments, we séfV = 3 frames. The frame rate of then3(n) = s(n) following [39].
the video recording is 25 frames/sec. Consequently, an audiarhrough binary masking[12], [40], [41], this re-synthesis
onset and a visual onset are considered to be coincidingpibcess is modified. Only a subset of the time-frequency (T-
the visual onset occurred withi3y25 ~ 1/8sec of the audio F) bins of s(n) is maintained. For instance, assume that the
onset. STFT-amplitude 0fsgesireq IS NON-zero in a finite saf gegireq
of T-F bins{(¢, f)}. Define a mask
V. AUDIO PROCESSING ANDISOLATION

Section IV described a procedure for finding the visual Myesired (t, ) :{
features that are associated with the audio. This resulted
in a set of AVOs, each with its vector of correspondindhen by modifying Eq. (22) into
audio onsets{i;, m{"}. We now describe how the sounds .
corresponding to each of these AVOs are extracted from the Sdesired (1) =
single-microphone soundtrack. N 1 Nzl

Let Sdesired,Sinterfore @Nd s denote the amplitudes of the & Z - Z Maesivea (£, f) S (t, f) e?Cm/NwInt
source of interest, the interfering sounds, and the mixtur&/(o) 12 | Nw =0
respectively. Then (20)
we re-synthesize only the components lyingliftsired -

Audio-isolation methods utilizing this process of binary
Out of the soundtracks, we wish to isolate the soundsmasking focus on identifying the T-F bins that should be
corresponding to a given desired AVOTo do this, we utilize included in Myegired [12], [40], [41]. These methods assume
the audio-visual association achieved. Recall that AV/@ that the sefg.ireq Should very rarely contain energy of the
associated with the audio onsets in the veatot’. In other other sources in the sceheThis assumption is based [43]
words, m°" points to instances in which a sound associatesh the sparsity of typical sounds, particulaHgrmonicones,
with the AVO commence¥Ve now need to extract from thein the spectrogram. The frequency contents of an harmonic
audio mixture only the sounds that begin at these onsets. ¥@ind contain a fundamental frequengy (the pitch), along
may do this sequentially: isolate each distinct sound, and theith integer multiples of this frequency (tth@rmonie$. Since
concatenate all of the sounds together to form the isolatgghical sounds are sparsely distributed across the T-F plane,
soundtrack of the AVO. How may we isolate a single sound

commencing at a given onset instanc&? To do this. we 5Sources may overlap in a T-F bin. Binary-masking methods [12] then
’ assign the bin to the source whose estimated amplitude in the bin is the

emp'OY the method dbinary masking12], [40], [41], which strongest. To simplify our approach, however, here we allow a T-F bin to be
we review next. assigned to several sources.

1 (t, f) S Fdesired
0 otherwise ’ (25)

oo

S = Sdesired T Sinterfere- (20)



independent sounds mixed together should rarely overlap. This | spectrogram temporal directional
. . . . . . derivative derivative
is the main motivation for the binary-masking method.

In this work we assume that underlying sources are har- <é>>‘ . _ :
monic. Consequently, a sound of interest can be enhanced by 2 o i LT i
maintaining the values o (¢, f) in Tgesived, While nulling the g "'lq.'. '-Ni
other bins. This should maintain the components of the desired (L i ; i
sound, while leaving only little of the interfering sounds. In ._'-1:.._ ” Lo ) -
the next section we explain how we establiBlscq that
corresponds to a sound commencing &t

time time time

B. Principles for Building the Binary Mask
Fig. 5. Effects of frequency drift on the STFT temporal derivative.

We are given an audio onset instant¥, and wish 0 [ ef] A section of a spectrogram (female speaker) exhibiting a
identify the set of T-F bind’yeq,0q that belong to this sound. frequency drift. [Middle] A temporal derivative (Eq. 28) results in
Around the instance of the audio onset, several frequency bmgh values through the entire sound duration. [Right] The directional
undergo a simultaneous amplitude increase. By the principaldsfivative (Eq. 30) handles the frequency drift well. High output
common fatéSec. Il), we assume that such frequency bins th§g!Ues occur mainly at the onset.
have just become active all belong to the desired commencing
sound. It is this sound which we wish to isolate. To identify
the desired frequency bins, we utilize the harmonic nature ldénce, they can be eliminated by comparing the audio compo-
the sound. Hence, the sounds contains a pitch-frequency &edts at = t°" to those at < ¢°", particularly att = t°" —1.
the integer multiples of the frequency (harmonies). Therefor8pecifically, Ref. [31] suggests thelative temporal difference

1) We may identify the frequency bins belonging to the Alt, f) — At —1,f)

commencing sound, by detecting the pit¢gh of the D(t, f) = A
’ (t - 15 f)
sound commencing at".

