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Abstract

Consider situations where the depth at each point in the scene is multi-valued, due to

the presence of a virtual image semi-re
ected by a transparent surface. The semi-re
ected

image is linearly superimposed on the image of an object that is behind the transparent

surface. A novel approach is proposed for the separation of the superimposed layers.

Focusing on either of the layers yields initial separation, but crosstalk remains. The

separation is enhanced by mutual blurring of the perturbing components in the images.

However, this blurring requires the estimation of the defocus blur kernels. We thus

propose a method for self calibration of the blur kernels, given the raw images. The kernels

are sought to minimize the mutual information of the recovered layers. Autofocusing and

depth estimation in the presence of semi-re
ections are also considered. Experimental

results are presented.

Keywords: Semire
ections, Depth from focus, Blind deconvolution, Blur estimation,
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1 Introduction

The situation in which several (typically two) linearly superimposed contributions exist is often

encountered in real-world scenes. For example [12, 20], looking out of a car (or room) window,

we see both the outside world (termed real object [35, 36, 41, 42, 43, 45]), and a semi-re
ection

of the objects inside, termed virtual objects. The treatment of such cases is important, since

the combination of several unrelated images is likely to degrade the ability to analyze and

understand them. The detection of the phenomenon is of importance itself, since it indicates

the presence of a clear, transparent surface in front of the camera, at a distance closer than

the imaged objects [35, 42, 45].

The term transparent layers has been used to describe situations in which a scene is semi-

re
ected from a transparent surface [6, 12, 58]. It means that the image is decomposed into

depth ordered layers, each with an associated map describing its intensity (and, if applicable,

its motion [58]). We adopt this terminology, but stress the fact that this work does not deal with

imaging through an object with variable opacity. Approaches to recovering each of the layers

by nulling the others relied mainly on triangulation methods like motion [6, 12, 13, 22, 36, 49],

and stereo [7, 48]. Algorithms were developed to cope with multiple superimposed motion

�elds [6, 49] and ambiguities in the solutions were discovered [47, 60]. Another approach to

the problem has been based on polarization cues [18, 20, 35, 41, 42, 43, 45]). However, that

approach needs a polarizing �lter to be operated with the camera, may be unstable when the

angle of incidence is very low, and is diÆcult to generalize to cases in which more than two

layers exist.

In recent years, range imaging relying on the limited depth of �eld (DOF) of lenses has

been gaining popularity. An approach for depth estimation using a monocular system based

on focus sensing [14, 16, 25, 31, 32, 33, 34, 52, 53, 61] is termed Depth from Focus (DFF) in the

computer-vision literature. In that approach, the scene is imaged with di�erent focus settings

(e.g., by axially moving the sensor, the object or the lens), thus obtaining image slices of the

scene. In each slice, a limited range of depth is in focus. Depth is extracted by a search for
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the slice that maximizes some focus criterion [21, 25, 31, 32, 34, 52, 55, 62] (usually related to

the two dimensional intensity variations in the region), and corresponds to the plane of best

focus. DFF and image-based rendering based on focused slices has usually been performed on

opaque (and occluding) layers. In particular, just recently a method has been presented for

generating arbitrarily focused images and other special e�ects performed separately on each

occluding layer [5].

Physical modeling of DOF as applied to processing images of transparent objects has long

been considered in the �eld of microscopy [2, 3, 8, 10, 15, 17, 19, 23, 29, 30, 37, 51], where the

defocus e�ect is most pronounced. An algorithm for DFF was demonstrated [23] on a layered

microscopic object, but due to the very small depth of �eld used, the interfering layer was very

blurred so no reconstruction process was necessary. Note that microscopic specimens usually

contain detail in a continuum of depth, and there is correlation between adjacent layers, so

their crosstalk is not as disturbing as in semi-re
ections. Fundamental consequences of the

imaging operation (e.g. the loss of biconic regions in the three dimensional frequency domain)

that pose limits on the reconstruction ability, and the relation to tomography, were discovered

[9, 29, 51, 50, 54]. Some of the three dimensional reconstruction methods used in microscopy

[2, 3, 10] may be applicable to the case of discrete layers as well.

We study the possibility of exploiting the limited depth of �eld to detect, separate and

recover the intensity distribution of transparent, multi-valued layers. Focusing yields an initial

separation, but crosstalk remains. The layers are separated based on the focused images, or by

changing the lens aperture. The crosstalk is attenuated by mutual blurring of the disturbing

components in the images (Section 2). Proper blurring requires the point spread functions

(PSF) in the images to be well estimated. A wrong PSF will leave each recovered layer

contaminated by its complementary. We therefore study the e�ect of error in the PSFs. Then,

we propose a method for estimating the PSFs from the raw images (Section 3). It is based

on seeking the minimum of the mutual information between the recovered layers. Recovery

experiments are described in Section 4. We also discuss the implication of semi-re
ections

on the focusing process and the depth extracted from it (Section 5). Preliminary and partial
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Figure 1: A telecentric imaging system [59]. An aperture D is situated at distance F (the focal

length) in front of the lens. An object point at distance u is at best focus if the sensor is at v. If the

sensor is at ~v, the image of the point is a blurred spot parameterized by its e�ective diameter d.

results were presented in [40, 44].

