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[57] ABSTRACT

A high flow-rate synchronizer/scheduler apparatus for
a mutiprocessor system during program run-time, com-
prises a connection matrix for monitoring and detecting
computational tasks which are allowed for execution
containing a task map and a network of nodes for dis-
tributing to the processors information or computa-
tional tasks detected to be enabled by the connection
matrix. The network of nodes possesses the capability of
decomposing information on a pack of allocated com-
putational tasks into messages of finer sub-packs to be
sent toward the processors, as well as the capability of
unifying packs of information on termination of compu-
tational tasks into a more comprechensive pack. A
method of performing the synchronization/scheduling
in a multiprocessor system of this apparatus is also de-
scribed.

10 Claims, 4 Drawing Sheets
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HIGH FLOW-RATE
SYNCHRONIZER/SCHEDULER APPARATUS
AND METHOD FOR MULTIPROCESSORS

FIELD OF THE INVENTION

The present invention relates to an architectural solu-
tion to the problem of accomplishing efficient synchro-
nization, scheduling and work allocation in multipro-
CessOTs.

BACKGROUND OF THE INVENTION

The coordination of multiple operations in shared
memory multiprocessors often constitutes a substantial
performance bottleneck. Process synchronization and
scheduling are generally performed by software, and
managed via shared memory. Execution of parallel
programs on a shared-memory, speedup-oriented multi-
processor necessitates a means for synchronizing the
activities of the individual processors. This necessity
arises due to precedence constraints within algorithms:
When one computation is dependent upon the result of
other computations, it must not commence before they
finish. In the general case, such constraints are pro-
jected onto an algorithm’s paralle] decomposition, and
reflected as precedence relations among its execution
threads.

Synchronization is only one aspect of a broad activ-
ity, which may be termed parallel operation coordina-
tion, whose other aspects are scheduling and work allo-
cation. Scheduling is selecting an execution order for
the operations of a program, out of a space of execution
orders which are feasible under the given architecture
and precedence constraints, as described in the paper
entitled “The Effect of Operation Scheduling on the
Performance of a Data Flow Computer,” M. Gransky
et al, IEEE Trans. on Computers, Vol. C-36 No. 9,
September 1987, pp. 1019-1029. While scheduling deals
with the point of view of the tasks to be computed,
work allocation deals with the point of view of the
processors which carry out the tasks. Thus, the distinc-
tion between scheduling an allocation is not clear-cut,
and some researchers use these terms interchangeably.
The decisive questions may be posed as follows: “which
ready-to-run piece of work should be executed first ?”
which is a matter of scheduling policy; questions of the
sort “to which processor should a given piece of work
be allocated 7 or “how much work should be allocated
at once to a given processor 7", are considered to be a
matter of allocation policy. Scheduling and allocation
may be static, i.e. determined before program run-time.

In fully dynamic systems, all these coordination ac-
tivities are not an inherent part of the actual computa-
tion, but are rather designed to support it. Since they
consume computational resources, they are considered
as overhead. Coordination or synchronization effi-
ciency, refers to the efficiency of parallel operation
coordination activity itself, excluding the indirect ef-
fects of scheduling policy.

The overall multiprocessor performance is influenced
significantly by the efficiency of coordination, as de-
scribed in the book entitled “High-Performance Com-
puter Architecture”, H. S. Stone, Addison-Wesley,
1987, and in the papers entitled “Execution of Parallel
Loops on Parallel Processor Systems,” C. D. Poly-
chronopoulos et al, Proc. Int. Conf. on Parallel Process-
ing, 1986, pp. 519-527: “A Technique for Reducing
Synchronization Overhead in Large Scale Multiproces-
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sors”, Z. Li et al. Proc. of the 12th Symp. on Computer
Architecture, 1985, pp. 284-291; “The Piecewise Data
Flow Architecture: Architectural Concepts,” J. E.
Requa et al. IEEE Trans. on Computers, Vol. C-32 No.
5, May 1983, pp. 425-438; “A Case Study in the Appli-
cation of a Tightly Coupled Multiprocessor to Scien-
tific Computations,” N. S. Ostlund et al, Parallel Com-
putations, G. Rodrigue, editor, Academic Press, 1982,
pp- 315-364; “Synchronized and Asynchronous Parallel
Algorithms for Multiprocessors,” H. T. Kung, Algo-
rithms and Complexity, Academic Press, 1976, pp.
153-200; and “A Survey of Synchronization Methods
for Prallel Computers,” A Dinning, IEEE Computer,
Vol. 20 No. 19, January 1987, pp. 100-109.

Inefficiencies in these processes are manifested in
overhead-activity and overhead-idling. The former is

. the activity which is required, once a task has been
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computed, to obtain a new piece of productive work,
while the latter is due to contention of synchronization
resources, which are system-global by nature.
Overhead-idling is principally caused by insufficient
synchronization rate capability. As noted in the text by
H. S. Stone supra, this capability (expressed in MSYPS,
Millions of Synchronizations Per Second) constitutes an
independent architectural measure; in particular, it is
not necessarily proportionate to the system’s overall
raw processing power, as expressed MIPS and
MFLOPS. Decompositing a given algorithm into ever
finer granularity levels will yield an ever increasing
demand for synchronization rate, and an ever bigger
ratio of overhead-activity to productive computation.
Thus, at some level of granularity, synchronization may
become a bottleneck, thereby practically limiting the
exploitable level of parallelism. Consequently, it is de-
sirable to search for means to increase the synchroniza-
tion rate capability and to reduce the coordination over-
head activity of multiprocessor systems.
Synchronization methods for multiprocessors were
born out of mutual exclusion methods, prevalent in
multiprogrammed uniprocessors. Still, synchronization
is usually implemented around special synchronization
data in main memory, as described in the paper entitled
“Synchronization, Coherence, and Event Ordering in
Muitiprocessors,” M. Dubois et al, IEEE Computer,
Vol. 21 No. 2, February 1988, pp. 9-22. These synchro-
nization data are either stand-alone (e.g. locks and sema-
phores), or attached to regular data objects (such as
presence bits). A variety of synchronization primitives,
such as Test & Set or Fetch & Add. serve to establish
access to synchronization variables and to manipulate
them, as described in the paper entitled “The NYU
Ultracomputer—Designing an MIMD shared Memory
Parallel Processor,” A. Gottlieb et al. IEEE Trans. on
Computers, February 1983, pp. 175-89. The implemen-
tation of these primitives is based on some special hard-
ware support, whether rudimentary or massive. Yet the
essential levels of parallel operation coordination are
implemented in software. Some examples of prominent
commercial and research multiprocessors which are
included in this framework are described in the follow-
ing papers: “Cm®*—A modular multi-microprocessor,”
R. J. Swan et al, AFIPS Conf. Proc., 1977 National
Computer Conference, pp. 637-644; “Architecture and
Applications of the HEP Multiprocessor Computer
System,” B. J. Smith, Real Time Signal Processing IV,
Proceedings of SPIE, August 1981, pp. 241-248; “The
IMB RP3 Introduction and Architecture,” G. F. Pfister
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et al. Proc. Int. Conf. on Parallel Processing, August
1985, pp. 764-771; “Cedar”, D. Gajski et al, Report No.
UIUCDCS-R-83-1123. Department of Computer Sci-
ence, University of Illinois, Urbana, February 1983, pp.
1-25; "Synchronization Scheme and its Applications for
Large Multiprocessor Systems,” C. Q. Zhu Proc. 4th
Int. Conf. on Distributed Computing Systems, 1984, pp.
486-493; and “The Butterfly Parallel Processor,” W.
Crowther et al. Newsletter of the Computer Architec-
ture Technical Committee (TEEE Computer Society),
September/December 1985, pp. 18-45. Within this
framework, efforts are aimed at improving synchroniza-
tion efficiency were routed to the following directions:
Development of enhanced hardware support for syn-
chronization primitives (most notably - NYU Ultracom-
puter’s combining network, as described in the paper by
Gottlieb, supra.); development of more powerful syn-
chronization primitives as described in the paper by C.
Q. Zhu et al supra, and the paper by J. R. Goodman
entitled “Efficient Synchronization Primitives for
Large-Scale Cache-Coherent Multiprocessors,” Proc.
of the Conf. on Architectural Support for Programming
Languages and Operating Systems, ASPLOS-III, 1989,
pp. 64-75; development of inherently asynchronous
parallel algorithms, as described in the paper by H. T.
Kung supra; and development of various techniques for
synchronization minimization, as described in the paper
by Z. Li et al, and in the paper entitled “Guided Self-
Scheduling: A Practical Scheduling Scheme for Paral-
lel Supercomputers,” C. D. Polychronopoulos et al,
1EEE Trans. on Computers, Vol. C-36 No. 12, Decem-
ber 1987, pp. 1425-1439.

A recent survey of synchronization methods con-
tained in the paper by Dinning supra, describes in detail
the synchronization mechanisms of seven machines.
While giving a classification for prevalent synchroniza-
tion methods, the paper by Dinning supra confirms the
central and basic role of protocols for synchronized
access to shared data in all these methods (except in
“puristic” message passing).