2) Since the sound is assumed to be harmonic, we m

track the pitch frequencyy(¢) through time.

3) When the sound fades away, &, the tracking is

terminated.

This process provides the required mask, corresponding to E
sound that commences &f':

(28)

. (28) emphasizes an increase of amplitude in frequency
ns that have been quiet (no sound) just befiore
As a practical criterion, however, we have found that
Eqg. (28) lacks robustness. The reason is that sounds which
ave commenced prior tb may have a slow frequenayrift
. 5). This poses a problem for Eq. (28), which is based
solely on atemporalcomparison per frequency channel. Drift
Ftd:;ired(t7 ) ={t, fo®)k)}. (27) _results in high values of Eq. (28) in some frequengﬁeeverj
if no new sound actually commences aroundf), as seen in
Heret € [t°*,t°"] andk € [1... K], K being the number Fig. 5. This hinders the emphasis of commencing frequencies,
of considered harmonies. To concludgiven only an onset which is the goal of Eq. (28). To overcome this, we compute
instancet", we determindly_;, .4 by detectingfo(t°"), and 3 directional difference in the T-F domain. It fits neighboring
then trackingfy (¢) in ¢ € [ton, t°f]. bands at each instance, hence tracking the drift. Consider a
The fO”OWing sections provide the details for this Proceésmall frequency rangﬁfreq(f) aroundf. In anak)gy to image
dure. Sec. V-C explains how we first emphasize commencigfignment,frequency alignmenat time¢ is obtained by
sounds in the spectrogram over existing ones. This eases theali ed ] on on
detection of the pitch frequency at. The pitch-detection /™ " (f) = arg mm | A", f) = At =1, f2)].
is then described in Sec. V-D. Once the pitch frequency is o (29)
established at the onset instance, it is tracked until the sourigen, falisned at¢—1 corresponds tg att, partially correcting
fades out. This is described in App. -A. These steps providige drift. The map
all that is needed in order to isolate the sound of interest.

D — AL, f) — At -1, faliglle(i(f>)
D(t; f) - A(t — 17 faligned(f))

is indeed much less sensitive to drift, and is responsive to true
onsets (Fig 5). The map

(30)

C. Elimination of Prior Sounds

The sound of interest is the one commencingatWe wish
to identify its pitch-frequencyf, (¢°*). However, other sounds ~ _
in the mixture may also be presentt&t, interfering with the D (t, f) = max{0, D(t, f)} (31)

L . NP
p'tCh. detection procedure. Therefore, before detegf;qu) ), maintains the onset response, while ignoring amplitude de-
we first emphasize the components of the commencing sour

. . . . . crease caused by fade-outs.
of interest over these interfering sounds. This section explains
the method for achieving it. _ )

. - . on

The sound of interest is the one commencing®at Thus, D- Pitch Detection at

the disturbing audio at°" is assumed to have commenced As described in the previous section, the measure

prior to t°®. These disturbing sounds linger from the pasﬁ+(t°“,f) emphasizes the amplitude of frequency bins that
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correspond to a commencing sound. We may now u
D, (t°™, f) as an input to a pitch-detection algorithm i
order to detect the pitch frequency @&f. The algorithm we
choose to use is the harmonic-product-spectrum(HPS) [44].
ﬁ]ntr?é(\&/lgl?rlfgfl?i:;?esggltjee%tsg i;;ltgcir\w/—;‘;]ei?qu'(;:-ir;]cnlgf Sélﬁ)lﬂlr?gotﬂsetr%u'nd—truth Qatg. Thﬁs allows quantitgtive assessment of the
detection offy(¢t°*), the pitch-frequency needs to be trackeguahw.Of aud|o.|solat|on, as we describe below. i
during ¢ > #°%, until . This procedure is described in We_ﬂrst describe the experiments and the as_500|at|on_results.
App. -A. The video sequences pr_est_anted here_ are avallable_ o_nlme _[38].
We then provide a quantitative evaluation of the audio isolation

. ] for some of the analyzed scenes. Implementation details and
E. Detection of Audio Onsets typical parameters values are given in App. -B.

