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Abstract

We analyze the effect of perturbations on the estimation
of Depth from Defocus (DFD) implemented by changing the
focus setting (e.g., axially moving the sensor). The analysis
yields the optimal change of focus setting, and the spatial
frequencies for which estimation is most robust. For stable
estimation at all spatial frequencies, the change in focus
setting should be less than twice the depth of field. For the
most robust estimation in the highest spatial frequencies the
axial interval should be equal to the depth of field.

1. Introduction

In recent years, range imaging based on the limited depth
of field (DOF) of lenses has been gaining popularity. Depth
from Defocus (DFD) is an elegant method since it enables
depth estimation based on only two images of the scene,
taken from the same viewpoint. The defocus blur is made
different in the two images by changing the internal settings
of the imaging system. The effect of those changes on the
defocus blur can be modeled either empirically or by anal-
ysis. This model provides the necessary a-priori knowledge
for the estimation of the defocus blur and consequently the
distance of the object from the imaging system. One way
to change the defocus blur between images is to change the
aperture size. Another approach is to change the focus set-
ting of the system. For example, the sensor array can be
moved axially between image acquisitions. The latter im-
plementation is considered in this paper.

It has been shown [16] that DFD is a manifestation of
the principle of geometric triangulation. However, the two-
dimensionality of the lens aperture (in contrast to the one-
dimensional stereo or motion baseline), makes depth esti-
mation based on two images potentiallymore robust in DFD
than in stereo [16]. Our general goal is to exploit this po-
tential advantage. This requires the robustness of DFD to be
studied in detail. Optimizing the change of internal settings

in the imaging system was investigated in [15]. In that work
the optimal ratio between the effective blur-diameters in the
images was derived. However, the result was dependent on
the image contents. The issue of estimation stability was
also considered in [21]. Stability at all spatial frequencies
was required. This guided the choice of axial movement of
the sensor between the image acquisitions, regardless of the
image content. The numeric derivation of the axial interval
in [21] was oriented towards a specific estimation algorithm
(rational operators).

In this paper, we study the robustness of DFD in a gen-
eral framework by analyzing the influence of perturbations
in each spatial frequency of which the image is composed.
We show that certain frequency components are most use-
ful for range estimation, while others do not provide stable
contributions. It is possible to accomplish stable depth es-
timation in frequency (or defocus) bands that contain some
unstable frequency components, by filtering out the prob-
lematic components. This extends the results of [21].

Our analysis also reveals a new property of depth of field
(DOF): it is the optimal interval between focus-settings in
depth-from-defocus in terms of robustness. We also show
that if the interval used is larger than the DOF by a factor of
2 or higher, the estimation process can be unstable. This sets
limits on the interval between focus settings that ensures
robust operation of DFD.

2. Error propagation

Consider the imaging system sketched in Fig. 1. The
sensor at distance ~v behind the lens (of focal length F ) can
image in-focus a point at distance ~u in front of the lens. An
object point at distance u is defocused, and its image is a
blur-circle of radius r in the sensor plane. For simplicity we
adopt the common assumption that the imaging system is
invariant to transversal shift. This is approximately true for
paraxial systems, where the angles between light rays and
the optical axis are small. The diameter of the blur-circle
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Figure 1. The imaging system is tuned to view in
focus object points at distance ~u. The image of an
object point at distance u is a blur circle of radius r
in the sensor plane.

d = 2r is a function of the distance u,

d = f(u) : (1)

For example, in a telecentric system [11, 21], as sketched in
Fig. 1, with the aperture stop at distance F from the lens,

f(u) =
D

F

����~v � Fu

u� F

���� ; (2)

where D is the diameter of the aperture stop [18]. For other
systems the relation f(u) may be different. In a simple-
lens system f(u) = DjuF � ~vu+ F ~vj=(Fu). To maintain
generality, we will not use a specific form of this function
throughout this paper. In DFD, at least two images of the
scene are acquired and compared. The comparison yields
an estimate of the diameter d of the blur-circle in one of the
images, which through the inversion of Eq. (1) leads to an
estimate of the distance u.

