
 1

Access Regulation to Hot-Modules in
Wormhole NoCs

I. Walter1, I. Cidon2, R. Ginosar2, A. Kolodny2
Electrical Engineering Department, Technion, Haifa, Israel

 1zigi@tx.technion.ac.il , 2{cidon, ran, kolodny}@ee.technion.ac.il

ABSTRACT
Network on Chip (NoC) may be the primary interconnect
mechanism for future Systems-on-Chip (SoC). Real-life SoCs
typically include modules such as DRAM controller or
floating point unit, which are bandwidth limited and in high
demand by other units. Such modules are termed hot-modules.
In this paper we demonstrate that the mere existence of one or
more hot-modules on wormhole-based NoCs dramatically
reduces network efficiency and causes an unfair allocation of
system resources. We demonstrate that a single hot-module
destroys the performance of the entire SoC, even if network
resources are over-provisioned. In order to resolve the hot-
module effect, we introduce a novel low-cost credit based
distributed access regulation technique that fairly allocates
access rights to the hot-module. Unlike other methods, this
technique directly addresses the root cause of network buffer
congestion phenomena. Using simulation, we show the
effectiveness of the suggested mechanism in various NoC
scenarios.

Categories and Subject Descriptors
System-Level Design and Co-Design: Network-on-Chip
(NoC)

General Terms
Algorithms, Performance, Design

Keywords
Network on-Chip, wormhole, hotspot, resource
management, SoC

1. INTRODUCTION
Wormhole switching [1] is commonly employed in NoC
(e.g. [2], [3], [4], [5]), due to its small buffer requirements
and low latencies at light load. Each packet is divided into
small fixed size parts called flits, which are transmitted to
the next hop without waiting for the entire packet to be
received. This causes transmitted packets to be segmented
and “spread” along the path between the source and
destination in a pipeline fashion. The main drawback of
wormhole switching is its sensitivity to packet blocking
that may quickly consume buffers along the entire path.
Therefore, the common design point of high performance
wormhole networks to allocate enough link capacities for
low utilization operation and to employ multiple virtual

channels [6]. Another mean to support the mix of signals
with different timing criticality is to include mechanisms to
support Quality-of-Service requirements. For example, In
QNoC [3]. packet priorities are supported by assigning
priorities to virtual channels and defining service levels for
messages according to their relative urgency (e.g.
interrupts, real time cache line fills, cache prefetch and
large data blocks). The network is equipped with enough
resources (capacities, buffers) to deliver adequate
throughput at the required latency for each service level.
The above design methodology [7] works properly as long
as all system modules consume messages within their
specified capacity. However, at certain times the
aggregated traffic demand might exceed a destination
module’s bandwidth capacity. Similarly, such a module
may operate from time to time at a slower than average
speed (e.g. a variable speed coder, encoder or storage
device) and becomes congested coincidently or not with an
incidental usage peak. We term such a bandwidth-limited
high-demanded SoC module a hot-module (HM). In such
situations, the hot-module is unable to consume incoming
packets fast enough. Hot-modules are common in real-life
SoCs, e.g external DRAM ([8]- [10]) or internal
components (caches, CAMs, specialized arithmetic units,
special purpose processors, SRAMs [9]) which are
bandwidth limited and in high demand by other units. The
identities of the hot-modules are usually known in advance
as the critical resources affecting the system's performance.
Moreover, it is likely that such modules remain HMs even
in SoCs with multiple use-cases (e.g., external memory
bottleneck in [10]).
Congested modules exist in systems with any
communication scheme (including bus-based
communication), but wormhole-based systems are much
more sensitive to hot-modules, as the entire network may
be affected: The hop-by-hop backpressure, associated with
wormhole routing, causes buffers at the router adjacent to
the hot-module to be filled up and become stalled, blocking
new arrivals to this router. This creates a domino effect, by
which the delivery of packets to ports of more distant
routers is slowed down, forming a saturation tree [11] with
the hot-module as its root (Figure 1). Moreover, the domino
effect stretches beyond the traffic that is destined to that

