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Abstract—Ultrasound images are very noisy. Along with system noise, a significant noise source is the speckle
phenomenon caused by interference in the viewed object. Most of the past approaches for denoising ultrasound
images essentially blur the image and they do not handle attenuation. We discuss an approach that does not blur
the image and handles attenuation. It is based on frequency compounding, in which images of the same object
are acquired in different acoustic frequencies and, then, compounded. Existing frequency compounding methods
have been based on simple averaging, and have achieved only limited enhancement. The reason is that the
statistical and physical characteristics of the signal and noise vary with depth, and the noise is correlated between
acoustic frequencies. Hence, we suggest two spatially varying frequency compounding methods, based on the
understanding of these characteristics. As demonstrated in experiments, the proposed approaches suppress
various noise sources and also recover attenuated objects while maintaining a high resolution. (E-mail:
yaele@il.ibm.com) © 2008 World Federation for Ultrasound in Medicine & Biology.
Key Words: Frequency compounding, Image processing.
INTRODUCTION AND LITERATURE

Ultrasound is an imaging technique that uses high fre-
quency acoustic waves (Meire and Farrant 1995). It is
safe, suitable for many applications and is relatively
affordable. It is used in sonar, medical imaging and
material science work. However, there are problems that
interfere with diagnosis based on such images. Figure 1
illustrates some of these problems. The most prominent
one, which distinguishes ultrasound from most imaging
techniques, is the strong speckle noise. Speckles appear
as grains of different sizes and intensities that result from
the coherent nature of the ultrasound radiation (Angelsen
2000; Webb 1988). The speckle image is signal depen-
dent. It is time invariant and, thus, cannot be suppressed
by temporal averaging. A second problem is attenuation.
The acoustic signal propagating in the medium is scat-
tered and absorbed (Angelsen 2000) and, hence, attenu-
ated. This phenomenon is more pronounced in high
acoustic frequencies. When the attenuated signal is am-
plified, it is accompanied by the amplification of system
noise, which is signal independent. Below a certain level
of signal-to-noise ratio (SNR), objects are overwhelmed
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by system noise, thus, amplification in postprocessing
inhibits reconstruction of these objects.

Most of the past approaches for denoising ultra-
sound images have used standard image enhancement
tools, such as weighted median filter (Loupas et al.
1989), wavelet based methods (Cincotti et al. 2001;
Gupta et al. 2004), Gaussian non-linear filters (Aurich
and Weule 1995) and anisotropic diffusion (Weickert
1997). All these methods essentially blur the image.
Moreover, most of them do not handle spatially varying
physical effects, such as attenuation. It is worth noting,
that some studies based on a single frequency band
spatially adapt the denoising filter (Busse et al. 1995).
Another approach is compounding, in which images of
an object are acquired in different conditions, and then
compounded (Burckhardt 1978; Magnin et al. 1982).
Common compounding methods are spatial compound-
ing and frequency compounding. In spatial compound-
ing, images of the same region are acquired from differ-
ent viewpoints. The change of viewpoint induces a com-
plex registration problem, since the object is three
dimensional while only a two-dimensional (2D) slice is
seen. In frequency compounding, the frames are acquired
in different acoustic frequencies. Existing compounding

methods (Amir et al. 1986) have used simple processing
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methods such as point-wise arithmetic averaging and
have achieved only limited enhancement.

In this article, we present two new methods that are
based on frequency compounding: depth-dependent av-
eraging and stocahstic reconstruction. Both methods are
spatially varying and they are based on physical charac-
teristics of the signal and noise as a function of depth and
acoustic frequency (AF). The depth-dependent averaging
reconstructs deep objects and bypasses resolution loss. It
can easily be performed on the fly. The stochastic de-
noising is based on understanding of noise statistics.
Hence, we compare current models of noise statistics
with empirical noise estimation. We show that the cur-
rent models do not match the real measurements well.
Thus, we explore the statistics based on empirical esti-
mations. The stochastic reconstruction shows significant
speckle reduction, with no apparent resolution loss,
while deep objects are reconstructed too. Partial prelim-
inary results appeared in (Erez et al. 2006).

In the following parts of this section, we define the
variables used in this article and briefly overview the
relevant models of image formation and noise models
from the literature. In subsequent sections, we describe
the mathematical methods we use for image analysis, as
well as experiments.

