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Abstract
To obtain high dynamic range or hyperspectral images,

multiple frames of the same field of view are acquired
while the imaging settings are modulated; images are
taken at different exposures or through different wavelength
bands. A major problem associated with such modulations
has been the need for perfect synchronization between
image acquisition and modulation control. In the past,
this problem has been addressed by using sophisticated
servo-control mechanisms. In this work, we show that the
process of modulation imaging can be made much simpler
by using vision algorithms to automatically relate each
acquired frame to its corresponding modulation level. This
correspondence is determined solely from the acquired im-
age sequence and does not require measurement or control
of the modulation. The image acquisition and the modula-
tion work continuously, in parallel, and independently. We
refer to this approach as computational synchronization. It
makes the imaging process simple and easy to implement.
We have developed a prototype modulation imaging system
that uses computational synchronization and used it to
acquire high dynamic range and multispectral images.

1 Modulation Imaging
The quality of acquired scene information is often en-

hanced by capturing a sequence of images of the scene and
combining the information within them. Each image of the
sequence corresponds to a different modulated state of one
or more of the imaging parameters. We concentrate here
on two modulation types. One type modulates the exposure
settings, with the aim of extending the radiometric dynamic
range of the system. At each exposure setting, a different
range of intensities can be measured reliably. Fusing the
data from all the exposures [6, 14] results in a single high
dynamic range (HDR) image.1 Several methods have been
developed to enable the display of HDR images on low dy-
namic range media [5, 8, 9, 19, 25]. A problem with prior
acquisition methods of this sort has been the control of the
acquisition process: The exposure parameters have to be set
at a new level before a new frame can be acquired.

1Other approaches for HDR imaging use nonlinear components [17, 27]
and systems [16] or global camera motion [1, 3, 22].

The other type of modulation we deal with filters into
the detector a narrow wavelength band. Taking multiple
images at different modulation settings results in multi-
spectral/hyperspectral images. This imaging mode is ex-
tremely useful in several applications [21], including ma-
terial and object recognition [7, 24], color analysis and
color constancy [12, 13, 26], biomedical imaging [18],
remote sensing [24] and astronomy [2, 28]. Widefield
multispectral images are typically acquired by sequentially
changing the central wavelength of the measured spectral
band [4, 7, 11, 12, 18, 28]. As in the case of HDR imag-
ing, existing acquisition methods for widefield multispec-
tral imaging require precise control of the coupling between
image acquisition and the state of the spectral filter. After
each image is acquired, the spectral band is changed to one
out of several discrete levels. During this process, image
acquisition is put on hold.

In many applications, it is beneficial to have uncontrolled
modulation of the imaging system. In such a scheme, no
hardware is needed to synchronize the camera with the mod-
ulation device. Both work continuously, in parallel, and
without a stepped sequencing mechanism. Such a scheme
can be realized using systems that are much simpler than
controlled systems; there is no need for a controller and
feedback channels. In addition, the system can use continu-
ous modulation, where a filter undergoes a simple periodic
transformation. In comparison with existing “stepped” ap-
proaches, this is simpler to implement.

Even when the modulation is uncontrolled during acqui-
sition, we need accurate knowledge of the modulation state
corresponding to each acquired image. Without this knowl-
edge, we cannot recover the spectral distribution of the ob-
ject’s radiance in multispectral imaging, or an image with
known radiometric response in the case of HDR imaging.

In this paper we show that we can determine the modu-
lation state at each image based only on the acquired im-
age sequence. No auxiliary recording of the modulation
state is required. By simply analyzing the acquired image
sequence, we determine a-posteriori at which wavelength
band or exposure setting each of the images was taken.
We call this method computational synchronization. We
develop algorithms for computational synchronization for
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Figure 1. A system for demonstrating the algorithms of un-
controlled modulation imaging. It uses a monochrome image
detector. Adjacent to the detector (before the lens), there are
two spatially varying filters: one with varying transmittance,
the other with a varying spectral response.

