
Easy PRAM-based high-performance parallel
programming with ICE∗

Fady Ghanim1, Rajeev Barua1, and Uzi Vishkin1,2

1Electrical and Computer Engineering Department
2University of Maryland Institute for Advance Computer Studies

University of Maryland - College Park
MD, 20742, USA

{fghanim,barua,vishkin}@umd.edu

Abstract

Parallel machines have become more widely used. Unfortunately parallel programming
technologies have advanced at a much slower pace except for regular programs. For irregular
programs, this advancement is inhibited by high synchronization costs, non-loop parallelism,
non-array data structures, recursively expressed parallelism and parallelism that is too
fine-grained to be exploitable.

We present ICE, a new parallel programming language that is easy-to-program, since:
(i) ICE is a synchronous, lock-step language; (ii) for a PRAM algorithm its ICE program
amounts to directly transcribing it; and (iii) the PRAM algorithmic theory offers unique
wealth of parallel algorithms and techniques. We propose ICE to be a part of an ecosystem
consisting of the XMT architecture, the PRAM algorithmic model, and ICE itself, that together
deliver on the twin goal of easy programming and efficient parallelization of irregular
programs. The XMT architecture, developed at UMD, can exploit fine-grained parallelism in
irregular programs. We built the ICE compiler which translates the ICE language into the
multithreaded XMTC language; the significance of this is that multi-threading is a feature
shared by practically all current scalable parallel programming languages. As one indication
of ease of programming, we observed a reduction in code size in 7 out of 11 benchmarks
vs. XMTC. For these programs, the average reduction in number of lines of code was when
compared to hand optimized XMTC The remaining 4 benchmarks had the same code size.
Our main result is perhaps surprising: The run-time was comparable to XMTC with a 0.76%
average gain for ICE across all benchmarks.

∗This work was partially supported by NSF award 1161857.
A poster version of this paper appears in PACT 2016. [17]

1 Introduction

Since 2005, practically all computers have become (multi-core) parallel machines. The field
of parallel computing has made tremendous strides in exploiting parallelism for performance.
However, it is also increasingly recognized that its trajectory is short of its general-purpose
potential. The following two recent quotes demonstrate that: 1. In practice, exploiting eight
processors means that a problem has to be broken down into eight pieces - which for many algorithms
is difficult to impossible. The piece that cant be parallelized will limit your improvement - P. Gargini,
Intel [37] and 2. Unfortunately this parallel type of solution (namely, multi-cores - the authors) cannot
be used in all cases since some problems can only be solved in a serial way - The International Technology
Roadmap for Semiconductors 2.0” [22].

Parallel machines require partitioning the task at hand into subtasks (threads) to be run
concurrently for minimizing: (i) memory accesses beyond local (cache) memories, and (ii) com-
munication and synchronization among subtasks. Other programmers responsibilities include
locking, which can be tricky for fine-grained multi-threading needed for scaling, work dis-
tribution and scheduling and handling concurrent access to data structures. While parallel
programming languages and parallel machines differ on how much of the partitioning is the
programmers responsibility, they all expect a significant effort from the programmer for pro-
ducing an efficient multi-threaded program. Establishing correctness of these programs is yet
another challenge, as asynchrony may increase the number of reachable states exponentially.

The theory of general-purpose parallel algorithms assumes an abstract computation model
(known as PRAM for parallel random-access machine, or model) that stands in sharp contrast
to these hardships; each time step involves a plurality of operations, all operation performed
synchronously in unit time and may include access to a large shared memory. This PRAM
computation model abstracts away opportunities for using local memories, and minimizing
computation or synchronization, locking, work distribution, scheduling and, in fact, any concept
of threads. Also, for PRAM practically every problem has a parallel algorithm. This makes
it both desirable and much easier to specify PRAM parallel algorithms, and the question that
started out our work has been: but, at what performance penalty? As explained next, our
surprising result is that it is feasible to avoid any performance penalty.

Coupled with prior work, our paper establishes the following result: (i) it is feasible to
get competitive speedups while essentially using PRAM algorithms as-is for programming
a parallel computer system; furthermore (ii) these speedups are on par with multi-threaded
code optimized to minimize non-local memory accesses, communication and synchronization.
Establishing feasibility of using such abstract (and much simpler) PRAM programming whose
performance is on par with the best manually optimized programs is a specific new contribution
of the current paper.

Our prior work anticipated the above hardships. To preempt as many of them as we deemed
feasible, our starting point for the design of a many-core architecture framework called XMT
was the rich theory of parallel algorithms, known as PRAM (for parallel random-access machine
or model) developed in the 1980s and early 1990s. XMT made big strides toward overcoming
claims by many that it would be impossible in practice to support effectively PRAM algorithms
[e.g., [11]]. Its premise (in prior work) has been that it must be the programmer who will produce

1

a multi-threaded program: [32] outlines a programmers workflow for advancing from a PRAM
algorithm to an XMT multi-threaded program. Namely, the programmer is still responsible
for producing a multi-threaded program with improved locality and reduced communication
and synchronization. Hardware support that XMT provides made this effort easier than for
commercial machines, which paid off. This workflow allowed better speedups and demonstrated
easier learning of parallel programming. Since our prior work remained wedded to programmer-
provided multi-threading, it characterized XMT programming as PRAM-like, as opposed to just
PRAM.

Our new work is fundamentally different. It shows for the first time that the threading-free
synchronous parallel algorithms taught in PRAM textbooks can be used as-is for programming
without performance penalty. Namely, it is feasible to reduce multi-threading to a compiler
target, altogether freeing the cognition of the programmer from multithreading. In fact, we
show that the programmer can essentially use the pseudo-code used in textbooks for describing
synchronous parallel algorithm as-is; this elevates XMT from supporting PRAM-like programs
to supporting PRAM programs. Note that the new result surprised even ourselves, exceeding
our own expectations at the beginning of the XMT project: we expected that the programmer
will need to make an extra effort for explicating PRAM parallelism as multi-threaded parallelism;
indeed, the name of XMT, explicit multi-threading, reflects our original expectation. As can be
seen from the example, XMT gets us part of the way to fine-grained multi-threading, but not to
lock-step PRAM programming.

ICE allows the same intuitive abstraction that made it easy to reason and program in serial.
Namely, any instruction available for execution can execute immediately. In serial a program
provides the instructions to be executed in the next time step. This made serial programs behave
as rudimentary inductive steps from start of program to its final result. Similarly, ICE describes
time-steps of serial or concurrent parallel instructions that execute immediately each time-step
(inductively), while falling back to serial execution for serial portion of the code. In unifying
serial and parallel code, ICE can be thought of as the natural extension of the serial model.

Our work suggests an interesting challenge to processor vendors. On one hand, support of
parallel algorithms as-is is clearly appealing addressing a recognized weakness. On the other
hand, stock holders expect short-term returns limiting upgrades to past architecture choices.
The new result establishes feasibility of such support using the PRAM-driven XMT architecture.
But, how can vendors match that with minimal upgrades to their products?

In this work we make the following contributions: 1. Have the programmer express the ICE
abstraction directly using the new ICE programming model. 2. To enable this much higher-level
programming, a new compiler component that automatically translates the ICE program into an
efficient XMTC program. 3. Achieve comparable performance to a hand-written XMTC program
for the same basic PRAM algorithm.

This paper proceeds as follows. Section 2 presents background information on the XMT
architecture. Section 3 discusses the ICE language. Section 4 discusses the ICE compiler’s
structure and translation method. In section 5, we present and discuss the results of our
experiments. A review of related work is provided in Section 6 and section 7 is our conclusion.