 2

destination (the saturation tree) as other packets that are
destined to other destinations find no free buffers at certain
routers on their route (extending the saturation tree to a
larger saturated acyclic graph). The overall NoC system
suffers increased delays in packet delivery as well as unfair
network utilization (modules near the HM get a larger
portion of its resources). This threat is particularly
troublesome in wormhole based architectures due to packet
“stretching” across multiple hops causing the hot-module
effects to extend network-wide instantly. It is very
important to note that this phenomenon is independent of
links and router bandwidth. Such a network freeze may
build up even in a system with infinite capacity links
because of a single heavily loaded module. Consequently,
even largely over-provisioned NoCs suffer from poor
performance if potential hot-modules are left unhandled.
We propose a novel one-to-many credit-based access
regulation mechanism for solving the NoC buffer overflow
problems in wormhole-based systems with predefined
HMs. An HM allocation controller is introduced to
arbitrate short, high priority credit requests. The controller
allows the system architect to regulate hot-module access
according to the quality of service requirements of the
specific system application. The allocation algorithm
employed by the controller is system-specific, since the
HM is independent of the network. Credit requests and
grants are transmitted as small high-priority signaling
packets (grants and requests may be also piggybacked on
other messages). In order to eliminate a potential round-trip
latency in selected modules, auto-refresh or pre-allocation
is used. The access regulation mechanism is implemented
in modules’ interfaces and in an appropriate location (e.g.,
as part of the HM network interface), while NoC routers
remain unchanged. The mechanism prevents the
accumulation of packets destined at a hot-module within
the network buffers. Consequently, other traffic remains
unaffected even when the HM load increases significantly.

IP4

R

IP1

R

IP2

R

IP5

R

IP6

R

IP8

R

IP9

R

IP10

R

IP12

R

IP3

R

IP7

R

IP13

R

D
R

A
M

M
em

ory

IP11

R

Figure 1: External DRAM as a SOC's hot-module, which

causes a saturation tree in the NoC (highlighted links)

The rest of this paper is organized as follows: In Section 2,
the negative effects of HMs in wormhole-based NoCs are
discussed. Related work is surveyed in Section 3. In

Section 4, a specific credit allocation technique is proposed
to allow fair sharing of the hot resource and to mitigate
effects on non-HM traffic (traffic not destined at the HM),
and Section 5 presents simulation of the suggested
mechanism.

2. HOT-MODULE EFFECTS
The NoC buffer congestion due to HMs has several
negative effects on system performance. The hot-module
access latency is increased, as packets destined at it
contend for the limited HM bandwidth. Unfortunately,
additional significant fairness problem arises. Typically,
different source modules are at different NoC distances
from the HM (as illustrated in Figure 2a). Since a packet has
to win a local output port arbitration in each router along its
path, the HM bandwidth is not fairly shared. Namely, the
sharing of the HM capacity is dictated by multiple local
decisions made by the network components, and not by
system requirements.
More specifically, modules close to the HM enjoy a much
larger share of the HM bandwidth than distant ones. This is
caused by the fact that NoC routers employ a locally fair,
round-robin arbitration between packets (or flits) of similar
priority waiting at different input ports and contending for
the same output port. Therefore, when its inputs are
saturated, each router that is part of the HM saturation tree
equally divides the bandwidth available at its upstream port
among its input ports. Consequently, HM throughput at a
source drops exponentially as a function of the number of
hops between the source and the HM. When the HM
demand is close to its capacity, location and distance
diversity also lead to significant differences in access
latency. Packets sent by distant sources are more likely to
be blocked by other HM-traffic (i.e., traffic destined at a
HM) in comparison to packets that travel only short
distances. Therefore, modules that are located relatively far
from the hot-module experience extremely long access
times when HM load mounts. These issues (HM saturation
throughput and HM access latency) will be referred to as
the source fairness problem.
Furthermore, performance degradation due to HM load is
not restricted to the HM-traffic itself. In typical NoCs, HM
and non HM-traffic compete for the same network buffer
space and router ports. Therefore, HMs that slowly
consume incoming data hinder the delivery of non-HM
packets (Figure 2b), as slowly moving HM packets wait
inside the network occupying expensive buffers. As a
result, packets destined to lightly loaded modules are also
being stalled by the network, suffering delays and fairness
problems similar to HM packets (Section 5).
The above discussion applies to any network in the
presence of congested end-points. However, left
unhandled, hot-modules' effects in a wormhole network are
more severe than in a store-and-forward network, as

 3

packets are blocked across multiple routers and buffering
space is limited.
As stated above, these delay and fairness effects are
symptoms of HMs presence and not of an inadequately
provisioned NoC. In fact, a wormhole NoC would suffer
from the presence of a HM, even with links and routers of
infinite capacity.