Synchronization mechanisms which exceed the
framework described above, while promoting the role
of hardware, have been proposed by various research-
ers. Some of these proposals are aimed at hardware
implementations of barrier synchronization or synchro-
nized wait, as described in the papers entitled “A Con-
trollable MIMD Architecture,” S. F. Lundstrom et al,
Proceedings of the 1980 International Conference on
Parallel Processing, pp. 19-27 and “The Fuzzy Barrier:
A Mechanism for High speed Synchronization of Pro-
cessors,” R. Gupta, Proc. of the Conf. on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS-HI, 1989, pp. 54-63. A more general
hardware mechanism, which is aimed at arbitrary paral-
lelism patterns, is based on routing of control tokens,
but is oriented towards essentially static work alloca-
tion, is proposed in the paper entitled “A Hardware
Task Scheduling Mechanism for Real-Time Multi-
Microprocessor Architecture,” A. D. Hurt et al, Pro-
ceedings of the 1982 Real-Time Systems Symposium,
pp- 113-123. A centralized synchronization/scheduling
facility, targeted at arbitrary parallelism patterns and at
dynamic allocation and scheduling, was argued for in
the paper by D. Gajski supra, but no specific architec-
ture was proposed.

Therefore, it would be desirable to provide a global
synchronization/scheduling unit which is capable of
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dynamic allocation and scheduling in a multiprocessor
system.

SUMMARY OF THE INVENTION

Accordingly, it is a principal object of the present
invention to overcome the above-mentioned disadvan-
tages of the prior art, and provide apparatus for accom-
plishing a high synchronization/scheduling rate, ade-
quate for massively parallel multiprocessors.

It is another object of the invention to provided the
synchronization/scheduling apparatus with the capabil-
ity of fast detection of events where dormant computa-
tional tasks become allowed for execution.

It is still a further object of the invention to provide a
global synchronization/scheduling subsystem which
offloads synchronization/scheduling-related overhead
activity from the processors.

In accordance with a preferred embodiment of the
present invention, there is provided a hardware syn-
chronization/scheduling apparatus for performing syn-
chronization/scheduling in a multiprocessor system by
controlling, during program run-time, a process of mon-
itoring and detecting which computational tasks are
allowed for execution and allocating computational
tasks to processors, the tasks being represented by in-
structions and data accessible to the processors via in-
struction and data storage hardware, said synchroniza-
tion/scheduling apparatus comprising:

means for monitoring and detecting which computa-
tional tasks are allowed for execution, said monitoring-
/detecting means containing a task map describing the
precedence relations among the computational tasks of
the program; and

communication/distribution means for distributing,
to the processors, information on computational tasks
detected by said monitoring/detecting means to be
allowed for execution and for forwarding, to said
monitoring/detecting means, information on termina-
tion of execution of computational tasks at the proces-
sors,

Said communication/distribution means comprising a
network of nodes processing both the capability of
decomposing information on a pack of allocated com-
putational tasks into messages of finer sub-packs of allo-
cated computational tasks to be sent toward the proces-
sors, and possessing the capability of unifying packs of
information on termination of computational tasks into
a more comprehensive pack, to be sent to said means for
monitoring/detecting of allowed computational tasks.

In the preferred embodiment, the proposed architec-
ture adds a synchronization/scheduling subsystem to
the multiprocessor subsystem. This consists of a central
unit and an active distribution network controlling the
multiple processors. The synchronization/scheduling
subsystem is programmed with the complete synchroni-
zation and scheduling information for the executed
parallel algorithm.

The synchronization/scheduling subsystem com-
prises a task map which contains dependencies between
tasks to be performed by the processors. The code of
the tasks is loaded in the shared memory space, whereas -
the topology of the task map is held by the syn-
chronizer/scheduler. The latter uses the task map for
allocating tasks to the processors. While doing so, it
continuously monitors the employment state of the
processors, and makes allocations dynamically and on
the basis of processor availability. A task is allocated by
signalling its identification information across the link
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between the synchronizer/scheduler and the designated
processor. Further parameters, or data to be processed
by the task, may be acquired from the shared memory.

When allocated a task, a processor is caused to re--
start, with the first instruction fetch address determined
by the task’s identity. The processor then proceeds in
executing instructions fetched from memory, until en-
countering an instruction signifying the end of the task.
The processor then enters a halted state, exporting an
indication of its mew state to the synchronizer/-
scheduler. This indication, when received by the syn-
chronizer/scheduler, serves a twofold function: First,
the processor is marked free and ready for another
allocation. Secondly, the event of the current task’s
termination is internally marked, and may cause the
enabling of other tasks which depend on the current
one. A task is said to be enabled when it is recognized
by the system to be allowed for execution. The enabling
of a dependent task takes place if all its other input
dependencies have already been activated in a similar
manner. (OR relations between input dependencies are
also possible, and discussed further herein with regard
to the architecture’s underlying programming model).

In addition to a task map, the synchronizer/scheduler
is supplied with the system configuration data. This
includes such details as the number of processors, the
capabilities of each processor (if processors are not
a-priori identical), etc.

Given a set of enabled tasks, as well as processor
availability data, the synchronizer/scheduler then per-
forms scheduling of those tasks. Any non-random
scheduling policy must rely upon some heuristics: Even
when task execution times are known in advance, find-
ing an optimal schedule for a program represented as a
dependency graph is an NP-complete problem. Most
scheduling heuristics are bases on the critical path
method, and thereby belong to the class of list schedul-
ing policies; i.e., policies that rely on a list of fixed task
priorities. List scheduling can be supported by the in-
ventive scheme described herein, by embedding task
priorities in the task map load-module submitted to the
synchronizer/scheduler. Whenever an allocation takes
place, the allocated tasks are those which have highest
priorities amongst the current selection of enabled tasks.

The general architectural concepts described so far
may be implemented in multiple alternative ways. The
processors may range from minute processing elements
to large scientific processors. They are not limited to
any specific type, and are not confined to the von-
Neumann model. They can also be compound process-
ing units. The architecture may also be applied to non-
homogeneous systems. The shared memory may consist
of physically shared storage, possibly accessed through
an interconnection network, or be distributed over the
processors, as long as common memory space is pre-
served, at least in part.

Other features and advantages of the invention will
become apparent from the following drawings and de-
scription.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention with
regard to the embodiments thereof, reference is made to
the accompanying drawings in which like numerals
designate corresponding elements or sections through-
out, and in which:

FIG. 1 shows a multiprocessor system architecture
featuring a synchronizer/scheduler epparatus con-
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6
structed and operated in accordance with the principles
of the present invention;

FIG. 2 is a graph illustrating bounds on the overall
slowdown in program execution as a function of the
available synchronization/scheduling rate capability;

FIGS. 3a-f show graphical notations for program-
ming features associated with a programming model
useful in constructing a task map for multiprocessor
control;

FIG. 4 is a schematic diagram of the synchronizer/-
scheduler apparatus architecture, featuring a central
synchronization/scheduling unit and a distribution net-
work;

FIG. § is a schematic diagram of an interface through
which the central synchronization/scheduling unit
communicates with the distribution network of FIG. 4,
and through which nodes of the distribution network
communicate with each other;

FIG. 6 is a schematic diagram of an example standard
input dependency structure; and

FIG. 7 is a schematic diagram architecture of a pre-
ferred embodiment of the central synchronization/-
scheduling unit of the invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

Reference is now made to FIGS. 1-7, showing vari-
ous aspects of the proposed architecture of a synchroni-
zation/scheduling subsystem for a multiprocessor. The
proposed synchronizer/scheduler subsystem consists of
a central scheduling unit (CSU) and an active distribu-
tion network controlling the multiple processors. The
proposed subsystem is programmed with the synchroni-
zation and scheduling information for the executed
parallel algorithm. The next section contains a discus-
sion of the general system architecture, its performance
and its goals. The architecture’s underlying program-
ming model is then described. Following this, the gen-
eral architecture of the synchronizer/scheduler subsys-
tem is discussed, and finally a detailed discussion of the
architecture of the central unit of the subsystem is pres-
ented.

@

SYSTEM ARCHITECTURE AND EXPECTED
PERFORMANCE

A program intended for execution on a multiproces-
sor which incorporates the synchronization/scheduling
scheme described herein, must be represented by a de-
pendency graph. The dependency graph is called the
program’s task map; Its nodes represent tasks, and its
(directed) edges represent task interdependencies.
Tasks are granules of computation, of any desired size
(e.g. they may embrace any number of machine instruc-
tions). The graph may contain cycles. The task map is
submitted to the hardware, and used during run-time.
This dependency-graph-driven mode of computation,
attributed by non-elementary granularity, is referred to
in the paper to Gajski et al supra as macro dataflow. Yet
according to a terminology introduced by Treleaven et
al, in the paper entitled “Combining Data Flow and
Control Flow Computing,” Computer Journal, Vol. 25
No. 2, 1982, pp. 207-217, it may rather be referred to as
multi-threaded control flow. That is because the data
communication mechanism (namely, the shared mem-
ory) is distinct here from the synchronization/schedul-
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ing mechanism, and dependency arcs do not necessarily
“carry data” but denote control flow.

There is a distribution between a task, which is a
quantum of program code and a task map object, and a
task instantiation, which is an execution process derived
from a task. The reason for this seemingly subtle distinc-
tion will be made clear in a later section. Until then, for
the sake of simplicity, this distinction is ignored.

The multiprocessor architecture is illustrated in FIG.
1. As can be seen, the parallel operation coordination
subsystem (synchronizer/scheduler 10) forms an appen-
dage to a conventional configuration of a shared-mem-
ory 12 and processors 14.

