US006314553B1

a2 United States Patent

Stevens et al.

(10) Patent No.:
5) Date of Patent:

US 6,314,553 Bl
Nov. 6, 2001

(54) CIRCUIT SYNTHESIS AND VERIFICATION
USING RELATIVE TIMING
(75) Inventors: Kenneth S. Stevens, Hillsboro, OR
(US); Shai Rotem, Hofit (IL); Ran
Ginosar, Beaverton, OR (US)
(73) Assignee: Intel Corporation, Santa Clara, CA
Us)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/184,417
(22) Filed Nov. 2, 1998
(51) Int. CL7 oo GO6F 17/10; GOGF 7/60
(52) US.Cl e 716/18; 716/3; 716/1;
716/4; 716/6
(58) Field of Searchconvcmernennee 716/1, 4, 5, 6,
716/18, 3
(56) References Cited
U.S. PATENT DOCUMENTS
5,469,367 1171995 Puri et al. ovvveeeceveererereennn. 364/489
5,748,487 5/1998 Sawasaki et al. 364/489
5,752,070 5/1998 Martin et al. 395/800.33
5,901,063 * 5/1999 Chang et al.cocvevvvvvinnnnnn. 716/4
5,930,148 * 7/1999 Bjorksten et al. 716/6
5,953,236 * 9/1999 Hossain et al. 716/6
5,956,497 * 9/1999 Ratzel et al. 716/1
6,009,252 * 12/1999 Liptoncccevivviinivniiennnns 716/5

OTHER PUBLICATIONS

Negulescu, R. et al, “Verification of speed—dependences in
single—cell handshake circuits”, 4th International Sympo-
sium on Advanced Research in Asynchronous Circuits &
Systems, Apr. 1998.*

Cortadella, J., et al., “Petrify: a tool for manipulating con-
current specifications and synthesis of asynchronous con-
trollers™, IEICE Transactions on Information and Systems,
E80-D (3), pp. 315-325, Mar. 1, 1997).

Begin

Stevens, K, et al., “CAD directions for high performance
asynchronous circuits”, Proceedings of the Design Automa-
tion Conference, New Orleans, LA, pp. 116-121, (Jun.
1999).

Stevens, K., et al., “Relative Timing”, Proceedings of the 5th
International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, Barcelona, Spain, pp.
208-218, (Apr. 19-21, 1999).

Vanbekbergen, P., et al., “A design and validation system for
asynchronous circuits”, Proceedings of the 32nd Design
Automation Conference, San Francisco, CA, pp. 725-730,
(Jun. 12, 1995).

Chakraborty, S., et al., “Timing Analysis for Extended
Burst-Mode Circuits”, IEEE Computer Soc., 101-111,
(1997).

David, 1., et al., “Self-Timed Architecture of a Reduced
Instruction Set Computer”, Proceedings of the IFIP WG10.5
Working Conference on Asynchronous Design Methodolo-
gies, A—28, Manchester, UK, 29-43, (Mar. 31-Apr. 2, 1993).
Davis, A., et al., “Automatic Synthesis of Fast Compact
Asynchronous Control Circuits”, Proceedings of the IFIP
WG10.5 Working Conference on Asynchronous Design
Methodologies, A-28, Manchester, UK, 193-207, (Mar.
31,-Apr. 2, 1993).

(List continued on next page.)

Primary Examiner—Matthew Smith

Assistant Examiner—Jibreel Speight

(74) Antorney, Agent, or Firm—Schwegman, Lundberg,
Woessner & Kluth, P.A.

(7) ABSTRACT

A system and method of synthesizing and/or verifying a
circuit from a behavioral description of that circuit. A signal
ordering of signals in the circuit is defined, wherein defining
a signal ordering of signals in the circuit includes specifying
a relative ordering of a plurality of events within the circuit.
The behavioral description is modified as a function of the
signal ordering. The circuit is then synthesized and/or veri-
fied as a function of the modified behavioral description.

29 Claims, 27 Drawing Sheets

Dedine
Beravior

)

Specify ASigral odering ~22

!

food\(-‘q Fhe Beravioral
Beseription As A L-24

[Furction of Sigrald Oerrs,

Sucdresize [yeridy fs i
Funehon o&ﬂ)\\c{m@a\g@\ YA
chawioml Descriphon

US 6,314,553 Bl
Page 2

OTHER PUBLICATIONS

Myers, C.J., Computer—Aided Synthesis and Verification of
Gate—Level Timed Circuits (Asynchronous Circuits), A Dis-
sertation submitted to the Department of Electrical Engi-
neering and the Committee on Graduate Studies of Stanford
University in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy, 1-127 p., (Oct. 1995).

Negulescu, R., et al., “Verification of Speed—Dependences in
Single—Rail Handshake Circuits”, IEEE Computer Soc.,
1-13 p., (Mar./Apr. 1998).

* cited by examiner

U.S. Patent Nov. 6, 2001 Sheet 1 of 27 US 6,314,553 B1

"

4

s
[8

U.S. Patent Nov. 6, 2001 Sheet 2 of 27 US 6,314,553 B1

P

| {2,
48

U.S. Patent Nov. 6, 2001 Sheet 3 of 27 US 6,314,553 B1

| Begin)

Define
)
BCMV 10¥™ r_’

'

Specity ASignal orderi M 22

I

modip\{ +he. Berovioral
Description As £+ —74

. 5 Q. .
Tunchon ofd 18!‘0,}« Orcﬁrcnri—..‘

.

Sundhesize |Veridu fs i
Behovoel Deseriphion

=S

Fa 2

U.S. Patent

Nov. 6, 2001

Sheet 4 of 27

%

«i o} ol

dl of Ol) - ol
I
o
wn =
Vamn
Ol l
L NS

US 6,314,553 Bl

L/

U.S. Patent Nov. 6, 2001 Sheet 5 of 27 US 6,314,553 B1

___.)
Ll
¥* Y
N N 3
{ =
, 2
ol =) ' <
o T T g
| | f
o o Y 2
ol
Y
N N |
—
S

@) Ol 7T +—J T

C z
a)
Figure 5: Generalized C-Elements: (a) gC, (b)

(d) for at < bt

US 6,314,553 Bl

Sheet 6 of 27

Nov. 6, 2001

U.S. Patent

13 > |® oyeotpaxd 13 Wi (3) ‘49 > 1% ogeorpexd 1Y Y3 (p) ‘yuspusdspuy-peadg
(o) ‘powry Aqreoo (q) ‘spiezey UMM JUSWSIH-D (e) :syuswdg-D O1IeIS “m oIN31]

©)

|

(®) (p)

o Of

| 0|

N
|
ol)

9

2

©l

|

ZNX
alala
alelell

U.S. Patent Nov. 6, 2001 Sheet 7 of 27 US 6,314,553 B1

Has HF Fall Rise Energy Test Test
Circuit circuit delay delay (pJ) Area C-Elt Spec RT2
SIC Yes 1170 1190 20.2 16 100% 90%
SC No 700 545 11.6 18 100% 92%
GC Yes 640 585 11.1 10 100% 100%
SIC-RT Yes 735 785 14.0 8 - 100%
GC-RT Yes 530 600 11.6 9 - 100%

Fl}.’? » Comparison of C-Element implementations. Rise and fall times are in pS.
Energy is per a complete cycle (rise and fall). Area is the number of transistors. Test
columns show coverage using pseudo-stuck-at fault model on all inputs, outputs, and
wire forks for the original specification and with RT3,-

Fig.7

U.S. Patent Nov. 6, 2001 Sheet 8 of 27 US 6,314,553 B1

lo| —@— Lit ——roT —> rif

| Pt

i
1li| —— lof —@&— ri} «—— 1ol

F“‘a 80"

lo| —@— lit > rot

i} <—— lof ~@— il +—— ro}

V:rq, A

lo) —@— lit ri}| «—@——ro}

]

1i} ~—— lot ro} —————rit

Fq. €<

U.S. Patent Nov. 6, 2001 Sheet 9 of 27

US 6,314,553 Bl

Y

Hr —

IH
—

U.S. Patent Nov. 6, 2001 Sheet 10 of 27 US 6,314,553 B1

An

lo

L5

b—* —__(i)—)— o

ﬁ?- % ;. Speed-Independent FIFO cell

1o —.._C_ :_—_Qo_
eSS

Faq‘ 11

U.S. Patent Nov. 6, 2001 Sheet 11 of 27 US 6,314,553 B1

lo ——

< .
=

Figure ?6 Aggressive Relative Timed FIFO cell

1i

Iro

Figure Ci& Relative Timed Pulse-Mode FIFO

U.S. Patent Nov. 6, 2001 Sheet 12 of 27 US 6,314,553 B1

©
1lit
ril 1if lot rof ril lif
rof lot (D) 4ot 1ot
1] A mt
rif 1i* 11/ \{giL 1i] ri*
lo
@<£°_l__@ @__i_,@

< [(y2# -
lo —9 1i# :]

ri# ri
1i —t —— I -

Figure 11: Relative Timed Burst-Mode FIFO implementation

U.S. Patent Nov. 6, 2001 Sheet 13 of 27 US 6,314,553 B1

Figure 1d; Aggressive Relative Timed FIFO cell

<h o<k

<.

Tro#

)
I8
*

Figure 1¥: Shuffled Aggressive Relative Timed FIFO cell

4p

NN A

req (h)

ack (ro

Figure 14. Four Cycle and Pulse Handshake Protocol Constraints

U.S. Patent Nov. 6, 2001 Sheet 14 of 27 US 6,314,553 B1

HF Worst Ave. Test Test Test
Circuit Impl. delay delay pJ Area SI RT13 pulse
SI Yes 2160 1560 37.6 39 98% 91% -
RT-BM No 1020 550 322 40 95% 74% -
RT-Agr No 595 390 18.2 20 - 100% -
Pulse No 350 350 162 17 - - 100%

U.S. Patent Nov. 6, 2001 Sheet 15 of 27 US 6,314,553 B1

. r a
taginl

—]
tagin7 ‘. _Dl y
taginackl—@-J_

PA, [_|syne

tagout?7

y

I y

neEe

r
2 PB

tagoutl

agoutackl
bufreq +— ra T

bufack R *tagoutack?