Figure 2: Hot-module effects in a 4×4 YX routed NoC
(a) Source Unfairness: on its way to the hot-module (IP1), packets
generated by module 12 have to win 6 arbitrations, while module 5

packets have to win only 2.
(b) HM-traffic obstructing non-HM traffic: flow 4 1 slows-down (or
blocks) flow 12 3 (which shares a link), and in turn may affect flow

16 6, which is destined at an idle module.

3. RELATED WORK
The negative effects of hot-modules were partially
explored in off-chip interconnection networks (e.g. [11]-
 [17]). In this literature there is no clear distinction between
the issue of HM and the congestion of a network port.
Typically, suggested solutions attempt to prevent regular
traffic from being affected by the traffic of a saturation
tree, either by not allowing one to form or by allocating hot
traffic exclusive network resources. Unfortunately, such
solutions do not bring a fair allocation of the hot resource.
In addition, these solutions address multi-computer
networks, in which the design considerations are
significantly different from those of NoCs. For example,
some works modify the network routers in order to throttle
packet injection at high loads (e.g., [13], [14]), discard
packets (e.g., [15]), deflect packets away from loaded
locations (e.g. [16], [17]), use separate buffers for traffic
destined at a hot-module (e.g. [12]), or simply use a large
number of virtual channels. However, when directly
applied to NoCs, such modifications considerably increase
NoC router gate count, resulting in excessive area and
power consumption and reduced speed. For example, NoCs
typically employ static shortest path routing based on a
simple routing function, because of on-chip cost and
performance considerations. Note, that most of the
previous techniques can either slightly postpone the effect
of HM as they only increase the number of buffers used by
non-HM traffic (by adding buffers or routing non-HM

traffic away) or even increase the effect by throttling non-
HM packets.
Recently, two papers have studied related but different
congestion problems in NoCs. Ref. [18] addresses the
classic flow control problem, regulating the communication
between a source-destination pair. The authors combine
software and hardware mechanisms to adjust the length of
a period ("send window") in which the source is allowed to
inject packets towards a destination. Consequently, no
sense of fair sharing of the hot-module is provided. In
addition, this scheme only responds after a saturation tree
begins to form. In [19], an input regulation scheme is
described where each router predicts the availability of
buffers in its input ports, according to data collected from
its neighbors. When a source observes that its adjacent
router is expected to run out of buffers, it delays generation
of new packets. However, this technique does not prevent
hot-traffic from monopolizing multiple virtual channels and
thus might prevent injection of other packets towards idling
destinations. Moreover, as other classic end-to-end flow
and admission control [20], this method does not address
the hot-module allocation fairness problem, since routers
and sources only have local knowledge regarding the hot-
module demand.
The proposed HM access regulation mechanism is
considerably different from traditional end-to-end flow
control mechanisms. Flow control is conducted on a per
source-destination pair basis (e.g. TCP, static window in
 [21], send window in [18]), and prevents overflow in the
destination buffers pre-allocated for this source (e.g. [22],
 [23]). Flow control does not directly address the hogging of
network resources and does not address the problem of fair
allocation of scarce resources. In addition, all existing
schemes require at least one destination buffer per potential
source, which is inappropriate in on-chip NoCs..

4. HM ACCESS REGULATION
In order to reduce the dramatic effects hot-modules have on
a wormhole-based NoC (Section 5), a credit-based access
regulation mechanism is suggested: each source owns a
quota that limits the number of flits it can send towards a
HM. When a source quota is exhausted, it can resume
transmission only after being granted an additional credit.
Consequently, packets that cannot be consumed by the HM
do not wait inside the network, a saturation tree can not
form and traffic not destined at the HM remains unaffected
during congested periods.
Two types of control messages regulate the access to a
HM: if a source has insufficient credit to start delivery of a
data packet to a HM, it sends a credit request packet to a
HM allocation controller, describing the requested
transaction. When appropriate, the controller sends back
more credit using a credit reply packet. Due to their
significance and short length, credit request and reply

