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We present a new approach for active ranging, which can be compounded with traditional methods such as active depth from
defocus or off-axis structured illumination. The object is illuminated by an active textured pattern having high spatial-frequency
content. The illumination texture varies in time while the object undergoes a focal sweep. Consequently, in a single exposure, the
illumination textures are encoded as a function of the object depth. Per-object depth, a particular illumination texture, with its
high spatial frequency content, is focused; the other textures, projected when the system is defocused, are blurred. Analysis of the
time-integrated image decodes the depth map. The plurality of projected and sensed color channels enhances the performance of the
process, as we demonstrate experimentally. Using a wide aperture and only one or two readout frames, the method is particularly
useful for imaging that requires high sensitivity to weak signals and high spatial resolution. Using a focal sweep during an exposure,
the imaging has a wide dynamic depth range while being fast.

Index Terms—computational imaging, focal sweep, three-dimensional shape recovery, active illumination, electrically tunable lens

I. INTRODUCTION

W IDE aperture imaging is beneficial in several respects:
(a) increased light gathering capacity, for sensing dim

objects at a good signal-to-noise ratio (SNR); (b) increased
lateral resolution by narrowing the diffraction-limited point-
spread function in focus; (c) enhanced axial resolution thanks
to discrimination of in-focus vs. defocused blurred content [9],
[33]. The latter discrimination and resolution increase with
the numerical aperture. For these three reasons, wide aperture
imaging is particularly suitable for microscopy [30], [31] and
macro-imaging at close range. Due to the close range, active
structured illumination is highly effective [26], increasing the
reliability and resolution of depth estimation [1], [2]. Struc-
tured illumination patterns often have high spatial-frequency
content, making focus/defocus discrimination highly effective.

A wide-aperture imager can significantly widen its oper-
ational depth dynamic range using a focal sweep [6], [19],
[22], [37]. The camera’s plane of focus is swept through the
scene (or vice versa) during an exposure. As a result, all
object points within the wide range of the sweep appear in
focus at some time instance during the exposure, irrespective
of their depth. Moreover, the entire sweep is time integrated
and can be captured in a single frame. Hence, in a single focal-
sweep image, the signal-to-readout-noise ratio is significantly
better than in frames read out per focal step, each after a
fraction of the exposure time [6], [14]. Thus focal sweep offers
new benefits in addition to those listed above: (d) wide depth
dynamic range, high speed, and increased SNR. However, the
integrated exposure of a focal sweep loses benefit (c) above:
the result is insensitive to depth.

Nevertheless, we suggest that through active illumination,
wide aperture imaging can overcome the shortfall mentioned
above, enabling simultaneously benefits (a,b,c,d). The main
idea is that during a single focal sweep, the spatial illumination
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Fig. 1. Depth from texture integration. During image exposure, the il-
lumination texture varies spatiotemporally. Focal-sweep is performed
during this image exposure. A unique texture thus appears focused
on the object surface, according to the the object distance. The
time-integrated texture in the resulting image encodes object depth,
enabling shape recovery.

texture changes in time (see Fig. 1). In a single exposure, the
illumination textures are encoded as a function of object depth.
Per-object depth, a particular illumination texture, with its
high-spatially content, is focused; the other textures, projected



when the system is defocused, are blurred there. Analysis of
the time-integrated image decodes the depth map.

The main principle of this work is time-integration of
illumination textures during a simultaneous camera focal
sweep. This principle can be applied in various camera-
illumination configurations, including coaxial [32], confo-
cal [35] and triangulation-based off-axis lighting. Off-axis
lighting in microscopy can rely on speckle fields created by
laser interference. Moreover, texture integration can work in
conjunction with existing methods for depth estimation. These
include projection of quasi-random dot patterns [15], volumet-
ric stacking of lighting masks [16] and off-axis parallax of the
projector relative to a camera [11].