The synchronization/scheduling subsystem com-
prises a task map which contains dependencies between
tasks to be performed by the processors 14. The code of
the tasks is loaded in memory, whereas the topology of
the task map is held by the synchronizer/scheduler 10.
The latter uses the task map for allocating tasks to pro-
cessors 14. While doing so, it continuously monitors the
processors 14 employment state, and makes allocations
dynamically and on the basis of processors availability.
A task is allocated by signalling its identification infor-
mation across the link 16 between the synchronizer/-
scheduler and the designated processor. Further param-
eters, or data to be processed by the task, are acquired
from the shared memory 12 via link 18.

When allocated a task, a processor 14 is caused to
restart, with the first instruction fetch address deter-
mined by the task’s identity. The processor 14 then
proceeds in executing instructions fetched from main
memory, until encountering an instruction signifying
the end of the task. The processor 14 then enters a
halted state, exporting an indication of its new state to
synchronizer/scheduler 10. This indication, when re-
ceived by synchronizer/scheduler 10, serves a twofold
function: First, the processor 14 is marked free and
ready for another allocation. Secondly, the event of the
current task’s termination is internally marked, and may
cause the enabling of other tasks which depend on the
current one. The enabling of a dependent task takes
place if all its other input dependencies have already
been activated in a similar manner. (OR relations be-
tween input dependencies are also possible, and dis-
cussed further herein with regard to the architecture’s
underlying programming model).

In addition to a task map, synchronizer/scheduler 10
is supplied with the system configuration data. This
includes such details as the number of processors, the
capabilities of each processor (if the processors are not
a-priori identical), etc.

Given a set of enabled tasks, as well as processor
availability data, synchronizer/scheduler 10 then per-
forms scheduling of those tasks. Any non-random
scheduling policy must rely upon some heuristics: Even
when task execution times are known in advance, find-
ing an optimal schedule for a program represented as a
dependency graph is an NP-complete problem, as de-
scribed in the paper entitled “NP-Complete Scheduling
Problems,” J. D. Uliman, J. Comput. Syst. Sci., Vol. 10,
June 1975, pp. 384-393. Most scheduling heuristics are
bases on the critical path method, and thereby belong to
the class of list scheduling policies; i.e., policies that rely
on a list of fixed task priorities as described in the paper
by Gransky et al supra, and the text entitled *Computer
and Job-Shop Scheduling and Theory,” E. Coffman,
Wiley Publishers, New York, 1976. List scheduling can
be supported by the inventive scheme described herein,
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8
by embedding task priorities in the task map load-
module submitted to the synchronizer/scheduler.
Whenever an allocation takes place, the allocated tasks
are those which have highest priorities amongst the
current selection of enabled tasks.

The general architectural concepts described so far
may be implemented in multiple alternative ways. The
processors may range from minute processing elements
to large scientific processors. They are not limited to
any specific type, and are not confined to the von-
Neumann model. They can also be compound process-
ing units. The architecture may also be applied to non-
homogeneous systems. The shared memory may consist
of physically shared storage, possibly accessed through
an interconnection network, or be distributed over the
processors, as long as the common memory space is
preserved, at least in part.

Performance Bounds

An immediate merit of the herein described scheme is
that any parallel operation coordination overhead is
offloaded from the processors. This activity is shifted to
the special purpose hardware, and is performed in paral-
lel with productive computation. This carries the poten-
tial for a significant shrink in overhead per synchroniza-
tion point. Another merit is the optimal load balancing,
attained due to the fact that allocations are performed
dynamically, on a global basis, and are driven by pro-
cessors availability. Optimal load balancing means that
no situation can occur where enabled computational
work becomes committed to a specific portion of the
system which cannot accomodate it at that moment,
while a processor not belonging to that portion is idling.
It is clear that the conditions specified above ensure
optimal load balancing by definition.

Synchronization rate is measured here as the total
flow-rate of task initiation (namely, synchronization
flow-rate) across the synchronizer/scheduler’s ports. If
the synchronizer/scheduler provides too low a syn-
chronization flow-rate, a synchronization bottieneck
may result. In considering the question of whether the
synchronizer/scheduler’s flow-rate capability consti-
tutes a bottleneck in comparison to the requirements of
the parallel program, the graph of FIG. 2 may be used.

The horizontal axis depicts the given maximal flow-
rate of synchronizer/scheduler apparatus 10, scaled in
terms of a measure which is called the canonical flow-
rate, or fc, which is a parameter of the program being
executed, and is the only such parameter involved in the
analysis. It is defined as the average flow-rate devel-
oped when the program is run on a system containing
an infinite number of processors and an ideal syn-
chronizer/scheduler 10 apparatus, one having infinite
flow-rae capability. An equivalent definition would be
the ratio between the total number of task executions
that must occur, and the length of the critical path on
the program’s task map. In the ideal execution process,
the momentary flow-rate may sharply deviate from the
average fc.

The vertical axis of the graph of FIG. 2 depicts the
overall slowdown in program execution, incurred by
the given limitation on the synchronizer/scheduler’s
flow-rate, still under the assumption that the number of
processors is unlimited. This assumption established a
“worst-case” condition; its relaxation implies a potential
decrease in the demand for flow-rate. A lower bound
and an upper bound on siowdown are depicted. The
lower bound reflects the fact that the time neceded to
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complete the execution for a program can be not shorter
than the minimal time needed for allocating all of its
tasks. The lower bound is valid for any synchroniza-
tion/scheduling mechanism whatsoever, whether based
upon hardware or upon software. The upper bound is
valid only under the assumption that the processors are
relieved from any synchronization/scheduling-related
overhead activity, as happens in this invention. The
upper bound can be proven mathematically, based on
the assumption that the flow-rate is only semi-finite, in
the sense of having only one direction of limitation. The
mathematical proof and rationale for this assumption
are included in the material by N. Bayer entitled, “A
Hardware-Synchronized/Scheduled = Multiprocessor
Model,” submitted as a M. Sc. Thesis, EE Department,
Technion, Israel Institute of Technology, Janvary 1989
(as yet unpublished).

In order to sustain high flow-rate, it is also important
to attain low enabling latency. This parameter reflects
the time which elapses from the termination of the last
task which prohibits the enabling of another task, until
the latter can be allocated. Low enabling latency is
desirable in order to allow efficient parallelism even in
the more difficult and challenging cases, when the pro-
gram’s degree of parallelism is roughly the same as the
number of processors, i.e. when there is no large reser-
voir of enabled tasks.

an
THE UNDERLYING PROGRAMMING MODEL

The programming model is the collection of rules and
options serving for the construction of task maps, which
is directly supported by the hardware. A task map
coded according to this programming model will
closely correspond to the load-module submitted to the
synchronizer/scheduler. Preparation of the ultimate
load-module will not include any essential transforma-
tion of the program.

This layer may serve as the basis for the definition of
higher layers. Tools such as compilers and macro-
expanders can be developed, which accept more pow-
erful and abstract software constructs and translate
them into task maps of the kind directly supported by
the hardware.

Consolidation of the programming model includes
software aspect related considerations, associated with
an assessment of its computational power vs. the hard-
ware investment needed. In the following description,
the details of the programming model for the high flow-
rate synchronizer/scheduler architecture are presented
by review of the programming features which are illus-
trated by graphic notations shown in FIG. 3.

FIG. 3a shows the AND/OR relations between task
input dependencies, with the standard task input depen-
dency mechanism implementing a product-of-sums
logic. Arrows entering a task symbol denote AND
related dependencies, in accordance with the common
notation convention for dependency graphs. Arrows
approaching a task symbol via a circle sign denote OR
related dependencies.

FIG. 3b shows pre-enabled task notation, with each
program task being initialized as enable or non-enabled.
Those initialized as enable are called pre-enable, and
must be specifically declared so.

FIG. 3c shows dummy (or degenerated) tasks, noted
as D-tasks, which when enabled, are not subjected to
allocation; instead they are immediately declared as
terminated, internally to the synchronizer/scheduler.
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10
D-tasks serve to express non-standard input depen-
dency schemes and to manipulate dependency struc-
tures.

FIG. 3d shows reset tasks, noted as R-tasks which,
similar to D-tasks, are also treated internally within the
synchronizer/scheduler. However, an R-task does have
an execution body: It rests all input dependencies of the
tasks governed by it to a non-active state. It is useful for
purging of “control tokens.”

FIG. 3e shows conditioning tasks, which is the mech-
anism underlying globa! conditioning (task-local condi-
tioning is implemented using the processor’s branching
instructions). The global conditioning mechanism is
based upon a scalar boolean value, named termination
condition (t_cond), which is returned to the syn-
chronizer/scheduler upon the termination of each task.
When a task begins, its t_cond is automatically initial-
ized to a “1” value. The task is allowed access to the
t_cond as a variable, and rests it to “0”.

If a task is denoted t,, each output dependency of t,
may be of type “¢”, “0” or ““1”. Dependencies of types
*0” and “1” are activated upon termination of t, only in
conjunction with the appropriate t _cond value. A task
having at least one non-“¢” output dependency is
termed a conditioning task, and must be explicitly de-
clared so. The “¢” signs are omitted in the graphic
notation from output dependencies not belonging to
conditioning tasks.

FIG. 3f shows duplicable tasks, which constitute a
mechanism for supporting a particular form of dynamic
process generation. Let <task id> be a duplicate task.
The enabling of <task id> generates <inst_.quota>
instantiations pending for allocation. Execution of these
instantiations is in SPMD style, as described in the
paper “Programming for Parallelism”, A. H. Karp,
IEEE Computer, Vol. 20 No. 5, May 1987, pp. 43-57.
All processors receiving an instantiation of <task _id>
execute the same code, by under the modification of the
instance number transmitted by the synchronizer/-
scheduler. The event of <task _id>’s termination is
identified with the termination of its last instantiation.
The number of instantiations <inst_quota>> is initial-
ized at compile-time, but may be updated at run-time by
the processors. For this purpose, the internal register
within the synchronizer/scheduler dedicated to <tas-
k_id> is subject to external access (write only), as if it
were a global memory cell. A duplicate task cannot be
a conditioning one.