IP1

R

IP2

R

IP5

R

IP3

R

IP4

R

IP7

R

IP8

R

IP9

R

IP10

R

IP13

R

IP14

R

IP11

R

IP12

R

IP16

R

IP15

R

(HS)

IP6

R

IP1

R

IP5

R

IP2

R

IP3

R

IP6

R

IP7

R

IP9

R

IP13

R

IP10

R

IP11

R

IP14

R

IP15

R

IP4

R

IP8

R

IP16

R

IP12

R

(HS)

(a (b

 4

messages are given a high priority level and therefore
cannot be held back in the NoC by data packets. In this
work, we assume that the NoC is equipped with a
prioritized virtual channel mechanism, such as the one
described in [3], guaranteeing fast access of control
messages regardless of data traffic loads.
As control packets are a few flits long and a single control
packet credits a sizable chunk of data, control traffic is a
small percentage of the HM-traffic. Therefore, the buffers
of the prioritized virtual channel are kept at low utilization,
resulting in minimal network queuing time. In order to
overcome credit request and reply latency in light load
periods, source quota can be slowly self refreshed.

4.1 Control Messages
Using a credit request message, a source describes the data
packet(s) it wishes to send to the hot-module and asks for
credit to do so. In addition to the Destination ID field of a
regular packet, a request packet contains two mandatory
fields: Source ID and Length. The former states the
requesting module identity and the latter describes the size
(in flits) of the data packet to be delivered. The system
designer may choose to include additional information
which would enable the HM allocation controller to decide
upon the best service order. This information can be
embedded in optional fields of the request packet. An
example of such a field is a priority value, which indicates
the "urgency" of the data packet, relative to requests that
are sent by other sources of the same kind. A deadline field
that indicates the requested completion time can help the
allocation controller sort the requests in the best servicing
order, postponing less urgent requests to be serviced last. If
requests can be ignored unless they are served by a certain
time (e.g. speculative cache fetches), an expiration field
may be used.

Figure 3a illustrates an example of a credit request packet in
which each field fits a flit (more fields per flit are of-course
possible). Figure 3b illustrates a credit reply packet. The
destination ID field is used to route the packet back to the
requester. The source ID enables the requester to identify
the controller sending the reply and is necessary in a
system with multiple hot-modules. The Credit field states
the number of credits granted in the reply packets.
Generally, this number is equal to the length field in the
matching request packet. However, an allocation controller
may reply with a larger number in order to credit modules

ahead of time during light load periods. The allocation
controller may also reply with less credit than requested. In
this case, a source may choose to send part of the data
packet, thus freeing up local buffer space.
4.2 Implementation
The source control logic is embedded in the network
interfaces that connect cores to the NoC infrastructure:
sources capable of communicating with potential HMs are
equipped with logic that stores current quota, generates
quota requests and handles incoming quota replies. In order
to keep track of the available credit, the source interface
includes a credit status table (CST), with an entry for each
potential HM. If all potential HMs are known during
design time, the entries can be pre-coded in hardware.
Otherwise, these numbers can be programmed as part of
the configuration process.
The CST is updated by the interface control logic upon
receiving credit reply packets and upon injecting a packet:
source module interfaces are modified so that data packets
are no longer injected towards potential HMs as soon as
link-level protocol allows it. Instead, the source control
logic looks up the CST using the destination ID. If an entry
with a matching module ID does not exist, the destination
is not a potential hot-module and the data packet can be
injected into the network immediately. Otherwise, the
current credit status is retrieved and compared with the size
of the data packet. If sufficient quota exists, the packet is
injected into the network and its size is subtracted from the
corresponding CST entry, reflecting the consumed credit.
Otherwise, a request packet is generated, applying for the
missing credit.
The access to potential HMs is regulated using an
allocation controller that receives credit request messages,
decides upon service order and sends credit reply packets.
This scheduling logic can be implemented as part of the
hot-module's network interface, as an independent module,
or as a separate central unit serving multiple hot-modules.
In this work, we assume that the scheduler is embedded
within potential hot-module interfaces.
The implementation of the allocation controller unit (Figure
4) includes a pending requests table (PRT), with an entry
for each source module. The entry fields are selected
during design time, according to the fields of request
packets and the specific system needs. For example, a
simple system may only need the source ID and length
fields, while other designs may also describe request type,
priority, deadline and expiration values. When receiving a
credit request packet, the scheduler control logic decodes
the request and logs it in its PRT (Figure 5). In addition the
allocation controller may be provided with the status of the
HM, its current speed and its current queued tasks. The
local arbiter examines the PRT as well as the HM status
and chooses a module, subject to QoS, fairness definitions
and the HM status and encodes a credit reply packet

D
est. ID

Src. ID

Length
Priority

Expiration
D

eadline
…

(a) (b)

D
est. ID

Src. ID

C
redit

Figure 3: Credit request (a) and reply (b) messages.
The request message may include optional fields that describe

the matching data packet.