2 Recovery from focused slices

2.1 Using two focused slices

Consider a two-layered scene. Suppose that either manually or by some automatic procedure

(see Section 5), we acquire two images, such that in each image one of the layers is in focus.

Assume for the moment that we also have an estimate of the blur kernel operating on each

layer, when the camera is focused on the other one. This assumption may be satis�ed if the

imaging system is of our design, or by calibration. Due to the change of focus settings, the

images may undergo a scale change. If a telecentric imaging system (Fig. 1) is used, this

problem is avoided [33, 59]. Otherwise, we assume that the scale change1 is corrected during

preprocessing [27].

Let layer f1 be superimposed2 on layer f2. We consider only the slices ga and gb, in which

1The depth dependence of the scale change can typically be neglected.
2The superposition is linear, since the real/virtual layers are the images of the objects multiplied by the

transmission/re
ection coeÆcients of the semi-re
ecting surface, and these coeÆcients do not depend on the
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either layer f1 or layer f2, respectively, is in focus. The other layer is blurred. Modeling the

blur as convolution with blur kernels,

ga = f1 + f2 � h2a gb = f2 + f1 � h1b (1)

(The assumption of a space-invariant response to constant depth objects is very common in

analysis of defocused images, and is approximately true for paraxial systems or in systems

corrected for aberrations). If a telecentric system is used, h1b = h2a = h.

In the frequency domain Eqs. (1) take the form

Ga = F1 +H2aF2 Gb = F2 +H1bF1 : (2)

Assuming that the kernels are symmetric, ImH2a = 0 and ImH1b = 0, so the real components

of Ga and Gb are respectively

ReGa = ReF1 +H2a � ReF2 ReGb = ReF2 +H1b � ReF1 ; (3)

with similar expressions for the imaginary components of the images. These equations can be

visualized as two pairs of straight lines (see Fig. 2). The solution, which corresponds to the

line intersection, uniquely exists for H2aH1b 6= 1. Since the imaging system cannot amplify any

component (H1b;H2a � 1), a unique intersection exists unless H2a = H1b = 1.

To gain insight, consider a telecentric system (the generalization is straightforward). In

this case, H2a = H1b = H, and the slopes of the lines in Fig. 2 (representing the constraints)

are reciprocal to each other. As H ! 1 the slopes of the two lines become similar, hence

the solution is more sensitive to noise in Ga and Gb. As the frequency decreases, H ! 1,

hence at low frequencies the recovery is ill conditioned. Due to energy conservation, the

average gray level (DC) is not a�ected by defocusing. Thus, at DC, H = 1. In the noiseless

case the constraints on the DC component coincide into a single line, implying an in�nite

number of solutions. In the presence of noise the lines become parallel and there is no solution.

light intensities. The physical processes in transparent/semi-re
ected scenes are described in Refs. [41, 42,

43, 45]. Nonlinear transmission and re
ection e�ects (as appear in photorefractive crystals) are negligible at

intensities and materials typical to imaging applications.
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Figure 2: Visualization of the constraints on reconstruction from focused slices and the convergence of

a suggested algorithm. For each frequency, the relations (3) between the real components of Ga; Gb; F1

and F2 take the form of two straight lines. The visualization of the imaginary parts is similar.

The recovery of the DC component is thus ill posed. This phenomenon is also seen in the

three dimensional frequency domain. The image space is band limited by a missing cone of

frequencies [9, 29], whose axis is in the axial frequency direction �v and its apex is at the origin.

Recovery of the average intensity in each individual layer is impossible since the information

about inter-layer variations of the average transversal intensity is in the missing cone [46].

A similar conclusion may be derived from observing the three dimensional frequency domain

support that relies on di�raction limited optics [54].

In order to obtain another point of view on these diÆculties, consider the naive inverse

�ltering approach to the problem given by Eq. (2). In the transversal spatial frequency domain,
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the reconstruction is

bF1 = B(Ga �GbH2a)
bF2 = B(Gb �GaH1b) (4)

where

B = (1�H1bH2a)
�1

: (5)

As H ! 1, B ! 1 hence the solution is instable. Note, however, that the problem is well

posed and stable at the high frequencies. Since H is a LPF, then B ! 1 at high frequencies.

As seen in Eqs. (4), the high frequency contents of the slice in which a layer is in focus are

retained, while those of the other slice are diminished. Even if high frequency noise is added

during image acquisition, it is ampli�ed only slightly in the reconstruction. This behavior is

quite opposite to typical reconstruction problems, in which instability and noise ampli�cation

appear in the high frequencies.

Iterative solutions have been suggested to similar inversion problems in microscopy [2, 3, 15]

and in other �elds. A similar approach was used in [5] to generate special e�ects on occluding

layers, when the inverse �ltering needed special care in the low frequency components. The

method that we consider can be visualized as progression along vectors in alternating directions

parallel to the axes in Fig. 2. It converges to the solution from any initial hypothesis for jHj < 1.

