
Easy PRAM-based High-performance Parallel

Programming with ICE

Fady Ghanim Rajeev Barua Uzi Vishkin

Technical Contribution

Multi-threaded execution is the norm

Problem statement Can we enable tightly-synchronous threading-free programming for

multi-threaded execution?

Current understanding No. Performance programming must be multi-threaded

New result Yes:

• Parallel programming can be lock-step

• With no performance penalty

Significance

Hardware parallelism is increasing

Auto parallelization in hardware or software?

• But, how to minimize human effort?

 Our goal: Specify what is parallelizable, but nothing else

• Nobody knows to do less…

 Fact: parallel programmer must specify much more. He/she is expected to

partition a task into subtasks (threads) so as to meet multiple constraints and

objectives, involving data and computation partitioning, locality,

synchronization, race conditions, limiting and hiding communication latencies

• Pain of parallel programming of the available ecosystem: commodity hardware

and parallel programming languages

Intermediate Concurrent Execution

 (ICE) Model

• A parallel algorithm is expressed as a series of time steps of parallel operations

• Lock-step execution model; A time step is not executed until all operations of the

previous time step are completed

• Parallel Random Access Machines (PRAM) is the main parallel algorithmic theory

 • The “Work-Depth (WD)” abstraction. Pseudocode uses “pardo”. defines ICE

 • PRAM is a large latent knowledge base of algorithms and technique

• Uses the XMT platform developed at UMD

 • Designed with irregular algorithms (like those in PRAM) in mind

 • Programmed using threaded parallel language called XMT-C

 • XMTC uses ‘spawn’ keyword to create concurrent threads

• The ICE compiler translates the ICE high level language into XMTC

The ICE Language

• The ICE language is based on the C language

 • Extends C by adding a new keyword “pardo”. Used to specify

 parallelism as in WD

 • Shared variables are declared outside the pardo block

 • Private variables are declared within the pardo block

• In ICE, unlike threaded languages, a programmer only needs to

 specify parallelism

• ICE compiler produces high performance XMTC code

• ICE is the first language that can transcribe PRAM algorithms and

 automatically translates them into effective threaded programs

…

serial code

shared variables declaration

…

pardo (pid = low; high; step) {

…

 private variables declaration

 lockstep parallel code

…

}

ICE Language Syntax

Problem:
Given a linked list with n elements, find for
every elements its distance from the last ele-
ment.

Input:
• Array S(1...n): S(i) contains the index of
 the successor of element i. The successor
 of the last element is the element itself.

• W(1…n): W(i) contains the weight of
 element i. Initially W(i)=0 for the last
 element in the list and W(i)=1 for all other
 elements.

Output:
• S(i) is the index of the last element of the list.

• W(i) is the distance of element i from this
 last element.

psBaseReg flag; // number of threads that require
 another loop iteration
void pointer_jump(int S[n], int W[n], int n) {
 int W_tmp[n];
 int S_tmp[n];
 do {
 spawn(0, n-1) {
 if (S[$] != S[S[$]]) {
 W_tmp[$] = W[$] + W[S[$]];
 S_tmp[$] = S[S[$]];
 } else {
 W_tmp[$] = W[$];
 S_tmp[$] = S[$];
 }
 }
 flag = 0;
 spawn(0, n-1) {
 if (S_tmp[$] != S_tmp[S_tmp[$]]) {
 int i = 1;
 ps(i, flag);
 W[$] = W_tmp[$] + W_tmp[S_tmp[$]];
 S[$] = S_tmp[S_tmp[$]];
 } else {
 W[$] = W_tmp[$];
 S[$] = S_tmp[$];
 }
 }

 } while (flag != 0);

}

(a) Problem Specification

 pardo (unsigned i = 0; n-1;1) {

 while (S[i] != S[S[i]]) {
 W[i] = W[i] + W[S[i]];
 S[i] = S[S[i]];

 }

 }

(b) ICE program (c) XMTC program

Pointer Jumping Example

Translation: ICE to XMTC
• Threaded model (XMTC) is incompatible with lock-step model (ICE)

 • In lock-step, different parallel contexts progress in concert one step at a time

 • Threads each progresses on its own pace regardless of other threads

• Correct translation requires synchronizing threads by introducing barriers between dependent memory accesses

• A ‘pardo’ block is split into multiple ‘spawn’ blocks

 • The splitting occurs wherever barriers were added

 • Use temporary variables to communicate data and control flow between different ‘spawn’ blocks