We now analyze the response of DFD to perturbations by
concentrating on the effect of a perturbation in some spa-
tial frequency component of the image, as we suggested in
[17]. The perturbation affects the estimated transfer func-
tion between the images, which in turn causes an error in
the estimated blur-diameter. This leads to an error in the
depth estimation. We note that studying the behavior of
each spectral component has an algorithmic ground in DFD:
there are several methods [2, 6, 13, 14, 21] which rely di-
rectly on the frequency components or on frequency bands
[14], fitting a curve or a model to data obtained in several
frequencies. Thus, even though the analysis refers to a sin-
gle spatial frequency component, its results are relevant to
general images.

Suppose that the pinhole image of the scene (in which
everything is in focus) is g0. Let the two finite-aperture
(thus defocus blurred) images be g1 = g0 ? hd and g2 =

g0 ? hd+�d. �d is the change in the blur-diameter due to

the known axial shift in sensor position. We assume that ge-
ometric changes in magnification are compensated or do not
take place (e.g. by the use of a telecentric system [11, 21]).
Moreover, in telecentric systems �d is invariant to the fo-
cus settings and the object depth u [11, 18]. Therefore, the
results presented here are best applicable to telecentric sys-
tems. In the frequency domain, let one image be

G1(�) = G0(�)Hd(�) +N1(�) ; (3)

where � denotes a spatial frequency component and N1(�)

is a perturbation. The other image is

G2(�) = G0(�)Hd+�d(�) : (4)

If there is no perturbation, the two images satisfy

G2(�)Hd(�)�G1(�)Hd+�d(�) = 0 : (5)

We wish to estimate d̂ by searching for the value that satis-
fies

G2(�)Hd̂(�)�G1(�)Hd̂+�d(�) = 0 : (6)

Assume for a moment that Hd(�) 6= 0, and define

H(�) =
Hd+�d(�)

Hd(�)
; Ĥ(�) =

Hd̂+�d(�)

H
d̂
(�)

: (7)

Usually constraint (6) cannot be satisfied by the same d̂ at
all frequencies, hence a common method [4] is to minimize
a MSE criterion such as

E
2 =

Z
�

jG2(�)� Ĥ(�)G1(�)j2d� =

=

Z
�

jG0(�)Hdj2
����H(�)� Ĥ(�)

�
1 +

N1

G0Hd

�����2 d�: (8)

This is achieved by looking for the extremum points

0 = �
@(E2)

@d̂

= 2Re

Z
�

jG0(�)Hd(�)j2
�
1 +

N
�

1 (�)

G�0H
�

d

�
�

�
�
H(�)� Ĥ(�)

�
1 +

N1

G0Hd

��
@Ĥ

�(�)

@d̂
d� : (9)

The locations of minima of E2 depend on the spectral com-
position of the signal and noise. Consider a signal made of
a single frequency �

G0(�
0) = G(�)Æ(� � �

0) : (10)

If at that frequency @Ĥ�(�)=@d̂ = 0, the estimation of d̂ is
ill posed. Otherwise, nulling the integrand yields

H
d̂+�d

(�)Hd(�) = H
d̂
(�)Hd+�d(�)�

N1(�)

G0(�)
H
d̂+�d

(�)

(11)
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Eq. (11) can be written as

Ĥ(�) = H(�)

�
1 +

N1(�)

G0(�)Hd(�)

�
�1

: (12)

The true blur-diameter d controls the transfer function
H(�) between the images. Basically, the estimate d̂ is de-
duced from measurements of H(�). However, due to the
perturbation, a different Ĥ(�) is measured.

@Ĥ(�)

@jN1(�)j
= �

1h
1 +

N1(�)

G0(�)Hd(�)

i2 e
j�(�)

jG0(�)j
Hd+�d(�)

H
2
d(�)

� �
e
j�(�)

jG0(�)j
Hd+�d(�)

H
2
d(�)

(13)

where �(�) is the phase of the perturbation relative to the
signal component G0(�). The approximation in the right
hand side of Eq. (13) is for the case that jN1(�)j is small
compared to jG0(�)Hd(�)j.