The introduction of duplicable tasks necessitates the
following refinements in terminology: the term “com-
putational task” refers to pieces of computational work
in general. However, in the context of this embodiment,
computational tasks performed by the processor are
referred to a “task instantiations” or briefly, instantia-
tions, while the term “task” is reserved for the task-met
objects themselves.

am
GENERAL ARCHITECTURE OF THE
SYNCHRONIZER/SCHEDULER

FIG. 4 illustrates the synchronizer/scheduler appara-
tus architecture. It is divided into two modules: A cen-
tral synchronization/scheduling unit (CSU) and a distri-
bution network. The distribution network mediates
between the CSU, which constitutes the heart of the
synchronizer/scheduler, and the processors. Its func-
tion is not the mere passive data transfer, but as further
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described herein, it creates an effect of amplifying the
synchronizer/scheduler apparatus 10 flow-rate, in com-
parison with the flow-rate of the CSU alone. As this
distribution network shares some common features with
combining networks for shared memory access as de-
scribed in the paper to Gottlieb et al supra, they will
compared at the end of this section.

While the internal implementation of the CSU consti-
tutes the theme of the next section, this section discusses
the architecture and operation of the synchronizer/-
scheduler as a whole.

The proposed structure is founded upon the inclusion
of duplicable tasks in the programming model. The
existence of duplicable tasks in a program helps make
the total number of task enablings lower than the total
number of task-instantiations allocated to processors
(the enabling of a duplicable task is considered a single
enabling). Thus, the average rate of task enablings,
denoted f,, is liable to be smaller than the flow-rate of
allocating task-instantiations to processors, denoted fa.
The ratio f,=/./f. is equal to the average number of
instantiations per task (the average calculation includes
also the regular tasks, which release exactly one instan-
tiation per enabling, but does not include D-tasks and
R-tasks). The factor f, which is a property of the pro-
gram in combination with its input, is likely to reach
orders of magnitude of tens, hundreds, or even more, as
indicated by benchmark examples. Examples: instantia-
tion quotas of duplicate tasks correspond to the sizes of
blocks within the complete matrix; in particle-system
simulation programs, the instantiation quotas of duplic-
able tasks may correspond to the number of interac-
tion/maintaining particle pairs.

The interface between the distribution network and
the processors carries individual allocation and termina-
tion messages, whereas the interface between the CSU
and the distribution network carries allocation packs
and termination packs. A pack contains one instantia-
tion or more out of the collection of instantiations re-
leased by a single task-enabling. If the pack contains all
the instantiations which were released, it is called a
complete pack; otherwise it is called a partial pack. The
instantiation indices belonging to an allocation pack
must form a continuous sequence. The coding of packs
employ a certain form of compression, such that the
coding format employs a fixed number of bits: The
task’s identity is always coded; in an allocation pack the
sequence of indices is also coded, e.g. as a pair, incorpo-
rating the first index and the sequence length. In a ter-
mination pack, the instantiation indices have no impor-
tance, and only their quantity is coded. For the purpose
of discussing communications flow-rates, and due to
this manner of coding, packs and individual messages
will be counted according to the same measuring-rod.

The task map is concentrated in the CSU, which
monitors the enabling of tasks. Allocation packs sent by
the CSU are decomposed during their passage through
the distribution network, and delivered to the proces-
sors as individual instantiations. The opposite operation,
termed herein merge, is performed on termination mes-
sages. In this way, the communications flow-rate be-
tween the processors and distribution network may be
amplified in comparison to the flow-rate of communica-
tions between the distribution network and the CSU.
Namely, fosy <fa Where fcsy denotes the total communi-
cations flow-rate across the CSU interfaces.

It should be noted that foq is not always the same as
f.. Consider operating conditions where the collection
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of processors functions as a sink, i.e. it is willing to
absorb any instantiation of any enabled task immedi-
ately, and there is a large reservoir of enabled tasks
which is steadily reproduced. Under such a situation,
the CSU sends and receives complete packs exclusively,
and therefore its communications flow-rate is congruent
to the enabling rate, namely fo="fcw, and the condition
fo=1rX fosu max holes. Under different operating condi-
tions, the CSU may send and receive partial packs, of its
flow-rate capacity may not be fully utilized.

Structure of the distribution network and types of
interfaces

The distribution network is modular, as it consists of
basic building blocks from which a desired configura-
tion may be assembled. It is also possibie to introduce
local modifications and extensions without total disman-
tling and reassembly. As shown in FIG. 4, the building
blocks are termed distribution units and are of two
kinds: Terminal distribution units (TDU’s) and Interme-
diate Distribution units IDU’s). The distribution net-
work has a forest topology, complemented by the CSU
into a tree, with the CSU at its root. It is reasonable to
assemble balanced or almost balanced tree configura-
tions, although any other tree may be assembled as well.
The tree leaves are TDU’s, and the processors attach to
them, the internal nodes are IDU’s. An extended tree is
defined as one having leaves which are the processors
themselves. Let v be a non-leaf node of the extended
tree. The number of ports through which descendant
nodes can be attached to v is designated as v’s fan out.
All interfaces on individual ports are of one of the fol-
lowing two types: ~

[parent = CSU/IDU} — [descedant = IDU/TDU} m

[parent = TDU) — [descendant = P) @

The major difference between interface types is that
(1) is intended for transferring packs, whereas (2} is
intended for transferring messages on individual or
terminated instantiations. All units of the same kind
constitute identical exemplars. Also, all interfaces of the
same type are identical in every respect and in particu-
lar in the communications capacity.

Organization of the Configuration and Processor
Employment Data

In contrast to the task map, the configuration data are
distributed across the whole of synchronizer/scheduler
apparatus 10. Each synchronizer/scheduler unit keeps
the summation of configuration data pertaining to each
sub-tree connected to any of its descendant ports. The
information concerning current processor employment
is also distributed in the same manner. For example, in
a homogeneous system, the total number of disengaged
processors belonging to a certain sub-tree is maintained,
instead of separate information for each processor. For
a TDU, a “Sub-tree” is always identical to a single
processor. The update of processor employment data is
performed in a distributed fashion: Each unit updates its
own data, according to the amount of allocations and
terminations passing through it.

Let v be a distribution unit. The configuration and
processor employment data for the sub-tree with v atits
root is maintained by v’s parent. Therefore, it is guaran-
teed that the allocations v receives are within the limits
of the current sinking ability of that sub-tree. According



5,202,987

13
to the configuration and processor employment data
maintained by v itself, it must divide these allocations
among its descendants. Suppose there are multiple divi-
sion possibilities, and the system is symmetrical. The
allocations may then be randomly divided.

However, the simplest way for dividing the alloca-
tions is according to fixed port priorities. Determination
of the descendant port priorities at each unit induces
global priorities for the external ports of the syn-
chronizer/scheduler. These global priorities can be
exploited for establishing balanced allocation when
each processor is built to accomodate up to two con-
texts, and is connected to the synchronizer/scheduler
via two separate ports. Every processor is then assigned
a high priority and a low priority port. This outline may
be generalized also for more than two ports. The moti-
vation for supporting multiple contexts within a proces-
sor is concerned with countering memory latency, as
discussed in the reference by N. Bayer, supra.

Management of Termination Information

The termination messages generated by the proces-
sors serve two distinct functions:

a) Enabling of new tasks dependent on the terminated
ones.

b) Monitoring processor employment state.

These two functions induce conflicting considerations

regarding the policy of termination packs forwarding

through the distribution network:

For serving function (a) well, fragment packs need
not be hurriedly sent towards the root of the tree. Since
the termination of a duplicable task is defined as the
termination of all of its instantiations, such fragments
may be held up at the distribution network nodes in
order to achieve maximal unification. This unification is
indispensable for the reduction of the amount of infor-
mation traffic at levels closer to the root of the tree.

Contrarily, function (b) calls for a policy of transfer-
ring every termination message without any delay. This
can be illustrated by considering an extreme case: Sup-
pose that there are 256 processors, which have received
exactly 256 instantiations of the task t; concurrently.
While 255 instantiations require T computation time,
one instantiation requires 100X T computation time. In
waiting for a full unification of the termination pack,
255 processors are disutilized for duration of 99*T.

The proposed solution for this problem is a split into
two separate mechanisms, each of them handling one of
the functions. A distribution unit v receives two kinds
of data from its descendants:

(1) Termination packs, as described above (not to be
exploited as an information regarding processors disen-
gagement).

(2) Messages expressing qualities of processors which
have entered a halted state (disregarding the tasks
conducted by them).

Under the implementation presented in the following

section, each of these kinds of data is transferred on its

own dedicated wires.

Upon receiving a datum of kind (1) relating to a task
tx, v accumulates it into its count of ty’s terminated
instantiations; Yet nothing is sent to v's parent, unless
this datum completes the count to the total sum of t,'s
allocations previously passed through v. When the ter-
mination data regarding t. is sent to v’s parent, the
above-mentioned counts are reset, so the maximal value
of these counts if bounded by the maximal amount of
instantiations a task is allowed to have for.one enabling.
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Hence the number of termination packs submitted by v
to its parent until a certain moment, is less than or equal
to the number of allocation packs received by v until
that moment. (An inequality relation may hold not only
due to unfinished instantiations, but also due to cover-
age of several allocation packs by a single termination
pack). Thus, the mean demand for communications
traffic of termination packs at every point within the
network is equal or less than the traffic of allocation
packs.