HDR imaging and hyperspectral imaging. We demonstrate
our algorithms on image sequences acquired using a proto-
type uncontrolled modulation imaging system we built.

2 A Prototype Implementation
The emphasis of the work is algorithmic. However, to

demonstrate our ideas, we implemented a simple image ac-
quisition system. We point out that the algorithms we de-
velop are not limited to this specific implementation. The
system uses a monochrome video camera having a linear ra-
diometric response. We placed spatially varying filters right
in front of the CCD detector, between it and the lens, as
depicted in Fig. 1. One filter is a circular variable neutral
density filter. Its transmittance depends on its rotation an-
gle. The other is a linear variable interference filter. The
transmitted spectral band varies across this filter. Both fil-
ters are driven by simple DC motors (Fig. 1). When the mo-
tors are turned on, the state of the filters change with time.
This causes temporal modulation of the light transmittance
and/or spectral band. The modulations are continuous, and

uncontrolled. There is no synchronization between the state
of the filters and image acquisition.

3 Image Analysis for High Dynamic Range
3.1 Estimation of the Modulation

We alleviate the need of controlling the temporal mod-
ulation of the transmittance. Rather than controlling the
transmittance, we estimate it from the sequence itself. Let
Fk be the transmittance of the density filter at frame k, and I
be the intensity of light falling on the detector (irradiance),
when the transmittance of the filter is maximal (F = 1).
When the detector is not saturated, the intensity in frame k
is vk = FkI . Then, this image point is measured without
saturation in frame p, with intensity value vp = FpI . As-
suming the scene radiance is constant between frames, these
measurements should satisfy

Fkvp − Fpvk = 0 . (1)

Measuring the intensities of various image points �x in sev-
eral frames provides many such linear equations, which the
filter modulation should satisfy. This set of equations can be
written as VF = 0.

In addition, we impose temporal smoothness on the esti-
mated modulation, by penalizing for 2nd order variations in
F . The smoothest modulation would satisfy LF = 0, where
L is the 2nd order derivative operator (See [22]). Overall,
we obtain an overconstrained system of equations. The least
squares solution of this system of equations is

F̂ = arg min
F

(F tMtMF ) , (2)

where M = [Vt βLt]t . Here β is a parameter that weights
the penalty for unsmooth solutions relative to the penalty
for disagreement with the data. The solution is derived us-
ing singular value decomposition. The solution is scaled by
setting max F̂ = 1.

We demonstrated this method on several sequences, sam-
ples of which are shown in Fig. 2. There are millions of
corresponding measurements in each sequence. From them,
we obtained about 40,000 equations as Eq. (1), based on
randomly picked measurement pairs. The intensity val-
ues selected were unsaturated and also not dark. The self-
calibrated modulations for each of the sequences are plotted
in Fig. 3. Note that each sequence has a different transmit-
tance variation in time. The reason is that the motor in each
experiment was run at a different speed. In addition, the
mechanical coupling of the motor to the filter was not tight.
Nevertheless, the self-calibration method we described by-
passes the need for motion control.

3.2 Fusing the Measurements
We now describe the method we used for estimating the

HDR intensity. Let a measured intensity value at frame k
be vk with uncertainty ∆vk, corresponding to an estimated
transmittance F̂k. Compensating the readout for the filter’s
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Figure 2. Raw sample images from the “Church” and “Face”
video streams. The video streams were acquired while the fil-
ter transmittance changed. These changes were uncontrolled.

attenuation, the scene point’s intensity is Ik = vk/F̂k. Esti-
mates are combined using a weighted average,

Î = W−1
∑

k

wkIk , (3)

where W ≡∑k wk is a normalization factor. The weights
are set by

wk =
1

∆I2
k

=
∣∣∣∣∂Ik

∂vk
∆vk

∣∣∣∣
−2

=

(
F̂k

∆vk

)2

, (4)

so that Ik carries a smaller weight, if its uncertainty ∆Ik

is large. The estimates corresponding to higher light trans-
mittance F̂k are more reliable and are thus more influential.
We assume the readout uncertainty to be ∆vk = 0.5, since
the readout values are integers. Measurements suspected as
saturated are treated as having high uncertainty, thus their
corresponding ∆vk is set to be a very large number.