As jHj decreases (roughly speaking, as the frequency increases), the constraint lines approach

orthogonality, thus convergence is faster. A single iteration is described in Fig. 3. This is

a version of the Van-Cittert restoration algorithm [24]. With slices ga and gb as the initial

hypotheses for bf1 and bf2 respectively, at the l'th iteration

bF1(m) = bB(m) [Ga �GbH2a] bF2(m) = bB(m) [Gb �GaH1b] (6)

for odd l, where m = (l + 1)=2 and

bB(m) =
mX
k=1

(H1bH2a)
k�1

: (7)

bB(m) has a major e�ect on the ampli�cation of noise added to the raw images ga and gb (with

the noise of the unfocused slice attenuated by H). Again, we see that at high frequencies the
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Figure 3: A step in the iterative process. Initial hypotheses for the layers serve as input images for

a processing step, based on Eq. (1). The new estimates are fed back as input for the next iteration.

.

ampli�cation of additive noise approaches 1. As the frequency decreases, noise ampli�cation

increases. The additive DC error increases linearly with m.

Let us de�ne the basic solution as that result of using m = 1. Eq. (6) indicates that we can

do the recovery directly, without iterations, by calculating the kernel (�lter) beforehand. m is

a parameter that controls how close the �lter bB(m) is to the inverse �lter, and is analogous to

regularization parameters in typical inversion methods.

In the spatial domain, Eq. (7) turns into a convolution kernel

b̂m(x; y) = Æ(x; y) + h1b � h2a| {z }
once

+h1b � h2a| {z }�h1b � h2a| {z }| {z }
twice

+ � � �+ h1b � h2a| {z }�h1b � � � � � h2a � h1b � h2a| {z }| {z }
m�1 times

:

(8)

The spatial support of b̂m is approximately 2dm pixels wide, where d is the blur diameter

(assuming for a moment that both kernels have a similar support). Here, the �nite support

of the image has to be taken into account. The larger m is, the larger the disturbing e�ect

of the image boundaries. The unknown surroundings a�ect larger portions of the image. It is

therefore preferable to limit m even in the absence of noise.

This diÆculty seems to indicate at a basic limit to the ability to recover the layers. If the

blur diameter d is very large, only a small m can be used, and the initial layer estimation

achieved only by focusing cannot be improved much. In this case the initial slices already
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show a good separation of the individual layers, since in each of the two slices, one layer is

very blurred and thus hardly disturbs the other one. On the other hand, if d is small, then in

each slice one layer is focused, while the other is nearly focused { creating confusing images.

But then, we are able to enhance the recovery using a larger m with only a small e�ect of

the image boundaries. Using a larger m leads, however, to noise ampli�cation and to greater

sensitivity to errors in the assumed PSF (see subsection 2.4).

Example

A simulated scene consists of the image of Lena, as the close object, seen re
ected through a

window out of which Mt. Shuksan3 is seen. The original layers appear in the top of Fig. 4.

While any of the layers is focused, the other is blurred by a Gaussian kernel with standard

deviation (STD) of 2.5 pixels. The slices in which each of the layers is focused are shown in

the second row of Fig. 4 (all the images in this work are presented contrast-stretched).

During reconstruction, \mirror" [4] extrapolation was used for the surroundings of the

image in order to reduce the e�ect of the boundaries. The basic solution (m = 1) removes

the crosstalk between the images, but it lacks contrast due to the attenuation of the low

frequencies. Using m = 6, which is equivalent to 13 iterations, improves the balance between

the low frequency components to the high ones. With larger m's the results are similar.

2.2 Similarity to motion-based separation

In separating transparent layers, the fact that the high frequencies can be easily recovered, while

the low ones are noisy or lost, is not unique to this approach. It also appears in results obtained

using motion. Note that, like focus changes, motion leaves the DC component unvaried.

In [6], the results of motion-based recovery of semi-re
ected scenes are clearly highpass �ltered

versions of the superimposing components. An algorithm presented in [22] was demonstrated

in a setup similar to [6]. In [22], one of the objects is \dominant". It can easily be seen

3Courtesy of Bonnie Lorimer
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Figure 4: Simulation results. In the focused slices one of the original layers is focused while the

other is defocus blurred. The basic solution with the correct kernel removes the crosstalk, but the low

frequency content of the images is too low. Approximating the inverse �lter with 6 terms (m = 6)

ampli�es the low frequency components.
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there that even as the dominant object is faded out in the recovery, considerable low-frequency

contamination remains.

Shizawa and Mase [49] have shown that, in regions of translational motion, the spatiotempo-

ral energy of each layer resides in a plane, which passes through the origin in the spatiotemporal

frequency domain. This idea was used [12, 13] to generate \nulling" �lters to eliminate the

contribution of layers, thus isolating a single one. However, any two of these frequency planes

have a common frequency \line" passing through the origin (the DC), whose components are

thus generally inseparable.