Speed-Independent Tag Unit. Assumes ti’s are mutex.

tagoutil

tagout?7

US 6,314,553 Bl

L] Y

¥ (°) gd (q) vd () :symom) ynup Sey, juspuadapur-paadg

Sheet 16 of 27

Nov. 6, 2001

U.S. Patent

) go3 _ -
o3 Is /\ 1s /_7_
- 103 N
ﬂ 003

(q)

()

U.S. Patent Nov. 6, 2001 Sheet 17 of 27 US 6,314,553 B1

Figure |@ llustration of timing assumptions on event ordering.

Figure /4, Simultaneity timing assumptions

U.S. Patent Nov. 6, 2001 Sheet 18 of 27 US 6,314,553 B1

Figure A0 Example to illustrate early enabling assumptions.

N

y+

Figure 7/: The zyz example.

U.S. Patent

Nov. 6, 2001

Sheet 19 of 27

P

11+ 12+
a+ b+ c+ + S+
\ /
13+ 14+ f+
v 1]
d+ e+ g+
h+

US 6,314,553 Bl

Figure 2 a: Example for automatic generation of timing assumptions.

y

Figure 4%: Optimized circuit for the zyz example.

U.S. Patent

Nov. 6, 2001 Sheet 20 of 27

US 6,314,553 Bl

ta
Transceiver

DSr

(O A
— o N A\

[
LDTACK

Y

=TT

Y 0
Device \ / \ \‘\
VME Bus
DSw—]
Controller|LpTack| DTACK
DTACK~— 100 18 oY
(a)

F\‘qs. A a “b

] © (7]

INPUTS: dsr,ldtack

INPUTS: dsw,ldtack
OUTPUTS: dtack,lds,d

OUTPUTS: diack,lds.d
(a)

(b)

Ags. ASax b

U.S. Patent Nov. 6, 2001 Sheet 21 of 27 US 6,314,553 B1

1o

dtack-

Read cyclel Write cycle

R A

dsr+ . dsw+
1ds+/1 d+2

l

ldtack+/1 Idtack- 1ds+/2

l '

d+/1 Idtack+/2
| |
dtack+1 lds- d-12
l l
dsr- dtack+/2
| |
d-n dsw- OUTPUTS: duackidod

. A6 () fy. 24 (b)

U.S. Patent Nov. 6, 2001 Sheet 22 of 27 US 6,314,553 B1

LY U

U.S. Patent Nov. 6, 2001 Sheet 23 of 27 US 6,314,553 B1

cscO—q-

cscQ

e
d—d
dsr—- -
dsw—a
C cscO
ldtack—d
1dtack—
dsr—d a
cscO—
dsw——] C d
csc0—-4
ldtack—
dsr—

cscO—

U.S. Patent Nov. 6, 2001

Sheet 24 of 27 US 6,314,553 B1

dsr ——AD)
dsw—=
} dtack

C 1ds

U.S. Patent Nov. 6, 2001 Sheet 25 of 27 US 6,314,553 B1

lds—d

C dtack
1ds —
+

ldtack ——

dsr—d

dsw—d

1dtack —d

dsr
dsw

Idtack —

dsr—g

Ids —
dsw—| D— d
1ds —g

ldtack——
dsr—
Ids ——

ARNANY
Y

Figure 30: Circuit under the assumption of slow environment and 1ds- <| dtack-.

U.S. Patent Nov. 6, 2001 Sheet 26 of 27 US 6,314,553 B1

Ids —d-

C dtack
1ds ——)

<+

ldtack —
dsr 1d

dsw 5

Idtack
dsr —
Idtack—g D— d

dsw
+
Idtack——

dsr——

Figure 3l :: Circuit under the assumption of a slow bus control logic.

1ds
I d-
__}>o—{>o—< D-dtack
)+
ldtack —(az])—
dsr J‘v) -

dsw

Figure 33 . Delay padding to satisfy timing assumptions.

US 6,314,553 B1

Sheet 27 of 27

Nov. 6, 2001

U.S. Patent

‘snq INA °Up JO UOIIN[OS [eUy oY) 10] suordunsse Surunty, : ¢ 9Im3g

-msp ‘*@All 1P
oo
|

Surjqeuo Ares

Iapio Suuy

uonONPAI ASUSLINOUOD el ===+ -

/Hep

-yoelp]

!
\

— ﬂ i
\ \ i

1

-Isp

q

[+owp

Hh

%}

1/4319%1p]

N

1/+5P1

US 6,314,553 B1

1

CIRCUIT SYNTHESIS AND VERIFICATION
USING RELATIVE TIMING

FIELD OF THE INVENTION

The present invention is related to integrated circuit
fabrication, and more particularly to a system and method
for synthesizing and verifying a timed circuit based on a
behavioral description.

BACKGROUND INFORMATION

The design of timing in digital circuits is an extremely
difficult challenge. Conventional clocked digital design
solves this problem by decomposing the circuit into cycle-
free combinational logic (CL) stages and interstage clocked
latches; the clock cycle is simply tuned to accommodate the
worst-case propagation delay in the CL stages. The behavior
of the combinational logic can then be specified and syn-
thesized without considering timing. Speed Independent (SI)
asynchronous circuits are analogous to clocked CL design
because SI circuits are independent of time—the behavior
will be correct for any arbitrary gate delay.

High-performance circuits, both clocked and
asynchronous, benefit from more aggressive timing meth-
odologies. Clocked circuits can treat time locally to allow
adaptive and variable time in different parts of the circuit.
Timed asynchronous and sequential circuits can have sig-
nificantly enhanced performance, at the cost of lower robust-
ness to delay variation.

Metric timing requires the specification of either propa-
gation times or of ranges of propagation times. Unfortu-
nately metric timing analysis can explode in complexity
even when simple localized timing is used. The synthesis
and verification of even moderate-sized timed circuits can
therefore become intractable. Further, accurate metric
ranges require layout parameters, which may not be present
when a circuit is to be synthesized.

What is needed is a system and method of defining a
circuit which frees the circuit from a dependence on propa-
gation delays or on estimates of propagation delays while
maintaining synthesis and verification of hazard-free
designs.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, a system
and method of performing logic synthesis from a behavioral
description of a circuit is described. A signal ordering of
signals in the circuit is defined, wherein defining a signal
ordering of signals in the circuit includes specifying a
relative ordering of a plurality of events within the circuit.
The behavioral description is modified as a function of the
signal ordering. The circuit is then synthesized as a function
of the modified behavioral description.

According to another aspect of the present invention, a
system and method of verifying a circuit from a behavioral
description of that circuit is described. A signal ordering of
signals in the circuit is defined, wherein defining a signal
ordering of signals in the circuit includes specifying a
relative ordering of a plurality of events within the circuit.
The behavioral description is modified as a function of the
signal ordering. The circuit is then verified as a function of
the modified behavioral description.

According to yet another aspect of the present invention,
a circuit includes a plurality of transistors and conductors
connecting two or more of the plurality of transistors. The
conductors are defined and synthesized as a function of a

10

15

20

25

30

35

40

45

50

55

60

65

2

behavioral description of the circuit, wherein the behavioral
description includes information specifying a relative order-
ing between a plurality of events within the circuit.

According to yet another aspect of the present invention,
a computer readable medium includes program code for
representing a circuit through a behavioral description of the
circuit, program code for defining a signal ordering of
signals in the circuit, wherein defining includes specifying a
relative ordering of a plurality of events within the circuit,
program code for modifying the behavioral description as a
function of the signal ordering and program code for syn-
thesizing the circuit as a function of the modified behavioral
description.

According to yet another aspect of the present invention,
a computer readable medium includes program code for
representing a circuit through a behavioral description of the
circuit, program code for defining a signal ordering of
signals in the circuit, wherein defining includes specifying a
relative ordering of a plurality of events within the circuit,
program code for modifying the behavioral description as a
function of the signal ordering and program code for veri-
fying the circuit as a function of the modified behavioral
description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a illustrates a logic synthesis system according to
the present invention;

FIG. 15 illustrates a logic verification system according to
the present invention;

FIG. 2 illustrates a method of synthesizing and/or veri-
fying logic according to the present invention;

FIG. 3 illustrates a computer readable medium storing
program code applying the protocol of FIG. 2;

FIGS. 4a—c illustrate synthesis of a set-reset flop;

FIGS. 5a—d illustrate the evolution of a simple two-input
generalized C-element through application of a series of
relative timing assumptions according to the present inven-
tion;

FIGS. 6a—e illustrate the evolution of a static AND-OR
C-element through application of a series of relative timing
assumptions according to the present invention;

FIG. 7 is a table comparing attributes of the circuits of
FIGS. 6a—e;

FIGS. 8a—d are Petri net illustrations of a FIFO simplified
through the application of relative timing assumptions
according to the present invention;

FIGS. 9a—d illustrate the evolution of a FIFO through
application of a series of relative timing assumptions accord-
ing to the present invention;

FIG. 10 illustrates a 3D state machine;

FIG. 11 illustrates a physical implementation of the circuit
definition of FIG. 9b;

FIG. 12 illustrates a relative timed pulse-mode FIFO cell;

FIG. 13 illustrates a shuffled version of the FIFO cell of
FIG. 12;

FIG. 14 illustrates a four cycle request-acknowledge
handshake;

FIG. 15 is a table comparing attributes of the circuits of
FIGS. 9a—d;

FIGS. 16a and b illustrate the evolution of a Tag Unit
through application of a series of relative timing assump-
tions according to the present invention;

FIG. 17 illustrates various elements of the Tag Unit shown
in FIG. 16a;

US 6,314,553 B1

3

FIG. 18 is an illustration of timing assumptions on event
ordering;

FIG. 19 is an illustration of simultaneity timing assump-
tions;

FIG. 20 is an illustration of early enabling assumptions;

FIG. 21 is an example of an xyz circuit;

FIG. 22 is an example of automatic generation of timing
assumptions for the circuit of FIG. 21;

FIG. 23 is an optimized version of the circuit of FIG. 21
according to the present invention;

FIGS. 244 and b illustrate the I/O interface of a VME bus
controller;

FIGS. 254 and b illustrate a state graph of the READ and
WRITE cycle, respectively for the I/O interface of FIGS.
24a and b;

FIGS. 26a and b illustrate alternate versions of a state
graph describing the complete behavior of the I/O interface
of FIGS. 24a and b;

FIG. 27 illustrates the notation used to represent gener-
alized C element;

FIGS. 28a and 28b illustrate a specification of the VME
bus controller of FIGS. 24a and b and one speed-
independent embodiment of that specification;

FIG. 29 illustrates a relative-timed embodiment of the
circuit of FIG. 284 assuming a slow environment; and

FIG. 30 illustrates an alternate relative-timed embodiment
of the circuit of FIG. 284 assuming a slow environment; and

FIG. 31 illustrates a relative-timed embodiment of the
circuit of FIG. 284 assuming a slow environment and slow
bus control logic;

FIG. 32 illustrates a timing analysis of the circuit of FIG.
31; and

FIG. 33 illustrates delay padding within FIG. 31 in order
to satisfy timing assumptions.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings which form a part hereof, and in which is shown by way
of illustration specific embodiments in which the invention
may be practiced. It is to be understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.