Image formation
Consider ultrasound images as 2D fields, given in

polar coordinates (r, �). The r coordinate (radial axis) is
the axis of wave propagation, and � (lateral axis) repre-
sents a serial scan of the direction of the radiating ultra-
sound beam. The 2D signal measured by the system is

Fig. 1. Problems that disrupt interpretations o
the result of natural filtering of the volumetric object
Fig. 2. Attenuation phenomena. (a) Absolute value of the radial
transfer function for different distances from the probe. The
farther the probe is from the measurement point, the lower is
the dominant AF. (b) Bandwidth at different distances from the
probe. The farther the probe is from the measurement point, the
narrower the band is.
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reflectivity function a0(r, �) with a 2D point spread
function (PSF). This PSF is space variant. In particular,
its lateral support changes with the depth r: the acoustic
beam is focused at a certain depth, where the lateral PSF
is narrowest, while at other depths this PSF gradually
widens. Yet, in small regions we can assume this filter to
be space invariant. There, the measured signal, account-
ing for blur, is

aRF(r, �) � a0(r, �) * h(r, �), (1)

where h(r, �) is the PSF, disregarding attenuation. Fol-
lowing (Wagner et al, 1983), it is reasonable to assume
the PSF to be separable. The PSF also depends on the
system properties (such as the relation between AF and
resolution (Angelsen 2000)) and somewhat also on the
tissue properties (Angelsen 2000).

Image formation is also affected by attenuation of
ultrasound in the medium (Angelsen 2000; Kristoffersen
et al. 1998). A general simple and effective model of the
amplitude of the signal is

aRF(r, �) � e�2�rfacoustica0(r, �) * h(r, �), (2)

where � is the attenuation coefficient of the acoustic
amplitude, and facoustic is the AF. A rule of thumb (An-

Fig. 3. Speckle appearance of the same tissue in differ
spe
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gelsen 2000) is: attenuation in tissue is approximately
1dB/(cm · MHz), for a signal going from a probe to the
object and then returning. It is clear from eqn. 2 that
attenuation depends on the AF: high AFs suffer from
stronger attenuation and thus a lower SNR, particularly
at large depths. This is evident in Fig. 1.

Note that the dependency of the attenuation on the
AF changes the acoustic spectrum of the signal. Figure 2
presents the Fourier envelope of a temporal signal, as it
is multiplied by an exponential attenuation. The plot
illustrates this product near the probe (1 cm) and far from
it (5 cm). It also represents the bandwidth at different
depths. The farther the probe is from the measurement
point, the lower is the dominant AF, and the narrower is
the acoustic band.

In ultrasound systems, the measured signal aRF un-
dergoes several standard conversion steps. First, attenu-
ation is compensated for. Then, the acoustic modulation
is extracted: note that aRF is a high-frequency (MHz)
signal, which is modulated by the tissue reflectivity func-
tion. To extract the tissue information, the envelope of
the attenuation-compensated aRF is detected (Oppenheim
and Schafer 1975), yielding

aenvelope(r, �) � envelope�e2�rfacoustic · aRF(r, �)], (3)

where envelope [g(r)] is an operator (Angelsen, 2000)
that extracts the envelope of a modulated wave g(r). The
envelope is complex, in general, yet the operation

amagnitude(r, �) ��aenvelope(r, �)� (4)

derives its modulus.

Speckle noise
Speckle noise has a granular texture, as presented in

Fig. 3. Speckles degrade the ability to resolve details and

s. High AF speckles (a) are smaller than the low AF
b).
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Fig. 4. An example for weight functions, with r � 6

Fig. 5. Depth-dependent averaging for K images.
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detect objects with a size comparable to their own. They
stem from point scatterers that cannot be resolved by the
ultrasound system. These point scatterers, which are
smaller than the ultrasound wavelength, may be very
close to one another. Two or more waves travelling to the
probe from such scatterers may interfere with each other,
constructively or destructively, creating bright and dark
spots, termed speckles. For interference, the backscat-
tered signal from the scatterers should overlap in time
and space. This happens when the distance between them
is within the PSF (radially and laterally) support. This is
an important point to remember: the speckle typical size
is similar to the PSF support. Since the PSF changes with
depth, the statistics of this noise source are space (depth)-
variant. Furthermore, they change when the AF used to
acquire the image changes, as shown in Fig. 3, as does
the PSF. In this article, we exploit these properties.

Speckle is generally modelled as multiplicative
noise (Jain 1989). The overall detected magnitude is

atotal(r, �) � amagnitude(r, �) · smagnitude(r, �) � �(r, �), (5)

where the real number smagnitude represents nonnegative
speckle noise at a certain coordinate and � represents the
system noise there. The system noise increases with
depth, due to the attenuation compensation done in eqn
3. Still, assume for a moment that the additive noise is
sufficiently small compared to the multiplicative noise.
Then, a log operation on eqn 5 transforms speckles to
additive noise

log�atotal�
alog

� log�amagnitude�
log(amagnitude)

� log�smagnitude�
slog

. (6)

We note that the logarithm operation is standard for
displaying ultrasound images on a computer screen (An-
gelsen 2000), since the dynamic range of atotal is very
large (Angelsen 2000), thus the logarithm enables image
display. Therefore, in the image used for display, the
speckle noise is already additive.

Prior models for noise statistics
It is common to model the additive noise in eqn 6

as white (Abd-Elmoniem et al. 2002) or stationary
(Cincotti et al. 2001), although neither is true. There
are, however, more accurate models. Here we survey
prior models drawn from the literature of ultrasound
(Angelsen 2000) as well as of optics (Goodman 1995),
image processing (Jain 1989) and laser (Dainty 1975)
(Note that optical detectors measure the average in-
tensity during the exposure time, and not the phase. In
contrast, an ultrasonic detector can detect the time
varying complex amplitude. Hence, the information it

yields about speckles is richer and one can notice
interference phenomena even when the signal is wide-
band). We mainly deal here with statistics that char-
acterize media with an homogenous distribution of
small scatterers.