II. BACKGROUND: FOCAL SWEEP IMAGING

Denote the image coordinates by vector x. Let ĨAIF(x)
denote the all-in-focus (AIF) intensity at x. It would have
been obtained had the camera had an infinite depth of field.
The intensity ĨAIF(x) has units of [graylevel/sec] and it
expresses a projection of a domain illuminated by ambient
light. Due to the camera’s finite depth of field, only a narrow
range is in focus. For a camera focused at distance u and
an object of distance d(x), the optical blur point-spread
function is k [x|d(x), u]. Object surfaces lying near the focus
plane u appear sharp, while object surfaces away from u are
increasingly blurred according to k [x|d(x), u].

Let u(t) be the camera’s focus plane at time t. In focal
sweep imaging, u(t) is swept over a range [umin, umax] during
a single camera exposure lasting Texp seconds (see Fig. 2). A
focal-sweep image Isweep(x) in [graylevel] units is given by

Isweep(x) =

∫ Texp

0

∫
y

ĨAIF(y)k [(x− y)|d(x), u(t)] dydt

=

∫ Texp

0

ĨAIF(x) ∗ k [x|d(x), u(t)] dt. (1)

At every x, the resultant Isweep(x) contains both sharp and
defocused contributions of ĨAIF(x). Prior works [14], [17],
[19], [37] have shown that focal sweeps typically yield a point-
spread function which is nearly depth-independent∫ Texp

0

k [x|d(x), u(t)] dt u K(x). (2)

Then,
Isweep u ĨAIF(x) ∗K(x). (3)

Deconvolving Isweep(x) with kernel K(x) can thus retrieve
ĨAIF(x).

III. IMAGING USING FOCAL SWEEP CODES

A. Approach Overview

Texture integration involves three simultaneous and syn-
chronized processes. (a) A camera is exposed to the scene for
Texp seconds. (b) During the exposure, an electrically tunable
lens (ETL) sweeps the focus plane, resulting in a focal-sweep
image. (c) A projector synchronized with the ETL projects
spatial patterns that temporally change during Texp. Thus, the
recorded image time-integrates the projected spatial patterns.
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Fig. 2. A coaxial configuration. An electronically tunable lens (ETL)
mounted on a camera creates a focal-sweep of a volume domain in a
single exposure. Meanwhile, the domain is illuminated by a coaxial
projector. During the sweep, the projector projects spatial textures that
change temporally. The resulting single frame is depth-dependent.
Additional configurations for texture integration are shown in Fig. 9.

The resulting single frame encodes depth-dependent textures
(Section III-B). In this paper, we use ‘texture’ and ‘pattern’
interchangeably.

Several imaging configurations can exploit temporal integra-
tion of spatial textures. Here, we mainly focus on a coaxial
setting (Fig. 2): a camera equipped with an ETL images the
domain through a beam splitter, while a projector illuminates
the domain coaxially. Additional optical configurations are
discussed in Section VIII. In the setup we used, the projector’s
depth-of-field is much longer than that of the camera’s optics,
yielding negligible1 projector defocus [8].

B. Image Formation Model

Texture integration relies on projecting a sequence of spatial
high-frequency patterns during a single focal-sweep exposure.
During the focal sweep, at each time t, hence focal position
u(t), the projector illuminates the object with a distinct
spatial texture. Let Pt(x) [graylevel/sec] denote the image
irradiance at x corresponding to a projector’s spatial pattern
at time t. Henceforth, assume that ambient illumination is
negligible with respect to the projector’s illumination, namely
that ĨAIF(x)�P (x). For the moment, texture projection uses
only a single color band. Multi-spectral projection is discussed
in Sec. VI.