Contrarily, data of type (2) arriving at v from several
descendants concurrently are merged into a unified
datum, which is sent to v’s parent immediately (in addi-
tion to using them for internal update at v). The possibil-
ity of always performing such a merge stems from the
way employment data are organized. Due to this regu-
lar merging possibility, any delays associated with wait-

" ing for available communication paths (for type (2)
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data) are eliminated. The event of a processor belonging
to v’s sub-tree becoming available, will be reflected at
the employment data maintained by v within a delay
proportional to the length of the path between the pro-
cessor and v.

Characterizing Parameters

The parameters characterizing a specific syn-
chronizer/scheduler can now be summarized:

Loading Capacity:

The maximal size of a task map which can be loaded.
This parameter is expressed in terms of quantity of
tasks, and/or in terms of quantity of dependency con-
nections.

Reduced Maximal Flow-Rate:

Mazximal synchronization flow-rate which can be
attained for programs which do not include duplicable
tasks. This parameter actually expresses the CSU flow~
rate, and is independent of the assembled configuration.
The reduced maximal flow-rate is equal to a type (1)
interface’s communications capacity, times the fan-out
of the CSU.

Extended Maximal Flow Rate:

Maximal synchronization flow-rate which can be
attained for any program. This parameter depends on
the assembled configuration, and does not depend on
the CSU’s fan-out. The extended maximal flow-rate is
equal to a type (2) interface’s communications capacity,
times the total number of TDU’s descendant ports.

Enabling Latency:

Duration from the moment a processor P announces
the termination of an instantiation belonging to a task t)
until a processor P;receives an instantiation of a task t;
depending on t;, provided:

a) The termination and allocation messages involved are
not delayed due to contention on communication
paths.

b) No other terminations are needed to trigger t/s en-
abling. The synchronizer/scheduler’s enabling la-
tency is composed of the CSU’s enabling latency,
plus a component proportional to the depth of the
distribution network tree. This second component
depends upon fan-out values, and upon the assembled
configuration. When the tree is balanced, this compo-
nent is logarithmic in the number of synchronizer/-
scheduler ports. Note that the enabling latency may
be more complex than a fixed, single-valued parame-
ter.

Allocation Advances:
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Quotas for over-allocations of task instantiations,
which the CSU or every IDU separately (but excluding
the TDU’s) are programmed to allocate their descen-
dants, beyond the calculation of free processors. Allo-
cation advances are aimed at compensating against the
delays associated with the flow of processor disengage-
ment information through the network. Implementation
of allocation advances obliges that the distribution units
have a capability of storing buffered allocation packs.
This is a set of programmable parameters. There is
presented herein the principal possibility of using aflo-
cation advances, but not the computation of their opti-
mal values. Although allocations to individual proces-
sors are still made on the basis of availability, the opti-
mal load balancing, as defined previously regarding
System Architecture may be disrupted, and this should
be assessed quantitatively. When the program'’s degree
of parallelism is sufficiently higher than the number of
processors, so there is a sufficient reservoir of enabled
tasks, allocation advances can be set so as to saturate the
distribution network with ready-to-execute task instan-
tiations. Under such a situation, a processor is allocated
a new task instantiation immediately as it terminates the
previous one, avoiding any overhead-idling whatso-
ever.

The fact that the task map is totally concentrated in
the CSU facilitates the possibility of allocating any task
instantiation to any processor, and establishes the capa-
bility of dynamic regulation of allocations (distribution
of the task map is possible in hierarchical extensions of
the general scheme discussed here). However, because
of this same fact, the CSU induces a certain extent of
centralization in the system; from here stems the impor-
tance of amplifying its flow-rate through the distribu-
tion network.

Assuming the CSU cost is not dominant, then rela-
tively small configurations, assembled around a given
CSU module while rendering its flow-rate superfluous,
can still be cost-effective.

The configuration and processor employment data
maintained for each descendant port by a TDU, are
reduced in comparison to the data maintained by an
IDU. In addition, a type (2) interface is reduced in com-
parison to a type (1) interface. Therefore, for an identi-
cal cost, a TDU’s fan-out is anticipated to be higher
than an IDU’s fan-out. An even higher fan-out can be
attained for a TDU through a variation of the basic
structure, based on another consideration: Execution of
a task instantiation by a processor lasts a certain dura-
tion, and time intervals do exist during which no com-
munications between a given processor and the TDU
takes place. On the account of this unused communica-
tions capacity, a group of processors can be attached to
a single port in a bus configuration.

Under the architecture described thus far, all external
parts of the synchronizer/scheduler can be driven si-
multaneously, hence (assuming that every processor has
its private port) the extended maximal flow-rate imma-
nently matches the maximal sinking capability of the
processors. As far as flow-rates are concerned (namely,
disregarding latencies), the only possible source for a
bottleneck is the reduced maximal flow-rate; that is, the
CSU flow-rate. The bounds on slowdown due to a
limited flow-rate presented earlier regarding FIG. 2
apply to the CSU flow-rate in the same way they apply
to the flow-rate of the synchronizer/scheduler as a
whole. The only difference is that in the former case the
total number of enablings is taken into the calculation of
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the canonical flow-rate, whereas in the latter case the
total number of released instantiations is taken into the
analysis.

Comparison with the Combining Network

The conjunctive feature of both the distribution net-
work and the combining network for memory access
proposed in the paper by Gottlieb et al supra, is the
decomposition and unification of information per-
formed at every network node. The differences be-
tween the networks stem from the fact that they are
destined to attach to inherently different units, in that
end which is not attached to the processors.

There is a difference in topology, which is also a
difference in complexity: The combining network has
been proposed in an NX N Omega topology, typically
consisting of 2X2 elements; the distribution network
has an Nx1 tree topology, consisting of (fan-out) X 1
clements.

In order to isolate further differences, consider a
combining network for memory access which is based
on a tree topology as well. (This is possible when all
synchronization data are concentrated in a single mem-
ory module). In the distribution network the active
agent is situated at the root of the tree (the CSU), and
the passive agent is situated at the leaves (the proces-
sors). The opposite is true regarding the combining
network: The active agent is situated at the leaves (the
processors), and the passive agent is situated at the root
(the memory module). This fact generates differences in
the mechanisms of information flow.

Information transmitted from the root of the tree in
the combining network is destined for pre-determined
addresses (addresses of specific processors). Contrarily,
in the distribution network addresses are established
during the passage through the network, in a distributed
process that has to do with load regulation. In the direc-
tion from the leaves to the root, the merging of informa-
tion in the combining network is performed on an occa-
sional basis: A merge takes place only if two mergeable
items occur at the same node at the same time. In the
distribution network, however, there are rules to en-
force the merge of items, regardless of arrival times and
at the level as far as possible from the root of the tree.

The following duality exists between the two net-
works: In the combining network, decomposition of
data is dictated by their merge (the subject for decom-
position are responses returning from memory); In con-
trast, in the distribution network the merge of data is
dictated by their decomposition (the subject for merge
are termination messages returning from the proces-
sors). However, the mechanism controlling the sending
of information on the direction from the root to the
leaves in the distribution network, seems to be essen-
tially different than the mechanism controlling the send-
ing of information on the direction from the leaves to
the root in the combining network.

awv)

STRUCTURE OF THE CENTRAL
SYNCHRONIZATION/SCHEDULING UNIT

The internal architecture of the CSU is now pres-
ented. As noted in the previous section, this unit is the
only possible source for a performance limitation as far
as flow-rates are concerned. Therefore, it is the most
important among the synchronizer/scheduler units.
The CSU holds the task map, and is responsible for the
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function of detecting/monitoring of task enablings. In
addition, the CSU keeps its own configuration and
availability data, and performs a distribution function, in
an essentially similar manner to a distribution network
node. Hence, the CSU is the most complex of all syn- §
chronizer/scheduler units, and apart from playing its
own singular role, it plays a representative role with
regard to the embodiment of the whole apparatus. The
design space is rich with possibilities and an optimal
design may be achieved with additional work. The 10
design version presented herein achieves some desired
properties related with flow-rate and enabling latency,
and represents a certain archetypical outline; Yet sim-
plicity considerations play a substantial role in this ver-
sion. Throughout the course of presentation, potential 15
improvements, as well as alternative design options, are
pointed out.

In order to eliminate any ambiguity, the abstraction
levels that are dealt with in the context of presenting the
CSU architecture, reach the level of logic design. 20

The timing discipline that appears to be most appro-

'
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large, space-distributed system; b) preventing excessive
mutual coercion of operational rates among units, in
order to increase utilizations and decrease delays. Nev-
ertheless, the design presented herein is based on the
discipline of synchronous timing with a single clock,
due to its simplicity. Under this timing discipline each
signal line assumes a single valid value on each clock
cycle, which is the value that stabilizes towards the end
of the cycle.

In the following design version, the system is as-
sumed to be totally symmetrical, so that any processor
may receive any task, and without any preferability
differences between processors.

Definition of Type (1) Interface

The CSU communicates with the distribution net-
work through type (1) interfaces (as denoted in the
previous section). The lines that take part in a type 1)
interface are graphically summarized in FIG. 5, and the
duties of the various lines are specified in the following
table.