Methods for audio-onset detection have been extensively
studied [31], and are used in a variety of audio-processing ragyits
applications [47]. Here we describe our particular method for

onsets detection. Our criterion for significant signal increas The violin-guitar sequence. Th|§ sequence featurgs a
is simply close-up on a hand playing a guitar. At the same time, a

violinist is playing. The soundtrack thus contains temporally-
overlapping sounds. The algorithm automatically detected that
_ there are two (and only two) independent visual features
whereD_ (¢, f) is defined in Eqg. (31). The criterion is similarthat are associated with this soundtrack. The first feature
to a criterion suggested in Ref. [31], which was used ftorresponds to the violinist hand. The second is the correct
detect the onset of a single sound, rather than several mixgtdng of the guitar (Fig 1). Following the location of the visual
sounds. However, Eq. (32) is more robust in a setup of sevef@dtures, the audio components corresponding to each of the
mixed sources, as it suppresses lingering sounds (Eq. 31). Témtures are extracted from the soundtrack.
extraction of the audio onsets is done in the spirit of Ref. [31]. The speakers #1 sequencefhis movie has simultaneous
The onset measure of Eq. (32) relies on a synchronous aspeech by male and female speakers. The female is viewed
plitude increase in several frequency bins together. Therefofi@ntally, while the male is viewed from the side. The algo-
it is relatively robust to background noise, keeping a low rat#hm automatically detected that there are two visual features
of false detections (Fig. 7). that are associated with this soundtrack (Fig. 8). Following
the location of the visual features, the audio components
corresponding to each of the speakers are extracted from the
In this section we present experiments based on regundtrack As can be seen, there is indeed a significant tem-

recorded video sequences. In our experiments we compomal overlap between independent sources. Yet, the sources
separately-recorded movies (e.g., a violin sequence and'§ Separated s_uccessfully.. _ _ _

guitar sequence) into a single viddduch a procedure is 1he dual-violin sequence:This experiment is very chal-

a common practice in single-micrhopone audio-separati%ﬁpg'”g' It contains two instances of the same violinist, which

studies [5], [12], [40], since it provides access to the audi>eS thesame violin to play different tunes. Listeners who
had observed this mixed scene found it difficult to correctly
6Compounding individiual scenes daest simplify the experiments relative group the different notes into a coherent tune. However, our
to a simultaneous recording of AVOs. The reverberations of each source 81%0I’ithm managed to do so. First, it located the relevant visual
preserved after sampling and compounding, since these are linear operatig t Th loited for isolati h di
For the same reason, the individual sources still interfere with each othéfatures . These are exploited for isolating the correct audio

components (Fig. 10). This example demonstrates a problem

o™ Ho(t) = > "Dy (t, f), (32)
f

VI. EXPERIMENTS

regardless of whether they are recorded separately or simultaneously.



Fig. 8. A frame from thespeakers #1 movie. Out of the selected Fig. 10. A frame from thedual-violin movie. Out of the selected
and tracked visual features [Dots], two are automatically associatedsigd tracked visual features [Dots], two are automatically associated

the audio [Crosses]: correctly, one per source. The audio componegtshe audio [Crosses]: correctly, one per source.
of each source are extracted from the mixed soundtrack.

which is very difficult to solve with audio data alone, but is
elegantly solved using the visual modality.

The speakers #2 sequencéhis experiment also includes
two speakers. It is a recording of a real scene. Two features o
the mouth area of each speaker are correctly located (Fig 11)#
In this sequence, one of the audio onsets of the male coincideg
with an audio onset of the female. However, our method |
in its current formulation cannot identify concurrent audio _
onsets. Thus, no more than one audio onset can detected. I ' "
the audio-visual association stage, this concurrent onset was = /s
associated to the female speaker. The detected pitch, howevel / 4
was that of the male. Consequently, in the isolated soundtrack i 1/

corresponding tp the male, one of his Word§ IS MISSIng. q[%; 11. Aframe from thespeakers #2 movie. Out of the selected
the other hand, in thle soundtrack (?orrespondlng to the femalRy racked visual features [Dots], two are automatically associated
one of her words is replaced with that of the male. Thgith the audio [Crosses]: correctly, one per source.

corresponding spectrograms are shown in Fig 12.
The experiments described above depict the utilization of
the perceptual-grouping rules we have described in Sec. dl. Ay dio Isolation: Quantitative Evaluation
We focus onchanges both auditory and visual ones. This N thi tion we provid nitative evaluation for th
aids in parsing dense audio-visual scenes into sparser eventg. S section we provide quantitalive evaluation for the

The synchronicityof these events aids in relating otherwise?)(pe”mentall separation of the audio sources. The quality

difficult connections (as in thelual-violin sequence). measure we use is the Signal-to-Distortion Ratio (SDR) [42]

Finally, the old-plus-newheuristic aids in differentiating the expressed in decibels (dB):
commencing auditory harmonic components from lingering l|sl|?