The images from the sequences, of which samples are
shown in Fig. 2, were fused into HDR intensity images us-
ing this method. To display the image content on standard,
low dynamic range media, we processed the HDR images
in the two steps. First, we used the HDR image to render
several standard images of the scene (which include satu-
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Figure 3. The estimated transmittance as a function of time
(frame index), for two video streams. The transmittance was
calculated based on the raw images, bypassing the need for
imaging synchronization.

Figure 4. Images derived from HDR intensity information.
The HDR information was calculated from raw images, sam-
ples of which are shown in 2. The calculation used the esti-
mated temporal transmittance plotted in Fig. 3.

ration), each of which simulating imaging at a distinct ex-
posure. These images have a better quality than the raw
frames, since no blooming effect takes place around simu-
lated saturation points. In addition, these processed images
are the result of data gathered in numerous frames, and thus
are much less noisy. Then, we fused these images into a
single high-content image, using the method described in
Ref. [5]. The results are displayed in Fig. 4.

4 Hyperspectral Imaging

4.1 Common Approaches
There are several approaches for obtaining hyperspectral

images. Our method belongs to the most common cate-
gory, which is based on a widefield approach. In the wide-
field category, the entire field of view (FOV) is imaged at
once. Multiple images of the scene are taken, each of which
through a filter having a different narrow wavelength band. 2

There are several realizations of this approach. One real-

2There are two additional categories for hyperspectral imaging systems.
Pushbroom systems scan the FOV in narrow spatial swaths. Transform sys-
tems multiplex spectral components, rather than scanning individual spec-
tral bands. Those categories are disjoint to the work presented here.
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Figure 5. Raw sample images from several video streams.
During video acquisition, the sensed spectral band changed
in an uncontrolled manner. Note the strong variations of the
flower appearance [left], where in some wavelengths they ap-
pear bright while in others they are very dark. Contrast po-
larity also flips in the intensity of the fluorescent bulb [right].

ization is based on a filter wheel, over which discrete filters
are mounted. The wheel is rotated by a discrete angle be-
tween image acquisitions. Related realizations are based on
continuous variation of the wavelength passband across a
filter [4, 18, 28] which moves in discrete steps. Additional
widefield systems are based on electronic tunable filters as
liquid crystal tunable filters (LCTF) [11], acousto-optical
tunable filters (AOTF) [7, 12], and Fabry-Perot etalons [2].

4.2 Our Method
The modulation of the spectral pass-band is obtained in

our system by periodically moving a variable interference
filter. Sample images taken using the system are shown in
Fig. 5. Some of our sequences had dramatic effects. Con-
sider the flowers on the left side of Fig. 5. There are very
strong variations of flower appearance during spectral mod-
ulation: in some wavelengths they appear bright while in
others they are very dark. Strong variations also appear in
the “Bulbs” sequence (right side of Fig. 5), where a fluores-
cent bulb radiates intensively only in several narrow bands.

To extract quantitative spectral information from such
data, we need to know which wavelength band each mea-
surement corresponds to. Thus, the spectral modulation
state needs to be known at each frame. Nevertheless, con-
trolling the modulation state in conjunction to the image ac-
quisition complicates the system. We thus introduce in this
section a method for determining the filtered passband at

each frame, based on the acquired images. The resulting
computational synchronization alleviates the need for on-
line control or monitoring of the spectral modulation.

The key for this blind estimation lies in creating an oscil-
latory modulation. In this scheme, the wavelength passband
shifts back and forth periodically, thus each band is sam-
pled twice during each modulation cycle. In the particular
system we built, this was achieved by a crankshaft, which
converted motor rotation to oscillatory linear translation.