 5

carrying a calculated amount of credit and sends it to a
selected source.
The scheduling algorithm, which is crucial to the success of
the suggested technique, allows the system architect to
adequately share the hot resource among requesting
modules during high load periods according to the system's
needs. In order to keep the cost of the HM allocation
controller hardware minimal, in this work we assume a
simple, round robin local arbiter is implemented and
demonstrate its effectiveness. The design of more complex
controllers and schedulers is left for future work.
It should be noted that the access regulation mechanism is
optional and transparent to the HM and source modules. In
particular, the system architect may allow some modules to
access potential HMs without requesting credit at all, if
their traffic should not be delayed by the controller under
no circumstances.

Figure 4: Hot-Module Allocation Controller.

5. PERFORMANCE EVALUATION
In this section, the performance of the suggested HM
access regulation mechanism is examined by means of
simulation. Results are compared to a "standard" wormhole
based NoC with no such mechanism. Two scenarios are
used: a "Classic" hotspot traffic pattern and a real-life
MPEG decoder SoC. The presented results exemplify the
severity of the HM effects (system performance
degradation and the source fairness problem) and quantify
the extent to which the allocation scheme solves them.

The term "end-to-end latency" in this paper refers to the
time elapsed since the packet is created at the source until
its last flit is consumed by the destination. Therefore, the
measured latency accounts for source queuing, network
blocking, virtual channel multiplexing, link bandwidth
limitations, and overhead of the access regulation protocol.
The results are generated using the OPNET based simulator
 [24], modeling a wormhole network at the flit level. The
model includes all network layer components, including
wormhole flow control, virtual channels, routing, finite
router buffers and link capacities.

5.1 "Classic" hotspot traffic
Traditionally, congestion alleviation techniques in off-chip
networks are evaluated using an "all-to-one" traffic pattern.
Although not typical for SoCs, this synthetic scenario is
analyzed here in order to clearly demonstrate the effects of
hot-module congestion and resource arbitration.
Each set of results has been obtained for fixed non HM-
traffic, which serves as background communication, and
for varying HM load in a system similar to the one
illustrated in Figure 2.

The following evaluation model is used:
1. The system consists of 16 modules, arranged in a 4×4

grid with a single HM, placed at the upper-leftmost
corner. Fixed, symmetric XY routing [3] is employed.

2. All network links and modules (except HM) have
identical capacities (10 Gbit/sec).

3. The HM has 1Gbit/sec capacity.
4. Data packets are 200 flits long and are generated by a

Poisson process; Flits are 16 bits long.
5. Routers have a 10-flit input queue per port.
6. All possible non-HM flows exist in the system and

have identical characteristics. Similarly, all possible
HM flows exist and have identical characteristics.

7. A prioritized virtual channel is used to deliver control
packets, which are two flits long each.

8. Routers resolve contention for output ports in a
round-robin manner.

9. The allocation controller is implemented as part of the
network interface of the HM and employs round-
robin arbitration among pending requests.

5.1.1 System Performance
Figure 6a shows mean end-to-end delay in the system, with
and without the allocation protocol. It is clear that the
access regulation mechanism considerably reduces the
average access latency. Figure 6b breaks the results down,
separating HM-traffic from non HM-traffic. Due to the
bandwidth consumed by the control packets, the mean
delay of the HM-traffic is slightly increased when using the
proposed mechanism. However, there is a dramatic

PRT

Local
Arbiter

Requests
Decoder

Reply
Encoder

Credit
Requests

Credit
Replies

Upon receiving request for K credits from module i
 If HM idle
 Send k credits to module i
 Else
 Log request in PRT

Upon finishing servicing a packet
 /*use local arbiter and PRT to choose
 next module to be served*/
 i local_arbiter(PRT)
 /*extract requested credit from PRT
 k PRT(i)
Send k credits to module i
Remove request from PRT

Figure 5: Operation of a simple HM allocation controller.