: SDR = 10logi10——5 -
ones, for subsequent audio enhancement. 15— 5|2

(33)
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Fig. 9. The spectrograms corresponding to thel-violin sequence. Based afisual data, the audio components of each of the violins
were automatically separated from a single soundtrack.
onhanced TABLE llI
4 male QUANTITATIVE EVALUATION OF THE AUDIO ISOLATION .
5 i 4 [ sequence [ source ]| SDR improvement [dB]|
] g : a violin-guitar | violin 6.35
4 mixture & 4 - - guitar 3.40
: = 2
_ 1 - - o speakers male 5.22
E ] . female 3.76
g X " - 3 enhanced dual-violin | violinl 9.42
- A ‘| _female violin2 2.26
A B e el
60 100 E
time [frames] =
£ . " has a harmony (a multiple of its pitch) which is close to a
I - harmony of the guitar. Consequently, the isolated soundtrack
B e T W of the guitar contains artifacts traced to that harmony of the

violin. indeed, the SDR measure of the guitar is lower than
Fig. 12. The log-amplitude STFT images corresponding to ththat of the violin.
speakers #2 sequence. Based ovisual data, the audio com- In speakers #1 , the speech of the female contains
ponents correspon(_jing to each of the speakers were automaticalyyne non-harmonic sounds, which are lost in the separation
separated from a single soundtrack. The marked box at the bonofﬁ%cess that relies on purely harmonic sounds. Finally, in the

right spectrogram highlights a time-ferquency segment that original L s .
belonged to the male speaker, but was erroneously attributed to q\;@l-wolln sequence , the 1st violin is mostly quiet.
female speaker. Therefore, successful removal of the the 2nd violin (which is

very active), greatly enhances the SDR of the 1st violin.

. i ) VII. LIMITATIONS
We choose this measure, since: "the SDR incorporates all POSare we describe current limitations of the described

sible kinds of distortion arising from different source separgyqqrithm. Possible improvements are suggested in Sec. VI,
tion algorithms, including interference from other sources, gur-

gling artifacts, filtering distortion and spatial distortion” [42]. Vision-Based Auditory Grouping. This work described
The SDR of an isolated source is compared to the SDR gfinciples for associating audio and visual events, that are
the mixed source. Table Ill summarizes the SDR improvemqﬁﬁsed on tempora| coincidencal®ne For instance, a sound
in decibels for the conducted experiments. Next we provi¢g the guitar may erroneously be associated with a feature
some insight into these figures. corresponding to the violin, if a visual onset of the violinist
in the violin-guitar sequence, some of the time4ook place around the same instance in which a sound of
frequency components of the violin were erroneously includeéke guitar commenced. In crowded scenes (e.g, three or
in the binary mask corresponding to the guitar: towards the emmbre people) dense audio onsets exist, and this becomes
of one of the guitar's sounds, a violin sound commences.dh acute problem: as the temporal resolution is limited (see
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Sec. IV-D), the indicator vector of audio onsets has audio Future work should avoid associating audio onsets to in-
onsets at every locations®® = 1. Consequently, Eq. (14) correct visual onsets. Audio onsets that have been grouped
is reduced tal(i) = (a°®)Tvo". In other words: every visual together based on correspondence to visual onsets only, would
feature has full correspondence to the audio. Consequenthen be further inspected. Comparing different auditory char-
the audio-visual synchronicity is no longer a statisticallyacteristics [50] of the audio onsets in that particular group may
significant grouping rule(Sec. I1).To deal with dense scenagveal whether any of these audio onsets does not actually
our framework requires more robust grouping rules. belong in that group. This would also alleviate the need to
Visual Pruning. The principle used here groups audiaggressively prune the visual onsets of a feature. Such a
onsets based on vision only. The temporal resolution of tframework may also lead to automatically setting of method’s
audio-visual association is also limited (Sec. IV-D). Thiparameters.
implies that in a dense audio sceaayvisual onset has a high  Our audio-visual correspondence may be incorporated with
probability to be matched by an audio onset. To avoid suehmore general audio-enhancement framework [43], [48], [47].
an erroneous audio-visual association, we aggressively priiech a framework would alleviate the assumption of harmonic
visual onsets. Two onsets of a visual feature may not be closeunds, and would improve the quality of the enhancement.
than 10 frames to each other. This is equivalent to assumingFinally, we believe that this general capacity is not limited
an average event rate 8f5Hz. This limits the applicability to the audio-visual domain. Rather, it may be applicable to
of our current realization in the case of rapidly-moving AVOsassociating between other types of data. We hypothesize that
System Parameters.Our method requires to tune severathis may be potentially useful, for instance, in associating
parameters when analyzing an audio-visual scene. These fpacro-economic events.
rameters are detailed in App. -B. This tuning of parameters
makes the analysis more difficult. ACKNOWLEDGEMENTS

