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Inverse rendering estimates scene characteristics from image data. We derive an efficient framework for 
inverse rendering and specifically computed tomography (CT) of volumetric scattering objects. We focus 
on clouds, which have a key role in the climate system and require efficient analysis at a huge scale. Data 
for such reconstruction are multiview images of each cloud taken simultaneously. This acquisition mode 
is expected by upcoming future spaceborne imagers, such as CloudCT. Prior art shows that scattering 
CT can rely on Monte–Carlo (MC) light transport. This approach usually iterates differentiable radiative 
transfer, requiring many sampled paths per iteration. We present an acceleration approach: path recycling 
and sorting (PARS). It efficiently uses paths from previous iterations for estimating a loss gradient at 
the current iteration. This reduces the iteration run time. PARS enables further efficient realizations. 
Specifically, sorting paths according to their size accelerates implementations on a graphical processing 
unit (GPU). PARS, however, requires a correction operation for unbiased gradient estimation. This can be 
achieved by utilizing a well-established concept from MC integration methods, as we show in this paper. 
We derive the theory of PARS and demonstrate its efficiency on cloud tomography of both synthetic and 
real-world scenes. Moreover, we demonstrate PARS on simple reflectometry examples.

Introduction

Climate has an important impact on our life. Thus, advancing 
climate research gains interest in the computer vision community 
[1–5] as well as other communities that use computer vision, 
such as remote sensing [6–12] and geophysics [6,13–16]. The 
climate is strongly affected by interaction with clouds [17], as they 
fully control the water cycle of the earth. To reduce major errors 
in climate predictions [18–20], this interaction requires a much 
finer analysis of clouds. Current remote sensing data analysis 
assumes that the atmosphere and clouds are modeled as very 
broad and uniform layers. This assumption yields biases [21].

This problem can be bypassed by a special kind of computed 
tomography (CT), which is based on scattering. This idea is behind 
the CloudCT space mission, funded by the European Research 
Council (ERC). Scattering-based CT recovers 3-dimensional (3D) 
properties of volumetric scattering objects. Light propagation in 
clouds is complicated by high orders of scattering, which dominate 
the signals. In this paper, we argue that this complexity suits the 
domain of image rendering. Rendering synthesizes images using 
a known physics-based description of a scene. Rendering is a 
major branch of computer graphics; thus, technologies have been 
developed to make it fast and scalable. These include graphical 
processing units (GPUs) [22–26] and Monte–Carlo (MC) light 
transport [27,28]. We, on the other hand, rather aim at an inverse 
problem. Modern rendering algorithms are differentiable; they 
can be used in gradient-based solutions to inverse problems. This 
approach is often referred to as inverse rendering.

Inverse rendering appears in computer vision and graphics 
problems, including reflectometry [29,30], speckle analysis [31,32], 
and scattering CT [3–5,26,33–38]. However, the current efficiency 
of rendering does not translate trivially to efficient inverse render-
ing. Available implementations are largely optimized for the for-
ward problem [24], rather than its inverse. This deficiency is very 
significant in the context of scattering CT of atmospheric content. 
The domain there is huge, exacerbating efficiency and scalability 
problems. Another challenge posed by the setup scale is that it 
must be passive: The radiation source is the uncontrollable sun 
(Fig. 1), and multiple cameras observe the scene.

Recent work pays attention to the efficiency of inverse ren-
dering. Sde-Chen et al. [5] suggested that scattering CT can be 
assisted by a neural network, which is trained using differenti-
able rendering [39]. Also, Sde-Chen et al. [5] argued that the 
neural inference result is better used as initialization, to be pro-
ceeded with gradient-based optimization of a physics-based 
radiative transfer model. Hence, efficient differentiable render-
ing is key for inverse rendering, also when neural nets are used. 
Zhang et al. [40] introduced a sampling framework that effi-
ciently estimates derivatives of arbitrary scene variables. Mitsuba 
2 [26] developed computations of rendering derivatives using 
automatic differentiation. Studies of Nimier-David et al. [25] 
and Vicini et al. [34] improved on the study of Nimier-David 
et al. [26] by efficiently combining computations of analytical 
derivatives in a rendering process. The Mitsuba rendering frame-
work [26,41] may be used to implement the method presented 
in this paper. However, support for heterogeneous volumes with 
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spatially-varying phase functions, which is required for cloud 
tomography, is missing at the time of writing.

This paper introduces an efficient framework for the recov-
ery of 3D distribution of scatterers, focusing on clouds. We 
propose a different direction for efficient inverse rendering. 
Our main insight is that inverse problems usually involve iter-
ations, which incrementally refine scene variables. The itera-
tions involve rendering operations. So, an inefficient aspect of 
rendering becomes amplified when run hundreds of times 
during iterated refinements. To counter this, we propose to 
recycle paths from prior iterations during inverse rendering. 
Moreover, we developed a differentiable rendering engine on 
a GPU that exploits path recycling. This is done by sorting the 
paths according to their size.

Previous work considered the concept of path reusing 
[42–44], but in the context of reducing forward rendering 
noise. This is done by sharing paths between adjacent pixels. 
We rather aim on exploiting similarities of consecutive itera-
tions of a gradient-based algorithm to accelerate inverse render-
ing. Moreover, several sorting frameworks have been suggested 
[24,45,46] for rendering (not inverse). While they do not sort paths 
by their size, they may benefit path recycling and sorting (PARS).

The estimated variables change between iterations. Running 
fixed paths over a varying scene biases inverse rendering. Fortunately, 
previous work [37,47] showed that MC light transport can correct 
such discrepancies. In this paper, we use the ability to correct such 
discrepancies, to keep inverse rendering unbiased.

While unbiased, recycling may increase the error variance 
of rendered images. However, our aim is not image rendering 
per se, but an estimation of scene variables in a computer vision 
task. Indeed, our approach converges faster to a lower scene 
estimation error. Our approach is relevant to other inverse ren-
dering problems. Thus, this paper demonstrates simple reflec-
tometry using our approach.

Materials and Methods
This section first gives the necessary background for PARS. Then, 
this section introduces the PARS algorithm. In The forward 

model section, the image formation model is formulated as an 
integral over a set of light paths, as in [28]. Then, using previous 
knowledge [28], this section shows how the path integral can be 
estimated by MC rendering. Finally, a discussion is provided on 
the difficulties in the adaption of MC rendering to a GPU. In the 
Inverse problem section, we build upon [35,38] and formulate 
inverse rendering as an inverse problem. Then, we review how 
MC rendering is often used for estimating the gradient of an 
appearance loss. Afterward, we provide a contribution by deriv-
ing an analytical form of the gradient that considers 2 particle 
types in the atmosphere. In the Path recycling and sorting sec-
tion, we introduce PARS—our method for fast, efficient, and 
scalable cloud tomography. Then, we give all the necessary der-
ivations that justify the recycling of paths and adjust the MC 
rendering equations accordingly.

The forward model
The theoretical forward model is defined through a path inte-
gral. The integral is estimated using MC. This background 
preludes the adaption to scattering CT.