2

2 Background on XMT Architecture

We present in this section a very brief review of some basic concepts of the XMT framework to
make this paper as self contained as possible. As space limitations prevent us from presenting a
comprehensive discussion, we refer the reader to [2], [26], [36], [38].

int A[N],B[N], base=0;
spawn(0,N-1) {

int inc=1;
if (A[$]!=0) {

ps(inc,base);
B[inc]=A[$];

} join
}

(a) (b)

Figure 1: XMT Programming. (a) Array Compaction example.
Array A’s non-zero elements are copied into B. The order is
not necessarily preserved. After executing ps(inc,base), the
base variable is increased by inc and the inc variable gets the
original value of base, as an atomic operation. (b) The XMT
execution model: switching between serial and parallel modes.

To understand the XMT architecture,
we first look at how it is programmed.
The XMTC high-level language is an ex-
tension of standard C detailed in [2]. A
parallel region is delineated by spawn

statement which initiates a specified num-
ber of virtual threads, and join state-
ment which terminates them, as shown
in figure 1(a). The virtual threads share
and execute the same parallel code, and
each is assigned a unique thread ID, des-
ignated $. The threads proceed with in-
dependent control and synchronize at the
join statement. Synchronization can be
achieved by the prefix-sum (ps) operation. The ps operation is an atomic fetch-and-add oper-
ation [18] that increments the base and return its original value. Figure 1(a) demonstrates its
power by showing its usage to assign a unique index in array B when compacting an array A.
Similar to PRAM algorithms, the XMT framework uses an arbitrary CRCW (concurrent read
concurrent write) SPMD (single program multiple data) programming model. Concurrent writes
to the same memory location result in an arbitrary one committing. An algorithm doesn’t need
to make assumptions about who will succeed, thus allowing threads to progress at their own
pace independently from the others. See Figure 1.

(a) Block diagram. (b) Memory Hierarchy in paral-
lel mode.

Figure 2: The left side of (b) shows the estimated latency to each
memory hierarchy level from the processing core for a 1024
TCU configuration (64 clusters × 16 TCUs). Some elements are
omitted for simplicity, such as the Master TCU, which operates
in serial mode, the global register file and the prefix-sum unit.

The XMT processor, shown in Fig-
ure 2a, implements the above program-
ming model efficiently. It includes many
components but most relevant to this
work are the master thread control unit
(MTCU), processing clusters (C0...Cn)
each comprising several thread control
units (TCUs), and the prefix-sum unit.
The MTCU has a standard private data
cache, used only in serial mode, and a
standard instruction cache. It shares the
memory modules (MM0 .. MMm) with
all the TCUs. The prefix sum unit exe-
cutes ps operation very efficiently. Its
hardware implementation [34][35] allows
for an execution time independent from the number of requesting TCUs, thus allowing efficient
and scalable inter-thread ordering and synchronization.

3

The XMT programming model allows programmers to specify an arbitrary degree of par-
allelism in their code. Clearly, real hardware has finite execution resources, so in general all
threads cannot execute simultaneously. A hardware scheduler [35], allocates the individual
virtual threads to the physical thread control units (TCU). It relies heavily on hardware support
and the prefix-sum unit. Figure 2b gives an overview of the XMT memory hierarchy while
operating in parallel mode. XMT designers chose not to deploy private caches in TCUs/clusters
due to the implementation complexities and power non-efficiency. Several techniques have been
designed to reduce this latency, most notably prefetching customized for XMT [7].

We test and evaluate ICE using the XMT platform. The main reason is that unlike most other
platforms XMT was designed in the first place to support PRAM algorithms and demonstrated
to achieve unique speedups for irregular programs. Some examples of that are listed below. All
speedups below were achieved over the best serial implementation on the state-of-the-art vendor’s platform;
hence they represent real improvements in processing time

• Graph Connectivity 1024-core XMT processor achieves a speedup of 99.8X, while the
NVidia GTX480 had a speedup of 27.1X for graph connectivity [12].

• Graph Biconnectivity 1024-core XMT achieves speedups up to 33X, while GPU/CPU
hybrid achieved only a 4X speedup [12].

• Graph Triconnectivity 1024-core XMT got a speedup of 129X against serial on a core i7
920 processor [13].

• Finding maximum flow The best speed up for this algorithm on a hybrid NVedia Fermi
GPU/CPU was 2.5X [20]. In contrast, a speedup of 108X was attained on a 1000-core XMT
that uses the same silicon area as the GPU [6].

• Burrows-Wheeler transform - BZIP2 XMT reaches up to 13X/25X Speedup for de/com-
pression [14]. In comparison, there was a slowdown of 2.8 for compression and a speedup
of 1.1 for decompression on GPU.

• 2-D FFT XMT reached 20.4X speed up, whereas a 16-core AMD opteron got less than
4X STBV09

• Gate-level Simulation Benchmark Suite XMT obtained 100X speedups versus serial for
[19].

The XMT processor manages the creation, termination, and scheduling of threads dynamically
and cheaply with no involvement of an operating systems (OS) or other software. The XMT
processor is programmed using the XMTC language, a parallel programming language based
on C with modest extensions to take advantage of the special features provided by XMT. XMTC
follows the fork-join threaded execution-model and provides similar set of features as other
threaded languages currently used on commodity platforms and architectures.

4

3 The ICE programming language

To see the features and advantages of the ICE programming model, consider the example in
figure 4(a) shows the problem specification for pointer jumping, a well-known, useful and
widely used task in tree and graph algorithms. The example shows a specific assignment
of weights which will compute the distance to the root in the output; however, any input
assignment of weights can be chosen.

 …

s

s

…

…

 l

…

Figure 3: ICE language Syntax.

ICE follows the lock-step execution model and
is based on the PRAM algorithmic model. A paral-
lel region in ICE is specified inside the pardo con-
struct. The pardo statement specifies lock-stepped
parallel code in the statement body. However,
XMTC language follows the threaded model, and
uses the spawn construct to specify a parallel re-
gion. Figure 4(b) shows an ICE code to solve the
pointer jumping problem defined in figure 4(a). An
XMTC threaded version is shown in figure 4(c), and
an OpenMP version in figure 4(d). Figure 3 pro-
vides the ICE syntax, and table 1 provides a comparison between the syntax of the lock-stepped
pardo and the threaded spawn. ICE and XMTC follow the same convention of having contex-
t/thread local variables declared inside the parallel region, while shared variables are declared
in serial regions.

From figure 4, we see that the ICE code is much shorter and simpler than both the XMTC and
OpenMP codes. This is because the ICE lock-step model simplifies the expression of the in-place
update of S and W . Hence, (W (i) +W (S(i))) in the first statement is read and computed on all
contexts, before any write is made to W(i) by any context. 1 However, the unpredictability of
the parallel threads pace in XMTC prohibits in-place updates of arrays S and W in Figure 4(c).
Thus we must use temporaries S temp and W temp. Temporaries are used as an alternate to the
actual arrays writing in the first part, and reading in the second. The (ps) construct is used to
count incomplete threads in the flag variable 2. The loop continues until all threads are done.

The OpenMP code in figure 4(d) essentially executes similarly to the XMTC version. However,
there are two main differences. 1. The ps operation in XMTC version is replaced by a reduction
operation in OpenMP. 2. Unlike the XMTC version, the loop was not unrolled in the OpenMP
version. Instead, two sets of pointers were used to alternate the source and destination of
copying between the original and temporary S and W arrays. It is imporant to understand that
implementations in figures 4(c) and (d) are fully interchangeable between XMTC and OpenMP.
Namely, the implementations will work very similarly regardless of the platform used. However,
when implemented on a similar platform, the implementation in figure 4(c) will have a slight

1Although the code in figure 4 uses arrays to implement trees, pointer jumping can be implemented in ICE with
structures and pointers just as easily. The code will be conceptually similar.