These similarities are examples of the uni�cation of triangulation and DOF approaches

discussed in [38]. In general, Ref. [38] shows that the depth from focus or defocus approaches

are manifestations of the geometric triangulation principle. For example, it was shown that

for the same system dimensions, the depth sensitivity of stereo, motion blur and defocus blur

systems are basically the same. Along these lines, the similarity of the inherent instabilities of

separation based on motion and focus is not surprising.

2.3 Using a focused slice and a pinhole image

Another approach to layer separation is based on using as input a pinhole image and a focused

slice, rather than two focused slices. Acquiring one image via a very small aperture (\pinhole

camera") leads to a simpler algorithm, since just a single slice with one of the layers in focus is

needed. The advantage is that the two images are taken without changing the axial positions

of the system components, hence no geometric distortions arise. Acquisition of such images is

practically impossible in microscopy (due to the signi�cant di�raction e�ects associated with

small objects) but is possible in systems inspecting macroscopic objects.

The \pinhole" image is described by

g0 = (f1 + f2)=a ; (9)

where 1=a is the attenuation of the intensity due to contraction of the aperture. This image

is used in conjunction with one of the focused slices of Eq. (1), for example ga. The inverse
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�ltering solution is

bF1 = S(Ga � aG0H2a)
bF2 = S(aG0 �Ga) (10)

where

S = (1 �H2a)
�1

: (11)

As in subsection 2.1, S can be approximated by

bS(m) =
mX
k=1

Hk�1
2a : (12)

2.4 E�ect of error in the PSF

The algorithm suggested in subsection 2.1 computes bF1(m) = bB(m)[Ga�GbH2a]. We normally

assume (Eq. (2)) that Ga = F1 +H2aF2 and Gb = F2 +H1bF1. If the assumption holds,

bF1(m) = F1(1 �H1bH2a) bB(m) : (13)

Note that, regardless of the precise form of the PSFs, had the imaging PSFs and the PSFs used

in the recovery been equal, the reconstruction would have converged to F1 as m ! 1 when

jH1bj; jH2aj < 1. In practice, the imaging PSFs are slightly di�erent, i.e., Ga = F1+
fH2aF2 and

Gb = F2 + fH1bF1 where

fH1b = H1b � E1b ; fH2a = H2a � E2a ; (14)

and E1b; E2a are some functions of the spatial frequency. This di�erence may be due to inac-

curate prior modeling of the imaging PSFs or due to errors in depth estimation. The recon-

struction process leads to

eF1 = [F1 (1�H1bH2a)+E1bH2aF1�E2aF2] bB(m) = bF1(m)+ bB(m) (E1bH2aF1 � E2aF2) : (15)

A similar relation is obtained for the other layer.

An error in the PSF leads to contamination of the recovered layer by its complementary.

The larger B̂ is, the stronger is the ampli�cation of this disturbance. Note that B̂(m) mono-

tonically increases with m, within the support of the blur transfer function if H1bH2a > 0, as

12



is the case when the recovery PSF's are Gaussians. Note that usually in the low frequencies

(which is the regime of the crosstalk) H1b;H2a > 0. Thus, we may expect that the best sense

of separation will be achieved using a small m, actually, one iteration should provide the least

contamination. This is so although the uncontaminated solution obeys F̂ ! F as m increases.

In other words, decreasing the reconstruction error does not necessarily lead to less crosstalk.

Both H and fH (of any layer) are low-pass �lters that conserve the average value of the

images. Hence, E � 0 at the very low and at the very high frequencies, i.e., E is a bandpass

�lter. However, bB(m) ampli�es the low frequencies. At the low frequencies, their combined

e�ect may have a �nite or in�nite limit as m!1, depending on the PSF models used.

Continuing with the example shown in Fig. 4, where the imaging PSF had an STD of

r = 2:5 pixels, the e�ects of using a wrong PSF in the reconstruction are demonstrated in

Fig. 5. When the PSF used in the reconstruction has STD of 1.25 pixels, negative traces

remain (i.e., brighter areas in one image appear as darker areas in the other). When the PSF

used in the reconstruction has STD of 5 pixels, positive traces remain (i.e., brighter areas in

one image appear brighter in the other). The contamination is slight in the basic solution

(m = 1), but is more noticeable with larger m's, that is, when B̂ ! B. So, the separation

seems worse, even though each of the images has a better balance (due to the enhancement of

the low frequencies).