From Ĥ(�) the parameter d̂ is derived, leading (Eq. 1) to
the depth estimate û. Therefore, the error due to the pertur-
bation propagates to d̂ and consequently to û. Note that

@û(�)

@jN1(�)j
=

@û

@f(û)

@f(û)

@jN1(�)j
: (14)

In the following analysis we use @f(u)=@jN1j as a measure
for the response to perturbations. We make do with analyz-
ing the influence of the perturbations on the estimation of
f(u) since it is simpler and it is easily related to depth by
Eq. (1). Since the estimation will be frequency-dependent,
we write

@f(û; �)

@jN1(�)j
=

@Ĥ(�)

@jN1(�)j
�

"
@Ĥ(�)

@f(û)

#�1
: (15)

For small perturbations we assume that Ĥ(�) � H(�), so
Eq. (15) becomes

@f(û; �)

@jN1(�)j
� C

Hd+�d(�)
@Hd+�d(�)

@d
Hd(�)�

@Hd(�)

@d
Hd+�d(�)

;

(16)
where

C � �
e
j�(�)

jG0(�)j
: (17)

According to Eqs. (13) and (16), if Hd+�d(�) = 0 for some
frequency �, a perturbation N1(�) does not affect the esti-
mation.

If jHd(�)j � jHd+�d(�)j we define the transfer func-
tion between the images as the reciprocal of Eq. (7):

H
�1(�) =

Hd(�)

Hd+�d(�)
; dH�1(�) =

H
d̂
(�)

H
d̂+�d

(�)
: (18)

This takes care of the cases in which Hd(�) = 0 but
Hd+�d(�) 6= 0. Eq. (11) can then be written as

dH�1(�) = H
�1(�) +

N1(�)

G0(�)Hd+�d(�)
: (19)

The perturbation causes the estimated transfer function to
change:

@ dH�1(�)

@jN1(�)j
=

e
j�(�)

jG0(�)jHd+�d(�)
: (20)

Calculating the influence on the depth estimation based on
this form of the transfer function, we arrive at the same rela-
tion as Eq. (16) without assuming the perturbation jN 1(�)j
to be small relative to jG0(�)Hd(�)j.

We use the pillbox point spread function (PSF)
model [11, 12, 21], since it is valid for aberration-free geo-
metric optics, and has been shown to be a good approxima-
tion for large defocus [7, 10, 20]. In this model

Hd(�) = 2
D
2

D0
2

J1(��d)

��d
; (21)

where D0 is the diameter of the arbitrarily small aperture
being used to mimic the pinhole in the conceptual genera-
tion of G0. We note that when the sensor is axially moved,
the light gathered by the system remains unchanged since D
is the same for all the images acquired. Using the relation

@[J1(�)=�]

@�
= �

J2(�)

�
(22)

Eq. (16) takes a relatively simple form,

@f(û; �)

@jN1(�)j
� �C

D0
2

D2

d

2
�

�
J1[��(d+�d)]

J2[��(d+�d)]J1(��d)� J2(��d)J1[��(d+�d)]
:

(23)
At high frequencies � (or at large blur-diameters d), Eq. (23)
becomes

@f(û; �)

@jN1(�)j
� �C

D0
2

D2

�d

p
�d

2
p
2
�

�
sin[��(d+�d)� (�=4)]

sin(���d)
(24)

where we used the relation

J�(�)
�!1�!

p
2=(��) cos[� � �(�=2)� (�=4)] : (25)

A similar relation is obtained in case a perturbation N2 is
present in G2 rather than in G1:

@f(û; �)

@jN2(�)j
� C

D
2
0

D2

�(d+�d)
p
�(d+�d)

2
p
2

�

�
sin[��d� (�=4)]

sin(���d)
: (26)
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Figure 2. [Solid line] The attenuation of a frequency
component � between a focused and a defocused
image as a function of the diameter of the blur kernel
d. The horizontal axis is scaled by �. [Dashed line]
The attenuation of the same frequency component
when the focus settings are changed so that the
blur diameter is d+�d, for the case �d = 1=(2�).