Wagner et al. (1983) showed that under several as-
sumptions, the auto-correlation of the speckle envelope is

Renvelope(�r, ��) � �as�2h(��r, ���) * h∗(�r, ��),

(7)

where (�r, ��) is the lag between image points and as is
a constant that depends on the viewed object. Wagner et
al. (1983) also used the separability property of the PSF
to write the auto-correlation as a product of radial and
angular auto-correlations:

Renvelope(�r, ��) � Rradial
envelope(�r) · Rlateral

envelope(��), (8)

Assuming the PSF to be an even function, Wagner et
al. (1983) derived the speckle magnitude auto-correlation

Rmagnitude(�r, ��)

� (	2)(2F1)��
1

2
, �

1

2
;1;�Renvelope(�r, ��)

Renvelope(0, 0) �2�, (9)

where 	2 is a normalization factor and (2F1) is Gauss’s
hypergeometric function.

In frequency compounding, images of the same
scene are acquired in different PSFs. This brings up a
question: what is the cross-correlation between corre-
sponding pixels in such images? Walker and Trahey
(1998) computed the cross-correlation between images
acquired by different imaging systems. They showed that
the cross-correlation coefficient of speckle envelopes is


envelope �� 	
��

� H1(ft)H2
∗(ft)dft


	
��

�

�H1(ft)�2dft	
��

�

�H2(ft)�2dft�
2

,

(10)

where H1 and H2 are the transfer functions of the systems.
From eqn 10, the cross-correlation between the speckle
envelopes is computed as the square of the cross-correlation
coefficient between the transfer functions that are used for
signal acquisition. Hence, the cross-correlation coefficient
depends on the overlap of the Fourier transforms of the
PSFs. This result applies only to corresponding pixels. A
more general model should include lag between pixels, i.e.,
�r � 0 and �� � 0.

MATERIALS AND METHODS

Experimental set-up
We conducted experiments using a commercial med-
ical ultrasonic system, the GE Vivid 3. The electronic signal
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generated by this system is a square burst with duration of
three half periods. The probes used are phased arrays
named 3s and 5s (by GE Medical Systems, Milwaukee, WI,
USA). The data was obtained from a tissue-mimicking
phantom, for controlled and repeatable setups. Fat was
placed on top of the phantom to demonstrate an attenuating
layer. Different AFs were used to acquire images. We have
direct access to aRF, received in MHz from the medium.
From here, we directly apply sampling, attenuation com-
pensation, envelope detection and magnitude to produce
amagnitude and, then, a log operation yields alog.

Estimation of noise statistics
In a previous section, prior models of noise statistics

in ultrasound images were detailed. We wish to compare
these models with empirical measurements. The noise
consists of speckle noise as well as system noise. We
estimate the noise within areas that have no strong re-
flectors. Therefore, the area is dominated by the two
noise sources. When empirically estimating the noise
statistics, it is important to note that speckle statistics
vary radially since the PSF changes with the distance
from the transducer. �We, thus, apply empirical analysis
to small blocks. In addition, radial and lateral correla-
tions differ. In the radial direction, the signals sk and si

acquired in different AFs are one dimensional. Their
estimated cross-correlation (Papoulis 1965) is

R̂sksi

radial(�r) �
1

L � �r�l�0

L��r�1 {Sk[l]

�̂sk
}{Si[l � �r] � �̂sk

}, 0 
 �r � L, (11)

where �r is the radial lag between pixels, �̂s is the
estimated mean of a signal s, and L is the number of
samples in the radial segment. To increase the reliability
of this estimation we averaged its value over a range of
� in a 2D block. When k � i, eqn 11 degenerates to an
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Fig. 6. Estimating the spatially varying covariance matrix.
auto-correlation estimate
R̂sk

radial(�r) �
1

L � �r �l�0
L��r�1{Sk[l] � �̂sk

} ·

{sk[l � �r] � �̂sk
}, 0 
 �r � L. (12)

The correlation in the lateral direction R̂sksi

lateral (��) is
estimated in a very similar way, where the lag between
pixels is in the lateral direction, rather than in the radial
one.

In the Empirical noise statistics section, we explore
the auto-correlation and the cross-correlation both in the
radial and lateral directions. For each of these cases, we
compare the prior models [eqns. 9 and 10] with empirical
noise measurements. For the auto-correlation, the com-
parison is made regarding amagnitude (eqn 4). For cross-
correlation, the comparison is made regarding aenvelope

(eqn 3), since the model in the literature (Walker and
Trahey 1998) exists for the envelope signal. In all the
theoretical calculations made for the comparisons, we
factored the attenuation e�2�rfacoustic (eqn 2) into the PSF,
when using it in eqns 9 and 10. We study empirically the
measurements made in various AFs and various dis-
tances, in order to observe their influence on the corre-
lation functions.