4.3 State Dynamics
Let λmax and λmin be the maximum and minimum wave-

lengths of the scanned spectrum, respectively. At acquisi-
tion time t, the central wavelength of the filter’s passband is

λ(t) = (λmax +λmin)/2 − [(λmax −λmin)/2]f(t) , (5)

where f(t) is the modulation function which determines the
wavelength band observed at each frame. We require that
f(t) be oscillatory with period T :

periodic: For each t, f(t) = f(t + T )
oscillatory: For each t1 exists a unique ∆t1 > 0, such that

f(t1) = f(t1 + ∆t1), while ∆t1 < T . (6)

We stress that the oscillations do not need to be harmonic
(i.e. a cosine function). Indeed, in the system we use for
demonstration, f(t) is not a cosine function.

Define a function fbaseline(θ), which is similar to f(t),
but shifted and scaled in time so its minimum is at θ = 0,
and its period is 2π. We may thus write

f(t) = fbaseline[(2πt/T ) − θ0] , (7)

where θ0 is the phase of the function f(t). In general, we
know fbaseline(θ). The reason is that it can usually be pre-
calibrated or derived in closed form. For example, the mod-
ulation may be created by a motor rotation, as we indeed do
in the experiments described in Sec. 4.5. In this case, we
know for each angle θ of the motor what the correspond-
ing wavelength is, although we do not know (yet) what is
the angle θ at any given time. The same happens when the
spectral modulation is determined by a periodic voltage (or
another signal), as is the case in tunable filters: it is known
in advance which wavelength corresponds to any voltage,
but we need to find out which voltage is used at any time.

It follows from Eqs. (5,7), that in order to estimate the
central wavelength at time t, we need to estimate two global
parameters: the modulator’s period T and the phase θ0. The
underlying assumption we make here is that θ changes lin-
early with t, e.g., the motor rotates at a constant rate.

4.4 Estimating the Spectral Modulation
In this section we show a way to estimate the global pa-

rameters T and θ0 from the image sequence. Consider the
spectrum of a scene point corresponding to a single image
pixel, e.g., the function shown in Fig. 6a. Then, consider
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Figure 6. (a) Spectrum of a scene point. (b) The modula-
tion function is periodic and oscillating. (c) The spectrum is
scanned leading to intensity readout I(t). Oscillations cause
two scans of each wavelength in each period. A feature in the
spectrum appears at times t1, t1 + ∆t1. This pattern repeats
at the modulation period T . The measured ∆t1 and T indi-
cate the phase of the modulation. This indication has a simple
ambiguity seen in (b): both phases θ1 and θ2 can account for
the measured ∆t1 and T .

the oscillatory function fbaseline(θ) depicted in Fig. 6b. As
θ changes in time, the measured intensity I(t) varies in cor-
respondence to the spectrum3. The maxima and minima of
I(t) are easy features to detect, and they correspond to ex-
tremum points of the spectrum. Since f(t) is periodic, the
sequence of scanned wavelengths is repeated in the same
order and rate at t + T . Thus, I(t) is replicated at t + T
(Fig. 6c). The estimation of T is thus simply obtained from
the temporal period of the measured intensity.

We are now left with the problem of estimating θ0. Re-
call that the modulation oscillates back and forth. Consider
Fig. 6b and Eq. (6). For every θ1, there exists ∆θ, such that
0 < ∆θ < 2π, while fbaseline(θ1) = fbaseline(θ1 + ∆θ).

3The intensity I(t) resembles a temporally distorted (unevenly
stretched) version of the spectrum. The reason is that in general f(t) is
not piecewise linear, thus λ and t are related in a nonlinear fashion.