 6

improvement in the delay of the background traffic, which
is now almost unaffected by the mounting HM load.
This is caused by the fact that HM-traffic no longer
occupies expensive network buffers, and non-HM packets
can use them effectively to reach their destinations.
The small increase in HM-traffic delay due to the load of
control messages can be further circumvented. The
designer can prevent control messages from consuming the
limited HM bandwidth by placing the controller in a
location such that the control path does not conflict with
the HM data path.

Figure 6: Mean end-to-end delay vs. HM load.

Figure 7 demonstrates the source fairness problem in an
uncontrolled wormhole network in steady-state. When the
HM maximal utilization is approached, the delays vary
largely among sources. While modules close to the HM
experience only a slight increase in their end-to-end delay
(e.g. module 5), the delay seen by distant modules (e.g.
module 16) is considerably larger. This unfairness, caused
by the different number of arbitration points along the path

(Section Error! Reference source not found.), increases
as the number of SoC modules grows. Figure 7 also shows
the results of activating the HM allocation mechanism in a
system with the same loads. The fair arbitration scheme
manages to distribute the limited resource almost equally
among the system modules (including ones not shown) as
the system approaches its maximal steady state load. As
described above, other fairness criteria can be implemented
using different HM allocation controller policies.
An additional important performance metric under heavy
load is the saturation throughput: assuming that all sources
always have data to send to the hot-module, saturation
throughput is the bandwidth each source achieves. This
predicts the system behavior at periods of extreme
congestion in which the total load exceeds the HM capacity
and the system operates at saturation point. As NoC routers
employ a round-robin based arbitration among ports, each
router effectively divides its upstream saturation bandwidth
equally among requesting ports. Therefore, in a basic grid
based network, the further a module is from the HM, the
less bandwidth it will get. This unfairness also increases
with the number of SoC modules.
Figure 8 shows the saturation throughput with and without
access regulation mechanism. When no control is applied,
module 5 enjoys 25% of the HM limited bandwidth, while
module 12 gets less than 1% due to the large number of
hops on the path to the HM. This is explained by the
network topology (Figure 2a): router R1 (i.e., the router
directly connected to IP1) equally divides the HM capacity
between its east and south ports. Similarly, router R5
distributes it upstream HM capacity (available at its north
port) among its local and south ports, meaning that IP5
enjoys exactly a quarter of the HM bandwidth when all
sources are saturated. Following similar analysis, it can be
easily shown that IP12 only gets 1/144 of the HM capacity,
as its packets contend four times with packets from another
input port (routers R12, R8, R4, R1) and two times with
packets from two other input ports (routers R3, R2).

(a)

(b)

 7

Figure 7: Mean end-to-end delays vs. HM load.
Curves represent mean delay normalized by the zero-load delay.

Figure 8: Saturation throughput.

Without control, distant modules get a small share of bandwidth.

The HM access regulation distributes the saturation
bandwidth fairly among all source modules, even when the
network is extremely loaded. This is attributed to the fact
that control messages bypass the slowly-moving data
packets and do not suffer from the source fairness
problems.

5.2 MPEG-4 decoder
In this test case, we use an MPEG-4 video decoder of [9] to
evaluate the performance of the access regulation. The SoC
is composed of 12 processing elements placed on a 3x4
grid. By analyzing the communication demands (Figure 9),
it is clear that two modules are at high demand by multiple
sources: The DRAM controller has 7 incoming flows
(accounting for 25% of the total traffic), and the SRAM2
module with 4 incoming flows (22% of the total traffic).
In order to evaluate the system's performance, we use a
model similar to the one described in Section 5.1, with the
MPEG-4 video decoder communication demands [9]. The
DRAM controller and SRAM2 modules are equipped with
an allocation controller. Two module mappings are used: In
the first mapping (Figure 10a), the two hot-modules are
placed in relative proximity to each other, in a way that
causes some of the packets destined at those modules to
contend for the same inter-router links. In the second
mapping (Figure 10b), the placement is optimized so that no
such sharing takes place but routing paths are kept short.
This placement minimizes the effect each HM has on the
other.