TABLE 1

Line/
Line Group

Description

TASK_ID[]

BASE_INST] ]

N_INST( ]

CONCLUDED_TASK_ID{]
N_CONCLUDED..INST{ ]

T_COND

Identification number of the task to which the current alloca-
tion pack pertains. (A mapping from this identification
number to the address of the task’s code in main memory is
accomplished through fast tables coupled to the processors.
The address is not transmitted directly, in order to make
economical usage of lines).

Number of the least instantistion among the sequence of
instance numbers belonging to the current allocation pack.

(If the identification number TASK__ID{ ] pertains to a task
which has pot been declared as duplicable, then the contents
of the BASE_INST lines are meaningless for the current
clock cycle).

Amount of instantiations contained in the current allocation
pack. (If no allocation pack is transferred on the current
clock cycle, » zero value appears on this line group, and ran-
dom values appear on the TASK_ID{ ] and BASE_INST] ] line
groups. In case that the task is non-duplicable, as in the case
that the pack contains s single instantiation of a duplicable
task, a value of | appears on the N__INST[ ] lines).
Identification number of the task to which the current termi-
nation pack pertains.

Amount of instantiations contained in the current termination
pack. (If 0o termination pack is transferred on the current
clock cycle, & zero value appears on this line group, and ran-
dom values appear on the CONCLUDED._TASK_ID{ } and
T_COND] ] lines. In case that the task is non-duplicable, s
in the case that the pack contains a termination ge per-
taining to & single instantiation of a duplicable task, 2 value

of 1 appears on the N_CONCLUDED_INST] ] lines).
Termination condition value pertaining to the current termi-
nation message. (If the task’s identification number,
CONCLUDED_TASK_ID] ], does not belong to s condition-
ing task — this line has a meaningless contents on the

current clock cycle. In particular, the T_OOND is meaning-
less when the contents of the N_OONCLUDED_INST] ] lines
are greater than 1).

TOTAL_TERMINATIONS[] A lump sum of task instantiations terminated at the sub-tree

which is bung on this port. (This datum serves for monitor-
ing processor employment state. An IDU must add up all
TOTAL_TERMINATIONS[ ] values received from descen-
dants, and send the sum to its parent on the next clock cycle;
that is, the sum must be latched. However, an acceleration
can be gained by avoiding the Iatching at some of the free
levels).

priate for the synchronizer/scheduler (as well as for
other parts of a multiprocessor, at certain levels of the
structural hierarchy) is self-timing, as described by C.
L. Seitz in the text entitled “Introduction to VLSI Sys- 65
tems”, C. Mead et al, Addison-Wesley, 1980, chap. 7 pp-
218-254. The reasons for this are: a) the difficulties
associated with spreading of clock signals throughout a

General Characteristics

In the current CSU design version, a high flow-rate
and low enabling latency is preferred to high loading
capacity. (Benchmark examples indicate that a loading
capacity of the order of several tens of tasks is at the
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edge of acceptability; a duplicable task is considered as
a single task for the sake of capacity calculation).

The internal representation of a task map within the
CSU in this version is not through memory cells, but
rather through a programmable topology of connec-
tions (logical “short circuits”) between lines. This im-
plementation approach may be entitled as connectionist
approach, due to its affinity to connectionist architec-
tures, as described in the paper entitled “Connectionist
Architectures for Artificial Intelligence”, S. E. Fahl-
man et al, JEEE Computer, Vol. 20 No. 19, Man. 1987,
pp. 100-109. Yet another implementation approach may
rely on associative memory: The memory will be orga-
nized in a way that each program dependency will be
allocated a memory word, where the identification
number of the task to whom it is an output dependency
will serve as an access key, and the identification num-
ber of the task to whom it’s an input dependency will
serve as the datum to be fetched.

In the current version, the CSU does not contain a
central controller designed on the basis of a state dia-
gram, and there is no division into a control unit and a
data path. The architecture is founded upon wide paral-
lelism amongst a broad collection of simple elements.
The following parameters are now defined:

Aj=the CSU’s fan-out. A; equals the maximal amount
of allocation packs (and termination packs) that can be
transferred by the CSU on a single clock cycle.

Az=maximal amount of distinct TASK_ID values
belonging to duplicable tasks which can appear on the
CSU interfaces on a single clock cycle (A2=Ay).

Az=maximal amount of non-duplicable tasks which
can be allocated by the CSU on a single clock cycle
(A=)

This version’s underlying fundamental outline allows
any combination of Ay, A; and A3. The concrete design
presented here embodies A)=4, Ay=2, and A3=4.

An approximate form of list scheduling is supported:
On every clock cycle the A3z (at the outside) most prior
duplicable tasks are selected, and also, separately, the
A3 (at the outside) most prior non-duplicable tasks. This
collection of Az + A3 tasks (at the outside) is also subordi-
nated to a priority setup, according to which A (at the
outside) allocation packs are produced. In the concrete
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design presented here, A;+A3=6 holds, and the scale of 45

6 priorities is as follows: The upper two priorities are
granted to the two most prior non-duplicable tasks; then
comes the most prior duplicable task; then the remain-
ing two non-duplicable tasks, and eventually the re-
maining duplicable task. This is an example, but any
other priority setup might be chosen. The policy in
allocating a duplicable task in this version is to allocate
maximum of its instantiations, and therefore up to A
packs pertaining to the same duplicable task may be
generated on a single clock cycle.

The tasks’ priorities are mapped into their internal
addresses within the CSU, and these are identified with
the TASK_ID values taking part in transactions be-
tween the CSU and the outside world. In this version,
the most significant bit (msb) of the TASK__ID distin-
guishes a task which has been declared as duplicable
from a task which has not been declared so. Among two
tasks having the same most significant bit, the one
whose other TASK_ID bits determine a higher numer-
ical value is the more prior.

The loading capacity is given in the general outline
represented by this version as a set of several parame-
ters:
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A) Separate values for the capacities of duplicable tasks,
of conditioning tasks, of regular (simple) tasks, and of
D-tasks/R-tasks. (The capacities of duplicable and
conditioning tasks can be exploited for regular tasks
also).

B) The available standard dependency structures, cor-
responding to various sections of the task capacity. In
the concrete design presented here, all tasks of all
kinds have the standard input dependency structure
depicted in FIG. 6. Also, in this design every task
may be governed by one R-task at most.

Arbitrary dependency constructs can be created by
partial utilization of standard structures on the one
hand, and by usage of D-tasks on the other hand. In the
embodiment of the central synchronization/scheduling
unit (CSU) described, any desired standard input depen-
dency structure can be supported.

Enabling latency specifications of the CSU

Let ty—t, be a dependernicy, forming the last input
dependency to prohibit the enabling of ty, at certain
execution circumstances. Suppose that under these cir-
cumstances there is no delay in t,’s allocation (or in the
allocation of its first pack) due to unavailability of a free
interface or free processors. Let i be the clock cycle
whereon tx’s termination message (or tx’s last termina-
tion pack) has appeared. Then the clock cycle wheren
ty will be allocated by the CSU (or its first allocation
pack will be exported) is given by the following table:

. TABLE II
non-
ty/tx duplicable duplicable
non- i+ 1 i+2
duplicable
duplicable i+ 2 i+ 3

There is room for improvement of this version by
introducing more intensive pipelining. This has been
avoided to preserve simplicity considerations. Introduc-
tion of more intensive pipelining may facilitate for rais-
ing the clock frequency, that is to say raising the flow-
rate, but may increase the enabling latency in terms of
clock cycles.

Detailed Structural Description

The main drawing of the CSU design is given in FIG.
7. Some of these functional modules are considered to
be general building blocks. Still others are specific CSU
modules, which functionality is described in here, while
their internal structures are illustrated in the appendix.
The bold lines in FIG. 7 depict line groups or clusters of
line groups, while the regular lines in the figure depict
scalar (single bit) signal lines. In order- to avoid over-
loading, signal names are not indicated on the drawing,
apart from the names of the external lines which belong
to interface number 0. The names can be inferred from
the verbal descriptions.

The main drawing does not depict the mechanisms
serving at task map load-time, but only the mechanisms
serving during run-time. Also, the clock signal lines,
entering all modules which do not constitute combina-
tional logic, are omitted. Apart from the interfaces be-
tween the CSU and the distribution network, there is an
additional external interface of the CSU, through which
this unit is deemed as a memory module (write only).
This interface serves the update of duplicate tasks in-
stantiation quotas during run-time. The interface is
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shown in the drawing, but the hardware mechanisms
associated with it are not detailed.

The connection matrix and the array of enabling cells
(e-cells) constitute the heart of the CSU. Loading of a
task map involves editing the connections in the matrix.
The matrix columns are maped onto TASK_ID’s that
appear on the external interfaces, and so are the en-
abling cells. Therefore the determination of the TAS-
K_ID’s of the program tasks (following priority con-
siderations) creates a mapping between them and en-
abling cells and connection matrix columns. A column
of the connection matrix is stimulated (driven to logical
“1” for one cycle exactly) following the termination of
the corresponding task. Therefore, to a column which is
mapped to some task ty, there will be connected rows
belong to enabling cells which are mapped to tasks that
depend on tx. For a given enabling cell, the row to be
connected is selected according to the particular depen-
dency pattern.

The detection of an event where a task becomes al-
Jowed for execution, namely, the enabling of a task, is
manifested in setting (turning on) the enabling cell
which is mapped to it; namely, in the entering of the cell
into a state wherein its Q output is driven to a logical
ltl”.