Corresponding to the opposite directions of the modulation
variation at these two phases,

sign
[
∂fbaseline(θ)

∂θ

]
θ=θ1

= −sign
[
∂fbaseline(θ)

∂θ

]
θ=θ1+∆θ

(8)
Since θ varies linearly with t, there is a time instance t1

and a time lag ∆t1 corresponding to θ1 and ∆θ. The same
wavelength is sampled at t1 and t1 + ∆t1, but it is scanned
in a mutually opposite order:

sign [∂f(t)/∂t]t=t1
= −sign [∂f(t)/∂t]t=t1+∆t1

⇒ sign [dλ(t)/dt]t=t1
= −sign [dλ(t)/dt]t=t1+∆t1

(9)

Therefore, if the measured intensity I(t) has a maximum
value at t1, then a time-reflected replicate4 of I(t) exists
with its corresponding maximum at t1+∆t1 (See Fig. 6c). It
is often easy to detect these corresponding maxima. There-
fore, from the acquired data we can measure the time lags
∆t1 and T−∆t1 depicted in Fig. 6c. As we show next, these
measurements facilitate the required phase estimation.

From the measurements we empirically estimate the ratio

r ≡ ∆t1
T

=
∆θ

2π
. (10)

Thus
∆θ = 2πr . (11)

As seen in Fig. 6b, in each modulation period T there are
exactly two phases θ1 and θ2, for which the modulation
state is replicated, fbaseline(θk) = fbaseline(θk +∆θ) where
k = 1 or 2. Since we know a priori the function fbaseline(θ),
we can easily derive the solutions θk and fbaseline(θk).

The values fbaseline(θk) correspond to two specific
wavelengths λk:

λ(θk) = (λmax + λmin)/2 − [(λmax − λmin)/2]f(θk) .
(12)

To appreciate the significance of this observation, note that
this derivation enables us to estimate the wavelength of a
source measurement, although we have not used any con-
trol mechanism to synchronize the filter modulation with the
measuring sensor (camera). Yet, the estimate is prone to
a simple ambiguity, since there are two possible solutions,
λ(θ1) and λ(θ2), as depicted in Fig.6b. This ambiguity is
easily removed using a qualitative que derived from a sec-
ond scene point of a different color, as we detail in [23].

To estimate T and Eq. (10), a little more than a full pe-
riod of the scan should be completed. During that period,
the spectrum is practically scanned three times. For exam-
ple, the wavelength at t is scanned also at t+∆t1 and t+T .
This repetition can be exploited. Each of scan can be per-
formed in different settings of the imaging system, in order
to extend the information in other imaging dimensions. For

4Similarly to explanation in footnote 3, this replicate is temporally dis-
torted (unevenly stretched in time) relative to I(t). This is due to the differ-
ent nonlinear behavior of f(t) in different time instances. This distortion
is in addition to the temporal reflection and translation.
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example, the scan can be performed in different exposure
settings to obtain HDR data. In fact, this is what we chose
to do in the experiments described in Sec. 4.5. Alternatively,
the scan can be performed in different polarization settings
to determine the polarization state [15, 30], or different fo-
cus settings to obtain depth from defocus [10, 20, 29].

4.4.1 Symmetric Modulation
If the oscillatory modulation is symmetric in time, then its
phase can be calculated in closed form. It is reasonable to
assume that symmetric modulation will most often be used.
For example, in electronic tunable spectral filters the modu-
lating voltage can be increased at the rate of its decrease. In
the mechanical system like the one we describe in Sec. 4.5
(see Fig. 1), the wavelength is symmetric with respect to the
motor angle θ. In symmetric modulation,

fbaseline(θ) = fbaseline(−θ) = fbaseline(2π − θ) . (13)

We seek θk > 0 such that

fbaseline(θk) = fbaseline(θk + 2πr) , (14)

considering Eqs. (10,11). Note that

fbaseline(−θ) = fbaseline(2π−θ) = fbaseline[θ+(2π−2θ)] .
(15)

Comparing Eqs. (13,14,15), the first solution satisfies
2πr = 2π − 2θ1, thus

θ1 = π(1 − r) . (16)
Similarly,

fbaseline(−θ) = fbaseline(4π−θ) = fbaseline[θ+(4π−2θ)] ,
(17)

leads to
θ2 = π(2 − r) . (18)

Since 0 < r < 1, then 0 < θ1 < π < θ2 < 2π.
To conclude, we can determine the phase of the modula-

tion cycle in closed form (either θ1 or θ2) based on the em-
pirical measurement of ∆t1 and T . Interestingly, this phase
estimate does not depend at all on the nature of f(θ): the
modulation can be piecewise linear, a cosine or an arbitrary
function. As long as f(θ) is oscillatory and symmetric, its
phase is determined by Eqs. (10,16,18).