Path integral formulation
Vector ω′ is the 3D direction of incoming irradiance. Radiance 
is reflected to ω. A surface at 3D location x has normal n(x) 
and bidirectional reflectance distribution function (BRDF) 
fr(x, ω′→ ω). Several scattering particle types exist in a medium. 
Each has an extinction coefficient βtype(x), a scattering phase 
function ftypep

(
x,��

→ �

)
= ftypep

(
x,��

⋅ �
)
, and a single scat-

tering albedo ϖtype. In an ensemble of particles, the total extinc-
tion coefficient, effective single scattering albedo, and total 
phase function are respectively

The transmittance between any 2 locations x1 and x2 is

A path of size B + 1 = |X| from x0 to xB is

where b is an interaction index. Let dX =
∏B

b=0 dxb be a path 
differential: It is a product of differential volume and surface 
elements [28]. Consider a light source at xlight, whose radiance 
is Le. Detector d has a response Wd(x, ω) to radiance propagat-
ing toward ω (around ωd) at xd, as in Fig. 2. Let

be a set of Nv sought variables. For example, in scattering CT,  may be the extinction coefficient β in all voxels of a grid. 
In reflectometry,  can be a parameterization of fr. A forward 
model d() of the measured intensity at d is given by the 
path integral formulation of light transport [28]. This formulation 

(1)

�(x)=
∑

type

�type(x), �(x)=

[
∑

type

�type�type(x)

]
∕�(x),

fp
(
x,��

⋅�
)
=

[
∑

type

�type�type(x)ftypep

(
x,��

⋅�
)
]
∕[�(x)�(x)]

(2)T
(
x1,x2

) ≡ exp

(
− �

x2

x1

�(x)dx

)

(3)
X =

(
x0,x1, … xb … ,xB

)

(4) =
{
mv

}Nv

v=1

Fig. 1. Cloud tomography. A formation flight captures simultaneous multiview images 
of a cloud. These images are later used to recover the volume of the captured cloud. 
Credit: V. Holodovsky, M. Tzabari, and A. Levis.
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considers the set  of all possible paths X for which x0 = xlight 
and xB = xd:

The term fd(,X) is the measurement contribution function 
(MCF) [28]. Intuitively, fd is the contribution of path X to a 
measurement by the forward model. A detailed definition using 
Eqs. 1 and 2 is given in Eqs. S13 to S22.

MC light transport
Generally, Eq. 5 cannot be solved analytically. However, being 
an integral, it can be estimated by MC. Let �d(,X) be any 
fixed probability density function (PDF) over . Let � express 
expectation. Then [28], Eq. 5 can be written as

In this notation, path X is a random variable [37] with distri-
bution μd. MC light transport estimates Eq. 6. This requires 
sampling paths through the scene [27,28], using μd. Consider 
a set Φ =

{
X i

}N
i=1

 of N = |Φ| such paths, where i is a path index. 
Define

Then, an unbiased MC estimation [28,47] of Eq. 6 is the fol-
lowing mean:

The integral (Eq. 5) is thus estimated by a finite sum. Eq. 8, is 
unbiased, but a poor choice of μd increases the estimation var-
iance, as discussed in section S2.2.

There are several MC sampling techniques [47]. For 
example, forward sampling traces paths from a light source to 
a camera. Backward sampling traces paths from a camera 
to a light source. For simplicity, this section focuses on for-
ward sampling, although our approach is implemented for both 
techniques.

The direction vector from xb to xb+1 (Fig. 2) is ωb. In a scat-
tering medium, MC may sample a path as follows:

(i) Direction ω0 is uniformly sampled and a ray 0 =
(
xlight,�0

)
  

is initialized.
Per iteration b = 1,2,…:
(ii) On ray b−1, a random location xb is sampled through 

these substeps:
ii.a Uniformly sample u ϵ [0,1].
ii.b Set τ = −ln(1 − u).
ii.c Numerically find an interaction location xb such that 

� = ∫ xb
xb−1

�(x)dx.
(iii) Sample ωb using fp(xb,ωb−1 ⋅ ωb).
(iv) End if the path leaves the medium or hits a detector. 

Else, iterate again.
Steps (i) to (iv) yield not only a path X = (xlight,…,xB) but 

also, implicitly, its corresponding �d(,X). Then, the realiza-
tion of Eq. 7 is

Next event estimation
The spatial support of Wd(x, ω) is that of a small pinhole at xd. 
If xB is away from xd, then Cd(,X) = 0 in Eq. 9. For paths that 
efficiently estimate Eq. 8, next event estimation (NEE) [47,48] 

(5)d() = �

fd(,X)dX

(6)d()=�


fd(,X)

�d(,X)
�d(,X)dX =�X∼�d

[
fd(,X)

�d(,X)

]

(7)Cd(,X) =
fd(,X)

�d(,X)

(8)̂d(,Φ) =
1

∣ Φ ∣

∑

X i ∈Φ

Cd

(,X i

)

(9)Cd(,X) = 4�LeWd

(
xB,�B−1

) B−1∏

b=1

�
(
xb

)

A B

D C

Fig. 2. Forward sampling (A) starts at xlight in direction ω0. At x1, the path scatters to ω1 by interaction with a particle. Voxel 3 has domain 3. Its intersection with line segment 
‼

x1x2, has length l2,3. At each interaction, NEE (B) sends a ray to the detector (dotted lines). As defined in Eq. 10, X1→d = (xlight, x1, xd) (dashed line). When the scene consists of a 
single light source and multiple viewpoints, forward sampling (C) allows for efficient implementations. The reason is that any path from the light source contributes to multiple 
cameras at each scattering location. These contributions can be parallelized. This scenario is relevant to cloud tomography. On the other hand, when the scene consists of 
multiple light sources and a single viewpoint, efficient implementations can be achieved by backward sampling (D). These contributions can be parallelized.

D
ow

nloaded from
 https://spj.science.org at T

echnion Israel Institute of T
echnology on O

ctober 07, 2024

https://doi.org/10.34133/icomputing.0007


Czerninski and Schechner 2023 | https://doi.org/10.34133/icomputing.0007 4

is used. NEE sends a ray to xd at each scattering event, closing 
a path from xlight to xd (see Fig. 2). Recall Eq. 3. Express each X 
as [(x0,…,xb)∪(xb+1,…,xB)]. Then, define

For any b, Xb→d starts at x0 = xlight. NEE modifies Eq. 8, by using 
the set 

{
X
b→d
i

}B
b=1

 to compute B contributions of path Xi:

Here, cnee
d

(,Xb→d
)
 is the contribution of the NEE path (10) 

to the estimated ̂d(,Φ). It is similar to Cd

(,Xb→d
)
. 

However, cnee
d

(,Xb→d
)
 weights in the probability Pnee of a 

path to exist unattenuated between xb and xd:

Let ωb→d be a direction vector from xb toward xd. Then, the 
probability Pnee is

In forward sampling, each scattering event contributes to mul-
tiple viewpoints (Fig. 2). The computation of Eqs. 11 to 13 is 
deterministic and can be parallelized to all viewpoints. It is 
computationally far less costly than the sequential random 
sampling of a path Xi. In a cloud tomography setup, illumina-
tion is by a single source (the sun) and imaging is by multiple 
cameras; thus, forward sampling is more efficient than back-
ward sampling. Backward sampling is superior when a scene 
consists of a single camera and multiple light sources. In that 
case, NEE from each scattering event accounts for the contri-
bution of all the light sources.

Parallelization on a GPU
MC light transport can be parallelized since paths are inde-
pendent. A GPU excels at running programs that have high 
parallelism. However, a GPU architecture does not trivially 
benefit from this parallelism. A GPU executes tasks in blocks. 
Each block has usually 32 threads such that each thread repre-
sents a different path sampling instance. To fully utilize the 
GPU capabilities, all threads within the same block should 
execute the same commands. Unfortunately, different paths 
have different sizes. In traditional methods, the path size is 
known only after sampling ends. In the Path recycling and sort-
ing section, we show that this can be countered using our 
approach: PARS.

The main building block of path sampling is the ability to 
sample random numbers, which are independent and uniform 
between 0 and 1. A GPU imitates this ability by generating a 
deterministic sequence, which is initialized by a scalar seed. 
This sequence has mathematical properties that appear as a 
random sequence having a uniform distribution. However, 
given a constant seed, this sequence is known completely. We 
exploit this property in the PARS algorithm section for encod-
ing a whole path using only its corresponding seed.

Inverse problem

A vector of Nd true intensity measurements is Igt =
[
I
gt

1
,I
gt

2
, … ,I

gt

Nd

]
.  