,f'fA‘Ud'o Onsets and Pitch Detectlon.Agdlp onsets of We thank Danny Stryian, Maayan Merhav and Einav Namer
different sources are assumed not to coincide (Sec. IV"%r participating in the experiments. Yoav Schechner is a

This assumption is further utilized in the pitch-detection stage nqau Fellow - supported by the Taub Foundation. The

(Sec. V-C). To alleviate this limitation, we may utilize pitch-Work was supported by the Israeli Science Foundation (grant

detection methods that are able to differentiate between SO“'?L%%l/OS) and conducted at the Ollendorff Center in the Elect
that commence simultaneously, and that further detect thg ' '

individual pitch frequencies [45]. We may then initialize a BngB'FI_Dept' at the Technion. Minerva is funded through the
robust pitch tracker with these initial frequencies [51], [46].
Such trackers reliably track the pitch in noisy mixtures. This i
is achieved mainly by casting the pitch-tracking task as’x Pitch Tracking
maximume-likelihood estimation problem; and by inspecting Given the detected pitch frequency ff(t), we wish to
the signal not only frame-by-frame, but rather at biggerstablishf(t+ 1). It is assumed to lie in a frequency neigh-
temporal segments. borhoodQ,..q Of fo(t), since the pitch frequency of a source
Audio Enhancement. The binary-masking proceduretypically evolves gradually [51]. Recall that an harmonic sound
(Sec. V-A) assumes that independent sources should raredytains multiples of the pitch frequency (the harmonies). Let
depict an overlap in the T-F domain. Also, it may causd#e set of indices of active harmonies at timebe K(t).
auditory artifacts [48]Soft-masking43], [48] would improve For initialization we setC(t°") = [1,..., K]. The estimated
the quality of the auditory enhancement, and may deal betfeaquency fo(t) may be found as the one whose harmonies
with T-F overlap. In order to separate sources with very closeapture most of the energy of the signal
by pitch frequencies (e.g. male-male or female-female) from
a single microphone, prior training of models is required [48]. folt+1) = arg P Yo lAE+Lf R (34)
Even then, the results are inferior to those of male-female kek(®)
mixtures [49]. Eqg. (34), however, does not account for the simultaneous
existence of other audio sources. Disrupting sounds of high
VIIl. CONCLUSIONS energy may be present around the harmofies1, f - k) for
This paper presented a novel approach for cross-moéolmef € fireq, andk € K(#). This may distort the detection
L ) . . SS-moga fo(t + 1). To reduce the effect of these sounds, we do not
audio-visual analysis. It is based on instances of significant . . .
change in each modality. Our approach handled compluse the amplitude of the harmoniégt + 1, /- k) in Eq. (34).
' Réither, we usdogl[A (t+ 1, f - k)]. This resembles the ap-

audio-visual scenarios in expgnment_s, where sounds ov foach taken by the harmonic-product-spectrum algorithm [44]
lapped and visual motions existed simultaneously. The

proach yields a set of distinct visual features, with associatﬁ]dr dea}mg .W'th noisy frequency compo_nents. Consequently,
. . . o e estimation offy (¢ + 1) is more effectively dependent on
isolated sounds. It doesot require training. Thus, it is

applicable to a wide range of AVOs (not limited to speecWany weak frequency bins. This significantly reduces the error
e induced by a few noisy components.
or specific instruments).