2The ps operation could have been avoided by multiple writes of true to a boolean variable called threads-
remaining in the loop, but that would create a hot-spot in memory. The XMT ps operation uses registers, avoiding
the hot spot.

5

Problem:
Given a linked list with n elements, find
for every elements its distance from the
last element.

Input:
· Array S(1...n): S(i) contains the index

of the successor of element i. The
successor of the last element is the
element itself.

· W(1…n): W(i) contains the weight of
element i. Initially W(i)=0 for the last
element in the list and W(i)=1 for all
other elements.

Output
· S(i) is the index of the last element of

the list.

· W(i) is the distance of element i from
this last element.

psBaseReg flag; // number of threads that require
 another loop iteration
void pointer_jump (int S[n], int W[n], int n) {
 int W_tmp[n];
 int S_tmp[n];
 do {
 spawn (0, n-1) {
 if (S[$] != S[S[$]]) {
 W_tmp[$] = W[$] + W[S[$]];
 S_tmp[$] = S[S[$]];
 } else {
 W_tmp[$] = W[$];
 S_tmp[$] = S[$];
 }
 }
 flag = 0;
 spawn (0, n-1) {
 if (S_tmp[$] != S_tmp[S_tmp[$]]) {
 int i = 1;
 ps(i, flag);
 W[$] = W_tmp[$] + W_tmp[S_tmp[$]];
 S[$] = S_tmp[S_tmp[$]];
 } else {
 W[$] = W_tmp[$];
 S[$] = S_tmp[$];
 }
 }
 } while (flag != 0);
}

void pointer_jump (int S[n], int W[n], int n) {
 int W_tmp[n];
 int S_tmp[n];
 int *W_rd = W, *W_wt = W_tmp;
 int *S_rd = S, *S_wt = S_tmp;
 int *tmp_ptr;
 int crs_size = n/P + ((n%P) > 0);
 int flag = 1;
 while (flag != 0) {
 flag = 0;
 #pragma omp parallel num_threads(P) {
 #pragma omp parallel for reduction(+,flag) schedule(static, crs_size)
 for (int i = 0; i < n; i++) {
 if (S[i] != S[S[i]]) {
 int x = 1;
 flag += x;
 W_wt [i] = W_rd[i] + W_rd[S_rd[i]];
 S_wt [i] = S_rd[S_rd[i]];
 } else {
 W_wt[i] = W_rd[i];
 S_wt[i] = S_rd[i];
 }
 }
 }

 tmp_ptr = W_rd; W_rd = W_wt; W_wt = tmp_ptr;
 tmp_ptr = S_rd; S_rd = S_wt; S_wt = tmp_ptr;
 }
}

(a) Problem specification

 pardo (unsigned i = 0; n-1;1) {
 while (S[i] != S[S[i]]) {
 W[i] = W[i] + W[S[i]];
 S[i] = S[S[i]];
 }
 }

(b) ICE program (c) XMTC program (d) OpenMP Program

Figure 4: Pointer jumping example showing simplicity of ICE code.

performance advantage over the implementation in figure 4(d), while the later is slightly shorter
and easier to write.

The above example in figure 4 shows many of the strengths of the ICE programming model,
listed below:

• Easier translation from PRAM algorithms Unlike threaded model, PRAM algorithms
readily fit into the ICE programming model. This is illustrated by the great difference
between figures 4(b) and (c) - manually translating the first to the second can be a significant
effort. Thus ICE makes parallel programming easier, fulfilling one of our primary goals.

• No need for thinking about synchronization or race conditions beyond what the PRAM
algorithm specifies A programmer needs to decide when and where synchronization is
required and what intermediate variable are needed to avoid race conditions, and be
proactive in eliminating unintended race conditions. This task is a huge contributor to
making parallel programming difficult, and requires special knowledge and experience.

Table 1: Comparison of the pardo and spawn constructs.

pardo (lock-step) spawn (threaded)

Syntax pardo (CID=LB;UB;ST) spawn (LB, UB)
Contexts Num. N (UB − LB)/ST + 1 UB − LB + 1
First—last IDs LB — LB + ST ×N LB — UB
Stride ST 1
MYPID CID (user defined) $
Execution Model Each instruction is exe-

cuted over all parallel con-
texts before the next one is
initiated.

Instructions within a
thread progress at their
own pace.

Synchronization After every Instruction join or (ps)

6

ICE assumes an implied barrier after every statement in a parallel region thus dealing with
synchronization and make it impossible to have unintended race conditions. Thereafter the
compiler manages race conditions and introduces any required intermediate temporaries
to avoid them. ICE relieves the programmer from this heavy burden and makes parallel
programming easier. This is demonstrated in figure 4(c), where the programmer has to
decide the location of synchronization at the end of spawn blocks, introduce any needed
ps operations in all the right places, and introduce the S temp, W temp, and flag

intermediate variables to avoid race conditions resulting from the in-place update.

• No need to think about scheduling or coarsening While not the case in XMTC, several
other threaded models in common use such as MPI and pthreads, require the programmer
to manually schedule available parallelism into N threads and to coarsen if the available
parallelism exceeds N3. In contrast ICE is a declarative programming model where the
programmer simply expresses all available parallelism without regard to the number
of hardware contexts, or the scheduling of the code to those contexts. Scheduling and
coarsening is performed automatically by the compiler and/or run-time system. This
significantly reduces the burden on the programmer, and it also makes the code more
portable across XMT computers with different numbers of hardware contexts.

Given the advantages above, we believe that ICE represents a significant leap in the ease of
programming compared to threaded programming models. In addition, execution on hardware
specialized in exploiting parallelism in irregular algorithms such as XMT, will deliver excellent
speedups for irregular programs written in ICE.

Furthermore, ICE allows a programmer to specify the concurrency state of writes if they
choose to. They can do that globally for the entire program, locally per a pardo, or per a specific
write. ICE follows the CRCW model and by default it will assume that a write is concurrent
unless the compiler can prove otherwise. It also allows the programmer to specify a portion of
code ’to be used as is’ by the compiler when translating to XMTC. In many PRAM algorithms,
concurrency is handled as a part of the algorithm itself. This requires knowledge readily available
within the PRAM algorithm being implemented, regardless of the language used, making ICE
suitable for all PRAM algorithms. XMTC does not make assumptions about concurrency and
leaves that entirely to the programmer to detail and specify.

4 ICE Translation and Implementation

In this work we translate programs written in ICE to the XMTC high level language. This requires
maintaining correctness of the lock-step ICE program when translated to a threaded model. In
this section we will discuss the challenges of such translation. We will also discuss our effort to
deal with those challenges to ensure correctness. After that we will discuss the optimizations
we made to maintain comparable performance to a highly-optimized hand-written XMTC code.
Later, we will discuss the structure of our ICE compiler.

3where N is the number of hardware contexts available on the target hardware. The number of hardware
contexts is the number of threads that the hardware can actually run at any one instant. This equals the number of
cores × the hyper-threading factor for multi-cores, and equals the number of TCUs on XMT.

7

4.1 Translation

In this work we translate ICE programs to threaded XMTC programs using a new ICE compiler
that we built. The output XMTC code is compiled using the existing relatively mature and
well-studied XMTC compiler to executable XMT binary code. This section will focus on the
main challenges in building the new ICE compiler.