Their corresponding forward model signals are set in a vector [1(), … ,Nd
()

]
. An appearance loss is

An optimization problem seeks the true scene,

often using gradient-based iterations. This requires the gradient 
of d(). Denote �mv

≜ �

�mv
. The partial derivative of the for-

ward model (5) is

This is a path integral [49]. The analogy of Eqs. 5 and 16 can 
be used to estimate �mv

d() through sampling as in the MC 
light transport section, followed by NEE as in the Next event 
estimation section. Then, similarly [30,35] to Eq. 11, an MC 
estimation of Eq. 16 is by this sum

From Eqs. 8, 14, and 17, the gradient of  is estimated by

Here, 
[̂d() − I

gt

d

]
 is the estimation error, obtained by ren-

dering. Then, plugging Eq. 17 in Eq. 18 results in

Scattering CT seeks properties of particles in a scene. Let us 
focus on 2 particle types: air molecules and cloud droplets. 
Their respective parameters are �a,�a, fap and �c,�c, fcp. Suppose 
βa(x)ϖc,ϖa are known, and we seek βc(x). Approximate the 
cloud extinction coefficient in voxel v as a constant, �cv. Thus, 
 =

{
�cv

}Nv

v=1
. Voxel v has a domain v (see Fig. 2). Denote the 

line segment between Xb−1 and xb by xb−1xb. The intersection 
of v with xb−1xb has length lb,v. Let Db = ωb−1 ⋅ ωb. Let �() 
be an indicator, which equals 1 if  occurs (0 otherwise). Then, 
we provide a contribution of a derivation that appears in section 
S4. This derivation yields:

(10)X
b→d =

(
x0, … ,xb,xd

)

(11)̂d(,Φ) =
1

∣ Φ ∣

∑

X i ∈Φ

B∑

b=1

cnee
d

(,Xb→d
i

)

(12)cnee
d

(,Xb→d
)
= Cd

(,Xb→d
)
Pnee

(,Xb→d
)

(13)
Pnee

(,Xb→d
)
= fp

(
xb,�b−1 ⋅ �b→d

)
T
(
xb,xd

)‖‖xb−xd
‖‖
−2

(14)(|Igt
)
=

1

2

Nd∑

d=1

|||d()− I
gt

d

|||
2

(15)̂ = arg min ( |Igt
)

(16)

�mv
d()=�


�mv

fd(,X)dX =�

fd(,X)�mv

lnfd(,X)dX

(17)

(18)

�̂mv
(,Φ|Igt

)
=

Nd∑

d=1

[̂d(,Φ) − I
gt

d

]
�̂mv

d(,Φ)

(19)

(20)
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Eq. 20 can be evaluated as a path X is traversed. For example, 
when a path Xb→d traverses a distance l through a voxel v, it 
contributes a gradient contribution of

Contributions to the gradient are accumulated to Eq. 20 as we 
traverse a path.

Path recycling and sorting
We propose PARS to accelerate inverse rendering. While each 
iteration may be accelerated independently [25,34], we exploit 
the iterative manner of a gradient algorithm. Consider 2 con-
secutive iterations and their respective extinction coefficients {
�cv

}Nv

v=1
. Since 

{
�cv

}Nv

v=1
 changes only slightly by a small gradient 

step, radiative transfer in the scene generally does not change 
drastically. PARS exploits this concept to largely eliminate the 
need for expensive path sampling. We suggest sampling paths 
only once each Nr (hyperparameter) iterations.

MC randomness is unfriendly to GPU realizations. GPUs 
work better on blocks having a similar path size, for compati-
bility with aspects mentioned in the Parallelization on a GPU 
section. So, we sort paths according to their size. Sorting alone 
speeds rendering run time by ≈× 4. Sorting requires overhead 
computations, but these need to be done only once per Nr iter-
ations, right after path sampling. We now detail the method, 
together with an operation that maintains PARS unbiased.

PARS algorithm
PARS is illustrated in Fig. 3. A recycling period of Nr iterations 
starts at reference iteration t′ and ends at t′ + Nr. The estimated 
set of scene variables at iteration t′ is ref =t�. The set of 
variables at a later iteration t ≥ t′ is t.

At reference iteration t′:
{I} Path sampling: Following steps (i) to (iv) in the MC light 

transport section, sample paths. Here, sampling relies on ref, 
specifically in steps ii.c and (iii). The resulting set of paths is 
denoted Φref =

{
X i

}N
i=1

.

Complexity: Each sampling of a path segment crosses (N1∕3

voxel

)
  

voxels (as illustrated in Fig. 4).
Thus, path sampling time is sample ∈ (NsN

1∕3

voxel

)
, where

{II} Path sorting: Following path sampling, sort paths according 
to their size and associate them to subsets. Each subset has 
paths of the same size q,

Complexity: Sorting time is sort ∈ (|Φref | ln |Φref |
)
.

For iteration t = t′,t′ + 1,…,t′ + Nr − 1:
{III} Rendering through recycling: Compute ∀q: ̂d

(t ,Φ
ref
q

)
 . 

In other words, at iteration t, a recycled path set (Φref) from 
iteration t′ ≤ t is used for rendering images relating to the 
medium at t. Then,

Complexity: Let Nview be the number of viewpoints: this is 
also the number of NEE rays projected from each of the 
Ns interaction points. Each path segment and each NEE ray 
pass (N1∕3

voxel

)
 voxels. So, without sorting, rendering time is 

render ∈ (NviewNsN
1∕3

voxel

)
. Because of sorting, the rendering 

formulation in Eq. 24 is GPU friendly, as all paths in Φref
q  are 

known to have the same size. As a result, sorting accelerates render to �sortedrender, where ηsorted < 1.
The Nview viewpoints define a set of distinct xd vectors. All 

NEE contributions are stored in memory as the set

(21)− l
[̂d(,Φ) − I

gt

d

]
cnee
d

(,Xb→d
i

)

(22)Ns =
∑

X i ∈Φref

∣ X i ∣

(23)Φref
q =

{
X i ∈ Φref: |X i| = q

}
.

(24)̂d

(t ,Φ
ref
)
=

1

∣ Φref ∣

∑

q

∣ Φref
q ∣ ̂d

(t ,Φ
ref
q

)
.

(25) =
{
cnee
d

(t ,X
b→d
i

)}
∀i,b,xd

No sorting

Sor
tin

g

A
C

B

Fig. 3. (A) Traditionally, paths are sampled in each iteration. (B) PARS: At t′, paths are sampled and then sorted by their size q. Sorted paths remain fixed and reused for Nr 
iterations. This better utilizes GPUs. For unbiased estimation of rendering and its gradient, path Xi has a correction factor rd

(t ,X|ref

)
. (C) PARS speedup.
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This requires (NsNview

)
 memory.

{IV} Gradient through recycling: Plugging Eqs. 24 and 25 

in Eq. 19 directly estimates 
{
�mv

}Nvoxel

v=1
. For each voxel v, the 

partial derivative �mv
 in Eq. 19 depends on v only through 

�mv
lnfd. The latter is given in Eq. 20.

Complexity: As mentioned in the Inverse problem section, 
we accumulate gradient contributions, while we traverse the 
paths. Then, as in {III} above, the time for gradient estimation 
without sorting is grad ∈ (NviewNsN

1∕3

voxel

)
. We save time by 

using the stored  of Eq. 25 in Eq. 19.
In PARS, the gradient uses sorted paths Φref

q , in analogy 
to Eq. 24. This is GPU friendly, as all paths in Φref

q  are known 
to have the same size. As a result, sorting accelerates grad to 
�sortedgrad.

PARS, by definition, requires retrieving of paths. Paths can 
be retrieved using only a saved seed that the GPU had used to 
sample the path [50], as hinted in the Parallelization on a GPU 
section, illustrated in Fig. 5.

Then, retrieving paths does not add memory beyond storing . In inverse rendering, scene variables change between itera-
tions. However, the paths here are sampled by the process in 
the MC light transport section, using scene variables of a dif-
ferent iteration. Thus, relying on Φref in Eq. 24 introduces 
an estimation bias. However, Eq. 6 holds for any PDF μd. 
Therefore, in the next section, we use this freedom to correct 
this discrepancy.

Correction factor for unbiased estimation
In iteration t, we need to estimate d and �mv

d using paths 
that correspond to an inconsistent estimated scene from another 
iteration. This discrepancy leads to bias that can potentially 
derail the optimization. Recall from Eq. 6 that MC provides 
freedom to choose a general PDF for paths [37]. We suggest 
using �d

(ref,X
)
 as the PDF. Define a PARS correction 

factor,

which is a ratio between PDFs. Then, recycling modifies Eq. 7 
as follows:

Then, the NEE contribution from Eqs. 13 and 12 changes to:

By using Eqs. 26 to 28 in Eqs. 11 to 18, PARS yields unbiased 
differentiable rendering. This is achieved by using a factor rd 
that corrects the bias that originates from discrepancies between t and ref . However, these discrepancies increase the vari-
ance of rendering and the gradient. Nevertheless, usually 
increased variance is tolerated during repeated gradient-based 
iterations. PARS pays off: It reduces computations and enables 
efficient use of a GPU by sorting.