We can perform the same analysis for the method described in subsection 2.3. Now there

is only one �lter involved,H2a, since the layer f1 is focused. Suppose that, in addition to using

H2a in the reconstruction rather than the true imaging transfer function fH2a, we inaccurately

use the scalar a rather than the true value ~a used in the imaging process. Let e denote the

relative error in this parameter, e = (a� ~a)=~a. We obtain that

eF1 = bF1(m)� eH2a
bS(m)F1 � (E2a + eH2a) bS(m)F2 ; (16)

eF2 = bF2(m) + (E2a + e) bS(m)F2 + e bS(m)F1 ; (17)

where here bF1(m) and bF2(m) are the results had the imaging defocus kernel been the same as

the one used in the reconstruction and had a = ~a. Note the importance of the estimation of
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Figure 5: Simulated images when using the wrong PSF in the reconstruction. The original blur

kernel had a STD of r = 2:5 pixels. Crosstalk between the recovered layers is seen clearly if the STD

of the kernels used is 1.5 or 5 pixels. The contamination increases with m.
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a: if e = 0 then eF2 (the defocused layer) is recovered uncontaminated by F1. However, even in

this case eF1 (the focused layer) will have a contamination of F2, ampli�ed by bS(m) and E2a.

3 Seeking the blur kernels

The recovery methods outlined in Section 2 are based on the use of known, or estimated blur

kernels. If the imaging system is of our design, or if it is calibrated, and in addition we have

depth estimates of the layers obtained during the focusing process (e.g., as will be described

in Section 5), we may know the kernels a-priori. Generally, however, the kernels are unknown.

Even a-priori knowledge is sometimes inaccurate. We thus wish to achieve self-calibration, i.e.,

to estimate the kernels out of the images themselves. This will enable blind separation and

restoration of the layers.

To do that, we need a criterion for layer separation. Note that the method for estimating

the blur kernels based on minimizing the �tting error in di�erent layers as in [5] may fail in this

case as the layers are transparent and there is no unique blur kernel at each point. Moreover,

the �tting error is not a criterion for separation. Assume that the statistical dependence of

the real and virtual layers is small (even zero). This is reasonable since they usually originate

from unrelated scenes. The Kullback-Leibler distance measures how far the images are from

statistical independence, indicating their mutual information [11]. Let the probabilities for

certain values �f1 and �f2 be P ( �f1) and P ( �f2), respectively. In practice these probabilities are

estimated by the histograms of the recovered images. The joint probability is P ( �f1; �f2), which

is in practice estimated by the joint histogram of the images, that is, the relative number of

pixels in which ~f1 has a certain value �f1 and ~f2 has a certain value �f2 at corresponding pixels.

The mutual information is then

I( ~f1; ~f2) =
X
�f1; �f2

P ( �f1; �f2) log
P ( �f1; �f2)

P ( �f1) P ( �f2)
: (18)

In this approach we assume that if the layers are correctly separated, each of their estimates

contains minimum information about the other. Mutual information was suggested and used
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as a criterion for alignment in [56, 57], where its maximum was sought. We use this measure

to look for the highest discrepancy between images, thus minimizing it. The distance (Eq. 18)

depends on the quantization of ~f1 and ~f2, and on their dynamic range, which in turn depends

on the brightness of the individual layers f1 and f2. To decrease the dependence on these pa-

rameters, we performed two normalizations. First, each estimated layer was contrast-stretched

to a standard dynamic range. Then, I was normalized by the mean entropy of the estimated

layers, when treated as individual images. The self information [11] (entropy) of ~f1 is

H( ~f1) = �
X
�f1

P ( �f1) logP ( �f1) ; (19)

and the expression for ~f2 is similar. The measure we used is

In( ~f1; ~f2) =
I( ~f1; ~f2)

[H( ~f1) +H( ~f2)]=2
; (20)

indicating the ratio of mutual information to the self information of a layer.

The recovered layers depend on the kernels used. Therefore, the problem of seeking the

kernels can be stated as a minimization problem:

[ĥ1b; ĥ2a] = arg min
h1b;h2a

In( ~f1; ~f2) : (21)

According to subsection 2.4, errors in the kernels lead to crosstalk (contamination) of the

estimated layers, which is expected to increase their mutual information.

There are generally many degrees of freedom in the form of the kernels. On the other hand,

the kernels are constrained: they are non-negative, they conserve energy etc. To simplify the

problem, the kernels can be assumed to be Gaussians. Then, the kernels are parameterized

only by their standard deviations (proportional to the blur radii). This limitation may lead to

a solution that is suboptimal but easier to obtain.

Another possible criterion for separation is decorrelation. Decorrelation was a necessary

condition for the recovery of semi-re
ected layers by independent components analysis in [18],

and by polarization analysis in [42, 43]. Note that requiring decorrelation between the es-

timated layers is based on the assumption that the original layers are decorrelated: that

assumption is usually only an approximation.
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To illustrate the use of these criteria, we search for the optimal blur kernels to separate the

images shown in the second row of Fig. 4. Here we simpli�ed the calculations by restricting

both kernels to be isotropic Gaussians of the same STD, as these were indeed the kernels used in

the synthesis. Hence, the correlation and mutual information are functions of a single variable4.

As seen in Fig. 6, using the correct kernel (with STD of 2.5 pixels) yields decorrelated basic

solutions (m = 1), with minimal mutual information (In is plotted). The positive correlation

for larger values of assumed STD, and the negative correlation for smaller values, is consistent

with the visual appearance of positive and negative traces in Fig. 5. Observe that, as expected

from the theory, in Fig. 5 the crosstalk was stronger for larger m. Indeed, in Fig. 6 the absolute

correlation and mutual information are greater for m = 6 than for m = 1 when the wrong

kernel is used.