In analogy to Eq. (1), due to projector illumination, the
recorded image is

I(x) =

∫ Texp

0

ρ(x)Pt(x) ∗ k [x|d(x), u(t)] dt, (4)

1An additional ETL fitted in a projector can control projector defocus and
specifically remove the defocus, in synchrony with the camera-mounted ETL.



where ρ(x) expresses the object albedo. A discrete focal sweep
uses N focal steps denoted by un, where n = 1, 2, .., N . Each
focal step remains still for Texp/N seconds. Then, Eq. (4)
becomes

I(x) =
Texp
N

N∑
n=1

ρ(x)Pn(x) ∗ k [x|d(x), un] . (5)

C. Plane Response Function

Consider a uniform white planar object for which ρ(x) = 1,
positioned at distance d parallel to the camera’s focus plane,
as in Fig. 3. Then Eq. (4) yields

C(x, d) ≡
∫ Texp

0

Pt(x) ∗ k [x|d, u(t)] dt. (6)

Observing Eq. (6), the texture in C(x, d) is a temporal
integral of different spatial textures, each spatially filtered by a
different optical blur according to d. In essence, image C(x, d)
constitutes a response function: it is the texture integration’s
response to a uniform planar object (Fig. 3). Thus we refer to
C(x, d) as a “plane-response function.” Using a discrete focal
sweep, Eq. (6) becomes

C(x, d) =
Texp
N

N∑
n=1

Pn(x) ∗ k [x|d, un] . (7)

Suppose the response C(x, d) is known for any d. Then,
from Eqs. (4)-(7), a texture-integrated image can be rendered
for an arbitrary uniform object having depth d(x) and constant
albedo ρ, by

Î(x) = ρC [x, d(x)] . (8)

IV. DEPTH RECOVERY

A set of discrete depth steps D = {dm}Mm=1 spans the
axial domain. The set C = {C(x, dm)}dm∈D denotes the
corresponding axial samples of the plane-response function.
When observing an object of interest, a single focal-sweep
image I(x) of the object is obtained following Eqs. (4,5).
This frame becomes the input to a depth recovery procedure.
Denote by L(x) a small image patch centered at x. Let
us match the content of I(x) in patch L(x), to responses
extracted from C(x, dm) per m, in a corresponding spatial
patch. The response C(x, dm) that best matches I(x) in L(x)
indicates dm as a primary candidate for the depth d(x), as in
Fig. 4.

Image noise, sharp albedo variation or large spatial gradients
of d(x) are inconsistent with the model of Section III-C.
Hence, they may yield erroneous matches. Therefore, a prior
on object shape is used. Let d(x) ∈ D. The depth-map is the
set R = {d(x)}∀x. Define a cost function for a depth-map

E(R) =
∑
x

Dx [d(x)] + λ
∑
x,x′

Vx,x′ [d(x), d(x′)] . (9)

Here Vx,x′ [d(x), d(x′)] penalizes dissimilar depths at neigh-
boring pixels x,x′ [3], essentially expressing a smoothness
prior weighted by λ. The data term Dx[d(x)] penalizes texture
mismatch between I(x) and the response C[x, d(x)] in L(x).
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Fig. 3. Top: The plane-response function C(x, d) describes the
response of texture integration to a uniform planar object at distance
d. Middle: Response C(x, d) may render texture-integrated images
of objects having a uniform albedo. Bottom: C(x, d) is used to solve
the inverse problem: estimate object shape from a texture-integrated
image.

To define Dx[d(x)], denote by ZNCCL
[
·, ·
]

the zero-
normalized cross-correlation operator [5] in L(x). We set

Dx[dm] = 1− ZNCCL
[
I(x), C(x, dm)

]
. (10)

Recalling Eq. (8), note that Eq. (10) is invariant to the
(generally unknown) albedo ρ of a uniform object. Moreover,
if the true depth in x is dm, the object is uniform, and there
is no noise, then Dx[dm] = 0. We recover the depth-map of a
general (non-flat) object by minimizing E with respect to R

R̂ = arg min
R

E(R). (11)

See Fig. 4 for an example. The experimental and parameter
settings of all results shown in this paper are detailed in
Sec. IX.