Eq. 26 is a ratio of PDFs. Let Tt , �t , f
t

p denote the transmittance, 
extinction coefficient, and phase function of the medium at 
iteration t (see the Path integral formulation section). Let 
Tref, �ref, f

ref
p  denote the transmittance, extinction coefficient, 

and phase function of ref  (at t′). Then, we show in section 
S3.2 that for scattering CT:

Experimental design
We performed several inverse rendering experiments to demon-
strate the achievement of PARS. For this cause, we implemented 
a 3D rendering engine to solve both scattering CT and reflec-
tometry. To exploit parallelism, we implemented the engine on 
a GPU, using Numba [51]. Our engine supports both backward 
and forward sampling. The optimization is performed using 
momentum gradient descent [52].

Results
This section describes the setting of several inverse rendering 
experiments, followed by quantitative and visual results that 
are achieved by using PARS.

(26)rd
(t ,X|ref

) ≜ �d

(t ,X
)

�d

(ref,X
)

(27)
Cd

(t ,X|ref

)
=

fd
(t ,X

)

�d

(ref,X
) = Cd

(t ,X
)
rd
(t ,X|ref

)

(28)
cnee
d

(t ,X
b→d|ref

)
= Cd

(t ,X
b→d|ref

)
Pnee

(t ,X
b→d

)

(29)

Fig. 4. Sampling complexity illustration. Assume we have Nvoxel voxels ordered in a 
2D squared grid. The longest possible path segment is achieved by the diagonal 
line. In this example, the diagonal line is the line segment x2x3. The diagonal line 

has 
√
2N

1

2

voxel
∈ 

�
N

1

2

voxel

�
 voxels. We, however, deal with 3D scenes. Thus, the path 

crosses 
(
N

1

3

voxel

)
.

Fig. 5. Seed decoding. Top: Normally, path recycling requires storing them in memory. 
Bottom: We suggest storing only the scalar seeds that were used to generate the 
random paths. Then, the random number generator of a GPU can replicate the paths 
completely, because they are deterministic sequences given their corresponding 
seeds. D
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Synthetic data
Consider 2 synthetic scenes: a solitude cloud [53] and a cloud 
field [53]. All have constant known �a = 0.04

[
1

km

]
, ϖc = 0.99, 

ϖa = 0.912 [54] and are illuminated by the distant sun at the 
zenith. Air and clouds yield Rayleigh [55] and a Henyey–
Greenstein [50] phase functions, respectively. The scenes are 
captured by 9 perspective cameras (Fig. 6 and Table 1). 
Rendering uses forward sampling and |Φ| = 5 ⋅ 107 paths. The 
data images Igt include noise, as they are generated by random 
MC. In the solitude cloud scene, SNR ≈

1

30
.

The reconstruction process starts with space carving [56] to 
obtain a photo-hull  of the cloud. Then, we use a homogene-
ous �, ∀x ∈ as an initialization for the scattering CT 
described in The forward model, Inverse problem, and Path 
recycling and sorting sections. We use Nr = 10 and a Tesla V100 
DGXS 32GB. To assess the reconstruction quality, we follow 
[38] and use

(30)

� =
‖‖‖∗−̂‖‖‖1∕

‖‖∗‖‖1, � =
[
||||∗||||1 −

‖‖‖̂‖‖‖1
]
∕ ||||∗||||1

B

A

E

D

F
G

C

Fig. 6. (A) Cameras are at the zenith and on a horizontal ring. (B and C) 3D plots of the cloud field scene. These plots are rendered using maximum intensity projection (MIP). 
(D) Corresponding scatterplot. (E and F) 3D slices of the solitude cloud scene and a corresponding scatterplot (G).

OursOurs

Cloud field
scene

Loeub 2020
Loeub 2020

Solitude cloud
scene

Ours

Fig. 7. Comparison to [38]. Left: The same reduction in ϵ as [38] is achieved an order of magnitude faster in the cloud field. Right: In the single cloud, PARS converges to a 
lower ϵ compared to [38].

Table 1. Scene properties. Cameras are at distance R from the domain center.

Scene Bounding box Max βc Voxels Pixels Camera R

Solitude cloud 0.6 × 0.7 × 1 km3 127 km−1 32 × 36 × 25 76 × 76 29° 2 km

Cloud field 1.6 × 1.7 × 1.1 km3 90 km−1 79 × 84 × 27 86 × 86 33° 2 km
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The cloud field reconstruction converged an order of magni-
tude faster using PARS (Fig. 7), compared to [38], whose code 
is available at [53]. PARS reached results for the solitude cloud 
scene that are visually superior and quantitatively comparable 
to [38]. Results are displayed in Table 2 and Fig. 6.

An ablation study shows that PARS indeed accelerates 
inverse rendering. We validate that run time reduction is attrib-
uted to PARS, not only to a GPU. Therefore, we inverse ren-
dered the solitude cloud and the cloud field using several values 
of Nr, with and without sorting. The results in Fig. 8 show that 
using Nr = 10 in our experiments is a sound choice. It is large 
enough to mask the path sampling overhead while maintaining 
a reasonable variance.

Real-world data
We follow the experimental approach of [2,3] and use real-
world data acquired by JPL’s AirMSPI [57], which flies onboard 
NASA’s ER-2. Data use the 660-nm channel of a Pacific flight, 
acquired on 2013 February 6 at 20:27 GMT, around coordinates 
32N 123W. This flight used a push-broom camera observing 9 
viewing angles: ±70.5°, ±60°, ±45.6°, ±26.1°, and 0°, where ± 
indicates fore- and aft-views along the northbound flight path. 
We examine an atmospheric domain of size 2.75 × 3.65 × 2[km3], 
divided to 68 × 91 × 49 voxels, each of size 40 × 40 × 40[m3].

Our implementation of backward sampling is the rendering 
engine. Exhaustive search analyzing the background of Igt 
found the ocean albedo to be 0.05. We initialize β inside the 
photo-hull  with �̂ = 1. The number of paths is |Φ| = 7 · 108. 
We set Nr = 10. There is no ground truth for the cloud content. 
Hence, we check for consistency using cross-validation [2,4], 
by excluding one image from the recovery process. Thus, the 
optimization used 8 of the 9 raw views. The results are displayed 
in Fig. 9. The optimization converged after 70 min. When com-
paring pixel values to the ground truth, we achieve ϵ = 25.1%, 
δ = 1%.

PARS in reflectometry
Besides scattering CT, PARS can be used for other inverse ren-
dering problems. For example, reflectometry retrieves an 
object’s BRDF. There are several BRDF representations [30,58]. 
We show simple examples using a Phong BRDF [59]:

Here, γ ≥ 0, 0 ≤ κd + κs ≤ 1 and ωs is the specular direction of ω′ 
with respect to the normal n(x). Two scenes include 14 small 
specular spheres and a large sphere in a box [60]. In scene Phong, 
κd is known. The set of sought variables is phong =

[
�s,�

]
 of the 

large sphere. The number of paths is |Φ| = 7 · 106. In scene Wall, 

(31)fr
(
x,��

→ �

)
=

�d

�
+ �s

� + 2

2�
(�s

⋅�)� .

Table 2. Quantitative results and run time comparison. We com-
pare to [2,38], by using results from [38]. Results that are not 
provided by [38] are marked by “-.”