Alogic synthesis system 10 is shown in FIG. 1a. FIG. 1a
illustrates a workstation having a processing unit 12 con-
nected to a display 14 and a data entry device 16. Processing
unit 12 includes a memory device 18 used to store program
code according to the present invention.

Logic synthesis system 10 uses the behavioral description
of a circuit to synthesize that circuit. In one embodiment,
program code installed in the workstation, when executed,
modifies the behavioral description as a function of the
relative ordering of one or more signals in the circuit and
synthesizes the circuit as a function of the modified behav-
ioral description.

A logic verification system 40 is shown in FIG. 1b. FIG.
1b illustrates a workstation having a processing unit 42
connected to a display 44 and a data entry device 46.
Processing unit 42 includes a memory device 48 used to
store program code according to the present invention.

Logic verification system 40 uses the behavioral descrip-
tion of a circuit to verify operation of that circuit. In one

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiment, program code installed in the workstation,
when executed, modifies the behavioral description as a
function of the relative ordering of one or more signals in the
circuit and verifies the circuit as a function of the modified
behavioral description.

Relative timing is a new method of representing and
reasoning about delays in synchronous and asynchronous
circuits. In one embodiment, the designer adds further
definition to the behavioral description of a circuit by
making assertions regarding relative ordering of events (e.g.,
signal A goes high before signal B goes low). Synthesis and
verification algorithms use these assertions to constrain the
large state space and improve on the quality of the synthesis,
and to increase the capacity of the verification. In one
embodiment, the relative timing constraints are expressed as
a system of inequalities that can be proven to hold in any
system by examining path delays.

As noted above, the synthesis of speed-independent cir-
cuits assumes a delay model that can be considered too
conservative for the temporal behavior expected from the
actual environment of the circuit and the technology used to
implement it. Relative timing constraints, by making some
timing assumptions on the behavior of the environment and
the circuit itself, allow the designer to simplify the circuit
being synthesized. Such a circuit may not, however, retain a
crucial property of speed-independent circuits, i.e., the cir-
cuit may not react correctly for all possible delays of the
components of the system. For this reason, it is crucial to
know under which conditions the circuit behaves properly.

One example of an application of relative timing to a
behavioral description is shown in FIG. 2. In FIG. 2, at 20
a circuit is described via a behavioral description. At 22, an
ordering is defined between two or more signals within the
circuit. This ordering is not defined, for instance, by defining
when in time the signals change state. Instead, it is defined
by a more amorphous relative timing relationship—one that
is limited to stating “signal a occurs sometime before signal
b”. At 24 the behavioral description is modified as a function
of the relative timing relationship defined for the signals and
at 26 the circuit is synthesized or verified as a function of the
modified behavioral description. In one embodiment, logic
synthesis system 10 and logic verification system 40 gen-
erate relative timing assumptions automatically from the
behavioral description. In one such embodiment logic veri-
fication system 40 identifies and verifies relative timing
constraints in circuits that are not speed independent.

Program code applying these methodologies can be dis-
tributed using computer medium 30 as is shown in FIG. 3.

Relative timing can be used in both asynchronous and
synchronous designs to reduce circuit complexity, power
and area and increase the performance and testability of the
design. For example, application of relative timing to a
circuit used in a microprocessor design contributed signifi-
cantly to a threefold improvement in performance and
twofold reduction in power when compared to a similar
circuit in a 400 MHz Pentium® processor, all for only a 15%
increase in the area of the circuit. In addition, the new circuit
had a 95% pseudo stuck-at testability.

Other benefits of applying a relative timing design
approach include the ability to simplify the interface to a
clocked design, verification support for burst-mode and
complex gate synthesis engines, pulse-mode circuits, and
hand-designed timed circuits. The numerous benefits and
applications of relative timing will be described using design
examples, as is detailed below.

In the following discussion, equations are employed to
describe relationships between signals in a circuit. In the

US 6,314,553 B1

5

discussion, input signals are identified by underlining the
signal name, inverted signals are identified by placing a #
after the signal name, a rising transition is identified by
placing a 1 after the symbol name while a falling transition
is identified by placing a |, after the symbol name. A signal
which is not underlined is an output signal. These conven-
tions are illustrated in Table 1. For CCS, ‘." is the sequential
operator, ‘+’ is the non-deterministic choice operator, ‘|’ is
parallel composition and “\{a}’ is the restriction operator
applied to a signal a.

Signal Description Example
input signal underline input
output signal output
inverted (asserted low) hash mark z#
rising transition up arrow at
falling transition down arrow bl

The following examples are based on non-clocked
domino gates employing a single p device. Asynchronous
tools such as 3D, ATACS and Petrify can typically synthe-
size set-reset flops and the appropriate functions (an
example is shown in FIG. 44). Technology mapping can then
be used to map the functions of FIG. 44 into single-variable
reset (equivalently set) functions, and to implement them
using standard footed domino gates as is shown in FIG. 4b.
(FIG. 4b illustrates a footed domino gate (symbol and
circuit) implementing a Set-Reset flop with = =x#, = =xx
ax(b+c).) When the reset variable is not used in the set
function, an unfooted domino gate is used instead as is
shown in FIG. 4¢). (FIG. 4c illustrates an unfooted domino
gate (symbol and circuit) implementing a Set-Reset flop
with = =x#, = =ax(b+c).)

A simple two-input generalized C-Element C=(a|b).z.C
(as defined in CCS) and its CMOS implementation are
shown in FIG. 5a. Given the assumption that

RT1: a<b

the C-Element is reduced to a buffer: C=b.z.C. If the
assumption is limited to the negative edges,

RT2: al<b}

the reset function contains only b|, and the C-Element can
be implemented as a footed domino gate (FIG. 5¢):C=
al.b}.z}.(at[b}).z}.C. With a similar assumption on the
positive edges,

RT3: at<b?

inverted inputs can be applied and the non-buffered z#
output of the domino gate can be used. One such approach
is shown in FIG. 5d. Alternatively, the output can be buffered
for high loads. A “wobbly” C-Element C=a.b.z.C+b.(a.z.C+
b.C), which is unsafe (allowing the input b to toggle and
withdraw) can also be synthesized as above.

A static AND-OR C-Element is shown in FIG. 6a. This
circuit is not speed-independent, but is safe provided the
environment is sufficiently slow. If, for instance, the envi-
ronment acts fast, b| may immediately follow z{, before
node ac has stabilized at ‘1°. The following requirements can
be added to correct the situation:

RT4: bet<al

RTS: acl<b|

10

15

20

25

30

35

40

45

50

55

60

65

6

RT1-5 are termed relative timing (RT) predicates. They
define various timing assumptions to systems 10 and 40.

In one embodiment, RT4 and RTS are generated by a
verification tool. The verification tool identifies races in the
system using its verification algorithms.

These specifications apply to inputs and intermediate
variables, and thus the synthesized circuit should ensure
these orderings based on environmental delays. These
requirements are the same as burst-mode requirements; they
guarantee the circuit is stable before new inputs arrive. The
following is another set of predicates that are less restrictive
because they do not require circuit stability:

RT6: bel <ab
RT7: acl<ab]

One possible implementation that can guarantee these
predicates hold is shown in FIG. 6b, where a buffer is added
at the output. All constraints can be made local to the circuit
if the buffer delay is large enough to guarantee that act! and
bel precede z1. Alternatively, Petrify synthesizes the static
complex gate circuit shown in FIG. 6c, which can be verified
speed-independent.

Assumptions RT2 or RT3 lead to the simpler static
circuits of FIGS. 6d and 6e, respectively. Note that these two
circuits are actually subcircuits of the speed-independent
one.

FIG. 7 summarizes the five alternative designs. The
results are based on simulations made using standard library
cell device sizes driving six standard inverters as a load.
They were simulated in Spice using MOSIS 0.5u process
parameters. Except for the static C-Element (SC), all imple-
mentations are hazard-free.

As can be seen in FIG. 7, the speed-independent circuit
(SIC) is slower than all others, although the relative timing
assumption (SIC-RT), which leads to a half size circuit, also
enhances performance by 30%. The original static C
requires the largest circuit but it is also relatively fast. The
reduced domino C-Element (GC-RT) is 15% faster to rise
(having only a single pull-up transistor), but is actually
slower than the gC on the falling edge.

One approach of applying relative timing to the develop-
ment of a circuit is to synthesize the circuit as a speed-
independent design. The design is then simplified through
careful application of relative timing assumptions. An
example of such an approach is shown in FIGS. 9a—d, which
illustrate the design of a simple FIFO cell.

A simple FIFO cell can be specified in CCS as follows:

LEFT=lit.c.lot.li{lo}.LEFT
RIGHT=c.ro!.rif.ro|.ri| .RIGHT

FIFO=(LEFT|RIGHT\{c} @

where c is a label and ¢ is a colabel.

Specification (1) consists of two handshake processes,
LEFT and RIGHT. The c signal synchronizes the two
processes so that ri must lower and li must raise before both
processes may proceed. This process-based specification can
easily be mapped to the equivalent petri-net of FIG. 8a. A
speed-independent version of the FIFO can be synthesized
using Petrify. The resulting circuit is shown in FIG. 9a.

This circuit definition uses the complex gate assumptions
where the inverters are zero-delay or are combined with the
complex gates. This definition, as well as a physical circuit
implementation that includes discrete inverters, can be
proven to conform to the specification of the FIFO in
Specification (1) using a software package called Analyze.