If an enabling cell belongs to the group which is
intended for mapping to D-tasks/R-tasks, its setting
causes the stimulation of the R input of that same cell, as
well as the stimulation of the connection matrix column
mapped to that same task. That is to say, all the output
dependencies are activated, and the cell itself is reset on
the successive clock cycle. Reset of dependencies, de-
fined when the cell serves an R-task, also takes place on
the successive clock cycle, due to stimulation of r type
rows connected to that column. (The following con-
straint is obeyed; Any task depending on an R-task must
not be allocated before the reset of dependencies is
completed).

The Q outputs of enabling cells intended for mapping
to simple/conditioning tasks are connected to the X
inputs of the 4’th order response reflecting priority
encoder. In this way the four most prior non-duplicable
tasks (which are made for allocation, that is—are not
D-tasks/R-tasks) are selected on each clock cycle. The
TASK_ID value (apart from the most significant bit)
that will be output when the task is allocated, is identi-
cal to the index of the X input fo the priority encoder to
which the enabling cell is connected. The enabling cell
remains in an “on” state, and the task remains pending
for allocation, as long as the proper ACKuy output of
the priority encoder is not driven to logical “1”. In the
generation of this signal the pack preparation logic is
involved, and it appears on the same clock cycle
whereon the task is allocated.

In the allocation of duplicable tasks the duplicable
task record file is involved. This module is essentially a
special RAM. The setting of an enabling cell which
belongs to the group intended for mapping to duplic-
able tasks, causes a certain initialization within the
RAM, and the cell itself is reset immediately on the
successive clock cycle. The dropping signal on the Q
line may be identified by the synchronous differentia-
tion cell (d-cell) attached to it via the OR gate, and
thereby a stimulation of the connection matrix column
which is mapped to that task may be evoked. This pro-
cess takes place only if the task’s instantiation quota is
zero, so the task must be executed as a D-task. Other-
wise, the RAM asserts the other input of the OR gate,
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starting on the clock cycle whereon the enabling cell
turns off. A dropping signal at the input of the synchro-
nous differentiator will appear in this case only upon the
termination of executing the task’s instantiations.

The number of words in the special RAM equals the
number of enabling cells intended for mapping to du-
plicable tasks. As happens with the enabling cells, each
RAM word is mapped to a specific task, and this is the
task whose TASK 13 ID (apart from the most significant
bit) is identical to the address of the RAM word.

Each RAM word is divided into three sections, A, B
and C, each of them having & separate external access.
Another division of each RAM word is into four fields;
AWAITED, QUOTA, BASE and PENDING. (The
names of the fields reflect their functions, which are
explained below). The AWAITED and QUOTA fields
are congruent to the A and B sections (respectively),
whereas the BASE and PENDING fields, together
comprising the C section, create a certain structural
partitioning inside it. '

The unconventionality of the RAM is reflected, first
of all, in multiple access: The C section has a double
access, and the A section has a quadratic access. (The
operating conditions of the RAM within the overall
CSU design, ensure that two concurrent accesses never
apply to the same address). Secondly, the RAM per-
forms an initialization operation, apart from read and
write operations. The initialization operation involves
substitution of a field’s contents into other fields, and it
is this operation that unifies the sections into & whole
hardware module. Thirdly, the RAM incorporates
groups of control and status lines (SUBS, NZ(A-
WAITED) and NZ(PENDING)) such that each ad-
dress has its own dedicated line. (The SUBS lines are
those that are driven by the e-cells; the NZ lines are the
scalar lines going out of the RAM).

Whenever an address in the A or C section is ac-
cessed, the current content is read through DOUT lines,
and a new content is written through DIN lines—both
occur on the same clock cycle. The access must be
qualified by the proper ENABLE line. All output sig-
nals of the RAM stabilize during the first phase of the
clock cycle (when the clock is high), and are latched
during the second phase of the clock cycle. Write and
update operations take place on the second phase of the
clock cycle.

The functions of the various fields are now described:
The QUOTA field maintains the instantiation quota for
the next enabling of the task. The access to this field
(write only) is external to the CSU, and performed as a
main memory access. The PENDING field maintains
the amount of instantiations that are still pending for
allocation for the current enabling. The BASE field
maintains the index of the least pending instantiation.
(All the instantiations that have an index lower than the
BASE have already been allocated, and all those that
have an index equal to or greater than the BASE have
not yet been allocated). The AWAITED field maintains
the amount of instantiations belonging to the current
enabling (already allocated or pending) that have not
been yet reported as terminated.

The initialization operation is individual to each ad-
dress, and is operated upon some address i on a clock
cycle whereon SUBS;="1". The executed initialization
is:

PENDING; = QUOTA;
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-continued
AWAITED; = QUOTA;

BASE; =1

(The result of asserting SUBS; on a clock cycle
whereon an access to the address i at one of the RAM
sections A or C takes place, is undefined. Such a coinci-
dence cannot occur during the execution of an orderly
program. An orderly program is defined as a program
that satisfies the following requirement, for any legal
input and regardless of the parameters of the architec-
ture (number of processors, scheduling policy, etc.): A
task would not be re-enabled, unless its execution trig-
gered by the previous enabling has been terminated.
Any program may artificially be forced to be orderly,
by adjoining a pre-enabled D-task to every task, while
defining a cyclic interpendence between them.)

The status signals generated by the RAM are of the
sort NZ(PENDING;) and NZ(AWAITED)). The bool-
ean scalar function NZ(<field>) (NZ=Non-Zero) is
defined as the OR function of all field’s bits.

The two most prior duplicable tasks that do not have
instantiations pending for allocation, are identified by
the 2'nd order priority encoder through the
NZ(PENDING) lines. The values appearing on the Y
outputs of the priority encoder are the identification
numbers (apart from the most significant bit) of these
two tasks, which are also their RAM addresses. The Y
outputs are fed back to the ADDRESS lines of section
C, and in this way the BASE and PENDING values of
the two tasks are also extracted (on the DOUT lines).
The ENABLE inputs of section C, which serve for
qualifying this access, are connected to the REQ out-
puts of the priority encoder.

The data concerning the four most prior non-duplica-
ble tasks, and two most prior duplicable tasks, are re-
ceived at the six input ports of the pack preparation
(combinational) logic. Four of the ports are pre-des-
tined for non-duplicable tasks, and the other two for
duplicable tasks. The indices of the ports reflect their
priority (the highest index designates the highest prior-
ity). An ID value (generated as a Y value by the proper
priority encoder), as well as a VALID bit (generated as
a REQ bit by that priority encoder) are received for
each of the six tasks. The most significant bit of the
TASK_ID is concatenated to the ID while the task is
allocated: A “0” for a duplicable task, a “1” for a non-
duplicable task. For the duplicable tasks (ports 3 and 0).
BASE and PENDING values are also received.

The allocation pack preparation logic comprises four
cascaded layers. Each one of them is in charge of a
particular external interface. Each layer submit to its
successor an output which has the same format as the
input it receives from its predecessor. A layer locates
the most prior port i such that VALID i="1", and tries
to make an allocation for the task whose data are re-
ceived on that port. The fulfillment of the allocation is
conditioned upon the availability of free processors in
the sub-tree hung on the interface of which the layer is
in charge; the number of available processors is trans-
mitted by the processors availability monitor unit
through the proper AVPROC line group. if i € {5,4,2,1}
(the task is non-duplicable), the single instantiation of
the task is allocated provided that AVPROC=£0. Oth-
erwise (the task is duplicable), an instantiation pack of
the size min {AVPROC, N} is allocated.
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The ID data pass through all layers without being
subject to any transformation. The data which may be
altered between one layer to the next are the VALID
bits, and also the N and BASE for ports 3 and 0. The
data concerning tasks which are not selected for alloca-
tion at the current layer pass through it untouched. If
the allocated task has been received on any of the ports
S, 4, 2 or 1 (the task is non-duplicable), the VALID bit
to be transmitted to the next layer is turned off. Other-
wise (the task is duplicable), the layer detracts the allo-
cated amount from N, and increments the BASE by the
same amount. If the new N equals to zero, the layer also
turns off the VALID bit. In this way each layer re-
ceives the residues left by the layers above it.

The residues from the last layer are exploited for
updating the enabling cells and the RAM: From the
ports 54,2 and 1, boolean residues are received (the
VALID bits), and they are used as logical complements
of the ACK;, values submitted to the response reflect-
ing priority encoder. The enabling cells belonging to
non-duplicable tasks which are allocated on the current
clock cycle are thus reset. From the ports 3 and 0, nu-
merical residues are received (the N values), as well as
new BASE values. These values are fed back to section
C of the RAM (Through the DIN lines), and thus the
relevant PENDING and BASE fields are updated in
the same clock cycle wherein they are read.

The vector masks (VM’s included in the design con-
stitute arrays of AND gates, wherein the masking bit
enters all gates in parallel. A logic for resolving a mini-
mum (also incorporated in the design) may be imple-
mented using a selector which is controlled by a com-
parator. The illustrated design, which is uniform for all
of the layers, is based on the assumption that any layer
may perform allocations for any of the six ports. Actu-
ally not every combination is possible, due to the prop-
erties of the priority encoders. For example: If VA-
LID4=“1" appears at the input to the pack preparation
logic, then VALIDs=*“1" must also hold, and therefore
layer 0 cannot allocate a task which appears on port 4.
The specific design for each layer is obtained by a
proper reduction of the uniform design, according to
the following table of possible allocation combinations:

TABLE II1
port port port port port port
0 1 2 3 4 5
layer O
layer ]
layer 2
layer 3

The processor availability monitor unit consists of
four totally disjoint compartments. Each compartment
serves a particular external interface, and collaborates
with the corresponding layer of the allocation pack
preparation logic. During program run-time, the count
of available processors (AVPROC) should be incre-
mented by the number of porocessors reported to have
disengaged (TOTAL _TERMINATIONS), and decre-
mented by the number of allocated instantiations
(N_INST), on every clock cycle.