Figure 9: MPEG-4 communication demads.

The amounts specify the average traffic [MB/s]

Figure 10: MPEG-4 SOC placement.
Basic (a) vs. optimized (b) placements

5.2.1 System Performance
As in the previous example, we first examine the system
performance in steady state while increasing the HMs
utilization. Figure 11 shows the overall delays in the system
using the basic placement, with and without the allocation
control. When the uncontrolled HMs utilization increases,
traffic destined to other modules suffers delays which are
200 times larger than their zero load latency. Activating the
allocation controller mechanism frees expensive network
buffers, thus allowing the non-HM packets to arrive at their
destination with considerably smaller delays. Note that the
small increase in the non HM-traffic delay is imminent as it
reflects the growing usage of the network resources by HM
packets. Figure 12 shows similar effects when the optimized
module placement is used. Without control, non HM-traffic
suffers of extremely high delays. The latency is reduced by
an order of magnitude when the allocation controller is
introduced.

5.2.2 Source Fairness
Figure 13 shows the saturation throughput in MPEG-4
system. As explained above (Section Error! Reference
source not found.), when no control is used, distant
modules only get a small fraction of the scarce resource.
For example, the share of SDRAM bandwidth that module
00 (VU) gets in the optimized system is more than six
times bigger than the one of module 20 (ADSP) and of
module 21 (UP SMAP).

(a) (b)

 8

Figure 11: Mean end-to-end delay vs. hot-modules load.

(Basic placement)

Figure 13a reveals an additional peril in uncontrolled
systems: Although HM demands is maximal, the expensive
hot-modules are idling 40% of the time. This happens since
packets destined at the different hot-modules compete for
the same network resources and block each other from
making progress in the network. As the hot-modules in the
optimized system are placed so that no such sharing
happens, the hot-modules are fully utilized. Unfortunately,
optimal placement is not always feasible due to layout and
timing constraints. HM access is successfully regulated
using the control mechanism, and each source gets a fair
share of each congested module. The control packets
consume less than 2% of the HM bandwidth.

Figure 12: Mean end-to-end delay vs. hot-modules load.

(Optimized placement)
The two HM-traffic curves overlap

6. SUMMARY
The unique characteristics of wormhole routing make it
particularly suitable for high-performance networks-on-
chip. However, it is also highly vulnerable to loaded hot-
modules. Due to wormhole's backpressure mechanism, the
NoC buffer depletion effects extend system wide
instantaneously.

Two main problems were identified: the source fairness
problem, and the degradation of the entire system
performance, as non HM-traffic is also blocked during HM
congestion. If HMs are left unhandled, system performance
is determined by network topology and routers' local
arbitration policy, instead of following system optimization
goals. The main thrust of this paper is that system's
behavior should be controlled explicitly by the architect
rather than by network side-effects. The network should
include mechanisms to facilitate such explicit control. In

(a)

(b)

(a)

(b)

 9

order to solve both the fairness and the system performance
problems, we have presented a low-cost end-to-end access
regulation mechanism. Short control messages are used to
arbitrate access to the HM, thus significantly reducing
packet blocking probability and achieving fairness. The
protocol, which is transparent to the system functional units
and NoC, is implemented without modifying the network
routers, allowing them to be simple, and thus fast, small
and efficient. The protocol exploits a high-priority service
level which is readily available in the NoC for fast
signaling. Therefore, there is no overhead at the network
layer. Simple logic is added to the network interfaces of
sources, and potential HMs are instrumented with an
allocation controller, customized to system needs. We
suggest HM access regulation as an essential supplement
for any wormhole-based NoC.

Figure 13: Saturation throughput.