In a di�erent simulation, the focused slices corresponding to the original layers shown in

the top of Fig. 4 were created using an exponential imaging kernel rather than a Gaussian,

but the STD was still 2.5. The recovery was done with Gaussian kernels. The correlation and

mutual information curves (as a function of the assumed STD) were similar to those seen in

Fig. 6. The minimal mutual information was however at STD of r = 2:2 pixels. There was no

visible crosstalk in the resulting images.

The blurring along the sensor raster rows may be di�erent than the blurring along the

columns. This is because blurring is caused not only by the optical processes, but also from

interpixel crosstalk in the sensors, and the raster reading process in the CCD. Moreover, the

inter-pixel spacing along the sensor rows is generally di�erent than along the columns, thus

even the optical blur may a�ect them di�erently. We assigned a di�erent blur \radius" to each

axis: rrow and rcolumn. When two slices are used, as in subsection. 2.1, there are two kernels,

with a total of four parameters. De�ning the parameter vector p � (rrow1b ; rcolumn
1b ; rrow2a ; rcolumn

2a ),

the estimated vector p̂ is

p̂ = arg min
p
In[ ~f1(p); ~f2(p)] : (22)

4The STD was sampled on a grid in our demonstrations. A practical implementation will preferably use

eÆcient search algorithms [28] to optimize the mutual information [56, 57].
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The absolute correlation and the mutual information are larger for a large value of m.
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When a single focused slice is used in conjunction with a \pinhole" image, as described

in subsection 2.3, the problem is much simpler. There are three parameters to determine:

rrow2a ; rcolumn
2a and a. The parameter a is easier to obtain as it indicates the ratio of the light

energy in the wide-aperture image relative to the pinhole image. Ideally, it is the square of

the reciprocal of the ratio of the f-numbers of the camera, in the two states. If, however, the

optical system is not calibrated, or if there is automatic gain control in the sensor, this ratio

is not an adequate estimator of a. a can then be estimated by the ratio of the average values

of the images, for example. Such an approximation may serve as a starting point for better

estimates.

When using the decorrelation criterion in the multi-parameter case, there may be numerous

parameter combinations that lead to decorrelation, but will not all lead to the minimummutual

information, or to good separation. If p is N -dimensional, the zero-correlation constraint

de�nes a N � 1 dimensional hypersurface in the parameter space. It is possible to use this

criterion to obtain initial estimates of p, and search for minimal mutual information within a

lower dimensional manifold. For example, for each combination of rrow and rcolumn, a that leads

to decorrelation can be found (near the rough estimate based on intensity ratios). Then the

search for minimummutual information can be limited to a subspace of only two parameters.

4 Recovery experiments

4.1 Recovery from two focused slices

A print of the \Portrait of Doctor Gachet" (by van-Gogh) was positioned closely behind a glass

window. The window partly re
ected a more distant picture, a part of a print of the \Parasol"

(by Goya). The f# was 5.6. The two focused slices5 are shown at the top of Fig. 7. The cross

correlation between the raw (focused) images is 0.98. The normalized mutual information is

In � 0:5 indicating that signi�cant separation is achieved by the focusing process, but that

5The system was not telecentric, so there was slight magni�cation with change of focus settings. This was

compensated for manually by resizing one of the images.
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substantial crosstalk remains.

The optimal parameter vector p̂ in the sense of minimum mutual information is [1.9, 1.5,

1.5, 1.9] pixels, where r1b corresponds to the blur of the close layer, and r2a corresponds to the

blur of the far layer. With these parameters, the basic solution (m = 1) shown at the middle

row of Fig. 7 has In � 0:006 (two orders of magnitude better than the raw images). Using

m = 5 yields better balance between the low and high frequency components, but In increased

to about 0.02. We believe that this is due to the error in the PSF model, as discussed above.

In another example, a print of the \Portrait of Armand Roulin" (by van-Gogh) was posi-

tioned closely behind a glass window. The window partly re
ected a more distant picture, a

print of a part of the \Miracle of San Antonio" (by Goya). As seen in Fig. 8, the \Portrait"

is hardly visible in the raw images. The cross correlation between the raw (focused) images

is 0.99, and the normalized mutual information is In � 0:6. The optimal parameter vector p̂

here is [1:7; 2:4; 1:9; 2:1] pixels. With these parameters In � 0:004 at the basic solution, rising

to about 0.02 for m = 5.

In a third example, the scene consisted of a distant \vase" picture that was partly-re
ected

from the glass-cover of a closer \crab" picture. The imaging system was telecentric [33, 59],

so no magni�cation corrections were needed. The focused slices and the recovered layers are

shown in Fig. 9. For the focused slices In � 0:4, and the cross correlation is 0.95. The optimal

parameter vector p̂ in the sense of minimum mutual information is [4,4,11,1] pixels. The

basic recovery, using B̂(1), are shown in the bottom of Fig. 9. The crosstalk is signi�cantly

reduced. The mutual information In and correlation decreased dramatically to 0.009 and 0.01,

respectively.