US 6,314,553 B1

7

The circuit of FIG. 9a pays a considerable delay penalty
to achieve speed independence. Note, for instance, that lo}
is produced after three complex gate delays, and ro? in four.
Performance can be improved if one assumes that a circuit
can be built that ensures that concurrent outputs are gener-
ated faster than they can be acknowledged by the environ-
ment. This assumption can be formulated as follows:

RTS: lof <rif
RTY: rof<li|

A new specification is generated by adding these two
relative timing predicates to the specification. The specifi-
cation can be represented as:

FIFOAlo 1 <rif Aro1<li} 2
where FIFO is the specification from Specification (1). This
petri-net of FIG. 8b where the dashed arrows are relative
timing constraints.

Note that the two relative timing constraints, RT8 and
RTY, are in a form where outputs precede inputs. In addition,
note from the specification that the outputs are enabled
concurrently from a pair of inputs. This is exactly a burst-
mode constraint where the input burst is {lifri}} and the
output burst is {lofro?}. The relative timing (RT) predicates
constrain the environment so that both outputs are produced
before either input is passed to the circuit. A Petri net
showing this burst-mode behavior has been derived from the
Petri net of FIG. 8b . It is shown in FIG. 8c. Incorporating
the RT predicates RT8 and RT9 directly into Specification
(1) produces the Mealy state machine of FIG. 10. This new
form is suitable for synthesis through 3D and results in the
symmetric circuit definition of FIG. 9b, which is hazard free
with zero-delay inverters.

This symmetric circuit definition conforms to Specifica-
tion (2), and achieves a considerable performance improve-
ment over the speed-independent definition. Mapping the
circuit definition of FIG. 9b to a physical implementation
such as that shown in FIG. 11, however, reveals a problem.
The circuit does not conform unless the inverters have zero
delay. Unbounded delay in the inverters results in critical
races which can cause the physical implementation to fail to
conform to the specification. Fortunately, relative timing can
be applied to the physical circuit to order these races in such
a way that the circuit can conform to the specification. The
following are the RT constraints that the circuit must meet
in order to avoid the races.

RT10: y2#1<lit
RT11: y2#<ri#
RT12: li#| <ro?

These constraints were generated by verification algo-
rithms; they apply only to the physical implementation and
must be validated by a timing verifier to ensure that the races
are not critical.

A further modification of the speed-independent circuit of
FIG. 9a is possible. Assume that the circuit of Specification
(2) can be placed in a large ring with a single token. If the
ring is sufficiently large, circuit delays will ensure that the
token will always arrive at an idle cell. In a large ring,
therefore, the handshake in the process RIGHT will always
complete and the RIGHT interface will become idle before
the LEFT interface becomes active.

The SI or BM circuit can safely be used in such an
environment. If, however, one takes advantage of the timing

10

15

20

35

45

50

55

60

65

8

of the system a vastly improved circuit (in terms of power,
performance, area and testability) can be synthesized. RT13
is the predicate for this environment:

RT13: ri|<lif

This assumption can be graphically represented as shown in
FIG. 84, where the dotted arc is the relative timing relation
shown in RT13.

It should be noted that the dotted arc is not a causal arc;
ri must lower before li can raise but ri cannot delay 1i. That
is, the designer is assuming that there will always be a token
on the dotted arc; the designer must, therefore, make sure
that ri going low will always happen before lo going low.

This represents a major change in the operation of the
circuit; the LEFT process is no longer synchronized directly
with the RIGHT process. Instead the synchronization is
through system timing.

The circuit in FIG. 9¢ can be synthesized with 3D from
specification (2) with the RTpredicate RT13. Signal lo must
be generated long enough after 1i so as to not disable the
domino AND gate before it is fully set. This results in a
number of RT constraints on critical races in the circuit. If,
however, the timing of the lo signal can be correctly adjusted
in the system to satisfy the RT constraints and to eliminate
races, the result is the fast, small, testable circuit shown in
FIG. 9c.

A pulse-mode FIFO cell can also be designed through the
use of relative timing constraints applied to a program such
as ATACS. As an alternate approach a pulse-mode circuit
can be derived from RT13.

Through transitivity of the timing assumption shown in
FIG. 84, ro| must precede lif, allowing us to remove the
signal ri} altogether. This can be demonstrated by viewing
part of the ring as is shown in FIG. 12.

Observe that the lo signal is nothing more than a delayed
version of the li signal. Shuffling the lo devices and bubbles
results in the circuit of FIG. 13, a circuit that has only
forward-moving signals without any feedback. The shuffling
that removes acknowledgment is directly based on RT13,
which dissociated the LEFT process from the RIGHT. This
shuftling removes output lo and input ri, making them local
signals.

Note that signal li# in FIG. 13 is just li inverted. A
transition li 1 creates a short period when both 1i and 1i# are
high, which will set the output of the domino gate. The
duration of these signals being high depends on the delay in
the 1i# path. This signal pair can be combined into a single
wire 1i if the signal on this wire operates as a pulse. The final
circuit derivation can be seen in FIG. 9d.

The specification for the pulse-mode circuit follows:

LEFTP=li{. cli} .LEFT
RIGHTP=c:ro1.ro|: RIGHT

PULSE=(LEFTP|RIGHTP)\{c}ro<li? ©)
Designing reliable pulse-mode circuits is very difficult.
Some of the constraints of pulse circuits can be observed by
understanding how the pulse-mode circuit was derived for
this example. FIG. 14 shows a four cycle request-
acknowledge handshake. Constraints 1 through 4 are causal
with speed-independent signaling. By removing the
acknowledgment signal (lo and ri in this case), we are left
only with a request signal that requires constraints 2p and
4p. These constraints contain both minimum and maximum
metric bounds. However, the actual requirements for the size
of these bounds can be represented with relative timing arcs.

US 6,314,553 B1

9

Interestingly, these arcs correspond to a protocol very simi-
lar to the standard request acknowledge handshaking. The
pulse on li of FIG. 9d causes the output pulse ro, as required
by specification (3). If we map req to li and ack to ro in FIG.
14, we see that arc 1 is causal.

This circuit can fail, however, if the pulse is so short that
lof (ack?) does not occur. This can be prevented by placing
a relative timing transition that requires lo (ack?) before
li} (req|). This makes arc 2 in FIG. 14 an RT predicate, and
slightly restricts the specification. (It may be possible to not
restrict the specifications behavior if an internal signal
toggles which ensures the domino gate has changed state.)

The circuit will also fail if the li (req) pulse is too long.
If ro} (ack}) and yt have occurred before 1i| (req)) then
the circuit will fail. Therefore, arc 3 in FIG. 14 is a necessary
RT predicate for the circuit to work. Finally, arc 4 is assumed
to hold given RT13. We therefore have a system of causal
and relative timing relations that must hold in the pulse-
mode circuit which directly mimic a four cycle handshake.

The consequences of evolving a simple FIFO-like con-
troller from a speed-independent to a pulse-mode circuit are
summarized in FIG. 15. The different circuits are character-
ized in terms of robustness, performance, area, power, and
testability. In the table shown in FIG. 15, delay is expressed
in pS, energy is in nJ, area is in transistor count and
testability is in stuck-at coverage.

The only circuit that contains a hazard-free
implementation, even under the specification timing
assumptions, is the speed-independent circuit. However the
latency of that circuit is from three to five times slower than
the circuits that use relative timing. Furthermore, the circuit
shown in FIG. 94 is not fully testable, and the testability
degrades as the circuit is used in a more restricted environ-
ment. The more aggressive timing assumptions tend to
increase the performance of the circuit, reduce the area and
power, and generally increase the testability. One of the
reasons that testability coverage is increased using relative
timing is because many of the redundant coverings are
removed when the circuits are optimized for time.

Another example of the use of relative timing design can
be see in the design of a portion of a variable length
instruction decode, here called a “Tag Unit”. Decoding of
variable length instructions is inherently a serial process,
since the length of any instruction directly depends on the
lengths of all previous instructions. The performance of
instruction length decoding for many computer architectures
depends directly on the speed with which this serial decod-
ing operates. A key component in some such architectures is
the Tag Unit used to implement the serial ordering of
instructions.

Aspeed-independent tag unit is shown in FIG. 16a. In this
example all the interfaces are treated as speed-independent
interfaces. The assumption that all the interfaces are speed-
independent interfaces means that all the interfaces require
request/acknowledge handshakes; this example assumes a
four cycle protocol.

Three processes are needed to implement this box:

PA=r].sr.sal.(sr|.sallact].r}).al.PA
PB=sr!.saf(sr}.sal[r].al).r|.a|.PB
C4=(go0|gol|g02|go3).sa.C4

The two PA processes synchronize the four phase handshake
after an r request is received, while the two PB processes are
passive and synchronize before handshaking. Therefore,

10

20

25

30

35

40

45

50

55

60

65

10

when an irdy and ti request arrives and the bufreq and to
cycles have completed, the ti and irdy signals will be
acknowledged and the to and bufreq cycles will start. This
is accomplished in the specification by renaming the signals
and composing the processes as follows:

IRDY=PA[irdy/r, irdyack/a, go0/sr]
TAGIN=PA[ti/r, tia/a, go2/sr]
TAGOUT=PB][to/r, toa/a, go3/sr]
BUFREQ=PB[bufreq/r, bufack/a, go2/sr]

TAGUNIT=(IRDY|TAGIN|TAGOUT|BUFREQ|C4)\{go0, gol,
202, go3, sa}

The implementation of these processes using a program
such as ATACS is shown in FIG. 17. Processes PA and PB
result in very efficient implementations. The large OR gate,
C-element, and the necessity of passing through three state
machines from the input to output of the tag path, however,
creates significant latency in this implementation.

A more efficient circuit is shown in FIG. 16b. This
efficient circuit was derived using relative timing constraints
as described above. For instance, the mutex assumption in
the speed-independent implementation results in the
removal of the backward-path handshake for tagin and
tagout interfaces. The forward signals are treated as pulses
and, therefore, handled as in the FIFO example above. The
request and acknowledge protocols on the irdy and bufreq
paths are a combination of four cycle and pulse-mode
signaling, with irdyack and bufreq being pulses.

A comparison of the speed-independent circuit of FIG.
16a and the RT circuit of FIG. 165 shows that the RT circuit
provides substantial benefit in terms of testability, power,
and performance. In real-life applications, the area benefit
from this approach may be even higher. For instance, in a
microprocessor which can be scaled to reach a higher
performance, if slow parts are used, higher scaling factors
must be employed to meet the target performance. If the
slower SI tag unit is used, for example, the area required
would have to balloon significantly if stringent performance
goals are to be met.