(a) Basic placement (b) Optimized placement

7. REFERENCES
[1] W.J. Dally and C. Seitz, "The Torus Routing Chip", Distributed

Computing, vol. 1, no. 3, 1986

[2] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal Network on
Chip: Concepts, Architectures, and Implementations", IEEE Design
and Test of Computers, September/October, 2005

[3] E. Bolotin, I. Cidon, R. Ginosar and, A. Kolodny, "QNoC: QoS
Architecture and Design Process for Network on Chip", Journal of
Systems Architecture, Volume 50, February 2004

[4] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “Hermes:
an Infrastructure for Low Area Overhead Packet-switching Networks
on Chip”, Integration, the VLSI Journal, Oct. 2004

[5] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip architecture
for gigascale systems-on-chip", Circuits and Systems Magazine,
IEEE Volume 4, Issue 2, 2004

[6] W. Dally, "Virtual Channels Flow Control", Proc. ISCA, May 1990

[7] Z. Guz, I. Walter, E. Bolotin, I. Cidon, A. Kolodny, and R. Ginosar,
"Efficient Link Capacity and QoS Design for Wormhole Network-
on-Chip", Proc. Design, Automation and Test in Europe (DATE),
2006

[8] S. Dutta, R. Jensen, and A. Rieckmann, "Viper: A multiprocessor
SOC for advanced set-top box and digital TV systems", Design &
Test of Computers, 2001

[9] D. Bertozzi, A. Jalabert, S. Murali R. Tamhankar, S. Stergiou, L.
Benini, and G. De Micheli , "NoC Synthesis Flow for Customized
Domain Specific Multiprocessor Systems-on-Chip", IEEE
Transactions on Parallel and Distributed Systems, 2005

[10] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De
Micheli, "A Methodology for Mapping Multiple use-cases onto
Networks on Chips", Proc. Design, Automation and Test in Europe
(DATE) 2006

[11] G. F. Pfister and V. A. Norton, "Hot Spot contention and combining
in multistage interconnection networks", IEEE Trans. Comp., vol. C-
34, no. 10, Oct. 1985

[12] J. Duato, I. Johnson, J. Flich, F. Naven, P. García, and T. Nachiondo,
"A New Scalable and Cost-Effective Congestion Management
Strategy for Lossless Multistage Interconnection Networks", High-
Performance Computer Architecture (HPCA) 2005 Proceedings

[13] E. Baydal, P. Lopez, and J. Duato, "A Congestion Control
Mechanism for Wormhole Networks", Ninth Euromicro Workshop
on Parallel and Distributed Processing (PDP '01) Proceedings

[14] A. Smai and L. Thorelli, "Global Reactive Congestion Control in
Multicomputer Networks", In 5th International Conference on High
Performance Computing, 1998

[15] W. S. Ho and D. L. Eager, "A Novel Strategy for Controlling Hot-
spot Congestion", Proc. 1989 lnt'l Conf. Parallel Processing
Proceedings

[16] T. Lang and L. Kurisaki, "Nonuniform Traffic Spots (NUTS) in
Multistage Interconnection Networks", Journal of Parallel and
Distributed Computing, 1990

[17] P. Gawghan and S. Yalamanchi, "Adaptive Routing Protocols for
Hypercube Interconnection Networks", IEEE Transactions on
Computers, May 1993

[18] P. Avasare, V. Nollet, J-Y. Mignolet, D. Verkest, and H. Corporaal,
"Centralized End-to-End Flow Control in a Best-Effort Network-on-
Chip", Proc. 5th ACM international conference on Embedded
software (EMSOFT), 2005

[19] U. Y. Ogras and R. Marculescu, "Prediction-based Flow Control for
Network-on-Chip Traffic", Proc. ACM/IEEE Design Automation
Conf., San Francisco, July, 2006

[20] K. H. Yum, E. J. Kim, C. R. Das, M. Yousif, and J. Duato,
"Integrated Admission and Congestion Control for QoS Support in
Clusters", IEEE International Conference on Cluster Computing
(CLUSTER'02), 2002

[21] V. Shurbanov, D. R. Avresky, P. Mehra, and W. J. Watson, "Flow
Control in ServerNet Clusters", Euro-Par 2000

[22] A. Radulescu, J. Dielissen, S. G. Pestana, O. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens, "An Efficient On-Chip Network
Interface Offering Guaranteed Services, Shared-Memory
Abstraction, and Flexible Network Programming", IEEE
Transactions on CAD of Integrated Circuits and Systems, January
2005

[23] M. Coenen, S. Murali, A. Radulescu, K. Goossens, and G. De
Micheli, "A buffer-sizing Algorithm for Networks on Chip using
TDMA and credit-based end-to-end Flow Control", International
Conference on Hardware/Software Codes and System Synthesis
(CODES+ISSS), 2006

[24] OPNET Modeler, www.opnet.c

(a)

(b)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