4.2 Recovery from a focused slice and a pinhole image

The scene consisted of a print of the \Portrait of Armand Roulin" as the close layer and a

print of a part of the \Miracle of San Antonio" as the far layer. The imaging system was not

telecentric, leading to magni�cation changes during focusing. Thus, in such a system it may
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be preferable to use a �xed focus setting, and change the aperture between image acquisitions.

The \pinhole" image was acquired using the state corresponding to the f# = 11 mark on the

lens, while the wide aperture image was acquired using the state corresponding to the f# = 4

mark. We stress that we have not calibrated the lens, so these marks do not necessarily

correspond to the true values. The slice in which the far layer is focused (using the wide

aperture) is shown in the top left of Fig. 10. In the \pinhole" image (top right), the presence

of the \Portrait" layer is more noticeable.
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According to the ratio of the f#'s, the wide aperture image should have been brighter

than the \pinhole" image by (11=4)2 � 7:6. However, the ratio between the mean intensity of

the wide aperture image to that of the pinhole image was 4.17, not 7.6. This could be due to

poor calibration of the lens by its manufacturer, or because of some automatic gain control in

the sensor. We added a to the set of parameters to be searched in the optimization process.

In order to get additional cues for a, we calculated ratios of other statistical measures: the

ratios of the STD, median, and mean absolute deviation were 4.07, 4.35 and 4.22, respectively.

We thus let a assume values between 4.07 and 4.95. In this example we demonstrate the

possibility of using decorrelation to limit the minimum mutual information search. First, for

each hypothesized pair of blur diameters, the parameter a that led to decorrelation of the basic

solution was sought. Then, the mutual information was calculated over the parameters that

cause decorrelation. The blur diameters that led to minimal mutual information at m = 1 were

rrow = rcolumn = 11 pixels, with the best parameter a being 4.28. The reconstruction results
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are shown in the middle row of Fig. 10. Their mutual information (normalized) is 0.004.

Using a larger m with these parameters increased the mutual information, so we looked

for a better estimate, minimizing the mutual information after the application of B̂(m). For

m = 5 the resulting parameters were di�erent: rrow = rcolumn = 17 pixels, with a = 4:24. The

recovered layers are shown in the bottom row of Fig. 10. Their mutual information (normalized)

is 0.04. As discussed before, the increase is probably due to inaccurate modeling of the blur

kernel.
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5 Obtaining the focused slices

5.1 Using a standard focusing technique

We have so far assumed that the focused slices are known. We now consider their acquisition

using focusing as in Depth from Focus (DFF) algorithms. Depth is sampled by changing the

focus settings, particularly the sensor plane. According to Refs. [1, 26, 38, 39], the sampling

should be at depth of �eld intervals, for which d � �x, where �x is the inter-pixel period

(similar to stereo [38]). An imaging system telecentric on the image side [33, 59] is a preferred

con�guration, since it ensures constant magni�cation as the sensor is put out of focus. For such

a system it is easy to show that the geometrical-optics blur-kernel diameter is d = D�v=F ,

where D is the aperture width, F is the focal length (see Fig. 1), and �v is the distance of the

sensor plane from the plane of best focus. The axial sampling period is therefore �v � F�x=D.

The sampling period requirement can also be analyzed in the frequency domain, as in [54].

Focus calculations are applied to the image slices acquired. The basic requirement from the

focus criterion is that it will reach a maximumwhen the slice is in focus. Most criteria suggested

in the literature [23, 25, 32, 34, 52, 55, 62] are sensitive to two dimensional variations in the

slice6. Local focus operators yield \slices of local focus-measure", FOCUS (x; y; ~v), where ~v is

the axial position of the sensor (see Fig. 1). If we want to �nd the depth at a certain region

(patch) [31], and the scene is composed of a single layer, we can average FOCUS (x; y; ~v) over

the region, to obtain FOCUS (~v) from which a single valued depth can be estimated. This

approach is inadequate in the presence of multiple layers. Ideally, each of them alone would

lead to a main peak7 in FOCUS (~v). But, due to mutual interference, the peaks can move

from their original positions, or even merge into a single peak in some \average" position, thus

spoiling focus detection.

6It is interesting to note that a mathematical proof exists [21] for the validity of a focus criterion that is

completely based on local calculations which do not depend on transversal neighbors: As a function of axial

position, the intensity at each transversal point has an extremum at the plane of best focus.
7There are secondary maxima, though, due to the unmonotonicity of the frequency response of the blur

operator, and due to edge bleeding. However, the misleading maxima are usually much smaller than the

maximum associated with the focusing on feature-dense regions, as edges.

25



This phenomenon can be observed in experimental results. The scene, the focused slices of

which are shown in Fig. 9, had the \crab"and the \vase" objects at distances of 2.8m and 5.3m

from the lens, respectively. The details of the experimental imaging system are described in

[40]. Depth variations within these objects were negligible with respect to the depth of �eld.