To translate ICE programs to XMTC programs, we split the pardo region into multiple
spawn regions. Replacing every pardo with spawn will not work since the former requires
lockstep execution, but the latter (regular multi-threading) does not ensure it. We saw this
in figure 3. Splitting occurs at points where a barrier is required. In XMT there is no way to
implement barriers except by using join. We introduce a join by terminating a spawn region
and starting a new one, effectively splitting the pardo. This solution ensures that there will be
no violation of the data dependencies (true or anti-dependence) between the memory accesses
within the pardo region. This method’s downside is that the parallelism granularity is reduced,
but its degree is maintained.

To ensure correctness, the order of reads and writes must be maintained. Thus when translat-
ing ICE to XMTC, we need to split a pardo into multiple spawn blocks wherever the pardo
contains both a read and a write to a data object accessed by at least two different parallel
contexts. This ensures that a memory access is completed by all parallel contexts, before any
context starts with the next memory access. This splitting is performed by introducing a barrier
between the read and the write. Two cases are possible: anti-dependence where a write to a data
object are done after a read (e.g. W and S in figure 4(b)), and true dependence where a read is
performed after a write. Both cases require splitting the pardo region into two successive spawn
regions. However, in the anti-dependence case, we also need to introduce a (compiler-inserted)
temporary, to which we perform the writes instead in the first spawn region, and copy them
back in the second.

pardo (i = 0; n; 1) {

 if (i < 50) {

 A[i+1] = c[i];

 c[i] = A[i] + 1;

 }

}

char cond[n+1];

spawn(0,n) {

 unsigned i = $;

 cond[i] = i< 50;

 if (i < 50)

 A[i+1] = c[i];

}

spawn(0,n) {

unsigned i = $;

 if (cond[i])

 c[i] = A[i] + 1;

}

(a) Ice code (b) XMTC translation

Figure 5: (a) A pardo with a conditional branch. (b)
Its XMTC translation.

Handling control flow across multiple spawns
Splitting pardo regions may cause complications
for the program’s control flow. There are two cases
when this can happen: (1) When a pardo region
contains a conditional branch where one of its di-
rections requires a barrier as in figure 5. (2) When
a pardo region contains a serial loop within which
a barrier is needed. This causes a problem when
expressing the continue and break statements, and
the serial loop’s back edge as in figure 4(b). To
maintain correctness, a parallel context must pre-
serve its intended control flow, which is not easily
possible in these cases since XMT disallows branch-
ing between spawn blocks.

To maintain control flow, we communicate branch decisions across splits by recording the
branch state for each context into memory, and retrieve it when needed. Hence, for the first
case when a branch condition is evaluated as in figure 5(b), we record the result to memory

8

(temporary array cond) and retrieve it in any later spawn that is on either branch direction. A
similar solution is used for the second case where the serial loop is taken outside the parallel
region and is executed by the MTCU, the loop condition becomes a flag indicative of the existence
of threads that are not done executing yet, and the original loop termination condition becomes a
normal branch and is treated as in the branch case. An example of this is the do-while loop in
figure 4(b)(c) where the serial loop is taken outside the spawn block, the terminating condition
now is (flag! = 0) instead of (S(i) == S(S(i))). flag is incremented by threads which still have
work to do, using the ps operation. Furthermore, we use temporary arrays to record when a
context executes a continue or break. Resultant spawns from this loop split will check if the
context have executed either, and will act accordingly.

4.2 Optimization of the translated code

Splitting a pardo into multiple spawns can degrade performance, due to the overhead of
creating and managing more threads. Also, using memory to communicate information between
spawns increases the degradation even further. This is exacerbated when the number of splits is
high. Hence it is crucial to avoid splitting whenever possible, and to mitigate the effects of the
unavoidable splits.

Splitting a pardo can be avoided if we can prove that a memory location is exclusively
accessed by a certain parallel context only. In this case, the splitting becomes unnecessary and
a direct conversion from a pardo to a spawn will work. One example of this is when a parallel
context with ID ’i’ always reads and writes to A[i]; hence we know that no two contexts access
the same memory location. This means that no race conditions are possible; hence no splitting is
needed.

Optimization for anti-dependence case within loops in pardo When the anti-dependence is
within a loop in a pardo (as in figure 4 example), we can get better performance by unrolling

pardo (int i = 0; n; 1) {

 A[i+1] = c[i]; \\A1

 c[i] = A[i] + 1; \\A2

 B[i-1] = d[i]; \\B1

 d[i] = B[i] + i; \\B2

}

spawn(0,n) {

 unsigned i = $;

 A[i+1] = c[i]; \\A1

}

spawn(0,n) {

 unsigned i = $;

 c[i] = A[i] + 1; \\A2

 B[i-1] = d[i]; \\B1

}

spawn(0,n) {

 unsigned i = $;

 d[i] = B[i] + i; \\B2

}

spawn(0,n) {

 unsigned i = $;

 A[i+1] = c[i]; \\A1

 B[i-1] = d[i]; \\B1

}

spawn(0,n) {

 unsigned i = $;

 c[i] = A[i] + 1; \\A2

 d[i] = B[i] + i; \\B2

}

(a) Code in ICE (b) Equivalent code

in XMTC

(c) Optimized XMTC

 Figure 6: Rescheduling memory accesses.

9

the pardo once, and then transforming the two loops that result so that the first loop updates
temporary data structures that are clones of the original data structures, and the second loop
does the opposite. An example of this is seen in figure 4(c). Thereafter the pardo is split to place
the two loops in different spawn blocks in the XMTC output. Other elements in the figure such
as ps operation and ’flag’ will be discussed in detail shortly.

1 :
2 = { is a member of cluster }

3 = { is not a member of any cluster}

For an :

4 = { loop carried dependence between }

5 = { is Data flow dependent on }

6 = { is control dependent on value of }.

7 = { exist in a different loop from }

8 =
9 =
10 =
11 =

12 Define Procedure ConflictsWith (,) :

13 if then

14 return true

15 if then

16 return true

17 if then

18 return true

19 for do

20 if ConflictsWith (,) then

21 return true

22 for do

23 if ConflictsWith (,) then

24 return true

25 return false

26 Define Procedure cluster:

27 Def: integer i = 0

28 While () do

29 define new cluster

30 for do

31 if ConflictsWith (m,) then

32 skip m

33 else

34 Add m to

35 i = i + 1

Figure 7: The clustering algorithm.

Clustering In an optimization for un-
avoidable splits, we rearrange memory
accesses within a pardo into clusters to
minimize the number of splits needed.
Each cluster represents a spawn block.
These clusters consist of a group of mem-
ory accesses that have no dependencies
between them across different parallel
contexts. When a pardo region is split
into multiple spawns, often there are
more splits than necessary. We see an
example of this in figure 6(a), where there
is a dependence between statements A1
and A2, and another between B1 and B2,
but none exist between the A and B state-
ments. Without optimization we will end
up with three spawns after the splitting
as in figure 6(b). However, by rearrang-
ing and grouping independent memory
accesses as in figure 6(c) and only then
doing the splitting, we end up with two
spawns. We call this rescheduling scheme
clustering.