Method

Solitude cloud Cloud field

ϵ% δ%
Run 
time 
(h)

ϵ% δ%
Run 
time 
(h)

Levis 
et al. [2]

72 −3.6 1 70 30 -

Loeub 
et al. 
[38]

85 −5.5 6.5 45 −28.8 127

PARS 
(ours)

45 4 2 42 −2.2 7

C D

A B

Fig. 8. ϵ versus run time of 4 synthetic scenes. (A and C) Comparison of different values of Nr (sorting is not used for Nr = 1). (B and D) Sorting versus no sorting, using Nr = 10.
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there is a diffuse (κs = 0) texture on the wall behind the camera. 
The wall domain  has 150 × 150 pixels. Corresponding to RGB 
color channels, the BRDF parameters 

[
�R
d
,�G

d
,�B

d

]
 are each in the 

range [0,1]. Then, Wall =
{[

�R
d
(x),�G

d
(x),�B

d
(x)

]}

x∈. The 

number of paths is |Φ| = 8 · 107.
The results of inverse rendering are displayed in Figs. 8 and 

10. While these tests are simple, they indicate that PARS can 
also be used in reflectometry. An equivalent derivation of 
Eq. 20 for reflectometry is provided in section S4.2.

PARS speedup
Traditionally, with neither recycling nor sorting, run time of 
Nr iterations is

Run time of Nr iterations of PARS takes

Consider, for example, the parameters of our system and the 
solitude cloud scene (see the Results section). Then, using 
|Φ| = 5 · 107 paths and ≈ 7.05 GB memory (at peak): 
sample = 5.52 [s], sort = 6.44 [s], �sorted

(render + grad) = 1.38  
[s], and ηsorted = 0.23. The averaged iteration speedup is:
	

as plotted in Fig. 3. We use Nr = 10, so we expect speedup ≈ 4.5.

Discussion
In every research, there are goals and methods. The main goal 
of this paper is to perform fast, efficient, and scalable cloud 
tomography. The available methods depend on current tech-
nologies. For example, a common practice is to enhance effi-
ciency by translating an algorithm to a parallelized GPU code. 
Therefore, we have made an effort to achieve our goal by sug-
gesting an algorithm that is tailored to GPUs. The approach 
exploits the seed of a random number generator, for saving 
memory. In the future, other technologies may overtake the 
GPU architecture. Then, the balance between memory speed, 
computation, and other resources may change. In order to 
make the best use of those future technologies, our approach 
may need to be adjusted.

While this paper takes a step toward accurate and efficient 
cloud tomography, a gap remains. A study on cloud-climate 
feedback requires an accurate representation of the cloud 
microphysics. Cloud microphysics include the water droplet 
distribution parameters and should preferably include specifi-
cally the water droplet effective radius and water droplet effec-
tive variance. However, at this point, we represent a cloud voxel 
by its extinction coefficient. So, PARS should be extended to 
include microphysical parameters in each voxel. This will need 
to be addressed in future research in order to fully exploit the 
methods of this work for climate research.

Using paths from a previous iteration can increase the var-
iance of rendered images (the forward model). Moreover, it 
increases the variance of the gradient estimator, as if fewer 
paths are sampled. Therefore, excessively extending Nr may 
yield diminishing returns (Fig. 8). Eq. 18 essentially seeks the 
derivative �mv

 of the loss function; the derivative �mv
d is a 

means to that end. For a true unbiased �mv
, the paths for 

(32) no
recyc = Nr

(sample + render + grad)

(33)PARS = sample + sort + �sortedNr

(render + grad)

(34)speedup =  no
recyc∕PARS

F
E

A

B

C

Fig. 9. AirMSPI real-world experiment. (A) Eight views that were used by the optimization. (B) Corresponding estimated images. (C) Excluded view is estimated in cross-validation. 
(D) Ground-truth image corresponding to (C). (E) Scatterplot of pixel values. (F) 3D cloud tomography using our method (rendered using MIP).
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estimating d and �mv
d should be exclusive. We use the same 

paths for both subtasks: It may cause a bias, but we found that 
in practice, this bias is insignificant in stochastic optimization. 
We cannot overrule the existence of cases where this bias has 
significance. Then, the path set used for d should not be the 
set used for �mv

d.
Inverse rendering is not only interesting for computer vision 

and graphics. It has benefits for wider society, specifically 
regarding climate and human health. Clouds have a strong 
effect on climate and bear a great source of climate uncertainty. 
3D scattering CT of clouds (an inverse rendering problem) 

offers a new tool for tackling this uncertainty [61]. However, 
so far, solutions have been too slow to scale to meet scientific 
needs. Hence, it is critical to develop efficient methods to scale 
inverse rendering to huge atmospheric scenes.

PARS is not limited to cloud tomography and reflectometry. 
An additional inverse rendering task is x-ray CT through scat-
ter [21] (illustrated in Fig. 11). Geva et al. [33] showed that 
accounting for scatter can significantly reduce dose while indi-
cating the chemistry of organs, using MC for scattering CT. As 
this method relies on iterating MC random sampling of paths, 
it can benefit from our approach as well.

Fig. 11. In standard CT (left), an anti-scatter grid near the detectors blocks the majority of photons scattered by the body (red) and many nonscattered photons. An anti-scatter 
grid suits only one projection, necessitating rigid rotation of the anti-scatter grid with the source. Removing the anti-scatter grid (right) enables simultaneous multisource 
irradiation and allows all photons passing through the body to reach the detector. Courtesy of A. Geva [33].

0 sGround truth

Ground truth 0 min 45 min

1 s 51 s

Fig. 10. BRDF recovery of scene Phong (top) and scene Wall (bottom).
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for Efficient Cloud Tomography2
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Abstract7

This is a supplementary document to the main manuscript. This document provides a8

detailed theoretical derivation of Path Recycling and Sorting (PARS) in an inverse rendering9

framework. We start with basic Monte-Carlo (MC) integration practice and then show how it10

can be used to derive PARS. Additionally, we provide more simulated results.11

1 Outline12

This supplementary document contains five sections. Sec. 2 starts with basic 1D examples of Monte-13

Carlo (MC) integration. Building on Sec. 2, Sec. 3 first provides the path PDF µd that corresponds14

to both scattering and surface MC light transport. Then, Sec. 3 uses basic MC concepts to derive15

PARS correction factors for both problems. Sec. 4 provides a detailed derivation of the gradient16

of the forward model for both scattering tomography and reflectometry. Sec. 5 provides additional17

results.18

2 Monte-Carlo Integration19

This section gives several examples that illustrate MC integration. In the following examples, we20

consider a one-dimensional function. This is a basis for generalization to arbitrary dimensions [1].21

Let f : [0, 1] → R be a one dimensional function. We are interested in calculating the following22

integral:23

I =

1∫
0

f(u)du. (1)

Before suggesting an MC technique, one can trivially approximate the integral in equation Eq. (1)24

herein by deterministically dividing the segment [0, 1] to N partitions of the same width 1
N , as25
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Figure 1: Riemann sum. Approximating the integral of the function f(u) (dark blue) by dividing
the segment [0, 1] to 15 rectangles (light blue).

illustrated in Fig. 1 below. Let Ai be the area of a rectangle whose width is the i’th partition, and26

whose height is set by the corresponding value of f . Then, the integral can be approximated by:27

I ≈
N∑
i=1

Ai. (2)

The limit N → ∞ yields the integral definition as a Riemann sum. A Riemann sum converges28

fast for 1-dimensional integrals, but it suffers from a slow convergence rate for higher dimensions.29

This is where MC shines.30

2.1 Uniform Sampling31

MC integration estimates Eq. (1) above by exploiting the similarity between a deterministic inte-32

gral and the definition of random variable expectation. Consider N independent and identically33

distributed (IID) random samples. They are drawn from a uniform distribution over the segment34

[0, 1], that is,35

{ui}Ni=1 ∼ U [0, 1]. (3)

The corresponding probability density function (PDF) is36

pU (u) =

1 if 0 ≤ u ≤ 1

0 else
. (4)

MC suggests [1] the following unbiased estimator, illustrated in Fig. 2 herein:37

Î =
1

N

N∑
i=1

f(ui). (5)
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Figure 2: MC integration. Estimating the integral of the function f(u) using uniform sampling.