4.5 Experiments
In our implementation, depicted in Fig. 1, we use a linear

variable interference filter (LVF). The central wavelength
of the LVF passband varies linearly across the filter. Let
λ(xinternal) be the central wavelength of the filter’s pass-
band, where xinternal is a position along the filter, measured
in the internal coordinate system of the filter.

λ(xinternal) = (λmax+λmin)/2+[(λmax−λmin)/l]xinternal

(19)where l is the length of the LVF.
Consider Fig. 7. As the motor rotates, the LVF translates

horizontally. Thus, the position of the center of the LVF
(where xinternal = 0) changes with time. We denote this
position by x0(t) in the external coordinate system of the

θ

R

crankshaft
xinternal

x0 x=0

optical
axis

motorx
x

filter

B

A

Figure 7. A system having a periodic, but not harmonic,
spectral modulation. A crankshaft of length A coupled to
ring of radius R transforms the rotation of a motor located
at xmotor to the linear motion of an LVF. The motor angle
θ corresponds to the LVF part affecting the imaging system
existing in x = 0. A point of the filter is parameterized by
the internal coordinate xinternal relative to the filter’s middle,
whose coordinate x0 varies in time. The filter’s middle is at
a constant distance B from the crankshaft.

camera lens. We define the origin of this coordinate system
x at the lens optical axis. In particular, x0 = 0 indicates a
state in which the center of the filter is on the optical axis.
In this coordinate system, a general position on the filter is
x = x0 + xinternal. From Eqs. (5) and (19),

x0(t) = lf(t)/2 . (20)

The LVF moved using a crankshaft mechanism, depicted
in Fig. 7. We know for each angle θ of the motor, what the
corresponding modulation fbaseline(θ) is:

x0 = lfbaseline(θ)/2 =

xmotor +
(√

A2 + R2 sin2 θ − R cos θ
)

+ B (21)

where xmotor is the position of the motor axis, measured in
the coordinate system of lens. The radius of the crankshaft
is R, while A is the length of its connecting rod. Here B
is the horizontal distance between the filter’s center and the
connecting point of the crankshaft rod to the filter holder
(See Fig. 7). Obviously, Eq. (21) is not a pure cosine func-
tion. Nevertheless, it is periodic, oscillatory, and symmetric
with respect to θ.

As indicated in Fig. 5, we placed a few LEDs of differ-
ent colors in the periphery of the FOV. Although we did not
know their spectra, they determined the global modulation
parameters. In each sequence, we measured the intensity of
the LEDs as a function of time. Fig. 8 plots part the mea-
surements taken from a video sequence a couple of min-
utes long. The dotted line plots the intensity5 of a yellow
LED. By matching the peaks of this plot, we determined
T and ∆t1, as described in Sec. 4.4. The solid line plots

5In the specific system we used, the translation range of the filter 2R
significantly exceeded the length of the filter l. For this reason, a signifi-
cant number of frames were taken outside the effective range of the spectral
filter. At these frames the light throughput increased. For this reason the
LED intensity plots in Fig. 8 are not unimodal.
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the intensity of a green LED. There is a slight temporal dif-
ference between the peaks corresponding to the two LEDs.
This difference removes the solution ambiguity described in
Fig. 6b, i.e., it uniquely determines whether θ1 is the modu-
lation phase, or whether it is θ2 (See Ref. [23]).