Measuring the Plane-Response Set

Depth recovery relies on availability of the response set
C. While this set may be derived using elaborate theoretical
or simulated models, it is often simpler [16] to empirically
sample C. We measure C(x, dm) directly by imaging a white
planar object which is placed on a motorized stage. Using the
moving stage, the object is shifted axially in increments of
∆d, in the depth span [umin, umax]. Depths at which C(x, d)
is sampled are dm = umax − m∆d. Section VII discusses
limitations of axial resolution.
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Fig. 4. (a) An input image I(x) with three patches marked by red,
blue and purple. (b) Zoom-in and contrast stretch of these patches.
(c) Correlation between I(x) and plane-response images, in each of
the marked patches. (d) The response having the highest correlation
indeed has visual similarity to the image patch. It indicates a prime
candidate for object depth. The response here is shown in areas
corresponding to the marked image patches.

V. THE SET OF PROJECTED TEXTURES

We experimented with several pattern sets for texture
integration, guided by reconstruction quality and confusion
matrices. Element W [m,m′] in confusion matrix W is

W [m,m′] = Ex

{
ZNCCL[C(x, dm), C(x, dm′)]

}
, (12)

where Ex denotes spatial averaging over all pixels. A desirable
confusion matrix Wdesired should have unit-values on the
main diagonal and −1 values off the diagonal. The quality
of W is assessed by how close it is to Wdesired, in the sense
of Frobenius norm ‖.‖F . We seek W for which

e(W) = ‖W −Wdesired‖2F /M2 (13)
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Fig. 5. Left: Sample spatial textures. Middle: The resulting integrated
texture, when observing a white planar object. Right: The confusion
matrix W per type of texture. Its corresponding e(W) given in
Eq. (13) is written on the diagonal.

is low.
We considered several binary patterns, e.g. rotated

stripes [16]. We eventually settled on pseudo-random textures
and temporally-exclusive codes. A pseudo-random spatial tex-
ture can be generated by white-noise sampling, i.e., a projector
pixel is activated independently of other pixels (Fig. 5[Top]).
However, in white noise, the energy in low spatial frequencies
is just as significant as in high spatial frequencies. Low spatial
frequencies yield broad regions having many active pixels.
This leads to low contrast also in focus, hence degrading the
useful signal.

Blue noise sampling [34] yields better textures than white
noise. Here, an active pixel inhibits its neighbors from being
active as well. This yields textures rich in energy at high-
spatial frequencies (Fig. 5[Middle row]). An additional way to
reach low values off the main diagonal of W is by temporally-
exclusive codes. Here, each projector pixel x is active in
only one of the projected textures, n(x). This ensures that
in x, no focused texture illumination is repeated at n′ 6=
n(x) (Fig. 5[Bottom]). However, as N increases, temporal-
exclusivity reduces the amount of active pixels per focus step,
thus degrading spatial resolution.

VI. MULTI SPECTRAL PATTERNS

So far, the model assumed projection using a single color
channel. Let us generalize the discussion for multi-spectral
projection of textures. Textures can be projected in infrared, as
in Microsoft’s Kinect, allowing infrared-based shape recovery,
simultaneously with all-in-focus visible light imaging. How-
ever, to keep the discussion intuitive, we now discuss color
channels, without loss of generality.

Let σ ∈ {R,G,B} denote the spectral band index. Now,
during the focal sweep, different patterns are projected at each
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Fig. 6. Projected textures in multiple spectral bands. Top: Different
textures are projected per band, resulting in a multi-spectral plane-
response function. Bottom: Depth is recovered using multi-band data.

spectral band.2 The plane-response function of Sec. III-C is
thus expanded in the spectral dimension C(x, d)→ C(x, d, σ)
as illustrated in Fig. 6.