The clustering algorithm is a list
scheduling algorithm. Figure 7 shows
the algorithm used. We build a depen-
dence graph in which we capture all data
(flow or ’loop-carried’4) and control de-
pendencies between all the memory ac-
cesses. Then we start building one cluster at a time by scheduling all ’ready-to-fire’ nodes in the
current cluster (lines 28 - 34). A node is ’ready-to-fire’ if it satisfies the conditions in the lines (13 -
25). In simple terms, when we consider a memory access to be added to cluster i, it and all the
unscheduled data flow and control memory accesses it depends on must not have a ’loop carried’
dependence with any member of that cluster. The clustering algorithm has a complexity of
O(nl), where n is the number of instructions that access memory, and l is the number of resulting
clusters.

4We are using the term loop carried dependence to refer to the parallel contexts cross dependence between
different memory access in the pardo block

10

Reducing the number of temporaries We attempt to minimize the amount of intermediate
information communicated across pardo splits, such as branch directions, loop states, and
intermediate data. This information is stored to and retrieved from memory, which can cause
performance degradation. So in order to achieve maximum performance, avoidable memory
accesses must be eliminated or promoted to local variables inside the spawns that resulted from
the splitting where possible. Alternatively, communicated information must be aggregated such
that it can be stored and retrieved in the least number of accesses possible. For that reason, 1.
We take clustering a step further. Memory accesses scheduled to an earlier cluster are moved
to a later clusters if these clusters contain members dependent on the memory accesses and it
is legal to do so. For a move to be legal, a memory access must satisfy all the conditions in the
lines (13 - 25) in figure 7 for the target cluster, and all clusters in between. 2. We use bit vectors
to record the branch directions for split pardos, where each branch decision along the tree gets
a single bit.

Handling Control Flow after Clustering The clustering process will result in reordering of
memory accesses which can potentially distribute instruction of a basic block across two clusters
or more. This causes two problems: 1- Complicate and disorganize the control flow of pardo
region. Instructions that have the same parent basic block can be scattered across multiple
(potentially) inconsecutive spawn blocks, and will likely be preceded or followed by other
instructions that belong to other basic blocks. 2- A bigger problem is that it prevents the
transformation of a serial loop within a pardo region, discussed in subsection 4.1 above, in
which a split serial loop within a pardo block is replaced by a serial loop outside the resulting
spawn blocks. Since, after clustering, the instructions belonging to that serial loop are likely to
get mixed with instructions from other basic blocks that are not part of the serial loop.

We solve this problem by creating an empty replica of the Control Flow Graph (CFG) of the
pardo region in all resultant spawn blocks. As such, every basic block inside the pardo will
have a copy of it inside every resulting spawn blocks. This allows us to maintain the correctness
of the control flow more easily, and allows a direct and uncomplicated placement of the memory
accesses in their respective spawn blocks. Basically, a memory access is simply moved from the
original parent basic block inside the pardo block, to the parent block’s replica inside the spawn
block where it belongs. Furthermore, we can still use memory to communicate control direction
as discussed in subsection 4.1 above, however it now must be performed in every spawn block.

There are two exceptions where a basic block is not replicated: 1. If the basic block is a
target of a conditional branch whose condition cannot be calculated at that stage yet because it
depends on a memory access(es) that occur at a later spawn block. While the condition is not
ready, the conditional branch will be replaced with a direct branch to the common immediate
post-dominator basic block of the conditional branch’s targets. 2. If the basic block belongs to a
serial loop inside a pardo block . Since, as was discussed in subsection 4.1, we achieve the back
edge of the loop by creating a serial loop outside the spawn blocks and replace the loop with
branches inside of it, the basic blocks from the loop cannot exist along basic blocks from outside
it, since that means that these other basic blocks will execute every time the loop is executed.
Instead, during clustering we make sure that a cluster is not shared between multiple loops
(lines 17 - 18 of figure 7). As such, a split serial loop will be clustered into a set of consecutive
spawn blocks.

11

4.3 The ICE compiler structure

The ICE compiler uses a modified clang frontend and the LLVM compiler infrastructure to
perform source-to-source translation of ICE code into XMTC code. Thereafter the XMTC code is
compiled using the existing gcc-based XMTC compiler [2]. We modified Clang by adding the
’pardo’ keyword, and implemented the parsing of the pardo and the relevant IR code generation.
We have also implemented multiple LLVM passes to accomplish all the various steps required to
convert the lock-step semantics into threaded code.

The LLVM compiler stack is designed for serial threaded code executed by a single processor,
making it incompatible with lock-stepped parallel code. Since the available compiler transfor-
mations do not take into account many of the properties of parallel code (e.g. differentiating
between shared vs local variables or serial vs parallel contexts), we took certain steps to maintain
the correctness of the ICE code when using native LLVM passes. For example, we mark the
beginning and end of a pardo block when generating IR from source. Also, we outline each
parallel section into its own function, giving it a different context from surrounding serial code.
Furthermore, we use only the following native LLVM transformations that are guaranteed to
not modify the memory ordering. First, we use memory to register promotion pass which
transforms the code into SSA (Static Single Assignment) making subsequent optimizations
much easier. Then we attempt to remove all extra instructions to make the code more efficient,
and reduce the amount of information communicated across pardo splits. To that end we use
instruction combine pass to combine instructions into simpler forms whenever possible, and
the Global Value Numbering (GVN) pass to find all redundant instructions and remove them.

At this stage, we do the clustering and scheduling of pardo block instructions, and take
steps to reduce the information communicated across splits. After clustering is complete, we
mark the synchronization points between clusters.

Finally, we translate the LLVM IR to XMTC high level code using our XMTC backend.
The XMTC backend is a modified version of LLVM native C Backend with added support
to generate high-level XMTC code. Here we do the splitting of pardos into spawns at the
marked synchronization points. Also, in this stage we split loops and conditionals as discussed
earlier, create all arrays for communicating intermediate data, and any other steps required
for generating correct XMTC code. After the XMTC code is produced, we compile it with the
existing gcc-based XMTC compiler [2] to produce binaries for the XMT FPGA and XMT cycle
accurate simulator.

5 Results

In this section we present the results of our experiments comparing ICE language to XMTC.
We first look at the difference in ease of programming between ICE and XMTC by showing a
comparison of the number of code lines needed to write the same algorithms. Then, we look
at the translation accuracy, by comparing the ICE to XMTC translation, to the hand-optimized
XMTC in terms of the number of spawn blocks and temporaries used. Finally, we provide
performance comparison results between XMTC and ICE for our benchmarks.

12

Table 2: Benchmarks List. For benchmarks marked with an *, we used The pseudo and optimized XMTC codes that
were developed by the XMT/XMTC platform designers. We only implemented the ICE version

Benchmark Problem Size Abrv.

Integer Sort* 1048576 INT
Merging* 1000000 MRG
Sample Sort* 131072 SMP
Breadth First Search* 32768 nodes, 65536 edges BFS
Graph Connectivity* 32768 nodes, 65536 edges CVTY
Maximum Finding 262144 MAX
Tree Contraction 32768 nodes CTRC
Tree Rooting* 32768 nodes, 65536 edges RANK
Jacobi 512x512 JAC
LU Factorization 512x512 LU
Cholesky Factorization 512x512 CHO

Since ICE is a new language with no standardized benchmarks, we developed a suite of
11 benchmarks based on common PRAM algorithms to use for our experiments. For each
benchmark, a pseudo-code was written, then based on that pseudo-code we implemented two
versions: an XMTC version that is manually optimized for best performance, and the ICE version.
We compile the ICE versions using our ICE compiler, then the automatic output XMTC code
is compiled using the XMTC compiler. We use the same XMTC compiler for compiling both
the XMTC code and the automatically generated XMTC code from ICE. We include a list of
our benchmarks in table 2. Due to space constraints, we refer the reader to [23], [24], [31] for a
detailed description of each of these algorithms.