This estimator can be analogously compared to Eq. (2) above, but with rectangles at random38

locations. Denote E [·] as the expected value operator. MC relies on the law of large numbers from39

probability theory, which states that:40

lim
N→∞

1

N

N∑
i=1

f(ui) = E [f(u)] . (6)

By plugging the expectation definition we achieve convergence41

E [f(u)] =

∞∫
−∞

f(u) · pU (u)du =

1∫
0

f(u)du = I. (7)

The mean square error (MSE) for an unbiased estimator is the estimated variance:42

MSE(Î) = E
[
(I − Î)2

]
= E

[
(Î − E[Î])2

]
+ (E[Î]− I)2︸ ︷︷ ︸

unbiased→=0

= Var(Î). (8)

This variance decreases with N .43

2.2 Importance Sampling44

Uniform sampling is an acceptable choice for well-behaved functions. However, in cases where the45

function f has a range including both extremely low and high values, Var(Î) decreases with N46

significantly more slowly, when Eq. (5) is used. This is seen in Fig. 3 herein. This problem can be47

mitigated by random sampling from a different PDF, which considers the shape of f .48

Let µ be a general PDF. Let {ui}Ni=1 ∼ µ be N IID random samples drawn from µ. MC49
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Figure 3: Importance sampling. Illustration of a function that is not suitable for uniform sampling.
[Top] Uniform sampling misses the important features of f(u). [Bottom] Importance sampling
samples the random variable from a distribution µ that is similar to f .

suggests [1] the following estimator:50

Î =
1

N

N∑
i=1

f(ui)

µ(ui)
. (9)

This is a generalization of Eq. (5) herein. Eq. (9) above uses an arbitrary PDF µ to sample the51

random variables. The division by µ(ui) is a correction factor, considering the fact that some samples52

have a higher probability to be sampled than other samples. If µ yields a high probability of drawing53

a sample, the correction factor reduces the contribution of this particular sample (and vice versa).54

Notice that the estimator in Eq. (9) above is unbiased, since55

E

[
1

N

N∑
i=1

f(ui)

µ(ui)

]
=

1

N

N∑
i=1

E
[
f(ui)

µ(ui)

]

=
1

N

N∑
i=1

1∫
0

f(u)

�
��µ(u)

·���µ(u)du

=
1

N

N∑
i=1

I = I.

(10)

Eq. (10) above proves that any choice of µ (as long it is positive where f is positive) results in an56

unbiased estimator of I; however, we are interested in minimizing Var(Î). It can be shown [1] that57

choosing µ to be proportional to f reduces Var(Î). In other words, it is often desirable that in58

high probability µ draws samples that attain high values of f . This procedure is called Importance59

Sampling.60

This background is related to Sec. 2.2 of the main manuscript. There, we state that we have61

the freedom to choose a path sampling PDF, µd. However, now, we mention that to maintain low62

Var(Î), µd has to be “similar” enough to fd. In a high dimensional integral, such as the path integral,63

this resemblance is even more important to maintain.64
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irradiance

radiance

surface
normal

Figure 4: Illustration of definitions. herein. In the graphics literature, ω′ is often defined as
the negative irradiance direction. We define ω′ as the irradiance direction, to be consistent with
definitions in the literature on scattering.

Figure 5: Illustration of fd(X) for X = {xlight,x1,x2,xd}. Here, ωb is a vector direction from xb−1

towards xb. The first location x0 = xlight is the light source location, which contributes a factor of
Le to fd. The path propagation to x1 contributes a factor of G (xlight,x1)T (xlight,x1) to fd. At
x1 the surface reflects the path towards ω1. This event contributes a factor of fr (x1,ω0 → ω1) to
fd. Then, at x2, the path is scattered by a medium towards ω2. This event contributes a factor
of ϖ (x2)β (x2) fp (x2,ω1 · ω2) to fd. Finally, the path hits a detector and fd gains a factor of
Wd(xd,ω2).

3 Derivation of PDFs in MC Light Transport65

This section shows a derivation of the PDF µd that corresponds to the sampling process from66

Sec. 2.2 [2] of the main manuscript. Moreover, this section describes basic MC light transport67

for surfaces-only setting and provides the corresponding µd. In addition, this section derives the68

correction factors for both scattering tomography and reflectometry.69

3.1 Definitions70

First, we recall definitions from the main manuscript. A surface at 3D location x has normal n (x)71

and BRDF fr (x,ω
′ → ω). Here ω′ is the 3D direction vector of incoming irradiance, while radiance72

is reflected to ω (illustrated in Fig. 4 herein).73

In this paper, we deal with a variation of a Phong BRDF with no absorption. Let ωs be the74
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specular direction of ω′ with respect to the normal n(x), thus:75

ωs = ω′ − 2 · [n(x) · ω′]n (x) . (11)

Then, the BRDF is:76

fr (x,ω
′ → ω) =

κd

π
+ κs

γ + 2

2π
(ωs · ω)γ . (12)

In this notation 0 ≤ κd ≤ 1 is diffuse albedo, 0 ≤ κs ≤ 1 controls the specular part of the BRDF77

and γ ≥ 0 controls its shininess.78

Multiple scattering particle types exist in a medium. Each has an extinction coefficient βtype (x),79

a single scattering albedo ϖtype, and a scattering phase function ftypep (x,ω′ → ω) = ftypep (x,ω′ ·ω).80

In the ensemble of particles, the total extinction coefficient, effective single scattering albedo, and81

total phase function are respectively82

β(x) =
∑
type

βtype (x) , (13)

ϖ (x) ≡
∑

type ϖ
typeβtype (x)

β(x)
, (14)

fp (x,ω
′ · ω) =

∑
type ϖ

typeβtype(x)ftypep (x,ω′ · ω)

ϖ (x)β (x)
. (15)

Detector d has a response Wd (x,ω) to radiance propagating towards ω (around ωd) at x = xd83

(see Fig. 5 above). A point light source at xlight emits radiance Le. Let X = (x0, . . .xb . . . ,xB)84

be a path of an arbitrary size B + 1 = |X|. Here b represents an interaction index. The direction85

vector from xb to xb+1 is ωb. The transmittance between xb−1 and xb is86

T (xb−1,xb) ≡ exp

(
−
∫ xb

xb−1

β (x) dx

)
. (16)

Let ωx→y be a vector direction between x and y, and87

D(x,y) =

|n(x) · ωx→y| if x ∈ surface

1 if x ∈ medium
. (17)

Define respectively a geometric term and a directional interaction function, by88

G (xb−1,xb) ≡
D(xb−1,xb)D(xb,xb−1)

||xb − xb−1||2
(18)

89

fs (xb−1,xb,xb+1) ≡

fr (xb,ωb−1 → ωb) if xb ∈ surface

ϖβ (xb) fp (xb,ωb−1 · ωb) if xb ∈ medium
. (19)
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Using Eqs. (16,18,19) herein, define ∀b ∈ {1, ..., B − 1} :90

gb (xb−1,xb,xb+1) = fs (xb−1,xb,xb+1)T (xb−1,xb)G (xb−1,xb) (20)

and91

gB (xB−1,xB ,xB+1) = T (xB−1,xB)G (xB−1,xB) . (21)

Let M = {mv}Nv

v=1 be a set of Nv sought variables that define a scene description. Here v92

represents a variable index. Then [1], the measurement contribution function (MCF) is93

fd (M,X) = LeWd (xB ,ωB−1)

B∏
b=1

gb (xb−1,xb,xb+1). (22)

Notice that xB+1 does not exist. We use it for the ease of notation. The way fd is constructed is94

illustrated in Fig. 5 herein. Let P be the set of all possible paths, connecting xlight to xd. Following95

Eq. (22) herein, the path integral formulation of the forward model is96

Fd (M) =

∫
P

fd(M,X)dX. (23)

3.2 Scattering Tomography97

In a scattering medium, MC light transport samples a path as consecutive rays Rb = (xb,ωb), as98

follows:99

(i) Direction ω0 is uniformly sampled and a ray R0 = (xlight,ω0) is initialized. The PDF that100

corresponds to step (i) is101

µray(R0) =
1

4π
(24)

Per iteration b = 1, 2, ... :102

(ii) On ray Rb−1, a random location xb is sampled through these sub-steps:103

ii.a Uniformly sample u ∈ [0, 1].104

ii.b Set τ = − ln(1− u).105

ii.c Numerically find distance lb to the next interaction, such that106

τ =

lb∫
0

β (xb−1 + lωb−1) dl. (25)