Depth-dependent averaging
We now present our first frequency compounding

method. It is space variant and we term it depth-depen-
dent averaging. It is motivated by some physical princi-
ples characterizing images acquired with different AFs.
Attenuation is different when using different AFs (eqn
2). Hence, for a fixed distance from the probe, noise can
change from speckle in a low AF image, to system noise
in a high AF image. Furthermore, a high AF image has
a better resolution but may suffer from a lower signal-
to-system-noise ratio. Usually, near the probe, where
attenuation is negligible, we should prefer to use high
AFs, while far from the probe, where attenuation is high,
we should prefer to use low AFs.

On one hand, the method should overcome system
noise, in order to reconstruct deep objects. On the other
hand, we aim to avoid loss of resolution associated with
low AFs, when reconstructing objects closer to the trans-
ducer. Compounding by a depth-dependent averaging is,
thus, suggested here. Near the probe, more weight is
given to the high AF images. Far from the probe, more
weight is given to the low AF images. In this way, high

Table 1. A reference to the noise statistics analysis.

Radial Lateral

Auto-correlation Sec. III-A.1 Sec. III-A.2

Cross-correlation Sec. III-A.3 Sec. III-A.3
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Fig. 7. Regions in which the radial correlation functions are

estimated.

is similar to the estimation near the probe (a), and is
Fig. 8. Regions in which the lateral correlation functions are

estimated. All regions are at a radial distance of 11 cm.
Fig. 9. Theoretical radial normalized auto-correlation, compared to the estimation, at various radial distances. The model

incorrect at other radial distances (b) and (c).
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resolution is obtained near the probe, and a high ratio of
signal to system-noise is maintained far from the probe.

Compounding two frequencies
When weighting two images, the question is how to

choose the weights? Let �high(r) be a weight function for
the high AF image. Then we set �low(r) � 1 � �high(r)
as the weight of the low AF image. The weights may
satisfy

�high(0) � 1 (13)

�high(Rmax) � 0, (14)

where Rmax is the maximum depth in the compounded
image. Equation 13 enables us to use only the high AF
image near the probe. As stated, near the probe the high
AF image presents no significant attenuation, and has a
better radial resolution. Equation 14 enables us to use
only the low AF image far from the probe, to maintain a

Fig. 10. Theoretical radial normalized auto-correlation,
facoustic � 3.3 MHz. The mod
high signal to system-noise ratio.
For example, we used

�high(r) �
e��highr � e��highRmax

1 � e��highRmax
, (15)

The corresponding weights are plotted in Fig. 4.
The parameters �high and requilibrium will be explained
later. These weights are not a result of a mathematical
analysis, yet they have the following characteristics:

● The weight �high is related to r in an exponential way.
This is motivated by the exponential relation between
depth and attenuation presented in eqn 2.

● The parameter requilibrium is the depth where �high(r) �
�low(r). It can be set by the user. By default, one can

assign requilibrium �
Rmax

2
.

● The parameter �high controls the exponential-rate. It is
related to requilibrium. For a given requilibrium one can

red to the estimation, at various radial distances. Here
correct at all radial distance.
compa
el is in
find �high which satisfies
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requilibrium �
1

�high
ln(

2

1 � e��highRmax
). (16)

Compounding K frequencies
In general, when compounding K images, it is pos-

sible to divide the radial axis into K � 1 consecutive
segments at the most, as in Fig. 5. The kth segment is r �
�Rk

min, Rk
max
, where

R1
min � 0

RK�1
max � Rmax

Rk�1
max � Rk

min, k � 1, . . . , K � 1. (17)

We arrange the input images in descending order of
AF. Then, in each segment, only a pair of raw frames are
used, according to their AF: starting with the high reso-
lution images (high AFs) near the probe, and finishing
with images having high signal to system-noise ratio
(lower AFs) far from the probe. In each segment, depth-

Fig. 11. Radial normalized auto-correlation at different r
get narrower w
dependent averaging of the image pair is done. In the first
segment, we average the first and second images, in the
second segment we average the second and third images,
etc. Based on the example in eqn 15, the weights may be

�high(r) �
e��high(k)r � e��high(k)Rmax(k)

e��high(k)Rmin(k) � e��high(k)Rmax(k), k � 1, . . . , K � 1,

(18)

The transition between segments is seamless. The
reason is that a frame that is used in consecutive seg-
ments is weighted continuously across segments, while
the other frames have a zero weight in the segment-seam.