In one embodiment, the RT constraints are generated and
verified through a version of Analyze that contains support
for RT. All the constraints can be attached to an initial
process specification as predicates. This simplifies and clari-
fies both the initial function of the circuit as well as the
assumptions required, as each interface can be specified as
a simple process with causal synchronization. Representing
the complete behavior constraints or timing constraints as a
network, as was shown in the FIFO example above, can be
helpful for understanding small examples, but can be con-
fusing and impractical for larger, real-world examples such
as the Tag Unit.

In one embodiment, a modified version of a synthesis tool
such as Petrify incorporates methods for synthesizing
hazard-free circuits under timing assumptions. For instance,
in one embodiment, a “.time” parameter has been added in
order to convey the relative timing constraints. In addition,
in one embodiment an algorithm has been added to the
synthesis tool to automatically derive “reasonable” timing
assumptions. Finally, in one embodiment, the synthesis tool
provides backannotation which indicate the required timing
constraints for proper functioning of the circuit. Each of
these features will be detailed below.

In one synthesis tool environment, three types of timing
assumptions can be specified: firing order of concurrent

US 6,314,553 B1

11

events, simultaneous occurrence of concurrent events and
carly enabling. To properly understand the semantics of
relative timing constraints, the concepts of enabling region
and firing region must be introduced. Given a state graph,
the enabling region of event a, EN(a) is defined as the set of
states in which a is enabled. The firing region of event a,
FR(a), is defined as the set of states in which a is allowed to
fire.

Although in speed-independent circuits both concepts are
the same (an event can fire as soon as it is enabled), they
differ substantially when timing assumptions are considered.
An event can be enabled at some state but cannot fire until
the system reaches its firing region. All these timing assump-
tions are specified in the input file where the STG is
described. They should go after the graph (or state graph)
specification and before the end statement.

A timing assumption based on the firing order of concur-
rent events is specified with the following syntax:

time a<[b

The meaning of this statement is the following, “Whenever
events a and b are concurrent (i.e. simultaneously enabled
and not in conflict), a will always fire before b.”

To illustrate how the assumption is made by a synthesis
tool such as Petrify we will use the example of FIG. 18. We
can observe that events a and b have different relations. They
can be concurrent (both enabled in state s) or ordered (a is
enabled in s, and b is enabled in s.). The timing assumption
only applies to those states in which the events are concur-
rent.

The application of the timing assumption would mean that
b will not fire in s,. As a consequence, state s,, will become
unreachable in the timed domain.

With regard to event b, Petrify considers that s, is a
“don’{care” state for the enablement of event b, i.e. after
logic synthesis two different solutions could be reported.
The first solution would be one in which b is enabled in s,.
Still, the timing assumptions will make s, unreachable, thus
b will not fire until s4 is reached.

The second solution would be one in which b is not
enabled in s,. In this way, the ordering a—b will be forced
by the logic of the circuit, i.e. no timing assumption is
required for this solution to be valid.

These two solutions can be formally expressed as follows:

{85}=FR(b) ZEN(b) < {0, ss}

and Petrify will choose a solution for EN(b) that minimizes
the cost of the logic.

A timing assumption based on the simultaneous occur-
rence of concurrent events is specified with the following
syntax:

.time a=b@c

An example of this assumption is shown in FIG. 19. The
meaning of the simultaneity timing assumption is the
following, “Let us take the states in which a and b are
enabled and concurrent. Event ¢ will not fire in any of the
successor states until a and b have fired. This assumption
only applies when c is triggered by either a or b or both.”

Informally, this assumption describes the situation in
which the firing time difference between a and b is not
distinguishable by event c. Looking at the example, this
would mean that the system would produce the same observ-
able behavior if ¢ would be “triggered” by b or by both
events a and b.

Looking at the state graph of FIG. 19, the simultaneity
constraint indicates that ¢ would not fire in state s, and,

5

10

15

20

25

30

35

40

45

50

55

60

65

12

therefore, state s5 would become unreachable. On the other
hand, event ¢ would be allowed to be enabled in the states
S1, 84 and s. Thus,

{84}=FR(c)SEN(c)={sy, 5.: 86}

The simultaneity timing assumptions can be extended to
larger number of events as follows:

time a=b=c=d@x,y,z

meaning that the firing time of events a, b, ¢ and d is
considered to be non-distinguishable with respect to events
X, y and z.

A timing assumption based on early enabling is specified
with the following syntax:

time c>b

An example of this assumption is shown in FIG. 20. The
formal meaning of this assumption is the following, “Let us
take all those states s-I in which ¢ is not enabled, but
becomes enabled after firing b (i.e., b triggers ¢). Then the
states s; can potentially belong to EN(c).”

Informally, this assumption indicates that event ¢ can be
enabled before it must fire. The delay of the logic imple-
menting ¢ will, however, ensure that ¢ will fire after b.
Indeed, this may be seen as a risky assumption, since the
logic of signals b and ¢ are not known before logic synthesis.
Relative timing assumptions therefore require a post-
verification to ensure their validity. If they do not hold after
synthesis, some after must be taken. For example, the
designer could resynthesize the circuit without the invalid
assumptions or change the delays of the components of the
circuit (e.g., by transistor sizing or delay padding) so that the
assumptions become valid.

In the previous example, EN(c) and FR(c) are defined as
follows:

{86 86}=FR(c) ZEN(c) {53, 54, 56, Se}

The early enabling assumptions can be extended to chains
of events. In the previous example, the following assump-
tions could also be specified:

c>b>a

indicating that EN(c) can be extended up to the enabling of
event a. However, no assumption is made about the enable-
ment of b with regard to a.

Timing assumptions can be used in Petrify to synthesize
the well-known xyz example shown in FIG. 21. A speed-
independent implementation of the behavior with complex
gates would be the following:

[x]=2(x+y);

[yl=xz}

[z]=y'z+x;

Assume that X, y and z are output signals and that the firing
of y+ always occurs before the firing of x—. This can be
deduced intuitively from FIG. 21 by observing that y+ is
always enabled before x- and that the logic for signal x in
the speed-independent implementation looks more complex
than the logic for signal y. (All of these assumptions will, of
course, be verified after synthesis of the circuit.)

Based on these assumptions, the following timing
assumption can be added to the behavioral specification:

outputs X y z
.graph

US 6,314,553 B1

13

X+y+7+

74X~

y+z—

X-7~

z-y-

y-X+

.marking {<y—x+>}
time y+<|x-

.end

A circuit can then be synthesized with the following com-
mand:

petrify xyz.g —cg —topt —eqn Xxyz.eqn —no

where the option “<topt” indicates that Petrify must take
timing assumptions into consideration to derive logic. The
following logic is obtained:

[x]=Z (x+y);

[y]=xz}

[z]=x;

The synthesized logic is a drastic simplification of the logic
for signal z. Petrify has taken advantage of the timing
assumption to consider the state 001 as unreachable and
implement z as a simple buffer.

But as important as the solution is the feedback that
Petrify gives about the timing assumptions used for each
solution. In one embodiment, file petrify.log includes dif-
ferent solutions for each signal. In one such embodiment, the
following solutions are reported for signal z:

>triggers(SET):
>triggers(RESET):

>4 transistors (2 n, 2 p)
>Estimated delay: rising = 18.19, falling = 29.19
>Speed independent (no timing assumptions)

X+ =) z+
x- -) z—-

The first solution corresponds to the one obtained with
timing assumptions. The second one corresponds to the
speed-independent implementation. There are two important
pieces of information reported for the solutions: timing
assumptions and trigger signals.

In the embodiment shown, Petrify indicates under timing
assumptions that the solution z=x is only valid under the
assumption that y+ fires before x. In contrast, the solution
z=y'z+X is valid under any timing assumption (ie., it’s
speed-independent). In one embodiment, the timing assump-
tions reported by Petrify are not always the same as any
timing assumptions that are part of the specification. Instead
Petrify will try to report the less stringent assumptions that
make the solution valid.

Under trigger signals, in one embodiment, Petrify indi-
cates which events are triggered by the rising and falling
transitions of the signal. Note the difference for the trigger
events of z-. In the “timed” solution, y+ is no longer
triggering z— since it is assumed to fire before x-. This
information is much more relevant when “early enabling”
assumptions are done for synthesis.

Another type of timing assumption can be made. For
instance, in the xyz circuit y+ and z+ are enabled simulta-
neously. If the delays of their gates would be similar, we
could consider that the firing time of y+ and z+ would not
be distinguishable with respect to event x-. The specifica-
tion would now read as follows:

10

15

20

25

30

35

40

45

50

55

60

65

14

.outputs x y z

.graph

X+y+z+

Z+X—

y+z—

X—7—

zZ-y-

y—X+

.marking {<y-x+>}

time y+=z+#x—

.end
After executing the same command as above, the following
solution is obtained:

[x]=ys

[yl=xz}

[z]=x;
Any timing assumptions that are algorithmically generated
or based on simultaneous enablings may not result in correct
solutions and must be checked for validity. Again, in one
embodiment the file petrify.log will provides relevant infor-
mation about timing assumptions. In one such embodiment
the file petrify.log contains a number of solutions for x.

These solutions can be compared to the speed-independent
solution (in “other solutions”):

xX=y

>triggers(SET): y- -) x+

>triggers(RESET): y+ —) x—

>2 transistors (1 n, 1 p)

>Estimated delay: rising = 13.44, falling = 10.75

>Concurrency reduction: y+==>x—

>Timing assumptions (early enabling): z+<x—
x=yz

>triggers(SET): y- -) x+
>triggers(RESET): (y+, z+)-) x—
>4 transistors (2 n, 2 p)
>Estimated delay: rising = 27.50, falling = 11.00
>Timing assumptions (early enabling): z+<x—
[. .. other solutions . . .]
x=zx+y)
>triggers(SET): y- -) x+
>triggers(RESET): z+ -) x—
>8 transistors (4 n, 4 p)
>Estimated delay: rising = 29.38, falling = 11.00
>Speed independent (no timing assumptions)

The solution x=y' is generated by disabling x- in state 101
(where it was initially enabled). This makes states 001
unreachable. But note that, in this case, it is not unreachable
due to timing assumptions, but due to the fact that the logic
for x does not enable x- in state 101. This is what the
message

>Concurrency reduction: y+==>x+

means. In other words, the fact that y+ fires before x— fires
does not need to be verified by making timing assumptions.
It is something that the logic of the circuit already guaran-
tees.