3. Optimal axial interval

To appreciate the significance of Eqs. (24,26), observe
that the reliability of the defocus estimation at high frequen-
cies is optimized (for unknown u hence for unknown d ) if

j��dj= 0:5 ; 1:5 ; 2:5 :::: (27)

There, the magnitude of the term sin(���d) in the denom-
inator is maximal, minimizing the effect of the perturbation
on the estimation d̂ = f(û; �). Thus, if DFD is imple-
mented by changing the focus settings, the change (e.g. the
axial movement of the sensor) is optimized if it causes the
blur-diameter to change according to Eq. (27), where � is
the high frequency component used. Alternatively, if �d
is given, Eq. (27) indicates the optimal frequency compo-
nents for depth estimation. The optimal �d was used in
Fig. 2, that shows the normalized Hd(�) (21) of the pill-
box model, at a specific frequency �, as a function of the
blur-diameter d. Fig. 2 also shows Hd+�d(�). Note that
at high frequencies or defocus, the Bessel function resem-
bles a cosine function (25), and the two functions are out of
phase by �=2. Hence, in this situation extrema of Hd are at
zero-crossings of Hd+�d and vice-versa. Thus, these val-
ues of ��d maximize the ratio between these functions (or
its reciprocal).

On the other hand, if

j��dj= 1 ; 2 ; 3 ::::: (28)

the denominator of Eqs. (24,26) is zero. In this situation
the estimation is highly ill-conditioned. Note that as the ax-
ial interval is increased, hence �d is increased, for a given
scene, the number of useful frequency components that sat-
isfy Eq. (27) and the number of problematic components
that satisfy Eq. (28) both increase.

Suppose that the highest frequency in the image is �max.
Then Eq. (28) dictates that for stable estimation of all fre-
quency components, �d must satisfy

�d <
1

�
�

1

�max
= 2�x ; (29)

where �x is the inter-pixel period of the sensor and we as-
sumed that �max = 1=(2�x) (the Nyquist rate). However,
according to Eq. (27), in order to obtain reliable results, one
should use an axial interval leading to a change in the blur-
diameter that is at least half that written in Eq. (29), that
is, one inter-pixel spacing. Thus the change of the focus
settings that leads to robust and accurate estimation cor-
responds to a change in the blur diameter that is bounded
by

�x � �d < 2�x : (30)

Eq. (30) can be interpreted to reveal a new property of
depth of field (DOF). The depth of field of the system is
the range of distances u around the focused distance ~u in
which the defocus blur is undetectable. This depends on
the inter-pixel distance �x [1, 3] and on the blur-diameter
d: the blur can be sensed when d � �x or larger. d de-
pends on ~u � u and the system dimensions. When using
the threshold value �d = �x, if one of the images is in
focus (having d = 0), the blur kernel in the other image
will have a diameter dth = 0 + �d = �x. Thus, using
�d < �x is an attempt to sense defocus (generally, change
of defocus) for changes in distance that are smaller than the
DOF. Hence, sampling the axial position in DOF intervals
(for which �d = �x) is optimal with respect to robust-
ness to perturbations at the Nyquist frequency. Changing
the focus setting by a smaller axial interval means that no
frequency in the image will satisfy the optimality condition
(27). Changing the focus setting by a larger axial interval
will be sub-optimal for the Nyquist frequency, but will be
optimal for some lower frequency. If the interval of the ax-
ial position is twice than the DOF or more, there will be
some frequency components in the image, for which esti-
mation will be unstable (28). We note that sampling depth
at DOF intervals is known to be efficient [9], particularly in
depth from focus algorithms [1, 18]. Here we showed that
DOF sampling is also a meaningful threshold for robust op-
eration of DFD algorithms.
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Figure 3. Two images are acquired with different fo-
cus settings. The transfer function between the im-
ages is the ratio between their individual frequency
responses (relative to the focused state), plotted in
Fig. 2. In the DOF threshold �d = 1=(2�), the width
of the band without ambiguities satisfies �d � 1:46.
For infinitesimal �d this width satisfies �d � 1:63.

4. Uniqueness and stability

DFD infers depth by the comparison of images taken
with different defocus blurring. If the defocus change is
achieved by change of the focus settings, then basically,
DFD estimates d from measurement of the ratioH (Eq. (7)).
From d̂, the depth u is derived. Implicitly, DFD algorithms
fuse information from several frequency bands.