A. Multi-Spectral Illumination of an Object

One way in which depth sensing can fuse multiple bands, is
to extract depth for each spectral band separately by inputting
I(x, σ) in Eq. (10). The corresponding recovered depths per
channel d̂(x, σ) may then be fused using

d̂(x) =

∑
σ q(x, σ)d̂(x, σ)∑

σ q(x, σ)
. (14)

Here q(x, σ) expresses per-band consistency of data with
Eq. (8),

q(x, σ) ≡ max
(

0,ZNCCL
[
I(x, σ), Î(x, σ)

])
. (15)

A different use of multi-band imaging is normalization
intended to decrease biases caused by spatial variations of the
albedo ρ(x). Let us first lay out the problem, by recalling
Sec. IV. The data-fitting term relies on a model in which
the albedo is uniform in each patch L(x). There, high-
spatial frequency components are associated exclusively with
the projected textures Pn(x), while albedo has zero spatial
frequency. Most real objects are not uniform, however. Low
spatial frequency components in ρ(x) may bias the estimation
of d only slightly. On the other hand, high energy in high
spatial frequency components of ρ(x) may significantly bias
the estimation results. It is desired that depth estimation would
be less prone to spatial variations in ρ(x). The core problem is
that I(x) is sensitive to these spatial variations. Countering the

2Often, the projector’s spectral bands do not match those of the camera.
This is handled by a procedure described in Appendix A.

problem is possible by inputting to the algorithm of Sec. IV a
representation whose sensitivity to spatial variations in ρ(x) is
lower than that of I(x). This representation can be achieved
using multi-band imaging, as we now describe.

Often there is strong correlation of albedo ρ(x, σ) between
different spectral bands. Hence, ρ(x, σ) can be approximated
by a superposition of albedo maps in all complementary
channels, i.e., ρ(x, σ′) where ∀σ′ 6= σ. For example, channels
σ′ ∈ {R,B} are complementary to the σ= G channel. There
is generally no access to albedo maps in single-image acqui-
sition. However, a color camera and a color projector enable
traditional focal-sweep images (Eqs.1,3) at ∀σ′ 6= σ, while
texture integration is done at σ. Let us project spatial textures
in one spectral band σ. Meanwhile, in the complementary
spectral bands ∀σ′ 6= σ, let the illumination be spatially
uniform. Define

Imulti(x) =
I(x, σ)∑

σ′ 6=σ α(σ′)I(x, σ′)
, (16)

where α(σ′) are coefficients per channel. With proper selection
of {α(σ′)}σ′ , the representation Imulti(x) can practically be
rather insensitive to high spatial-frequency components of
ρ(x, σ). Hence, in Eq. (10) instead of I(x), it is beneficial
to use Imulti(x).

The coefficients α(σ′) are set using a least-squares approx-
imation. For example, let σ = G and σ′ ∈ {R,B}. Define
matrix A and vector b by

A ≡


I(x0,R) I(x0,B)
I(x1,R) I(x1,B)
I(x2,R) I(x2,B)

...
...

 , b ≡


I(x0,G)
I(x1,G)
I(x2,G)

...

 . (17)

Then, the coefficients are set by

α ≡
[
α(R)
α(B)

]
= (A>A)−1A>b, (18)

where > denotes transposition.

B. Empirical Comparisons of Use of Color

An example of countering albedo variation using Imulti(x)
is seen in Fig. 7. In addition, we tested color projection in
three methods, as shown in Fig. 8:
(s1) Texture in a single spectral band, and no light in the other
bands.
(s2) Multiple spectral bands, where a different random texture
set is used per band.
(s3) Texture in a single band + uniform lighting in the
complementary bands.
We found that method (s2) provided better lateral resolution,
while method (s3) performed best in terms of noise and
handling sharp albedo gradients.

VII. LIMITATIONS

This section discusses limitations regarding resolution and
the dynamic range of the depth map. For a camera fitted with
wide aperture optics (including an ETL), let the depth of field
be 2δ. Around the object depth d, shifting the focus of a
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camera in the range [d− δ, d+ δ] yields unnoticeable defocus
blur. Hence, axial resolution is fundamentally limited by δ.