Extension of the STD of the PSF by about 0.5 pixels was accomplished by moving the sensor

array 0.338mm from the plane of best focus8. This extended the e�ective width of the kernel by

about 1 pixel (�d � 1pixel), and was also consistent with our subjective sensation of DOF. The

results of the focus search, shown by the dashed-dotted line in Fig. 11, indicate that the focus

measure failed to detect the layers, as it yielded a single (merged) peak, somewhere between

the focused states of the individual layers. This demonstrates the confusion of conventional

autofocusing devices when applied to transparent scenes.

5.2 A voting scheme

Towards solving the merging problem, observe that the layers are generally unrelated and that

edges are usually sparse. Thus, the positions of brightness edges in the two layers will only

sporadically coincide. Since edges (and other feature-dense regions) are dominant contributors

to the focus criterion, it would be wise not to mix them by brute averaging of the local focus

measurements over the entire region. If point (x; y) is on an edge in one layer, but on a smooth

region in the other layer, then the peak in FOCUS (x; y; ~v) corresponding to the edge will not

be greatly a�ected by the contribution of the other layer.

The following approach is proposed. For each pixel (x; y) in the slices, the focus measure

FOCUS (x; y; ~v) is analyzed as a function of ~v, to �nd its local maxima. The result is expressed

as a binary vector of local maxima positions. Then, a vote table analogous to a histogram

of maxima locations over all pixels is formed by summing all the \hits" in each slice-index.

Each vote is given a weight that depends on the corresponding value of FOCUS (x; y; ~v), to

8Near the plane of best focus, the measured rate of increase of the STD as a function of defocus was much

lower than expected from geometric considerations. We believe that this is due to noticeable di�raction and

spherical aberration e�ects in that regime.
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of the slice index. It mistakenly detects a single focused state at the 6th slice. [Solid line]: The

locations histogram of detected local maxima of the focus measure (the same scene). The highest

numbers of votes (positions of local maxima) are correctly accumulated at the 4th and 7th slices {

the true focused slices.

enhance the contribution of high focus-measure values, such as those arising from edges, while

reducing the random contribution of featureless areas. The results of the voting method are

shown as a solid line in Fig. 11, and demonstrate its success in creating signi�cant, separate

peaks corresponding to the focused layers. Additional details can be found in [40]. The

estimated depths were correct, within the uncertainty imposed by the depth of �eld of the

system. Optimal design and rigorous performance evaluation of DFF methods in the presence

of transparencies remains an open research problem.
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6 Conclusions

This paper presents an approach based on focusing to separate transparent layers, as appear

in semi-re
ected scenes. This approach is more stable with respect to perturbations [38] and

occlusions than separation methods that rely on stereo or motion. We also presented a method

for self calibration of the defocus blur kernels given the raw images. It is based on minimizing

the mutual information of the recovered layers. Note that defocus blur, motion blur, and

stereo disparity have similar origins [38] and di�er mainly in the scale and shape of the kernels.

Therefore, the method described here could possibly be adapted to �nding the motion PSFs

or stereo disparities in transparent scenes.

In some cases the methods presented here are also applicable to multiplicative layers [49]:

If the opacity variations within the close layer are small (a \weak" object), the transparency

e�ect may be approximated as a linear superposition of the layers, as done in microscopy [2,

10, 29, 37]. In microscopy and in tomography, the suggested method for self calibration of the

PSF can improve the removal of crosstalk between adjacent slices.

In the analysis and experiments, depth variations within each layer have been neglected.

This approximation holds as long as these depth variations are small with respect to the depth

of �eld. Extending our analysis and recovery methods to deal with space-varying depth and

blur is an interesting topic for future research. A simpli�ed interim approach could be based

on application of the �ltering to small domains in which the depth variations are suÆciently

small. Note that the mutual information recovery criterion can still be applied globally, leading

to a higher-dimensional optimization problem. We believe that fundamental properties, such

as the inability to recover the DC of each layer, will hold in the general case. Other obvious

improvements in the performance of the approach can be achieved by incorporating eÆcient

search algorithms to solve the optimization problem [28], with eÆcient ways to estimate the

mutual information [56, 57].

Semi-re
ections can also be separated using polarization cues [18, 41, 42, 43, 45]. It is

interesting to note that polarization based recovery is typically sensitive to high frequency

28



noise at low angles of incidence [45]. On the other hand, DC recovery is generally possible

and there are no particular diÆculties at the low frequencies. This nicely complements the

characteristics of focus-based layer separation, where the recovery of the high frequencies is

stable but problems arise in the low frequencies. Fusion of focus and polarization cues for

separating semi-re
ections is thus a promising research direction.

The ability to separate transparent layers can be utilized to generate special e�ects. For

example, in Ref. [5] images were rendered with each of the occluding (opaque) layers defocused,

moved and enhanced arbitrarily. The same e�ects, and possibly other interesting ones can now

be generated in scenes containing semire
ections.
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