The TPROC value, reflecting the total number of
processors in the sub-tree governed by a compartment,
is latched during initialization time. (As for the other
parts of the CSU design, only the mechanism serving
during run-time is detailed). The TPROC values (to-
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gether with values fulfilling the same function at the
distribution units) constitute the only configuration data
in this design version, mk.

Allocation advances are implemented by submitting
TPROC values which are higher than the actual
amounts of processors.

The data arriving at the CSU through the CON-
CLUDED_TASK_ID. N_CONCLUDED_INST
and T_COND, serve for performing updates in the
RAM and/or stimulating connection matrix columns.

The role of the merge box is to unify termination
packs pertaining to the same TASK__ID, and being
received on the same clock cycle through distinct inter-
faces. The unification of termination packs is mandated
by the structure of the mechanism for updating section
C of the RAM, and in particular by the prohibition of
multiple concurrent access to the same address. The
dashed lines in the figure designate scalar signals, which
can be viewed as having a control implication. The unit
include adders, comparators, and vector masks. (Wher-
ever several masking control bits enter the same mask,
the masking condition is their AND function; some
control inputs are inverting).

The post-merge termination packs are transmitted to
the decode logic and update boxes. Suppose that on
some (post-merge) interface k there appears a valid
(N>0) termination pack, carrying the identification
number ID =msb(ID); rest(ID).

If msb(ID)=*"1" (the task is non-duplicable), the
output line having the index rest(ID) of the decoder
belonging to interface k (one of the four decoders
within the decoding logic) is stimulated. (See FIG.
B11). The stimulation is routed via an OR gate to a
connection matrix column. If the index ID designates a
simple task, this is the only column belonging to task
ID. Otherwise, (the index ID designates a conditioning
task), this is the “¢” column of task ID; in addition,
either the “0" or the “1” column is stimulated, depend-
ing on the current logical value appearing on the line
T—_CONDx.

If msb(ID)="0" (the task is duplicable), an access to
the address rest(ID) at section C of the RAM takes
place, via port k. The content which is read out is task
ID’s AWAITED field. The value N, which expresses a
sum of terminated instantiations, is decremented from
the read value, and the new value is stored on the same
clock cycle. If the new AWAITED value is zero,
which means that the task has terminated, a logical ‘0’
will appear on the proper NZ(AWAITED) line on the
next clock cycle. The synchronous differentiator which
monitors this line will recognize the drop, and will
stimulte the connection matrix column belonging to the
task ID.

CONCLUSIONS

The synchronizer/scheduler architecture presented
herein, which is framed in a general scheme according
to which a dedicated hardware subsystem, directed by
the program’s dependency graph, manages synchroni-
zation, scheduling and work allocation in a multiproces-
sor - is attributed by the following properties:

The extended maximal flow-rate immanently
matches the maximal sinking ability of the processors.
Namely, it is practically unlimited.

The reduced maximal flow-rate amounts to at least
several transactions per clock cycle. (Suppose, for ex-
ample, that the fan-out of the CSU is four, and the aver-
age execution time of a task instantiation is 20 clock
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cycles. Then, during the execution of a task instantia-
tion, instantiations pertaining to B0 distinct TAS-
K_ID’s can be allocated).

The enabling latency is logarithmic in the number of
processors. The contribution of the CSU to the enabling
latency is three clock cycles at most.

Approximate list scheduling (scheduling according to
fixed task priorities) is supported.

Any synchronization/scheduling related overhead
activity of the processors is eliminated.

When the program degree of parallelism sufficiently
exceeds the number of processors, any synchroniza-
tion/scheduling related overhead idling of the proces-
sors is also eliminated, due to allocation advances (pro-
vided that the reduced maximal flow-rate does not con-
stitute a limitation).

Arbitrary patterns of parallelism are supported.

Allocations are global (any processor may receive
any task instantiation), dynamic and performed on the
basis of processors availability. Hence, optimal load
balancing is accomplished.

The properties related with overheads and flow-rates
furnish the necessary conditions for small and medium
grain parallelism.

A solution to the synchronization efficiency problem
in multiprocessors which relies on a specialized subsys-
tem appears to lack the desired property of complete
decentralization. Yet the following observation should
be considered: Enabling of many execution threads by a
single event is very frequency in parallel programs.
Such a parallelism pattern typically results in a synchro-
nization hot spot: a large portion of system activity is
centered around a single resource for some duration.
Memory hot spots associated with synchronization
variables are just one example for this universal phe-
nomenon. A synchronization hot spot signifies uninten-
tional, occasional, de-facto centralization. Therefore,
fixation of these hot spots at a pre-destined locus, where
a powerful synchronization/scheduling engine can han-
dle them efficiently, may prove to be a preferable solu-
tion.

It will be appreciated that as part of the architecture
discussed, further work would include proposals for an
optimal CSU design. Alternative design approaches, as
well as suggestions for improving the current design,
are also possible.

Having described the invention with regard to cer-
tain specific embodiments thereof, it is to be understood
that the description is not meant as a limitation as fur-
ther modifications may now suggest themselves to
those skilled in the art and it is intended to cover such
modifications as fall within the scope of the appended
claims.

We claim:

1. A hardware synchronization/scheduling apparatus
for performing synchronization/scheduling in a multi-
processor system by controlling, during program run-
time, a process of monitoring and detecting which com-
putational tasks are allowed for execution and allocat-
ing computational tasks to processors, the tasks being
represented by instructions and data accessible to the
processors via instruction and data storage hardware,
said synchronization/scheduling apparatus comprising:

means for monitoring and detecting which computa-

tional tasks are allowed for execution, said monito-
ring/detecting means containing a task map de-
scribing the precedence relations among the com-
putational tasks of the program, and
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communication/distribution means connected to said
monitoring/detecting means, and to said proces-
sors for distributing, to the processors, information
on computational tasks detected by said monito-
ring/detecting means to be allowed for execution
in a processor and for forwarding, to said monito-
ring/detecting means, information on termination
of execution of computational tasks at the proces-
sors, said communication/distribution means com-
prising a network of nodes possessing both the
capability of decomposing information on a pack of
allocated computational tasks into messages of
finer partial packs of allocated computational tasks
to be sent toward the processors and possessing the
capability of unifying packs of information on ter-
mination of computational tasks into a more com-
prehensive pack, to be sent to said means for
monitoring/detecting of allowed computational
tasks.

2. The apparatus of claim 1 wherein said monitoring-
/detecting means comprises a connection matrix having
a set of connections between rows and columns thereof,
said set of connections representing said task map and
being programmable, an enabling cell attached to said
connection matrix detecting a specific computational
task allowed for execution in a processor.

3. The apparatus of claim 1 wherein said communica-
tion/distribution means comprises a modular distribu-
tion network configured in modular fashion from a set
of distribution units according to a desired configura-
tion.

4. A method of performing synchronization/schedul-
ing in a multiprocessor system by controlling, during
run-time, a process of monitoring and detecting which
computational tasks are allowed for execution and allo-
cating computational tasks to processors, the tasks
being represented by instructions and data accessible to
the processors via instruction and data storage hard-
ware, said method comprising the steps of:

monitoring and detecting which computational tasks

are allowed for execution in accordance with a task
map describing the precedence relations among the
computational tasks of the program; and
distributing to the processors information on compu-
tational tasks detected in said monitoring and de-
tecting step to be allowed for execution in a proces-
sor and forwarding information on termination of
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execution of computational tasks at the processors,
said distributing step being performed in a network
comprising nodes possessing both the capability of
decomposing information on a pack of allocated
computational tasks into messages of finer partial
packs of allocated computational tasks to be sent
toward the processors and possessing the capability
of unifying packs of information on termination of
computational tasks into a more comprehensive
pack, provided in said monitoring and detecting
step with respect to allowed computational tasks.
$. The method of claim 4 wherein said monitoring
and detecting step is performed by 8 monitoring and
detecting apparatus separate from said processors.

6. The method of claim 4 wherein global conditioning
is performed based on termination conditions produced
by the processors and transmitted via said network as
part of said information on termination of computa-
tional tasks, without requiring conditioning computa-
tions or accessing of said data storage hardware during
said monitoring and detecting step.

7. The method of claim 4, wherein a task of said task
map embraces a multiplicity of instantiations, including
terminated instantiations, the number of instantiations
being controllable by the processors via direct access to
registers maintained by said monitoring and detection
apparatus.

8. The method of claim 4 wherein as part of said
distributing step, forwarding information on termina-
tion of execution of computational tasks at the proces-
sors comprises separate forwarding of termination
packs containing a quantity of terminated instantiations
and forwarding of messages expressing quantities of
processors which have entered a halted state.

9. The method of claim 4 wherein configuration data
of said network is maintained in distributed fashion and
processor employment data are also distributed.

10. The method of claim 4 wherein as part of said
distributing step, decomposing information on a pack of
allocated computational tasks into messages of finer
partial packs of allocated computational tasks to be sent
toward the processors is performed in an adaptive fash-
ion, involving decisions local to a specific node of said
network, based on processor availability, and using
allocation advances through storage of allocation packs
in said node.
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