Still, there is another important assumption for that solu-
tion:

>Timing assumptions (early enabling): z+<x—

This indicates that x— is enabled in such a way that it
becomes concurrent with z+ (now x- is also enabled in state
110). The assumption for correctness is that z+ should fire

US 6,314,553 B1

15

before x-. To verify that assumption at circuit level, one
might need some additional information, i.e., how much
early is x— enabled? Again, that information is provided in
the section of trigger signals. We may realize that now it is
y+ that triggers x— (it was z+ in the speed-independent
solution). Thus, by combining these pieces of information
one can determine when the enabling of an event is started

(trigger events) and when the event is allowed to fire (when

other concurrent events have already fired). Now, it is time

for the designer to decide whether these assumptions are
realistic or can be met by the implementation.

Still, there is another interesting solution that appears in
the file petrify.log, i.e., x=y'z'. This solution makes the state
001 again reachable, since x— is enabled in state 101. But x-
is also enabled earlier in state 110 and the assumption zZ+<x—
must still be met.

In one embodiment, an important aspect of the informa-
tion provided by the relative timing implementation of
Petrify is that different timing assumptions must be ensured
for each different solution of each signal. The selection of
one solution for one signal does not affect the assumptions
made for other gates. However, the combination of all the
solutions for each gate may lead to a set of simpler con-
straints. In the embodiment of Petrify described above, it is
still up to the designer to figure out how the constraints
interact. What this embodiment of Petrify does guarantee is
that the solutions will be valid if the timing assumptions
reported for each individual solution of each signal are met.

In one embodiment, Petrify makes an attempt to auto-
matically generate “reasonable” timing assumptions. Since a
number of assumptions are easily derivable by inspection of
the structure of the specification, such an approach allows
the designer to work mainly in the area of improving the
performance of the circuits. That is, Petrify is a tool for
simplifying the job of the designer and not a designer
substitute. Indeed, in one embodiment, Petrify identifies the
assumptions which have been generated automatically and
those assumptions that are actually used for each solution. It
is then the designer’s responsibility to guarantee the validity
of the timing assumptions.

The following model is considered for the delay of a
signal transition (delay from its enabling time to its firing
time):

Non-input signals: each gate implementing a non-input
signal has a delay in the interval [1-€, 1+€], where e<V3.
Thus, the delay of two gates is always greater than the
delay of one gate.

Input signals: have a delay in the interval [1+€, o]. Thus, the
delay of the environment is always greater than the delay
of one gate.

Slow input signals: have a delay in the interval [k, o], where
k is any arbitrarily large constant. The delay k indicates
that the enabling of a slow input signal transition always
allows the completion of any internal activity in the
circuit (e.g., firing of enabled non-input signals).

Delay padding: the delay of any gate implementing any
non-input signal can be lengthened after logic synthesis,
e.g. by transistor sizing or delay padding, to meet the
required timing assumptions.

The automatic generation of timing assumptions by using
this delay model will be illustrated with the example of FIG.
22, wherei, . . .1, are input signals and where the remaining
signals are output signals. Moreover, the event i,+ is
declared to be “slow” by using the statement:

slow 14+

The assumptions made on the relative order of two
concurrent events, a and b are the following:

10

15

20

25

30

35

40

45

50

55

60

65

16

1) If a is always enabled before b and a is not an input event,
then a is assumed to fire before (time a<[b). In the
example of FIG. 22 this assumption would apply, among
others, to the pairs of events a—i,+ and b+—g+.

2) If a and b are simultaneously enabled, a is a non-input
event and b is an input event, then a is assumed to fire
before (.time a<|b). There is no such case in the example
of FIG. 22, but it would correspond to the pair of events
a—b+ if b was an input event.

3) If a and b are simultancously enabled and both are
non-input events, Petrify selects heuristically an order
between both (typically this order determines that the
event with simpler logic will fire first, although it may not
be necessarily true when the actual gates are derived after
logic synthesis).

4) No assumptions are done for pairs of events that can be
enabled in different order in the untimed domain. For
example, for events i,+ and f+ we can find event traces in
which i,+ is enabled first (e.g., i;+, b+, ¢+) and in which
f+is first enabled (e.g., i1+, ¢+, b+).

In one embodiment, if two non-input events, a and b, are
enabled simultaneously and another event c is triggered by
a or b (or both), a simultaneity assumption is automatically
generated (a=b@c). In one such embodiment, Petrify makes
this analysis only for pairs of simultaneous events. Assump-
tions on more than two simultaneous events are left to be
specified by the designer. There are several examples of
simultaneity assumptions in FIG. 22 (e.g., b+=c+@f+ and
r+=s+@h+).

In one embodiment, when several non-input events have
a trigger relation among them, Petrify automatically gener-
ates early enabling assumptions, taking into account that the
delays of the gates can be properly lengthened to meet the
ordering relations of the specification. In the example of
FIG. 22, there are chains of events that have a trigger
relation among them (e.g., c+—f+—>g+—h+ and r+—h+).
The following assumptions are automatically generated:

time f+>c+
time g+>f+>c+
time h+>g+>f+>c+

time h+>r+

In one embodiment, ordering of slow input events is a
generalization of the fundamental mode assumption. In one
embodiment, Petrify is designed with the constraint that the
delay of slow input events is long enough to enable the
circuit stabilize when other internal activity is in process.
Because of this constraint, Petrify can automatically gener-
ate assumptions on the firing order of slow events.

In one such embodiment, timing analysis is performed in
such a way that only concurrent non-input events having a
common predecessor history with the slow input event are
assumed to fire first. This intuitive idea will be more clear
after looking at the example in FIG. 22, where only i,+ is a
slow input event.

It can be seen by examining FIG. 22 that events i,+ and
g+ have a common predecessor event in their history: i;+.
Moreover, no other input events precede the enablement of
i,+ and g+ since the firing of i,+. If the firing time of i,+ is
treated as the starting point for timing analysis (i.e., t=0), the
delay model for automatic assumptions indicates that g+ will
fire in the interval [3(1-€), 3(1+¢)], i.c., three gate delays.
On the other hand, the firing interval for i,+ will be in the
interval [k+l-€,), where k can be arbitrarily large.
Therefore, Petrify will deduce that the firing time for g+ will
be always before the one for i,+.

US 6,314,553 B1

17

Note that this assumption does not hold when the con-
sidered event is h+since i+ and g+ have no common
predecessor event in their history. For a similar reason, no
ordering assumption can be made for the firing of i,+ and d+
since an input event (iy+) precedes d+ before meeting the i+
common preceding event.

Technically, this common point in the history of two
events is called local nodal point. An analysis based on local
nodal points generalizes the concept of fundamental node
typically used for the synthesis of burst-mode specifications.
Burst-mode machines work under the assumption that each
state of the specification is a global nodal point, i.e. no
non-input activity is enabled in the state. From the point of
view of specification, fundamental mode does not allow any
concurrency between the environment and the circuit.

The notion of a slow input event takes advantage of
fundamental mode assumptions (i.e., logic can be
simplified) and speed-independent assumptions (i.e., con-
currency is not sacrificed). As an example, the definition of
slow input events allows the synthesis of a system having
several sets of handshake signals. It does this by assuming
a “local”) fundamental mode operation with each individual
handshake, but by also maintaining the concurrency among
different independent sets of handshakes. One of these
examples is the VME bus controller described in the next
section.

Finally, all the automatically generated assumptions for
the example of FIG. 22 are listed below:

time b+<a+
time c+<la+
time a+<id+
time a+<le+
time a+<|f+
time a+<|g+
time a+<[h+
time c+<[b+
time b+<[i3+
time b+<|d+
time b+<|f+
.time b+<|g+
.time b+<|h+
time c+<[i3+
time c+<|d+
time c+<id+
time c+<le+
time s+<|h+
time s+<|r+
time a+<id+
time c+<id+
time f+<[id+

time g+<[id+

10

15

20

25

30

35

40

45

50

55

60

65

18

time f+>c+

time g+>f+>c+
time h+>g+>f+>c+
time h+>r+

time a+=c+@f+
time b+=c+@f+
time r+=s+@h+

Even though the xyz example is simple, significant
improvements in logic can be obtained by applying auto-
matic timing assumptions on it. For the xyz example shown
in FIG. 21 and without any timing assumption, one would
execute the command:

petrify xyz.g —cg —atopt —eqn Xyz.eqn —no
The option “-atopt” indicates that Petrify must generate
automatic timing assumptions. In the situation where the
designer has already specified some assumptions, the new
ones are added to the designer’s ones. In any case, Petrify
takes care that the assumptions automatically generated are
not contradictory with the ones specified by the designer.
The resulting circuit is shown in FIG. 23.

The circuit shown in FIG. 23 is the solution reported by
Petrify in the file xyz.eqn. Since the timing assumptions
were generated algorithmically they must be examined for
validity. In one embodiment, this can be done by examining
the file petrify.log. For instance, in one embodiment the
following assumptions have been automatically generated:

time z+ <|y+

time y+ <[x—

time X+>y->X->y+
time X+>y->z—

#concurrency reduction (automatic & simultaneous)
#concurrency reduction (automatic)

#early enabling (automatic)

#early enabling (automatic)

time x—>z+ #early enabling (automatic)
time z->y+ #early enabling (automatic)
time z—>x— #early enabling (automatic)
time y-»z— #early enabling (automatic)

time y->z->z->z+
time y+=z+@x-

#early enabling (automatic)
#simultaneity (automatic)

and the following information is reported for the solutions:

x=y

>triggers(SET): y- -) x+

>triggers(RESET): y+ —) x—

>2 transistors (1 n, 1 p)

>Estimated delay: rising = 13.44, falling = 10.75

>Concurrency reduction: y+==>x—

>Timing assumptions (early enabling): z+<x—
y=z

>triggers(SET): z+ —) y+

>triggers(RESET): z— -) y—

>4 transistors (2 n, 2 p)

>Estimated delay: rising = 18.19, falling = 16.69

>Concurrency reduction z+==>y+

>Speed independent (no timing assumptions)
z=X

>triggers(SET): x +-) z+
>triggers(RESET): x - -) z—-

US 6,314,553 B1

19

-continued

>4 transistors (2 n, 2 p)
>Estimated delay: rising = 18.19, falling = 16.69
>Timing assumptions (concurrency): y+<x—

The timing information can be summarized as follows:
1) The firing order z+—>y+ is required for the solution x=y'

to be valid, but the firing order z+—>y+ is enforced by the

solution y=z that reduces concurrency and makes the state

110 unreachable; and
2) The firing order y+—x- is required for the solution z=x

to be valid, but the firing order y+—x- is enforced by the

solution x=y' that reduces concurrency and makes the
state 001 unreachable.