107

The PDF [2] that corresponds to (ii.a)-(ii.d) is108

µl (lb|Rb−1) = β (xb−1 + lbωb−1)T (xb−1,xb−1 + lbωb−1). (26)
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(iii) Sample ωb using fp (xb,ωb−1 · ωb). The corresponding PDF here is trivially the phase function109

fp, thus:110

µω (ωb|Rb−1,xb) = fp (xb,ωb−1 · ωb) . (27)

This yields ray Rb.111

(iv) End if the path leaves the medium or hits a detector. Else, iterate again.112

113

Therefore [2], using Eq. (18,26,27) herein,114

µray (Rb|Rb−1) = µl (lb|Rb−1)µω (ωb|Rb−1,xb)G (xb−1,xb)

= fp (xb,ωb−1 · ωb)β (xb)T (xb−1,xb)G (xb−1,xb) .
(28)

The path end is at xB . Therefore, ωB is not defined. Thus, we define RB ≡ (xB). The total path

PDF is

µd (M,X) = µray(R0)

B∏
b=1

µray (Rb|Rb−1) =
1

4π
T (xB−1,xB)G (xB−1,xB) ·

B−1∏
b=1

β (xb) fp (xb,ωb−1 · ωb)T (xb−1,xb)G (xb−1,xb) . (29)

That is,115

µd (M,X) =
1

4π

B∏
b=1

gb (xb−1,xb,xb+1). (30)

As presented in Eq. (7) of the main manuscript, the path contribution is116

Cd (M,X) =
fd (M,X)

µd (M,X)
. (31)

Using the explicit form of µd (Eq. 30 above), the path contribution is117

Cd(M,X) = 4πLeWd(xB ,ωB−1)

B−1∏
b=1

ϖ(xb). (32)

Eq. (32) above corresponds to Eq. (9) from the main manuscript. Using a set Φ = {Xi}Ni=1 of118

N = |Φ| sampled paths, MC estimates [2] Fd (M) by119

F̂d (M,Φ) =
1

|Φ|
∑

Xi∈Φ

Cd (M,Xi). (33)

Recall the definition of the MCF fd in Eq. (22) herein and notice the resemblance of fd to120

µd. This is not a coincidence. The MC sampling procedure is tailored for applying importance121

sampling on the MCF. As discussed in Sec. 2.2 herein, the resemblance between fd and µd reduces122

Var[F̂d (M,Φ)].123
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Now we can derive an explicit form of the correction factor for scattering tomography. Let124

Tt, βt, f
t
p denote the transmittance, extinction coefficient, and phase function of the medium Mt at125

iteration t. Let Tref, βref, f
ref
p denote the transmittance, extinction coefficient, and phase function of126

the reference medium Mref (iteration t′). Then, using Eq. (28) herein:127

rd(Mt,X|Mref) =
µd (Mt,Xi)

µd (Mref,Xi)

=
Tt (xB−1,xB)

Tref (xB−1,xB)

B−1∏
b=1

βt (xb) f
t
p (xb, Db)Tt (xb−1,xb)

βref (xb) frefp (xb, Db)Tref (xb−1,xb)
.

(34)

Eq. (34) above corresponds to Eq. (29) of the main manuscript.128

3.3 Reflectometry129

Let a scene consist of only opaque surfaces. Then, MC light transport samples a path as follows [1]:130

(i) Direction ω0 is uniformly sampled and a ray R0 = (xlight,ω0) is initialized.131

Per iteration b = 1, 2, ... :132

(ii) Set xb as the closest intersection between Rb−1 and a visible surface.133

(iii) Let Ω be the unit hemisphere and134

ab =

∫
Ω

fr (xb,ωb−1 → ωb) [ωb · n (xb)] dωb (35)

be the albedo of the surface at xb. Then, sample ωb using135

µω (ωb|Rb−1,xb) =
fr (xb,ωb−1 → ωb) [ωb · n (xb)]

ab
. (36)

(iv) End if the path leaves the medium or hits a detector. Else, iterate again.136

In analogy [1] to Eq. (29) herein and using Eq. (18) herein137

µd (M,X) =
1

4π
G (xB−1,xB)

B−1∏
b=1

fr (xb,ωb−1 → ωb)G (xb−1,xb)

ab
. (37)

Here the transmittance is omitted. Therefore, G must include a visibility indicator between points.138

The path contribution (based on Eqs. 22,37 herein) is then139

Cd (M,X) =
fd (M,X)

µd (M,X)
= 4πLeWd (xd,ωB−1)

B−1∏
b=1

ab. (38)

We derive again an explicit form of the correction factor, but for reflectometry. Let ftr , f
ref
r be the140

BRDFs of the surface at iterations t and t′, respectively. Then:141

rd(Mt,X|Mref) =
µd (Mt,Xi)

µd (Mref,Xi)
=

B−1∏
b=1

ftr
(
xi,ωi

b−1 → ωi
b

)
frefr

(
xi,ωi

b−1 → ωi
b

) . (39)
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4 Partial Derivatives of the Forward Model142

This section provides an analytical form of the forward model partial derivatives ∂Fd (M) /∂mv143

that are given in Sec. 3 of the main manuscript. Denote ∂mv
≜ ∂

∂mv
. Differentiating the forward144

model with respect to mv results in:145

∂mvFd (M) =

∫
P

∂mvfd (M,X) dX =

∫
P

fd(M,X)
∂mv

fd(M,X)

fd(M,X)
dX

=

∫
P

fd(M,X)∂mv
ln fd(M,X)dX.

(40)

Eq. (40) above is the path integral formulation of the partial derivative of the forward model. It146

corresponds to Eq. (15) of the main manuscript. Applying Eq. (40) ∀mv ∈ M results in a path147

integral formulation of the gradient of the forward model with respect to M.148

Deriving the derivative of the model boils down to deriving the derivative ∂mv
ln fd. Eq. (22)149

herein shows that the MCF is a multiplication of B + 1 functions, where B + 1 is the path size. We150

follow [3] to derive a compact form that holds for an arbitrary B.151

Using Eq. (22) herein in Eq. (40) herein:152

∂mv
ln fd (M,X) = ∂mv

ln

[
LeWd

B∏
b=1

gb

]
= ∂mv

[
lnLe + lnWd +

B∑
b=1

ln gb

]
(41)

Since Le and the detector response function Wd do not depend on mv (in our cases):153

∂mv
ln fd (M,X) = ∂mv

[
B∑

b=1

ln gb

]
=

B∑
b=1

∂mv
gb

gb
. (42)

To conclude,154

∂mv
ln fd (M,X) =

B∑
b=1

∂mv
gb (xb−1,xb,xb+1)

gb (xb−1,xb,xb+1)
. (43)

4.1 Scattering Tomography Derivatives155

Scattering CT seeks properties of particles in a scene. Let us focus on two particle types: air156

molecules and cloud droplets. Their respective parameters are βa, ϖa, fap and βc, ϖc, fcp. Suppose157

βa(x), ϖc, ϖa are known, and we seek βc(x). Approximate the cloud extinction coefficient in voxel158

v as a constant, βc
v. Thus, M = {βc

v}
Nv

v=1.159

We now provide a detailed derivation of ∂mv
ln fd (M,X), which is used by Eq. (15) of the main160

manuscript. Denote the line segment between xb−1 and xb by xb−1xb. Voxel v has a domain Vv.161

The intersection of Vv with xb−1xb has length lb,v (illustrated in Fig. 6 herein). The transmittance162
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Figure 6: Illustration of Vv and lb,v on a path.

of the medium on the line segment xb−1xb is163

T (xb−1,xb) ≈ exp

[
−

Nu∑
v=1

(βa
v + βc

v) · lb,v

]
. (44)

We evaluate each summand of Eq. (43) herein separately. For b = B (Eq. 21 herein), we get:164

∂

∂βc
v

gB (xB−1,xB ,xB+1)

gB (xB−1,xB ,xB+1)
=

∂

∂βc
v

[T (xB−1,xB)G (xB−1,xB)]

T (xB−1,xB)G (xB−1,xB)
. (45)

Notice from Eqs. (18,44) herein that T (xB−1,xB) is the only term that may depend on βc
v. Therefore,165

∂

∂βc
v

gB (xB−1,xB ,xB+1)

gB (xB−1,xB ,xB+1)
=

∂

∂βc
v

[T (xB−1,xB)]G (xB−1,xB)

T (xB−1,xB)G (xB−1,xB)
=

∂

∂βc
v

T (xB−1,xB)

T (xB−1,xB)
. (46)

The transmittance derivative is166

∂

∂βc
v

T (xB−1,xB) =
∂

∂βc
v

exp

[
−

Nu∑
v′=1

(βa
v′ + βc

v′) lB,v′

]

= −l1,v exp

[
−

Nu∑
v′=1

(βa
v′ + βc

v′) lB,v′

]
= −lB,vT (xB−1,xB).