We used the multiple wavelength scans to capture the
scene in multiple exposures, using the system’s circular
variable density (Fig. 1). For this reason, peaks in Fig. 8
corresponding to different oscillations have different inten-
sities. This operation was very useful in scenes having a
high dynamic range of intensities. For instance, the right
hand side of Fig. 5 shows several images of the “Bulbs” se-
quence. The 2nd and 3rd images were taken at a similar
wavelength band but at different exposure settings, reveal-
ing details of dim as well as bright objects.

Following the procedure described in Secs. 4.3 and 4.4,
we used the measurement of T and ∆t1 to determine the
global parameters of f(t). Based on that and Eqs. (5,21),
we determined the central passband wavelength at each
frame. Then, we fused measurements of corresponding
bands which were taken at different exposure settings, as
described in Sec. 3. This resulted in HDR multispectral im-
ages. Spectra of selected object points are plotted in Fig.9.
Note that some gray-level values far exceed 255, which is
the limit set by our 8-bit camera. The reason we manage
to derive such values stems from the HDR information ex-
tracted from the multiple exposure data.

4.6 Spatial Inhomogeneities

For the sake of explanation simplicity, the derivations
starting at Sec. 4.3 have assumed that the temporal modu-
lation is spatially invariant. This assumption is easily allevi-
ated. To see this, observe that Eqs. (5,20) refer to the central
wavelength on the optical axis, that is, at the center of the
FOV. When the spectral modulation is achieved by shifting
a LVF, pixels left or right of the center will sense passbands
with shifted central wavelengths. This does not affect the
procedure of computational synchronization. A global shift
of the wavelengths at some pixel corresponds to an addition
of a constant to the function fbaseline(θ). As seen in Fig. 6b,
the DC component of fbaseline(θ) does not influence at all
the phases θk and ∆θ. The measured T and r are invariant
to spatial shifts in the image, and so is the end result.

Nevertheless, knowing the global parameters of the
wavelength modulation is just one step. Eventually, we
are interested in knowing, for each pixel, which wavelength
band it sampled at any of the frames. Thus, for building
the multispectral image cube, we need to account for shifts
of the wavelength band which vary across the FOV. If the
interference filter resides close to the imaging detector ar-
ray whose dimensions are known, the wavelength shift is
known in closed form. It is then easy to account for that
when building the image cube. If the filter resides away
from the detector, the shift may be empirically calibrated.
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Figure 8. Computational synchronization in an experiment.
Features as intensity peaks indicated the period T . Measur-
ing an intermediate appearance of a peak at ∆t1 indicated the
phase of the modulation. Two spectral features, e.g., peaks
corresponding to different colored objects, had different val-
ues of ∆t1. This was used to alleviate the ambiguity men-
tioned in Fig. 6b. The measured corresponding peaks have
different intensities because of changes in the transmittance
(exposure) settings per scan.

5 Discussion: Natural Extensions

During the modulation process, some objects in the FOV
may move. This has always been a problem faced by mod-
ulation imaging. It is worth noting that in the method we
proposed the temporal modulation is gradual and continu-
ous. We therefore believe that tracking corresponding scene
points is much easier in our setting, than in cases where the
modulation is done in large discrete steps. In future work,
we plan to explore ways of making modulation imaging ro-
bust to scene and camera motions.

Our computational spectral synchronization was based
on matching a few prominent spectral features. Greater ro-
bustness can be achieved using standard registration algo-
rithms, such as those used frequently in vision to register
images. Temporal registration will optimize the autocorre-
lation of the temporal intensity signal, by seeking the best
temporal distortions and shifts. If this can be achieved, we
will not have to rely on scene points with prominent spectral
peaks (e.g. LEDs); all the scene points, irrespective of their
spectra, will be able to contribute to the synchronization.
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Figure 9. Experimental results. Spectral plots extracted
from video streams, samples of which are shown in Fig. 5.
The correspondence between intensities and wavelengths
was achieved using computational synchronization. The
HDR intensity values in the plots are obtained thanks to the
multiple transmittance (exposure) settings used.
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