5.1 Ease of use and Code size

In this section, we will look at the code sizes of all benchmarks ICE and XMTC implementations.
We use code size as a measure of ease of programming. This is fair because ICE and XMTC are
extensions of the C language, each featuring an extra keyword to express parallelism: pardo
for lock-step in ICE, and spawn for threads in XMTC. Both languages are identical otherwise.
This means that for the same pseudo-code of an algorithm with same inputs and outputs,
the increase in code size indicates more elaboration was needed to ensure correctness and/or
higher performance as can be seen in the example in figure 4. Thus, we believe comparing lines
of code to approximate ease of programming is a valid approach to demonstrate the ease of
programming of ICE compared to XMTC.

We provide the two different measurement of code size: a measurement for the entire
program, and a measurement for the parallel algorithmic part. For both measures, we declared
each variable on a separate line. For the algorithmic parallel portion of the code, we measure only
the benchmark’s code size for parallel sections only, excluding all shared variable declarations
and non-recurring initializations, all serial algorithms used as part of the main parallel algorithm
(i.e., serial sorting or summation, etc.), the main function, and all preprocessor directives.

Now we look at figure 8 where we see a comparison of the reduction in the entire program
code size for ICE normalized to optimized XMTC. This graph shows that ICE has a smaller
code size when compared to XMTC for seven out of our eleven benchmarks. The other four

13

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

INT SMP MRG BFS MAX LU JAC CHO CVTY CTRC RANK

N
o
rm

a
li
ze
d
co
d
e
si
ze

(O
p
t
X
M
T
C
=
1
0
0
%
)

Figure 8: Code size for the entire program normalized to XMTC.

benchmarks saw no reduction in code size, since they contain none of the cases that ICE can help
programmers with. These benchmarks were included only as a base-line case. ICE provides an
average code size reduction of 11.01% for the entire set, and 16.08% for the benchmarks that
showed an improvement.

Figure 9 shows the percentage of code size reduction for the parallel algorithm part of the
benchmark for ICE when normalized to the XMTC version. We notice that here as well, ICE
provides the largest reduction in code size when compared to XMTC with reduction of up
to 57.14% in some cases. ICE provides an average reduction of 21.61% for the entire set, and
33.35% for benchmarks that showed an improvement. This shows the potential of ICE to reduce

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

INT SMP MRG BFS MAX LU JAC CHO CVTY CTRC RANK

N
o
rm

a
li
ze
d
co
d
e
si
ze

(O
p
t
X
M
T
C
=
1
0
0
%
)

Figure 9: Code size of the algorithm’s parallel sections normalized XMTC.

14

Table 3: Number of spawn blocks and temporaries in both XMTC programs.

Benchmark Hand-written XMTC Generated XMTC
Spawns Temp. Spawns Temp.

Integer Sort 3 0 3 0
Merging 4 0 4 0
Sample Sort 8 0 8 0
Breadth First Search 3 0 3 0
Graph Connectivity 12 2 13 3
Maximum Finding 4 0 4 0
Tree Contraction 7 4 7 4
Tree Rooting 5 2 5 2
Jacobi 2 1 2 1
LU Factorization 1 0 1 0
Cholesky Factorization 2 0 2 0

code size (and therefore programming effort) compared to XMTC, which is a more traditional
threaded language.

5.2 Accuracy

In this section we take a look at the ICE compiler’s accuracy and effectiveness in translating
to XMTC. We look at the number of spawn blocks and temporaries5 used to implement our
benchmarks. We believe that this will help demonstrate the ICE compiler’s effectiveness in
producing high performance XMTC programs, due to the effect spawns and temporaries has on
the runtime performance of the translated XMTC code as discussed in section 4.2

We look at table 3 to see the number of spawns and temporaries used by the programmer and
the ICE compiler. This table shows that nine out of eleven benchmarks had the same number
of spawns and temporaries in both XMTC versions. For the other two benchmarks where the
auto-generated XMTC had more spawns and temporaries compared to hand-written XMTC.
These benchmarks had multiple independent indirect memory references that cannot be detected
by compilers. However, the programmer for the hand-written version was able to avoid the
extra splits and temporaries.

The ability of the ICE compiler to generate high quality code is strongly dependent on the
performance of the alias analysis used to determine the dependencies between memory accesses.
These dependency relationships are used during the clustering step to determine the number of
resultant spawns as was discussed in 4.2. Whenever uncertain about a dependency, the compiler
conservatively assumes a dependence exists anyway. This means that whenever alias analysis
provide definitive no-alias answers about memory references, the clustering algorithm makes
better clustering decisions. Alias analysis is a large field of compiler theory research and any
advancements in it will benefit ICE. However, it is outside the scope of this work and we will
not discuss it any further.

5Each temporary was used to store only one value that may be read multiple times.

15

Figure 10: 64 TCU XMT processor speedup comparison

5.3 Performance

XMT is excellent at exploiting parallelism in irregular algorithms and we list examples of
published work that shows XMT’s speedups against commodity superscalar architectures in
section 2.

In this section, we will focus on the performance comparison between ICE and XMTC.
We use the XMT FPGA which has 64 TCUs to measure the performance for both the XMTC
and ICE versions of the same algorithm pseudo-code. Figure 10 provides the speedup of ICE
normalized to hand-optimized XMTC. Figure 11 shows the net run-time improvement of ICE
relative to hand-optimized XMTC, normalized to hand-optimized XMTC. The XMT FPGA
provides us with the number of cycles required to execute an XMT binary, and we use that for
our performance comparisons. We provide the performance results for the ICE code normalized
to hand-optimized XMTC programs.

We have taken steps to ensure that ICE is being compared to the fastest hand-optimized
XMTC. Since memory accesses are the biggest source of overhead in XMT, we did not use
temporaries in XMTC programs unless it was necessary. This is shown in table 3 where seven
benchmarks use no temporaries and ten use two temporaries or less. The other lesser source of
overhead comes from the creation and termination of threads. This overhead is very small in
XMT and have negligible effect on the validity of our comparison.

ICE achieves comparable performance to hand-optimized XMTC, which takes considerably
more programming effort to write than ICE. We see in figure 11 that ICE has a 0.76% speedup on
average, with maximum slowdown of 2.5% when compared to the performance of optimized
XMTC. We believe such minor performance penalties for a much easier programming effort
is an obvious good choice for programmers. For non-performance-expert programmers who
cannot write highly optimized XMTC code, ICE might even provide a speedup.

16

Figure 11: 64 TCU XMT net speedup of ICE normalized to optimized XMTC

We also notice that for some benchmarks, ICE has achieved a speed up when compared to
hand-optimized XMTC. In this work, we do not claim that ICE can provide speed ups over
XMTC for expert programmers, since intuitively hand optimized parallel code should always be
faster. Upon investigating, we found that there are multiple factors contributing to the observed
speed ups. For some benchmarks (MRG, MAX, JAC), the ICE code was accurately translated
to its equivalent XMTC code (i.e., It has the same number of spawn blocks and temporaries).
However, the program layout of both version is different. This suggests that the performance
gain is a result of factors unrelated to the translation such as data location in the read-only cache,
instruction scheduling, the data pre-fetched, or the optimizations recognized by the XMTC
compiler. For another benchmark subset (BFS, CTRC), the performance gain was a result of the
LLVM compiler’s native optimizations which is more recent than the GCC compiler used in
XMTC implementation. This is combined with the ICE compiler specific optimization that we
implemented. When a PRAM algorithm requires multiple synchronization points within a deep
nested if-else block, the condition needs to be re-evaluated after each point. The ICE compiler
use of bit vectors to record the evaluation results for multiple branches means a single memory
read per a spawn block will be sufficient as was discussed in 4.2. Since a programmer is very
unlikely to use bit vectors to record results of multiple branches, multiple reads per spawn block
are needed for condition evaluation.