Translation: Optimization
• Splitting a pardo block into multiple spawn blocks causes

 performance degradation

• So does using shared memory to communicate information

• Minimizing the number of splits is crucial to high performance

 • Consolidate unnecessary splits wherever possible

 • Use a list scheduling algorithm to group independent memory

 accesses into clusters

 • Each cluster becomes a spawn block later on

 • Called clustering algorithm

 1 𝑴: 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

 2 𝑪𝑳𝒊 = {𝒎 𝝐 𝑴 ∶ 𝒎 is a member of cluster 𝐢}

 3 𝑵𝑴 = {𝒎 𝝐 𝑴 ∶ 𝒎 is not a member of any cluster}

 For an 𝒎 𝝐 𝑵𝑴:

 4 𝑳𝒎 = {𝒎𝑳 𝝐 𝑴 ∶ loop carried dependence between 𝒎𝑳 𝑎𝑛𝑑 𝒎}

 5 𝑭𝒎 = {𝒎𝑭 𝝐 𝑴 ∶ 𝒎 is Data flow dependent on 𝒎𝑭 }

 6 𝑪𝒎 = {𝒎𝑪 𝝐 𝑴 ∶ 𝒎 is control dependent on value of 𝒎𝑪 }.

 7 𝑵𝑳𝒎 = 𝑳𝒎 ∩ 𝑵𝑴

 8 𝑵𝑭𝒎 = 𝑭𝒎 ∩ 𝑵𝑴

 9 𝑵𝑪𝒎 = 𝑪𝒎 ∩ 𝑵𝑴

 10 Define Procedure ConflictsWith (𝑚, 𝐶𝐿) :

 11 if 𝑁𝐿𝑚 ≠ Φ then

 12 return true 22 Define Procedure cluster:

 13 if 𝐿𝑚 ⋂ 𝐶𝐿 ≠ Φ then 23 Def: integer i = 0

 14 return true 24 While (𝑁𝑀 ≠ Φ) do

 15 for 𝑚𝐹 𝜖 𝑁𝐹𝑚 do 25 define new cluster 𝑪𝑳𝒊

 16 if ConflictsWith (𝒎𝑭 , 𝐶𝐿) then 26 for 𝑚 𝜖 𝑁𝑀 do

 17 return true 27 if ConflictsWith (m, 𝐶𝐿𝑖) then

 18 for 𝑚𝐶 𝜖 𝑁𝐶𝑚 do 28 skip m

 19 if ConflictsWith (𝒎𝑪 , 𝐶𝐿) then 29 else

 20 return true 30 Add m to 𝑪𝑳𝒊

 21 return false 31 i = i + 1

Experimental Results

• Goal: ICE produces XMTC code that has a comparable performance to hand

 optimized XMTC

• Developed a benchmark suite consisting of 11 PRAM algorithms

• The experiment was conducted by

 • Producing a pseudocode for each algorithm in the suite

 • Using the pseudocode, two implementations were produced; an XMTC version

 manually optimized for best performance, and an ICE version

 • Compile and execute each version on a 64 core XMT processor

• ICE achieves comparable performance to optimized XMTC while requiring

considerably less effort

 • Average speedup of ICE across all benchmarks is 0.76%

 • Maximum slowdown was 2.7%, Maximum speedup was 8.3%

• We do not claim that ICE will provide speedups compared to hand-optimized XMTC

Benchmark Suite

Abrv. Algorithm name

INT Integer sort

SMP Sample Sort
MRG Merge

CVTY Connectivity
BFS Breadth First Search

MAX Maximum finding
CTRC Tree Contraction

RANK Tree Ranking
JAC Jacobi

LU LU Factorization
CHO Cholesky Factorization

Conclusion

• Transcribe PRAM algorithms right out of the textbook & go fishing

• Freeing parallel programmers from current pain points

• Get the best performance with proper compiler and architecture

• Was it premature to replace the Parallel Algorithms section by a Multithreaded

Algorithms section in some standard algorithms texts?

• To be fair, we surprised even ourselves. The XMT (explicit multi-threading) platform

expected a manual workflow: starting from PRAM algorithms produce multi-threaded

programs. Not directly-transcribed PRAM.

• New work goes back to : U. Vishkin, Synchronized Parallel Computation, D.Sc. Dissertation,

CS, Technion, 1981, where WD was introduced.