Recall that the pitch is tracked in order to identify the set
4on . S ) ’
TThis is done by sequentially detecting the dominant pitch-frequendydesirea Of time-frequency bins in which an harmonic sound

n

removing it from the mixture, and repeating the process lies. We now go into the details of how to establE}i

sired*
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TABLE IV . :
PITCH-TRACKING ALGORITHM. B. Implementation Details

This section describes the implementation details of the

algorithm described in this paper. It also lists the parameter

values used in the implementation. Unless stated otherwise,

Input: t°2, fo(t°"), A(¢, f)

0. Initalize: t = ¢, K(¢) = [1,..., K]. . i
1. lterate the parameters required tuning for each analyzed sequence.
‘ 2. folt+1) = argmaxseay., Ser(r | 108lA (E+1, £ - K)]|12 ‘h Temporal Tolerance: Audio and visual onsets _need not
appen at the exact same frame. As we explained in Ch. IV, an
| 3. foreachk € K(t) ‘ : - ) .
Ao (1) A gudlo onset and a visual onsets are considered simultaneous,
‘ 4. pk, ) = = Ao & ‘ if they occur within 3 frames from one another.
| 5 if p(k,t) > pinterfer OF p(k,t) < pacad then | Frequency Analysis: The audio is re-sampled to 16 kHz,
| 6. K@) =Kt-1)—k | and analyzed using a Hamming window &bmsec. Con-
| 7. end foreach | secutive windows havé0% overlap. This also ensures syn-
| 8. if |K(t)] < Kmin then | chronicity of the windows with the video frame ra@5{7 z). A
| . foft _ ¢ | Hamming window with &0% overlap also realizes constraints
10, quit of the OLA method [52].
11. t=t+1 Pitch detection and Tracking: For pitch detection and
| Output: ‘tracking, the number of considered harmonies is sek’te-

10. The guidelines of Ref. [53] are taken in order to prevent
pitch-halving (erroneously setting the pitch to half its real
value).
Visual Processing:Prior to calculatingv,(¢) as described
in Sec. lll, the trajectory;(t) is filtered to remove tracking
noise. The temporal filtering is performed separately on each
of the vector components;(t) = [z;(t),y;(t)]T. The filter-
ing process consists of performing temporal median filtering
According to Eq. (27).I'g.;,.q should contain all of the (typically window size set to 5 frames) to account for abrupt
harmonies of the pitch frequency, fore [t", t°]. However, tracking errors. Consequent filtering consists of smoothing by
Tfiesivea May also contain unwanted interferences. Thereforgsnyolution with a Gaussian kernel with standard deviation
once we identify the existence of a strong interference atof around 1. Finally, the adaptive threshold parameters are
harmony, we remove this harmony frofi(t). This implies tyned in each analyzed scene. We further remove visual onsets
that we prefer to minimize interferences in the enhancgghose amplitudes of acceleration and velocity are smaller
signal, even at the cost of losing part of the acoustic energyan specific values. Typically, the velocity and acceleration
of the signal. A harmony is removed frofi(t) also if the amplitudes at an onset should exceed the values of 0.2.
harmony has faded out: we assume that it will not become|n the detection of visual onsets, the instanced/jt are
active again. Both of these mechanisms of harmony remoyes of significant change in motion. However, we have found
are identified by inspecting the following measure: in our experiments that instances in which these significant
Alt+1, fo(t+1) - k] change in motion arever, and a smooth motionommences
AT fo(6) - K] have better temporal correlatlon with theT audio onsets. There-
fore, each temporal locatigf)* € V,°" that is currently located
The measurep(k,t) inspects the relative temporal changeat a local maximum obYsu2!(¢) is shifted forward in time
of the harmony’s amplitude. L&tiycrfer @Nd pacaa b€ tWo away from the local maximum, and towards a smaller value
positive constants. Whep(k,t) > pinterter We deduce that of 6Ysu2l(¢). The onset is iteratively shifted this way, while
an interfering signal has entered the harményrherefore, it there is a significant relative decreasesjirt?!(¢). Typically,
is removed fromKC(t). Similarly, whenp(k,t) < pacaa W€ onsets are shifted by not more than 2 or 3 frames.
deduce that an the harmoryhas faded out. Therefore, it is
removed from/C(t). Typically we usedpipterter = 2.5 and
Pdead = 0.5.
We initialize the tracking process by settinfg(t°*) and

e The offset instance of the tracked sout?.

e The pitch frequenyfy(t), for ¢ € [ton, tofF)

e The indices of active harmonig§(t), for ¢ € [ton, t°fF]

e The time-frequency domaifi%, ., | of the tracked sound:

on

Tl cived = L(&, fo(t) - k}, for k € K(¢), t € [ton, toff]

(39)

/O(k7t) =
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