The ease of programming of ICE allowed us to write programs directly from a parallel
(PRAM) algorithm with effort less than that of non-optimized XMTC, and gain performance
comparable to hand optimized XMTC through automating the process of optimizing the code.

17

6 Related work

There are hundreds of parallel languages – Michael Wrinn from Intel listed over 225 parallel
languages in his SIGCSE 2010 keynote address, and it is impractical to discuss them all here. We
will focus on languages that are most closely related, either for having an algorithmic foundation,
such as PRAM, or have an ICE-like lock-step execution model; or are meant for XMT like
hardware suited for irregular programs. In summary, we have not found any related work that
has the entire ICE ecosystem of easy to program language, based on a rich algorithmic theory
(i.e., PRAM), a capable compiler mapping to threaded programs, and a hardware capable of
exploiting fine-grained irregular parallel programs.

Our goal here is to allow programmers to use - as freely as possible - an extended form
of lock-step programming similar to the way parallel algorithms are expressed in the PRAM
literature. We call this extended form ICE programming. Additionally we show how to map
the ICE lock-step semantics onto multithreaded semantics such as XMT’s while achieving the
best performance we can. This performance objective entails reducing the lock-step specification
synchrony automatically.

So far, XMT programming of PRAM algorithms was done using the modest XMTC extension
to C. [33] suggests a “programmer’s workflow” guiding the programmer on advancing an algo-
rithm ICE abstraction6 to an XMTC program and fine tuning its performance. The XMT hardware
achieves strong speedups over serial algorithm for many parallel algorithms implemented using
this workflow [33]. This work seeks to significantly reduce the algorithm-to-computer-program
effort by the programmer. A programmer will encode an algorithm specification in ICE instead
of programming in XMTC. The ICE implementation should be “on par” in performance with
hand-optimized XMTC code.

DARPA launched the HIGH Productivity Computing Systems (HPCS) program with the
purpose of building systems that can be programmed productively. It resulted into three
languages; Cray’s CHAPEL [28], SUN’s Fortress [27], and IBM’s X10 [39]. Although all these
languages have ease of programming and high productivity as a goal, none is suited for the
lock-step model of PRAM algorithms. Further all these languages require manual specification
of synchrony and concurrency, whereas the ICE compiler automates the process. Finally, these
languages are intended to be mapped to traditional coarse-grained hardware; hence they perform
poorly on irregular programs when compared to XMT.

APL is an early example of high-level programming that allows for lock-step parallelism. A
series of papers that appears to have culminated with [9] sought execution of compiler-extracted
parallelism from APL programs on the IBM RP37. However, APL did not provide sufficient
support for the PRAM parallel algorithms literature. The V-RAM [4] appears to be the first
lock-step programming model aimed at implementing this literature. However, it was a lock-step
model targeting vector hardware. NESL that followed was not lock-step, but, still appears to
have targeted machine models for which synchronization was relatively easy; see, e.g., [5]. In

6called high-level work-depth (HLWD)
7The IBM RP3 built on the NYU Ultracomputer project, which also inspired XMT.

18

any case, we are unaware of speedup results for these approaches (APL, V-RAM, NESL, etc.)
that approach XMT results, especially for irregular applications.

The case for (lock-step, nested) ICE programming Blelloch [4][3] examined parallel algorithms
and found that nearly all are parallel operations over collections of values, called data-parallelism
by Hillis and Steele [21]. The languages based on it are referred to as data-parallel languages
(e.g. [1], [8], [15], [25]). Also, Blelloch contrasted flat data-parallel languages8 with nested
data-parallel languages9. Blelloch claimed that the ability to nest parallel calls is critical for
expressing algorithms in a way that matches our high-level intuition of how they work. We
concur.

As the multi-threaded architectures gained popularity, the need for nesting, encouraged by
Blelloch’s work, gained momentum. Cilk [29] is a good example of such general multi-threaded
programming. Multi-threaded architectures allowed greater implementation flexibility than flat
real (vector-like) machines. Cilk contributed important compiler and run-time techniques such
as work-stealing for implementation of nested parallelism. [30] further optimized work stealing
to an improvement called Lazy Binary Splitting (LBS). Cilk++ [16] has incorporated a concept of
reducers that can be supported by their scheduler without incurring significant overhead.

Unlike Cilk, ICE avoids the synchrony and concurrency problems that hindered the pro-
ductivity in general multi-threaded programming. ICE also directly connects with parallel
algorithms literature solving the original problem that nested data-parallelism addressed, and
helps reduce programmer effort much further than both of XMTC and consequently Cilk. Fur-
ther ICE equips programmers with more freedom for designing for WD performance, as evident
from the comparison of the multi-threaded algorithms section in [10], to parallel algorithms
texts [23], [24], [31] and demonstrated by the merging algorithm in [32]. However, Cilk is
more accommodating to programmers than its immediate competition and has an important
advantage of being supported by commodity hardware, but which cannot exploit irregular
parallelism as effectively as XMT.

Our central question is: How should the programming of parallel machines be? We believe
there is a considerable intellectual and practical merit in advancing programming specification
that unleashes the wealth of parallel algorithms in the literature. This merit is suggested by the
fact that while the technology and parallel architectures changed over time, these algorithms
remained resilient to change in spite of the vigorous attempts by numerous researchers. Hence,
we believe that this programming specification should be simple to produce, as close to the
original parallel algorithm as possible, and is efficiently implementable on some architecture
platform. This will guide future parallel architectures through benchmarks implemented based
on these specifications. However, the success of XMT on ease of programming suggests that
support of parallel algorithms theory, and its concept of parallel algorithmic thinking is as
important to parallel systems designs as any set of specific applications or features. This is also
the biggest departure from standard computer architecture practice.

8A sequential function can be applied in parallel over a set of values
9Any function - including parallel - can be applied in parallel over a set of values

19

7 Conclusion

We present ICE, a new lock-step easy-to-program parallel programming language based on the
PRAM algorithmic model. We present the ICE compiler that we developed which translates the
lock-step ICE programs into a traditional threaded XMTC programs. We demonstrate that the
ICE compiler can provide comparable performance to highly-optimized XMTC programs while
requiring much less effort from the programmer. We show how ICE easiness-to-program works
in synergy with XMT’s efficient parallelization of irregular programs to strike the ever-sought
balance between the compiler and the programmer roles in producing parallel programs, where
the programmer needs only to specify parallelism and rely on the compiler to do the rest. Finally,
given the relatively slow progress in parallel programming language technologies for irregular
programs, our works suggests new opportunities for benchmarking parallel machines by their
efficient support of high-level parallel algorithmic languages.

We conclude with a broader perspective on the significance of our contribution. It should
be clear that ICE (or work-depth) parallelism exists in every serial algorithm. The only effort
needed when we wish to use parallelism inherent in a serial algorithm is to express it, which in
our experience is just a matter of skill, with no creativity involved. In contrast, practically all
commercial approaches to parallel programming are based on partitioning the work to be done
among processors or threads. There is no clear path for deriving that from a serial algorithm,
and, when doable, requires significant creativity; in fact, in many cases it either cannot be done
or cannot be done beyond very limited levels of parallelism. This extra level of creativity raises
the bar on the skill and effort of programmers, and has greatly limited the adoption of many
cores among programmers and application software vendors. Our paper, along with prior XMT
work, establishes that there is a way to avert the above practice, which arguably amounts to
throwing the parallel programmer under the bus, through proper hardware and software design
choices.