The enforced concurrency reduction therefore ensures the
validity of the timing assumptions and a speed-independent
circuit is obtained. This, therefore, is an example on how
concurrency reduction does not always imply a loss of
performance. The reduction of logic results in a more
efficient circuit.

A more complex circuit will be synthesized next, with an
emphasis on a synthesis methodology having relative timing
assumptions. The I/O interface of a VME bus controller 100
is shown in FIGS. 24a and 24b. Controller 100 controls the
communication of a device 104 with VME bus 106 by
controlling a data transceiver 102 using signal D. Controller
100 also includes signals DSr, DSw, DTACK, LDS and
LDTACK. Signals LDS and LDTACK are a pair of hand-
shake signals that follow a four phase protocol. Signals DSr
and DSw follow a four phase protocol with the output signal
DTACK. DSr and DSw indicate the beginning of a READ
and WRITE cycle respectively. The timing diagram corre-
sponding to a READ cycle is depicted in FIG. 24b.

STGs corresponding to the READ and WRITE cycles of
controller 100 are shown in FIGS. 254 and 25b respectively.

In order to synthesize VME bus controller 100, a speci-
fication must be defined that includes the behavior of both
the READ and WRITE cycles. This can be done by using
choice places in a Petri net formalism that model the
nondeterminism of the environment. In this case, the non-
determinism comes from the fact that the environment can
choose to initiate a READ or a WRITE cycle after the
completion of the previous cycle. An STG 110 describing
the complete behavior of the controller is shown in FIG. 26a.
Some signal transitions, e.g., 1ds+, have multiple instances
in STG 110. Indices 1 and 2 are used in FIG. 26a to
distinguish events in the READ and WRITE cycles, respec-
tively.

There is also the possibility of representing the whole
behavior in an STG 120 having only one transition for each
different label. The STG can be obtained by Petrify by using
the command:

petrify vme.g —o vme.1label

This result is shown in FIG. 26b. This representation,
however, is much less readable that the previous one. For
that reason STG 110 of FIG. 264 is used to synthesize the
circuit of controller 100. By using that representation, the
specification of timing assumptions becomes much more
intuitive, since the timing assumptions can be independently
defined for the READ and WRITE cycles.

First, a speed-independent implementation of VME bus
controller 100 is derived. The notation used for the repre-
sentation of generalized C elements is shown in FIG. 27.
After executing the command

10

15

25

30

35

40

45

50

55

60

65

20

petrify vme.g —gc —fr10 —eqn vme.eqn —log vme.log —o vme.csc

results in the solution depicted in FIGS. 284 and b, where
FIG. 28a illustrates a specification of the VME bus control-
ler of FIGS. 24a and b and FIG. 28b illustrates one speed-
independent embodiment of that specification. The option
—fr10 increases the width of the exploration when solving
CSC conflicts. One internal signal, csc0, has been inserted to
encode the states.

Next a slow environment synthesis is described. If one
assumes that the response time of the environment is long
enough to enable the circuit to complete its internal activity
in progress, Petrify can be enabled to generate automatic
timing assumptions after having specified the input events as
“slow”. This can be achieved by including the “.slowenv”
statement in the specification and using the option “-atopt”
for automatic generation of timing assumptions. In one
embodiment, the specification would look like this:

.nputs dsr dsw ldtack
.outputs dtack Ids d
.graph

pO dsr+dsw+
pl 1ds+/1 1ds+/2

Read cycle
dsr+lds+/1
Ids+/1 Idtack+/1
Idtack+/1 d+/1
d+/1 dtack+/1
dtack+/1 dsr-
dsr-d-/1
d-/1 p2 p3

Write cycle
dsw+d+/2
d+/2 1ds+/2
1ds+/2 Idtack+/2
Idtack+/2 d-/2
d-/2 dtack+/2
dtack+/2 dsw-—
dsw-p2 p3

Return to zero
p2 1ds-
p3 dtack-
lds-1dtack—
dtack—p0
Idtack—pl

.marking {p0 p1}
Assuming an slow environment
.slowenv
.end
and the command would appear as follows:

petrify vme.g —gc —atopt —eqn vme.eqn -log vme.log —no

The result is shown in FIG. 29. Note that, in this solution, no
state signals were inserted to solve the state encoding
problem. This is due to the fact that, in general, timing
assumptions make some of the states having conflicts
unreachable. In this particular case, all conflicts disappear.
The automatic timing assumptions generated by Petrify are
reported in the file vme.log as:

US 6,314,553 B1

21

22

-continued

.time 1ds—<|dsr+
.time 1ds—<|dsw+
.time 1ds—<|d+/2
.time dtack—<|lds-

.time dtack—<|ldtack—
.time 1ds—<|dsr+
.time 1ds—<|dsw+
.time dtack—<|ldtack—

#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic
& simultaneous)

#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)

10

time lds+/2>d+/2
time dtack+/1>d+/1
.time dtack+/2>d-/2
.time 1ds—>d-/1
.time dtack->d-/1

#early enabling (automatic)
#early enabling (automatic)
#early enabling (automatic)
#early enabling (automatic)
#early enabling (automatic)

Note that the fourth assumption (.time dtack—<|lds—) corre-
sponds to the ordering of two output events that are enabled
simultaneous. The message “automatic & simultaneous”
indicates two important things: (1) that the assumption has
been generated automatically and (2) that both events are
enabled simultaneously and Petrify gave priority to one of
them when deciding the firing order.

This is one of the cases where the intervention of the
designer can be useful. The designer might select, for
instance, another firing order by adding a timing assumption
in the specification: .time Ids-<|dtack-. If the same com-
mand is executed with this new timing assumption the
vme.log will be the following:

15

20

25

30

.time 1ds—<|dtack~
.time 1ds—<|dsr+
.time 1ds—<|dsw+
.time 1ds—<|d+/2
.time dtack—<|ldtack—
.time 1ds—<|dsr+
.time 1ds—<|dsw+
.time dtack—<|ldtack—
.time 1ds+/2>d+/2
.time dtack+/1>d+/1

#concurrency reduction (specification)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#concurrency reduction (automatic)
#early enabling (automatic)

#early enabling (automatic)

35

time dtack+/2>d-/2
time 1ds—>d-/1
time dtack->d-/1

#early enabling (automatic)
#early enabling (automatic)
#early enabling (automatic)

Note that the first timing assumption (.time lds-<|dtack-)
comes now from the “specification”. Petrify cannot,
therefore, generate an assumption such as “.time
dtack<|lds-" that would contradict the assumption specified
by the designer. The resulting circuit is shown in FIG. 30;
one can see that there has been improvement in the synthesis
of the dtack circuitry by reversing the firing order of dtack-
and 1ds-.

There are other timing assumptions that can be made. For
instance, from the specification of controller 100 shown in
FIG. 264, it can be observed that the return-to-zero paths of
the protocols at both sides of the controller (bus and device)
are done concurrently. We may, therefore, be able to assume
that the bus control logic is so slow that any new request for
a read or write cycle (dsr+ or dsw+) will never arrive at
controller 100 before the handshake with the device has
been completed. This can be specified by adding two new
timing assumptions:

.time ldtack-<|dsr+ldtack—<|dsw+

The resulting circuit is shown in FIG. 31. This is the lowest
cost solution.

The circuit of FIG. 31 (or whichever circuit is to be
selected for fabrication) must be analyzed to determine if the
assumptions hold. To do this analysis one must first study the
information reported in the file vme.log about each gate.

SET(dtack’) = 1ds’
RESET(dtack’) = ldtack lds

[dtack] = dtack’
>triggers(SET):
>triggers(RESET):

1ds' = dsw' dsr’

(output inverter)
lds— —> dtack-
ldtack+/1 —> dtack+/1 ldtack+/2 —> dtack+/2

>5 transistors (3 n, 2 p)

>Estimated delay: rising = 22.94, falling = 16.69

>Concurrency reduction: lds —==> dtack-

>Timing assumptions (early enabling): d+/1<dtack+/1 d—/2<dtack+/2

[1ds] = 1ds’ (output inverter)

>triggers(SET): (dst—, dsw—) —> lds—

>triggers(RESET): dsr+ —> lds+/1 dsw+ -) 1ds+/2

>6 transistors (3 n, 3 p)

>Estimated delay: rising = 18.44, falling = 24.50

>Timing assumptions (concurrency): ldtack-!dsw+ ldtack—!dsr+
>Timing assumptions (early enabling): d+/2<lds+/2 d—/1<lds—

SET (d') = dsr’ ldtack

RESET(d') = dsw ldtack’ + dsr ldtack

[d] = &' (output inverter)
>trigger(SET): dsr— —> d—/1 ldtack+/2 —> d-/2
>triggers(RESET): ldtack+/1 —> d+/1 (dsw+, ldtack—) —> d+/2
>10 transistors (6 n, 4 p)
>Estimated delay: rising = 29/88, falling = 29.25

US 6,314,553 B1

23

-continued

24

>Concurrency reduction: ldtack-==>d+/2
>Timing assumptions(concurrency): ldtack—<dsr+

The timing assumptions are represented and summarized in
FIG. 32. We can distinguish three types of timing arcs in that
diagram:

1) Concurrency reduction arcs that denote the additional
causality relations enforced by the logic (lds——dtack—
and ldtack-—d+/2). These are not timing assumptions
that must be verified for the circuit to be correct.

2) Firing order arcs that indicate the assumed firing ordering
of concurrent events for the circuit to be correct. These are
timing assumptions that must be verified or enforced by
delay padding for the circuit to be correct.