Here the main degrees of freedom are the transition
depths �Rk

max�k�1
K�1. Given them, the choise of requilibrium and

�high is not critical. How are the transition depths cho-
sen? One option is to let the physician choose them.
Another option is to pre-set them according to empirical
experience, and allow the operator/physician to fine tune
the settings. We chose �Rk

max�k�1
K�1 according to our expe-

rience. Yet, since this matter depends on the inspected

istances, for various AFs. The correlation width tends to
dial distance.
adial d
tissue, it deserves further research.



consi

Space variant ultrasound frequency compounding ● Y. EREZ et al. 989
Stochastic reconstruction
The depth-dependent averaging method described in

previous section implicitly assumes that noise is uncorre-
lated. Furthermore, that method is point-wise, thus, adjacent
pixels are not exploited. In this section we seek a different

Fig. 12. Theoretical lateral normalized auto-correlation,
Existing models for lateral auto-correlation are

Fig. 13. Lateral auto-correlation in different lateral distances
from the main axis. It is reasonable to assume that the auto-
correlation is laterally invariant.
method, that alleviates this assumption. It exploits the noise
correlation functions, whose characteristics are described
later in Sec. Empirical Noise Statistics. The method is
spatially varying, based on the best linear unbiased estima-
tor (BLUE), also known as Gauss-Markov or weighted
least squares (Kay 1993). Our stochastic reconstruction is
based on the following principles

● The compounding should be space (depth) variant,
since the statistics of noise changes with the depth r, as
the PSF.

● In speckles, adjacent pixels are correlated (Wagner et
al. 1983). Therefore, it is desirable that the compound-
ing will not be pointwise. On the contrary, it should
account for this spatial correlation.

● Speckles are correlated when acquired with different AFs
(Walker and Trahey 1998). Therefore, simple averaging
is not very efficient for speckle reduction. Instead, com-
pounding needs to account for the cross-correlation be-
tween images taken in different AFs.

● The method is not intended for sharpening. Therefore,
it does not include de-blurring. Nevertheless, we do

red to the measured one, for various AFs, at r � 11 cm.
stent with measurements only at low AFs (a).
compa
not want to further blur existing information.
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In the following we detail our solution.

Matrix formulation
From now on, we refer to the signals amagnitude and

alog as discrete N � 1 vectors. Let us acquire K images
in different AFs. Based on eqn 6,

�
a1

log

a2
log

É

aK
log
���

loga1
magnitude

loga2
magnitude

É

logaK
magnitude

���
s1

log

s2
log

É

sK
log
�. (19)

At this point, we use the principle mentioned
above, of not attempting to invert blur. Thus, we do
not consider the blur h when we reconstruct the object
(in the discussion and summary section we discuss a
de-blurring option). Rather, we use a � function for h
in eqn 2. This yields â0(r,�) � e2�r facoustic aRF(r,�).
Therefore, we set

ak
magnitude � �envelope(â0)�, (20)

for all k. Since all frames include a similar object content,

Fig. 14. Lateral normalized auto-correlation at differen
narrower the auto-correlation function is. This represents

with more dom
we set
a1
magnitude � a2

magnitude � aK
magnitude � · · · � amagnitude. (21)

Nevertheless, each frame ak
log has different noise, es-

pecially speckle noise. Equation 19 then degenerates to

�
a1

log

a2
log

É

aK
log
���

I

I

É

I
�log(amagnitude) ��

s1
log

s2
log

É

sK
log
�, (22)

where I is the identity matrix.

BLUE
Consider data adata in the general linear model

adata � Ha � n, (23)

where H is a known KN � N matrix (operator), a is an
N � 1 vector of variables to be estimated, and n is an
N � 1 noise vector with zero mean and covariance C.
The Gauss-Markov theorem (Kay 1993) states that the
best linear unbiased estimator (BLUE) of a is

â � (HTC�1H)�1HTC�1adata, (24)

at various radial distances. The higher the AF is, the
age with higher resolution in the lateral direction, along
system noise.
t AFs,
an im
where T denotes transposition.
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Applying the BLUE on eqn 22 is possible. We
substitute a � log (amagnitude) in eqns 23 and 24, while
adata represents the vector on the left-hand-side of eqn 22.
The noise covariance matrix C used in eqn 24 has the
form

C ��
Cs1

logs2
log Cs1

logs2
log · · · Cs1

logsK
log

Cs2
logs1

log Cs2
logs2

log · · · Cs2
logsK

log

É Ì
Csk

logs1
log CsK

logs2
log · · · CsK

logsK
log
�, (25)

where Csk
logsi

log is the cross-covariance matrix between two
speckle images sk

log and si
log in different AFs. From eqn

24, we see that the BLUE performs a linear combination
of all the data adata (all pixels in all images) in order to
estimate the value in each pixel of â. Therefore, the

Fig. 15. Radial normalized cross-correlation model v
measurements, and in an opposite trend. Th

Fig. 16. Radial normalized cross-correlation at various radial
distances. The signals lose cross-correlation at r � 15 cm due
to a low SNR.
BLUE may potentially be extended to perform deconvo-
lution (deblurring), in addition to noise-reducing averag-
ing, or be used for noise whitening. Nevertheless, in our
case

H � (I, I, · · · , I)T, (26)

since we do not attempt deblurring. The BLUE exploits
the correlation between variables. This enables denoising
based on partially correlated variables. This is contrary to
a simple average, which implicitly assumes uncorrelated
variables.