References

[1] Arvind, R. S. Nikhil and K. K. Pingali, “I-structures: Data structures for parallel computing,” ACM
Trans. on Programming Languages and Syst., vol. 11, no. 4, pp. 598–632, Oct. 1989.

[2] A. O. Balkan and U. Vishkin, “Programmer’s manual for XMTC language, XMTC compiler and
XMT simulator,” University of Maryland Institute for Advanced Computer Studies (UMIACS),
Tech. Rep. UMIACS-TR-2005-45, 2006. [Online]. Available: http://www.umiacs.umd.edu/
users/vishkin/XMT/manual4xmtc1out-of2.pdf.

[3] G. E. Blelloch, “Programming parallel algorithms,” Commun. ACM, vol. 39, pp. 85–97, 3 Mar. 1996,
ISSN: 0001-0782.

[4] ——, Vector Models for Data-Parallel Computing. MIT Press, 1990.

[5] G. Blelloch and J. Greiner, “A provable time and space efficient implementation of nesl,” in ACM
SIGPLAN Int. Conf. on Functional Programming, 1996.

[6] G. Caragea and U. Vishkin, “Better speedups for parallel max-flow,” in Proc. 23rd ACM Symp. on
Parallel Algorithms and Architectures (SPAA), 2011.

20

[7] G. C. Caragea, A. Tzannes, F. Keceli, R. Barua and U. Vishkin, “Resource-aware compiler prefetching
for many-cores,” 2010.

[8] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation. Addison Wesley, 1988.

[9] W. Ching and D. Ju, “Execution of automatically parallelized API programs on RP3,” IBM J. of
research and Development, vol. 35, pp. 767–778, 5/6 1991.

[10] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, 3rd Ed. MIT Press, 2009.

[11] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, E. Santos, E. Santos, E. Santos,
R. Subramonian and T. von Eicken, “Logp: Towards a realistic model of parallel computation,”
SIGPLAN Not., vol. 28, no. 7, pp. 1–12, 1993.

[12] J. A. Edwards and U. Vishkin, “Better speedups using simpler parallel programming for graph
connectivity and biconnectivity,” in Proceedings of the 2012 International Workshop on Programming
Models and Applications for Multicores and Manycores, ser. PMAM, ACM, 2012, pp. 103–114.

[13] J. A. Edwards and U. Vishkin, “Brief announcement: Truly parallel burrows-wheeler compression
and decompression,” in Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA, ACM, 2013, pp. 93–96.

[14] ——, “Parallel algorithms for burrows-wheeler compression and decompression,” Theor. Comput.
Sci., vol. 525, pp. 10–22, 2014.

[15] J. T. Feo, D. C. Cann and R. R. Oldehoeft, “A report on the Sisal language project,” J. of Parallel and
Distributed Computing, vol. 10, no. 4, pp. 349–366, Dec. 1990.

[16] M. Frigo, P. Halpern, C. E. Leiserson and S. Lewin-Berlin, “Reducers and other cilk++ hyperobjects,”
in Proc. 21st Annu. ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), 2009.

[17] F. Ghanim, R. Barua and U. Vishkin, “Poster: Easy pram-based high-performance parallel pro-
gramming with ice,” in The 25th International Conference on Parallel Architectures and Compilation
Techniques, 2016.

[18] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph and M. Snir, “The NYU
ultracomputer: Designing a MIMD, shared-memory parallel machine (extended abstract),” in ISCA
’82: Proceedings of the 9th annual symposium on Computer Architecture, IEEE Computer Society Press,
1982, pp. 27–42.

[19] P. Gu and U. Vishkin, “Case study of gate-level logic simulation on an extremely fine-grained chip
multiprocessor,” J. Embedded Comp., vol. 2, pp. 181–190, 2006.

[20] Z. He and B. Hong, “Dynamically tuned push-relabel algorithm for the maximum flow problem
on cpu-gpu-hybrid platforms,” in Proc. 24th IEEE Int. Parallel and Distributed Processing Symp., 2010.

[21] W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithms,” Commun. ACM, vol. 29, no. 12, pp. 1170–
1183, 1986.

[22] (2015). International technology roadmap for semiconductors 2.0 - executive report, [Online].
Available: http://www.itrs2.net/itrs-reports.html.

[23] J. JaJa, An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, 1992.

[24] J. Keller, C. Kessler and J. Traeff, Practical PRAM Programming. Wiley-Interscience, 2001.

[25] P. Mills, L. S. Nyland, J. Prins, J. H. Reif and R. A. Wagner, “Prototyping parallel and distributed
programs in proteus,” in Symp. Parallel and Distributed Processing 1991, IEEE Comput. Soc.

[26] D. Naishlos, J. Nuzman, C.-W. Tseng and U. Vishkin, “Towards a first vertical prototyping of an
extremely fine-grained parallel programming approach,” in Proc. 13th annu. ACM symp. on Parallel
algorithms and architectures (SPAA), 2001.

21

vishkin
Sticky Note
The conference (or journal) name is missing. Can you please add it and verify that if comes out in the pdf later?

vishkin
Sticky Note
Can you get rid of
ser.

vishkin
Sticky Note
Can you get rid of
ser.
here, as well

[27] (). Project fortress, [Online]. Available: http://projectfortress.java.net/.

[28] (). The chapel parallel programming language, [Online]. Available: http://chapel.cray.com/.

[29] The mit cilk home page: Http://supertech.csail.mit.edu/cilk/.

[30] A. Tzannes, G. C. Caragea, R. Barua and U. Vishkin, “Lazy binary-splitting: A run-time adaptive
work-stealing scheduler,” in Proc. 15th ACM SIGPLAN symp. on Principles and practice of parallel
programming (PPOPP), 2010.

[31] U. Vishkin, “Thinking in parallel: Some basic data-parallel algorithms and techniques - course class
notes,” [Online]. Available: http://www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/
classnotes.pdf.

[32] ——, “Using simple abstraction to guide the reinvention of computing for parallelism,” CACM,
vol. 54,1, pp. 75–85, 2011.

[33] U. Vishkin, G. Caragea and B. Lee, “Models for advancing PRAM and other algorithms into
parallel programs for a PRAM-On-Chip platform. in handbook on parallel computing (editors: S.
rajasekaran, j. reif),” in. Chapman and Hall/CRC Press, 2008.

[34] U. Vishkin, “Prefix sums & an application thereoff.,” U.S. Patent, no. 6 542 918, 2003.

[35] ——, “Spawn-join instruction set architecture for providing explicit multi-threading (xmt),” U.S.
Patent, no. 6 463 527, 2002.

[36] U. Vishkin, S. Dascal, E. Berkovich and J. Nuzman, “Explicit multi-threading (XMT) bridging
models for instruction parallelism (extended abstract),” in Proc. 10th annu. ACM symp. on Parallel
algorithms and architectures (SPAA), 1998.

[37] P. M. Waldrop, “More than moore,” Nature, vol. 530, pp. 144–147, 2016.

[38] X. Wen and U. Vishkin, “FPGA-based prototype of a PRAM-on-chip processor,” in Proc. ACM
Computing Frontiers, 2008.

[39] (). X10: Performance and productivity at scale, [Online]. Available: http://x10-lang.org/.

22