Recall that each spatial texture Pt(x) corresponds to a focus
(depth) setting u(t). Hence, object depth d corresponds to
Pt(x) for which |u(t)−d| is minimal, i.e., a texture projected
when the ETL is focused nearest to d. Textures Pt(x) for
which |u(t)−d| � δ correspond to focus settings very far from
d. Thus, these textures are too defocus-blurred to meaningfully
affect the response C(x, d). For a strong response at any depth
d, projected spatial textures should thus vary in time steps
which correspond to depth increments ∆u satisfying ∆u = δ.

The axial range [umin, umax] is bounded as well. The bound
is not only due to the finite dynamic range of the ETL, but
also due to noise, as we show now. The number of patterns is

N ≈ umax − umin

∆u
∼ umax − umin

δ
. (19)

Out of them, a handful of textures (Nsignal) are projected
at times t for which |u(t) − d| is not much larger than δ.
Hence, these few textures contribute a signal that, though
slightly blurred, can still relate to the plane response function.
The other textures are so defocus-blurred, that they essentially
contribute a nearly uniform background radiance. This back-
ground contributes to photon noise. The variance of photon
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Texture in a single spectral band, and no light in the other bands
(s1). Middle: Multi band: all three projector colors project (different)
random textures (s2). Right: Texture in a single band + uniform
lighting in the complementary bands (s3). The bottom object (white
pill) was scanned using the red LED in the single-band experiment.

noise is proportional to the overall integrated signal, including
the background. Following Eq. (19), the photon-limited SNR
is thus

SNR ≈ Nsignal√
N
∼ Nsignal

√
δ√

umax − umin
. (20)



Attempting to the sense depth in a dynamic range
(umax − umin) too broad may thus suffer from poor SNR.

Lateral resolution is limited by the projector and camera op-
tics. The higher the projector spatial resolution, the smaller the
correlation patch size L(x) can be. In the coaxial configuration
(Fig. 2), projector defocus may be a limiting factor [8], [10].
Projector defocus is turned into an advantage [12] in a confocal
setting (Fig. 9[Top]), where the projector is focused along
with the camera. A speckle configuration (Fig. 9[Middle])
can provide diffraction-limited textures, whose feature size can
reach down to a half optical wavelength.

VIII. COMPARISON TO RELATED METHODS

Depth from texture integration is most advantageous for
microscopy of objects spanning a long depth-range. In mi-
croscopy, diffraction and SNR considerations essentially lead
to an optical narrow depth of field. Here we discuss alternative
methods and additional architectures. We empirically tested
alternatives: depth from focus (DFF) and depth from defocus
(DFD). Comparisons to texture integration are detailed in this
section and in Sec. IX. The results appear in Fig. 10. In these
tests, measures were taken for fair comparison in terms of
total exposure duration and quality. This section also describes
additional architectures for depth from texture integration,
which are not described by Fig. 2.

DFF [13] acquires an N -frame sequence (focal stack)
during a total acquisition time comparable to our Texp. Thus,
for dynamic objects, DFF requires very short exposures per
individual frames in the stack. Short exposures may result in
underexposed images that are unsuitable for depth recovery.
Moreover, due to the need for repeated readout operations, N
is limited by the camera readout speed. The exposure times
per focal step within our single-frame texture integration (focal
sweep) is Tn = Texp/N . The exposure time per frame in the
DFF stack is set as follows.
(a) TDFF =Tn, while DFF relies on checkerboard pattern [21]
structured illumination (Fig. 10a).
(b) TDFF = Tn, while DFF uses uniform lighting (Fig. 10b).
DFF results in both cases (a,b) were inferior to texture
integration (Fig. 10e).
(c) TDFF =3.5Tn. Here DFF quality (Fig. 10c) was compara-
ble to texture integration.
We used a software code of Ref. [25] for DFF.