3) Early enabling arcs that indicate the new trigger events for
the early enabled events. For example, event 1ds— that is
triggered by d-/1 in the read cycle is now triggered by
dsr-. This information is extracted by combining the early
enabling timing assumptions and the list of trigger events
reported for each solution. These are assumptions that
must be verified for the circuit to be correct. In the
above-mentioned example, for instance, it must be veri-
fied that event d—/1 will occur before event 1ds-.

The assumptions ldtack——=dsr+ and ldtack——dsw+ were
made in characterizing the speed of the bus control logic.
Therefore, they can be considered satisfied. The assumptions
on early enabling, however, must be carefully analyzed,
since their validity depends on the actual delays of the
derived logic.

All the early enabling assumptions rely on the fact that the
delay of gate d is shorter than the delay of 1ds and dtack.
Unfortunately, by examining FIG. 31 it can be seen that gate
d is more complex than the other gates. The assumption that
the delay of gate d is shorter than the delay of 1ds and dtack
cannot hold; the circuit of FIG. 31 must, therefore, be
modified to make these assumptions hold true. One possible
solution is depicted in FIG. 33. A delay d, should ensure that
Ids+/2 and Ids- will fire later than d+/2 and d-/1,
respectively, even if they are triggered simultaneously. The
delay d, should ensure that dtack+/1 and dtack+/2 will fire
later than d+/1 and d—/2, respectively.

Note that the solution shown in FIG. 33 only delays the
triggering effect of signal 1dtack+ on dtack+. Another solu-
tion would have been to add a delay at the output of gate
dtack, but this would also delay dtack—, which is not
necessary for the correct functioning of the circuit. Thus, it
can be seen that the information reported by Petrify allows
the designer to customize the circuit such that timing
assumptions are met for individual events of a signal, rather
than for all the events of the signal.

Relative timing is a useful way of reasoning about
designs. The waveforms in databooks are presented in such
a way as to highlight the relation between signals and
transitions. One can use relative timing to architect systems,
as well as synthesize controllers and verify the correctness
of systems. Synthesis and verification algorithms can be
designed to directly support this concept where time is
represented as a relationship similar to a behavioral or causal
relation. Relative timing can be applied as aggressively or
conservatively as desired. In a restricted form races in
speed-independent implementations due to inverter delays
can be discovered, and relative timing can be used to show
whether the race is critical.

Relative timing does not preclude metric or absolute
timing. Metric timing must eventually be applied in the

10

15

20

25

30

35

40

45

50

55

60

implementation against the RT predicates to prove that they
hold. Further, many of the RT predicates require a certain
amount of slack, or setup and hold times, in the precedence
relations. The robustness and reliability of the circuits can
depend directly on the amount of slack on the RT con-
straints.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be substituted for the specific
embodiment shown. This application is intended to cover
any adaptations or variations of the present invention.
Therefore, it is intended that this invention be limited only
by the claims and the equivalents thereof.

What is claimed is:

1. A method of performing logic synthesis from a behav-
ioral description of a circuit, comprising:

defining a signal ordering of signals in the circuit, wherein

defining includes specifying a relative ordering of a
plurality of events within the circuit as a function of the
behavioral description of the circuit, generating a tim-
ing assumption automatically within a processor and
modifying the relative ordering as a function of the
timing assumption;

modifying the behavioral description as a function of the

signal ordering; and

synthesizing the circuit as a function of the modified

behavioral description.
2. The method according to claim 1, wherein modifying
the relative ordering includes receiving a designer-specified
timing assumption and further modifying the relative order-
ing as a function of the designer-specified timing assump-
tion.
3. The method according to claim 2, wherein the designer-
specified timing assumption is expressed as a relative timing
(RT) predicate.
4. The method according to claim 1, wherein synthesizing
includes verifying that the circuit maintains the modified
relative ordering of the plurality of events.
5. The method according to claim 4, wherein the relative
ordering is expressed as an RT predicate.
6. The method according to claim 1, wherein the timing
assumption is expressed as an RT predicate.
7. A method of performing logic synthesis from a behav-
ioral description of a circuit, comprising:
defining a signal ordering of signals in the circuit, wherein
defining includes specifying a relative ordering of a
plurality of events within the circuit, wherein specify-
ing a relative ordering includes generating a timing
assumption automatically within a processor;

modifying the behavioral description as a function of the
signal ordering; and

synthesizing the circuit as a function of the modified

behavioral description;

wherein the timing assumption is expressed as an RT

predicate.

8. A method of performing logic synthesis from a behav-
ioral description of a circuit, comprising:

defining a signal ordering of signals in the circuit, wherein

definig includes specifying a relative ordering of a
plurality of events within the circuit;

US 6,314,553 B1

25

modifying the behavioral description as a function of the
signal ordering; and

synthesizing the circuit as a function of the modified
behavioral description, wherein synthesizing includes
verifying that the circuit maintains the relative ordering
of the plurality of events;

wherein the relative ordering is expressed as an RT

predicate.

9. A method of performing logic verification from a
behavioral description of a circuit, comprising:

defining a signal ordering of signals in the circuit, wherein

defining includes specifying a relative ordering of a
plurality of events within the circuit as a function of the
behavioral description of the circuit, generating a tim-
ing assumption automatically within a processor and
modifying the relative ordering as a function of the
timing assumption;

modifying the behavioral description as a function of the

signal ordering; and

verifying the circuit as a function of the modified behav-

ioral description.
10. The method according to claim 9, wherein modifying
the relative ordering includes receiving a designer-specified
timing assumption and further modifying the relative order-
ing as a function of the designer-specified timing assump-
tion.
11. The method according to claim 10, wherein the
designer-specified timing assumption is expressed as an RT
predicate.
12. The method according to claim 9, wherein verifying
includes synthesizing the circuit such that the circuit main-
tains the modified relative ordering of the plurality of events.
13. The method according to claim 12, wherein the
relative ordering is expressed as an RT predicate.
14. The method according to claim 9, wherein the timing
assumption is expressed as an RT predicate.
15. A method of performing logic verification from a
behavioral description of a circuit, comprising:
defining a signal ordering of signals in the circuit, wherein
defining includes specifying a relative ordering of a
plurality of events within the circuit, wherein specify-
ing a relative ordering includes generating a timing
assumption automatically within a processor;

modifying the behavioral description as a function of the
signal ordering; and

verifying the circuit as a function of the modified behav-

ioral description;

wherein the timing assumption is expressed as an RT

predicate.

16. A method of performing logic verfication from a
behavioral description of a circuit, comprising:

defining a signal ordering of signals in the circuit, wherein

defining includes specifying a relative ordering of a
plurality of events within the circuit;

modifying the behavioral description as a function of the

signal ordering; and
verifying the circuit as a function of the modified behav-
ioral description, wherein verifying includes synthesiz-
ing the circuit such that the circuit maintains the
modified relative ordering of the plurality of events;

wherein the relative ordering is expressed as an RT
predicate.

17. A logic synthesis system which uses the behavioral
description of a circuit to synthesize that circuit, the system
comprising;

10

15

20

25

30

35

40

45

50

55

60

65

26

a workstation having a display and an input device; and

program code, installed in the workstation, wherein the
program code, when executed, specifies a relative
ordering of a plurality of events within the circuit,
generates a timing assumption automatically within the
workstation, modifies the relative ordering as a func-
tion of the timing assumption, modifies the behavioral
description as a function of the relative ordering and
synthesizes the circuit as a function of the modified
behavioral description.

18. The logic synthesis system according to claim 17,
wherein the relative ordering is expressed as an RT predi-
cate.

19. The logic synthesis system according to claim 17,
wherein the system further includes verification program
code, wherein the verification program code, when
executed, verifies the circuit as a function of the modified
behavioral description.

20. The logic synthesis system according to claim 17,
wherein the input device is capable of entering designer-
specified timing assumptions and wherein the program code
further modifies the behavioral description as a function of
the designer-specified timing assumptions.

21. A logic verification system which uses the behavioral
description of a circuit to verify that circuit, the system
comprising;

a workstation having a display and an input device; and

program code, installed in the workstation, wherein the

program code, when executed, specifies a relative
ordering of a plurality of events within the circuit as a
function of the behavioral description of the circuit,
generates a timing assumption automatically within the
workstation, modifies the relative ordering as a func-
tion of timing assumption, modifies the behavioral
description as a function of the modified relative order-
ing and verifies the circuit as a function of the modified
behavioral description.

22. The logic verification system according to claim 21,
wherein the relative ordering is expressed as an RT predi-
cate.

23. The logic verification system according to claim 21,
wherein the input device is capable of entering designer-
specified timing assumptions and wherein the program code
further modifies the behavioral description as a function of
the designer-specified timing assumptions.

24. A circuit, comprising:

a plurality of transistors; and

conductors connecting two or more of the plurality of
transistors; wherein the conductors are defined and
synthesized as a function of a behavioral description of
the circuit, wherein the behavioral description includes
information specifying a relative ordering between a
plurality of events within the circuit, wherein the rela-
tive ordering was modified as a function of a timing
assumption generated automatically during design of
the conductors.

25. The circuit according to claim 24, wherein the infor-
mation specifying a relative ordering is expressed as one or
more RT predicates.

26. An article comprising a computer readable medium
having instructions thereon, wherein the instructions, when
executed in a computer, create a system for:

representing a circuit through a behavioral description of

the circuit;

defining a signal ordering of signals in the circuit, wherein

defining includes specifying a relative ordering of a

US 6,314,553 B1

27

plurality of events within the circuit as a function of the
behavioral description of the circuit, generating a tim-
ing assumption automatically within a processor and
modifying the relative ordering as a function of the
timing assumption;

modifying the behavioral description as a function of the

signal ordering; and

synthesizing the circuit as a function of the modified

behavioral description.

27. The method according to claim 26, wherein the
relative ordering is expressed as an RT predicate.

28. An article comprising a computer readable median
having instructions thereon, wherein the instructions, when
executed in a computer, create a system for:

representing a circuit through a behavioral description of

the circuit;

28

defining a signal ordering of signals in the circuit, wherein
defining includes specifying a relative ordering of a
plurality of events within the circuit as a function of the
behavioral description of the circuit, generating a tim-
ing assumption automatically within a processor and
modifying the relative ordering as a function of the
timing assumption;

modifying the behavioral description as a function of the
signal ordering; and

verifying the circuit as a function of the modified behav-
ioral description.
29. The method according to claim 28, wherein the
relative ordering is expressed as an RT predicate.