(47)

Plugging Eq. (47) herein in Eq. (46) above,167

∂

∂βc
v

gB (xB−1,xB ,xB+1)

gB (xB−1,xB ,xB+1)
= −lB,v. (48)
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For b ∈ {1, ..., B − 1}:168

∂

∂βc
v

gb (xb−1,xb,xb+1)

gb (xb−1,xb,xb+1)
=

∂

∂βc
v

[fs (xb−1,xb,xb+1)T (xb−1,xb)G (xb−1,xb)]

fs (xb−1,xb,xb+1)T (xb−1,xb)G (xb−1,xb)
. (49)

From Eq. (18) herein,G (xb−1,xb) does not depend on βc
v. Hence169

∂

∂βc
v

gb (xb−1,xb,xb+1)

gb (xb−1,xb,xb+1)
=

∂

∂βc
v

[fs (xb−1,xb,xb+1)T (xb−1,xb)]

fs (xb−1,xb,xb+1)T (xb−1,xb)

=

∂

∂βc
v

fs (xb−1,xb,xb+1)

fs (xb−1,xb,xb+1)
+

∂

∂βc
v

T (xb−1,xb)

T (xb−1,xb)
.

(50)

In analogy to Eqs. (47,48) herein, the second term in Eq. (50) above is given by:170

∂

∂βc
v

T (xb−1,xb)

T (xb−1,xb)
= −lb,v. (51)

Let171

Db = ωb · ωb−1. (52)

Recall the definition of fs for a scattering medium (Eq. 19 herein) Then,172

fs (xb−1,xb,xb+1) = ϖ (xb)β (xb) fp (xb, Db) . (53)

Recall Eqs. (13,14) herein. Then:173

ϖ (xb)β (xb) =
ϖcβc (xb) +ϖaβa (xb)

β (xb)
β (xb)

= ϖcβc (xb) +ϖaβa (xb) .

(54)

We need to write Eq. (53) herein using the unknowns. If xb ∈ Vv, then174

βc
s (xb) = ϖcβc

v, βa
s (xb) = ϖaβa

v . (55)

Plugging Eq. (55) above into Eq. (53) herein,175

fs (xb−1,xb,xb+1) = ϖcβc
v · fcp (xb, Db) +ϖaβa

v · fap (xb, Db) . (56)

Thus,176

∂

∂βc
v

fs (xb−1,xb,xb+1)

fs (xb−1,xb,xb+1)
=

ϖcfcp (xb, Db)

fs (xb−1,xb,xb+1)
=

[
βc
v +

ϖafap (xb, Db)

ϖcfcp (xb, Db)
βa
v

]−1

. (57)
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Otherwise, if xb /∈ Vv, then177

∂

∂βc
v

fs (xb−1,xb,xb+1)

fs (xb−1,xb,xb+1)
= 0. (58)

We note that [4] provides similar derivations. However, the factor
ϖafap (xb, Db)

ϖcfcp (xb, Db)
in Eq. (57) is178

missing from their derivation. Let I(A) be an indicator, which equals 1 if A occurs (0 otherwise).179

Plugging Eqs. (51,57,58) above in Eq. (50) herein,180

∂

∂βc
v

gb (xb−1,xb,xb+1)

gb (xb−1,xb,xb+1)
= −lb,v + I(xb ∈ Vv)

[
βc
v +

ϖafap (xb, Db)

ϖcfcp (xb, Db)
βa
v

]−1

. (59)

Based on Eqs. (48,59) herein, we conclude:181

∂mv
ln fd (M,X) = −

B∑
b=1

lb,v +

B−1∑
b=1

I(xb ∈ Vv)

[
βc
v +

ϖafap (xb, Db)

ϖcfcp (xb, Db)
βa
v

]−1

. (60)

Eq. (60) above corresponds to Eq. (20) of the main manuscript.182

4.2 Reflectometry (Phong model) Derivatives183

Now, we evaluate Eq. (43) herein for a reflectometry toy example. Eq. (20) herein in a surface-only184

scene is185

gb (xb−1,xb,xb+1) = fr (xb,ωb−1 → ωb)G (xb−1,xb) . (61)

Thus, using Eqs. (18,19,20),186

∂

∂mv
gb (xb−1,xb,xb+1)

gb (xb−1,xb,xb+1)
=

∂

∂mv
[fr (xb,ωb−1 → ωb)G (xb−1,xb)]

fr (xb,ωb−1 → ωb)G (xb−1,xb)
=

∂

∂mv
[fr (xb,ωb−1 → ωb)]

fr (xb,ωb−1 → ωb)
.

(62)

We are interested in estimating M = {κd, κs, γ} of a surface patch S. Let ωs
b−1 be the of specular187

reflection of ωb−1 and188

Db,s = ωs
b−1 · ωb. (63)

Then, define ∀xb ∈ S,189

fr (xb,ωb−1 → ωb) =
κd

π
+ κs

γ + 2

2π
Dγ

b,s. (64)

Let xb ∈ S. For mv = κd:190

∂

∂κd
fr (xb,ωb−1 → ωb)

fr (xb,ωb−1 → ωb)
=

1
π

fr (xb,ωb−1 → ωb)
. (65)
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For mv = κs,191

∂

∂κs
fr (xb,ωb−1 → ωb)

fr (xb,ωb−1 → ωb)
=

γ+2
2π Dγ

b,s

fr (xb,ωb−1 → ωb)
. (66)

For mv = γ:192

∂

∂γ
fr (xb,ωb−1 → ωb)

fr (xb,ωb−1 → ωb)
=

1
πκs

[
Dγ

b,s

2 + γ+2
2 Dγ

b,s ln (Db,s)
]

fr (xb,ωb−1 → ωb)
=

κs
γ+2
2π Dγ

b,s

[
1

γ+2 + ln (Db,s)
]

fr (xb,ωb−1 → ωb)
. (67)

Suppose xb is not on the path S (xb /∈ S). Then,193

∂

∂mv
fr (xb,ωb−1 → ωb)

fr (xb,ωb−1 → ωb)
= 0. (68)

Plugging Eqs. (65,66,67,68) herein in Eq. (43) herein results in194

∂

∂κd
ln fd (M,X) =

B−1∑
b=1

I(xb ∈ S)
1
π

fr (xb,ωb−1 → ωb)
, (69)

195

∂

∂κs
ln fd (M,X) =

B−1∑
b=1

I(xb ∈ S)
γ+2
2π Dγ

b

fr (xb,ωb−1 → ωb)
, (70)

and196

∂

∂γ
ln fd (M,X) =

B−1∑
b=1

I(xb ∈ S)
κs

γ+2
2π Dγ

b

(
1

γ+2 + lnDb

)
fr (xb,ωb−1 → ωb)

. (71)

5 Results197

This section provides a visual comparison with [4] (Fig. 7 herein). Then, it extends the ablation198

studies of the main manuscript (see Fig. 8 herein).199
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Figure 7: Visual comparisons with [4]. [Top] 3D comparison of the cloud field scene. These plots are
rendered using Maximum Intensity Projection (MIP). [Bottom] 2D slices comparison of the solitude
cloud scene.
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Figure 8: ϵ vs. runtime of 4 synthetic scenes. A recycling period of Nr iterations starts at reference
iteration t′ and ends at t′ +Nr. [Left] Comparison of different values of Nr (sorting is not used for
Nr = 1). [Right] Sorting vs. no sorting, using Nr = 10. While for Nr = 1, each iteration contributes
more to the reduction of the error measures, with Nr = 10 and sorting we can run more iterations
per second, leading to overall speedup.
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