DFD [7], [28], [29] requires only a pair of frames acquired
during a time comparable to our Texp. Hence the frames are
well-exposed. Each frame is focused on a different distance
u. DFD performance degrades when the object depth-range is
much longer than the system’s depth-of-field. In such cases,
there may be object regions severely blurred simultaneously
in both pair frames: blur there is indistinguishable, thus ill-
conditioning DFD. As a preliminary test, we applied a DFD
software code [7] on frame pairs from a well-exposed focal
stack having 70 frames. Indeed, all the frame pairs had
severely blurred regions, yielding large errors (Fig. 10d).
In this preliminary experiment, texture integration appeared
superior. However, refining the DFD analysis may potentially
improve upon the results of Fig. 10d.
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Fig. 9. Additional configurations for depth from texture integration.
Top: Confocal configuration; both camera and projector are focused
at the same plane, through the same electronically tunable lens.
Middle: Speckle configuration; laser interference and diffraction cre-
ate a spatial speckle pattern that can be varied in time in a repeatable
manner. A way to implement this is by passing a laser through a
rotating diffuser. Bottom: Stereo configuration; the projector is off-
axis.

Triangulation: In general, in high-resolution microscopy,
physical considerations inhibit the use of triangulation-based
methods, such as Microsoft’s Kinect [20]. Microscopy requires
high numerical aperture optics to obtain the smallest features,
which are limited by diffraction. A wide aperture yields a
shallow depth of field, necessitating a focal-sweep (or stack).
These considerations are incompatible with the assumptions
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Fig. 10. Comparison to related methods. Left: Recovered shape.
Right: Cross-sections of a recovery (blue) vs. the estimated ground
truth (orange). (a) Structured light DFF. (b) Uniform light DFF. (c)
Structured light DFF having 3.5 longer exposure time. (d) Two-frame
DFD under uniform lighting. (e) Texture integration. Further details
are in Section IX and Table I.

made by triangulation-based methods: geometrical optics, pin-
hole models, infinite depth-of-field.

In large scenes, where structured light for triangulation is
suitable, depth is indicated by the lateral shift of an apparent
pattern. While this shift can be very sensitive and provide high
axial resolution, there can be large shadows and occlusions.
Narrowing shadows and occlusions requires narrowing the
camera-projector baseline to the limit of coaxial or confocal
configurations (Figs. 2,9[Top]). In these configurations, depth
sensitivity is largely based on depth-of-field, i.e., DFF, DFD
and our texture-integration during sweep.

Texture-integration can be used in a structured-light triangu-
lation configuration as well, as illustrated in Fig. 9[Bottom].
However, in this particular setting, we found no major ad-
vantage of integrating time-varying textures, relative to plain
triangulation methods.

IX. EXPERIMENTAL DETAILS

In this section we detail the experimental setup which
yielded the results shown in Figs. 4,5,7,8,10. The setup is
shown in Fig. 11. It includes an IDS UI-3240ML-C-HQ
camera equipped with a 20mm extension tube, an Optotune
EL-10-30 Ci ETL and a 50mm f2.8 Schneider lens. The
object was placed ≈ 9cm from the camera. The focusing
range was umax− umin = 10mm. Camera exposure was set
to Texp = 60ms. During a single exposure, focal sweep was

ETL

camera

synchronization
electronics

m
ov

in
g
 s

ta
g
eobject

fixed lens

beam splitter

Fig. 11. Experimental setup. A camera images the scene through
a beam splitter. The camera is equipped with an ETL that shifts
the focus plane by approximately 10mm. A projector illuminates
the object coaxially. A motorized stage is used to sample the plane-
response function.
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Fig. 12. Projection synchronization. At each focal step, the ETL
control current is set for the desired optical power (diopters). Then,
after a settling period, the spatial texture corresponding to that focal
step is triggered.

realized in N = 15 discrete depth steps. To measure the
plane-response function, a Newport VP-25XA stage powered
by a ESP-300 driver axially shifted a planar object. The
projector is a TI DLP3000 digital micromirror device (DMD)
having 684×608 pixels. The ETL, projector and camera were
synchronized using a custom electrical controller [18]. Being
co-axial, there is no need to calibrate the camera-projector
extrinsic geometry.