Spatially varying BLUE
To use the BLUE, we need to know the noise mean

and covariance (statistics), in the set of raw frames we
use. Let us first examine a certain block in the image. We
can assume stationarity within this block. However, the
statistics change in different image regions. Is there a
need to divide the whole image to blocks, and measure
the statistics within each of them? Practically, the answer
is no. Since the statistics change gradually, it is possible
to examine a few blocks in the field of view (FOV) as
illustrated in the left side of Fig. 6, and measure the noise
statistics only within them. This processing is applied in
the polar coordinate domain, as illustrated in Fig. 6.
Then, the speckle statistics around any point in the FOV
can be deduced. The measurement of the statistics in
these few selected blocks is described in Sec. Estimation
of noise statistics. The BLUE uses the cross-correlation
between different channels. As any cross-correlation
function, it depends on the lag (�r, ��) between pixels.
The size of the covariance matrix depends on the max-
imum lag in the radial direction and on the maximum lag
in the lateral direction. Empirical measurements that we

pirical measurements. The model is higher than the
nomenon is more pronounced in high AFs.
s. em
performed in several images showed a fast decrease in



-depen

992 Ultrasound in Medicine and Biology Volume 34, Number 6, 2008
the off-diagonal elements of the covariance matrix. We
conclude that the lengths of the spatial correlation are
short. Hence, small lags are sufficient to express the
statistics. We are thus allowed to use small regions, for
which the maximum �r is � 40 pixels corresponding to
� 1.5 mm in our system.

We now have the statistics in a few blocks. Then,
using interpolation, we infer the statistics in any region
centered on any pixel in the FOV. Subsequently, we can
apply the BLUE around each pixel in the image. In other
words, around each pixel, we define a small region, and
since the noise statistics in this region has been estimated
in the previous steps, we can apply the BLUE for this
pixel.

RESULTS

Empirical noise statistics
The current models described in the Prior models

for noise statistics section are not sufficiently accurate,

Fig. 17. Model of lateral cross-correlation vs. estima
depth

Fig. 18. Lateral cross-correlation. The cross-correlation is lost

at r � 15 cm, due to low SNR.
since they do not take into account the spatial depen-
dency of the statistics, and they assume system noise to
be negligible. Here we empirically explore various cor-
relation functions of the noise. A few words about the
figures and terms used in this section. For display pur-
poses, we plot the normalized correlations, and all im-
ages are displayed in their polar coordinates. Hence,
pixels in each row are in the same depth, and pixels in
any specific column are in the same lateral angle. When
using the term auto-correlation, we refer to the auto-
correlation between pixels in a single image (acquired
with one AF), at different coordinates e.g. R̂sk

(�r)
R̂sk

(��). When using the term cross-correlation, we refer
to pixels in different AFs (yet the same object), at dif-
ferent coordinates e.g. R̂sksi

(�r, ��). In this section, we
explore the auto-correlation and the cross-correlation
both in the radial and lateral directions, as summarized in
Table 1. The AFs used here are 1.5 MHz, 2.5 MHz and
3.3 MHz. They are referred to as the low, middle and
high AFs, respectively. The various radial distances are
illustrated in Fig. 7. The various lateral distances from
the main axis are presented in Fig. 8.

Radial auto-correlation
Figure 9 compares the estimation R̂sk

radial (�r) with
the model of the radial auto-correlation (eqn 9), for a low
AF image, at different radial distances r. At r � 7 cm, the
model is similar to the empirical data. At r � 11 cm,
R̂sk

radial (�r) is wider than predicted by the model. This can
be explained by a bandwidth decrease due to attenuation,
which is stronger than in the model: a smaller bandwidth
broadens the radial PSF, which in turn increases the
correlation range of speckles. In contrast, at r � 15 cm,
R̂sk

radial (�r) is much narrower than the theoretical Rsk

radial

(�r), due to the dominant system noise.

The model is higher than the estimation and is not
dent.
tion.
Figure 10 plots the results for the high AF image, at
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different radial distances. At all distances, R̂sk

radial (�r) is
much narrower than Rsk

radial (�r), and it resembles a delta
function. Hence, system noise is dominant in all dis-
tances. From these plots, we conclude that the existing
model for Rsk

radial (�r) is accurate mainly at short distances
and low AFs.

Now, we further explore R̂sk

radial (�r). Figure 11 com-
pares it at different radial distances for various AFs. It is
symmetric, as excepted, and its width depends on the
radial distance r. We note again that at r � 11 cm,
R̂sk

radial (�r) is wider than at 7 cm. Far from the probe (r �
15 cm), the auto-correlation for all AFs becomes very
narrow. This is typical for white noise, associated with
system noise, which dominates the signal in that depth.
Another way to look at it is that, the higher the AF, the
narrower the auto-correlation function. This represents
an image with higher radial resolution, along with more
dominant system noise.