To have a unique solution, we should check the unique-
ness of the estimation of d. Fig. 3 plots H for the case
�d = 1=(2�), that is, the ratio of the two functions plot-
ted in Fig. 2. Each ratio between these responses can be
yielded by many diameters d, as it is not one-to-one. The
lowest band for which the ratio is one-to-one in this figure is
0 < �d < 1:46. However, if the axial increments of the sen-
sor position are smaller, this bandwidth broadens. As �d is
decreased, the responses shown in Fig. 2 converge. Conver-
gence is fastest near the local extrema of Hd(�). Hence, as
�d! 0 the lowest band in which the matching (correspon-
dence) ambiguity is avoided is between the two first local
extrema, i.e.,

0 < �d < 1:63 : (31)

However, according to Eqs. (24,26), if �d! 0 the estima-
tion becomes unstable. If we use the guideline (27) Fig. 3

(where ��d = 0:5) shows that for unambiguous and stable
estimation

0 < �d < 1:46 : (32)

If a coarse estimate of the depth is available (e.g., by using
only the band of Eq. (32)), higher frequencies may be used
without ambiguity problems, as suggested in [16]. Then,
unstable frequency components exist (Eq. 28) and filtering
them out improves the estimation.

Simulation and experimental results reported in [21] sup-
port the results of our analysis. In the DFD method sug-
gested in [21], the defocus change between acquired images
was obtained by changing the focus settings. The images
were then filtered by several band pass operators, and the
ratios of their outputs were used to fit a model. The ratios
are actually a function of the transfer function defined in
Eq. (7) between the images. The authors of [21] noticed
that the solution may be ambiguous due to the unmono-
tonicity of the ratios, as a function of the frequency and
the blur diameter. They thus limited the band used to the
first zero crossing of the pillbox model (21) which occurs at
�d = 1:22 (�r = 0:61). However, their tests revealed that
the frequency band can be extended by about 30%, i.e., to
�d � 1:6. This is in agreement with the bound for unique
solution set by Eq. (31), i.e. �d = 1:63.

For reasons of numerical stability (measured by the be-
havior of the Newton-Raphson algorithm for estimation),
the frequency band limit was actually set in [21] to �d =

1:46 (i.e., �r = 0:73). Within this band the results came
out to be stable, while beyond it the range estimation be-
came unstable. Note that this is in excellent agreement with
Eq. (32).

5. Discussion

We analyzed the effect of perturbations on DFD estima-
tion, by examining their influence in each spatial frequency
component of the images. Estimation that relies on certain
frequency components is most robust, while the contribu-
tion of other frequencies is very sensitive to perturbations.
A possible application of this theoretical framework would
be an algorithm that relies on a coarse estimate of the blur-
diameter to select the optimal spatial frequencies (for which
the response to perturbations is minimal) to obtain a fine es-
timate.

In DFD estimation based on a spectral component with
frequency �, the axial movement of the sensor is optimal
if it causes the change �d in the blur diameter to satisfy
j��dj = 0:5; 1:5; 2:5 : : : . Using the DOF as the axial in-
terval is optimal with respect to robustness to perturbations
at the Nyquist frequency. Using an axial interval which is
twice or more than that, can lead to unstable results at some
frequency components.
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In telecentric systems, �d is independent of the depth
and invariant on axial shifts of the plane of best focus. Thus
�d has a linear and constant relation to the axial interval of
the sensor position: �v = F�d=D. Therefore the results
obtained in this work can be easily applied to such systems.
Generally, if the system is not telecentric, �d (and thus the
preferable frequencies) depends on the depth we wish to
estimate, and which may not be spatially constant. In these
cases, axial shift invariance of �dmay be initially assumed,
and a coarse depth estimate will indicate the deviation from
this assumption. Consequent estimation of the true �d may
serve as a guideline for improving the depth estimate using
the corresponding optimal frequencies.

The presence of unstable frequency components, in
which the denominator of Eq. (16) is zero, is related to lo-
cal extrema of the defocus transfer function. Unmonotonic
transfer functions are theoretically predicted in [5, 10, 20]
and measured in [8]. Thus our analysis provides guidelines
for determining the optimal intervals and frequencies in a
broad range of defocus PSF’s.

The analysis in this paper is essentially deterministic.
However, the presence of independent noise in both of the
acquired images simultaneously, at all spatial frequencies,
may be better analyzed in a stochastic framework that is
based on the deterministic analysis presented here. In [15]
stochastic methods have been used. Comparison and
integration of the two approaches is an interesting topic for
future research.
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