The total energy projected was controlled by limiting pro-
jection time per focal step (see Fig. 12). The projector is
based on LED illumination: different color bands are created
by respective LED colors. Simultaneous multi-LED projection
on our specific hardware was too involved. We thus emulated
methods (s2) and (s3) by capturing the scene under each LED
separately, then summed the resulting raw Bayer images. After
summations, grayscale levels over 255 were clipped to 255.
Exposure settings relating to Fig. 10 are listed in Table I.

‘Ground truth’ depth was estimated by applying DFF on



TABLE I
SETTINGS FOR THE EXPERIMENT OF FIG. 10. THE TOTAL EXPOSURE PER STEP COMPRISES THE EXPOSURE TIMES OF THE RED, GREEN

AND BLUE LIGHTS.

Method Focal steps Total
exposure
per step
[us]

Red exp.
per step
[us]

Green
exp. per
step [us]

Blue
exp. per
step [us]

Projected content MSE

(a) Depth from focus 15 frames 3080 440 2200 440 G-checkerboard pattern, R+B spatially uniform 7.3
(b) Depth from focus 15 frames 3080 440 2200 440 G+R+B spatially uniform 3.4
(c) Depth from focus 15 frames 10800 3600 3600 3600 G-checkerboard pattern, R+B spatially uniform 0.3
(d) Depth from defocus 2 frames 32400 3600x3 3600x3 3600x3 G+R+B spatially uniform 4.8
(e) Texture integration 15 steps 3080 440 2200 440 G-textures, R+B spatially uniform 0.3
Ground truth estimate 70 frames 32400 3600x3 3600x3 3600x3 G+R+B spatially uniform

a 70-frame focal stack, in which each frame accumulated
32400us exposure time. The estimated ‘ground truth’ depth
exhibited artifacts at the object boundaries, which where
ignored when computing the MSE in Fig. 10. We experimented
with two axial resolutions when sampling the response C: 100
steps having ∆d=0.1mm in the experiments corresponding to
Figs. 4,7 and 68 steps having ∆d=0.15mm in the experiments
corresponding to Figs. 5,8,10. The patch L(x) is of size
41×41 pixels. In Eq. (9) we set Vx,x′ = [d(x)− d(x′)]

2
/∆d2

following [4]. Optimization (9) was run using [23] by first
setting λ = 0. Then, Eq. (9) is computed again using λ=0.2.

X. DISCUSSION

We present a novel imaging concept for fast sensing and
recovery of depth in wide aperture settings. Texture integration
can be useful in several imaging configurations. Similarly to
other depth sensing methods, object specularities and subsur-
face scattering may degrade performance. Hence approaches
to reduce these effects may need to be developed in the
context of texture integration. Moreover, we believe that the
projected textures can be systematically optimized to yield
better performance.

The optimization in Section IV extracts discrete depth.
However, the principle of depth from texture integration is
not limited to this estimation algorithm. Continuous-valued
depth maps can be estimated by using continuous optimization
instead.

APPENDIX A

As mentioned in Section VI, camera and projector spectral
bands often do not match. This creates crosstalk between spec-
tral channels. An unmixing pre-process lowers this crosstalk.

Denote by {Rcam,Gcam,Bcam} and {Rproj,Gproj,Bproj}
the camera and projector spectral bands, respectively. The
crosstalk is modeled by I(x,Rcam)

I(x,Gcam)
I(x,Bcam)

 = H

 I(x,Rproj)
I(x,Gproj)
I(x,Bproj)

 , (21)

where H is a 3×3 color mixing matrix. Matrix H is calibrated
by imaging a white object using the camera, while sequentially
irradiating the object by a single projector spectral channel.

Then, let us image an arbitrary object using our sys-
tem. Per pixel x, the measured vector is i(x) =

[I(x,Rcam) I(x,Gcam) I(x,Bcam)]>, where > denotes trans-
position. Spectral unmixing in this pixel is done by H−1i(x).
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