Lateral auto-correlation
Figure 12 compares the estimation R̂sk

lateral (��)
with the model of the lateral auto-correlation Rsk

lateral

(��). The plots present the results at r � 11cm, for

Fig. 19. (a) and (b) Input images. (c) Result of depth-de
two
different AFs. Note that the variance of R̂sk

lateral (��)
decreases with the AF, and theoretically Rsk

lateral (��)
narrows with the AF as well. Yet, R̂sk

lateral (��) narrows
faster. This may be caused by the increased dominance
of system noise, which is not accounted for in the
theoretical model of eqn 9. As in the radial case, we
conclude that existing models for lateral auto-correla-
tion are accurate mainly at low AFs. We now study
further R̂sk

lateral (��). Figure 13 shows that R̂sk

lateral (��) is
rather insensitive to the lateral position. Hence, it is
reasonable to assume that the auto-correlation is prac-
tically laterally invariant. Figure 14 compares the lat-
eral auto-correlation when using different AFs. The
functions R̂sk

lateral (��) at r � 11 cm is wider than the one
at r � 7 cm, since we are out of focus at r � 11 cm.
Generally, the width of the auto-correlation depends
on the AF. The higher the AF, the narrower R̂sk

lateral (��)
is, which represents an image with higher resolution in
the lateral direction, along with more dominant system
noise.

Cross-correlation
In the radial auto-correlation and lateral auto-corre-

lation section, we explored the correlation within a single

nt averaging. (d) Result of arithmetic mean of the
es.
pende
image. In this section, we look at the correlation coeffi-
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cient between different images of the same object

sksi

(�r,��) and 
̂sksi
(�r,��) [normalized Rsksi

(�r,��) and
R̂sksi

(�r,��), respectively]. Note that the theoretical
model in the prior models for noise statistics section is
limited to corresponding pixels in two different images
of the same object (�r � �� � 0). Our empirical study
includes �r � 0 as well. Figure 15 compares the esti-
mation 
̂sksi

radial (�r) vs. the model of the cross-correlation
coefficient value as in eqn 10, at different radial distances
r. The function 
sksi

radial (�r � 0) is much higher than 
̂sksi

radial

(�r). Moreover, 
sksi

radial (�r � 0) increases with r, due to
attenuation-driven bandwidth decrease (detailed in the
image formation section). In contrast, practically 
̂sksi

radial

(�r) decreases with r, due to an increased dominance of
the system noise. This phenomenon is more pronounced
in high AFs. From these plots, we conclude that existing
models for radial cross-correlation do not describe well
the empirical data in the radial distances and AFs used in
our estimations.

Figure 16 compares 
̂sksi

radial (�r) in the low and
middle AFs. At r � 7 cm (where the SNR is high),
both signals are correlated. The same applies to r � 11
cm. At r � 15 cm (where the SNR is low) 
̂sksi

radial (�r) is
practically zero.

Fig. 20. Zoom on a scatterer near the probe, extracted fro
mean (d) preserve the high re
Similar conclusions are observed regarding

̂sksi

lateral (��). Figure 17 compares the estimation 
̂sksi

lateral

(��) with the model of the lateral cross-correlation at
different radial distances. As for 
̂sksi

radial (�r), it can be
noticed that the theoretical cross-correlation is higher
than the estimation. The function 
sksi

lateral (��) does not
change with the radial distance, although 
̂sksi

lateral (��)
decreases with depth, due to a more dominant system
noise. Figure 18 compares the lateral cross-correlation
at different AFs. It is generally significant at short
lags. However, at r � 15 cm (where the SNR is low),

̂sksi

lateral (��) is practically zero. This phenomenon is
more pronounced when using higher AFs.

From the empirical results presented above, we
conclude that current models are inaccurate for large
radial distances and/or high AFs. Thus, until accurate
models are developed, correlation functions should be
estimated from the data empirically if they are to be
used effectively in recovery methods as the one de-
scribed in Stochastic reconstruction section. Anyway,
they vary with r, and the AF, but they are rather
insensitive to �.

Depth-dependent averaging
Depth-dependent averaging was applied to an im-

. 19. Both depth-dependent averaging (c) and arithmetic
n of the high AF image (b).
m Fig
age pair shown in Fig. 19. One image was acquired with
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Fig. 21. Zoom on a scatterer far from the probe, extracted from Fig. 19. The three scatterers are hardly distinguished

in the arithmetic mean image (d) contrary to depth-dependent averaging (c).
Fig. 22. A radial profile across three adjacent scatterers, extracted from Fig. 21. (a) The depth-dependent averaging
distinguishes between adjacent scatterers. (b) The arithmetic mean hardly distinguishes between adjacent scatterers due
to noise.
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Fig. 23. (a) and (b) Input images. (c) Result of depth-dependent averaging. (d) Result of arithmetic mean.
Fig. 24. Zoom on the scatterers far from the probe, extracted from Fig. 23. Depth-dependent averaging (c) distinguishes

between them more clearly than arithmetic mean (d).
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AF of 1.6 MHz (referred to as a low AF image). The
second image was acquired with AF of 3.3 MHz (referred
to as a high AF image). The weights used follow Equa-
tion 15 with requilibrium � 6.8 cm. We used �ak

log�k�1
2 as

input. The result is compared with an arithmetic mean of
�ak

log�k�1
2 in Fig. 19. In Figure 20 we zoom on a scatterer

that is nearest to the probe. In this case, both methods
preserve the high resolution of the high AF image. Nev-
ertheless, there is a difference in the long range. In Fig.
21, we zoom on a scatterer, that is furthest from the
probe, and the three adjacent scatterers on its left. Figure
22 plots a radial profile in these resulting images, corre-
sponding to these three scatterers. It is difficult to distin-
guish between adjacent scatterers when looking at the
arithmetic mean. However, the depth-dependent aver-
aged image allows a clearer distinction of the scatterers.
The same process was applied to another image pair,
shown in Fig. 23. Figure 24 zooms on scatterers that are
furthest from the probe. The arithmetic mean image is
very noisy and it is difficult to distinguish between the
scatterers, contrary to depth-dependent averaging.

Stochastic reconstruction
A raw image pair �ak

log�k�1
2 is shown in Fig. 1. The

low AF is 1.6 MHz, while the high AF is 3.3 MHz. The
stochastic reconstruction was applied to the two images.

Fig. 25. Stochastic reconstruction (b) vs. simple aver
reconstruction demonstrates reduced speckles, hig
The results are shown in Fig. 25. The speckle noise is
significantly reduced, while high spatial resolution is
maintained and deep objects are reconstructed. Figure 26
zooms on a region having three adjacent point targets,
near the probe. The stochastic reconstruction reduces
speckles around the scatterers, and the resolution is as in
the high AF image. The peak signal to noise ratio
(PSNR) of the two results is presented in Table 2. To
estimate the PSNR, the signal is taken as the highest
value of the scatterer and the noise value is taken as the
standard deviation in the speckle area near that scatterer.
Stochastic reconstruction yields a higher PSNR in all
depths.

A similar process was applied to another image pair
shown in Fig. 27. Here, the low AF is 1.6 MHz and the
high AF is 2.6 MHz. The resolution of both input images
is similar, and is maintained in the output. Nevertheless,
the stochastic reconstruction reduces speckles without
blurring of features.

DISCUSSION AND SUMMARY

We explored noise statistics in ultrasound images.
Comparison of current statistical models with empir-
ical data, indicates that there is some quantitative
inconsistency. This occurs, we believe, since the mod-
els do not account for system noise, which is espe-

(a), based on the frames shown in Fig. 1. Stochastic
ial resolution and reconstruction of deep objects.
aging
cially significant in large depths and high acoustic
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frequencies. Also, we empirically looked at the auto-
correlation and cross-correlation of images acquired
towards frequency compounding. While we may as-
sume that the covariance functions are insensitive to �,
they strongly depend on the depth r and on the AF.
This is due to the relation between AF and resolution,
as well as to the relation between AF, depth and
attenuation. These empirical results along with the
limited model of the cross-correlation to �r � �� � 0
suggest that there would be important benefits to new,
revised theoretical analysis of ultrasound noise statis-
tics. Such analysis needs to theoretically address both
the spatial variations, and the combined effect of sys-
tem and speckle noise.

Fig. 26. Zoom on a section having p

Table 2. PSNR obtained by arithmetic mean and stochastic
reconstruction in several depths.

Depth (cm) Arithmetic mean Stochastic reconstruction

6 66:1 117:1
7 72:1 133:1
8 48:1 73:1
9 61:1 83:1
10 78:1 124:1
We then considered frequency compounding. A
prior compounding method is based on simple arith-
metic mean, which is space invariant, and does not
take into account the noise statistics. Thus, two new
compounding methods were considered, which better
account for the spatial variations of the source signals.
These methods are depth-dependent averaging and
stochastic reconstruction. Depth-dependent averaging
is very simple to implement, and it can be performed
on the fly, maintaining real time imaging. The stochas-
tic algorithm is also depth-dependent. If the signals
were uncorrelated, it would have been similar to the
depth-dependent averaging. However, the stochastic
method is more general, as it accounts for spatial and
inter-frequency correlations. It thus enables further
noise reduction.

Practical frequency compounding would rely on
fast acquisition in two or more AFs. There exists en-
abling technology (Bouakaz et al. 2004; Forsberg et al.
2004; Xuecheng et al. 1998) allowing for that. Once this
technology becomes mature, we believe that our algo-
rithms can be used as a basis for exploiting frequency
compounding. Future research can focus on the acquisi-

rgets, extracted from Figs. 1 and 25.
tion process as well as on the processing. In particular, it
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is worth studying which AFs are optimal in this para-
digm. We suggested de-blurring to be a complementary
operation. Improved estimators may handle blur (per-
form deconvolution implicitly). Note that in this case, the
theoretical model in eqn 23 involves a non-linear oper-
ation (eqn 3), which makes deconvolution more chal-
lenging.
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