
ARTICLE IN PRESS

INTEGRATION, the VLSI journal 42 (2009) 367–375
Contents lists available at ScienceDirect
INTEGRATION, the VLSI journal
0167-92

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/vlsi
Two-phase synchronization with sub-cycle latency
Rostislav (Reuven) Dobkin �, Ran Ginosar

VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel
a r t i c l e i n f o

Article history:

Received 10 January 2008

Received in revised form

20 August 2008

Accepted 21 November 2008

Keywords:

Data synchronization

Asynchronous circuits

Clock domains

Two-phase protocol
60/$ - see front matter & 2008 Elsevier B.V. A

016/j.vlsi.2008.11.006

esponding author. Tel.: +972 54 4248169.

ail address: rostikd@tx.technion.ac.il (R. Dobk
a b s t r a c t

Synchronizers typically incur long latency of multiple-clock cycles, resulting in low throughput. This

paper presents two novel fast synchronizers, both based on two-phase protocols: a two-flip-flop

synchronizer which reduces the data cycle from 6–12 down to 2–4 clock cycles, and a LDL synchronizer

which strives for maximum throughput and ‘sub-cycle latency,’ namely data transfers that incur no

extra penalty due to synchronization. These synchronizers are useful for data transfers over long

interconnects. Simulations of best- and worst-case scenarios are presented which demonstrate the

improved performance of the novel synchronizers. The results are compared to two-clock FIFO and to

conventional two-flip-flop synchronizers.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Large Systems on Chip (SoCs) typically integrate multiple-clock
domains, stemming from interfacing different external frequencies,
the integration of modules that were designed to operate on
different frequencies, and clock gating and partitioning of large and
fast clock trees. Moreover, in order to reduce power consumption,
frequency and voltage may also be changed dynamically in DVFS

systems [1–3], leading to changing clock relations during chip
operation.

A SoC constructed of multiple-clock domains may be termed a
globally asynchronous, locally synchronous (GALS) system [4,5].
This paper addresses the challenge of data synchronization and
communication across clock domains in GALS systems. This
challenge is further complicated by increasing global wire delays
and increasing variability in those delays due to process variations
and noise [6,7].

Asynchronous solutions for global communication across clock
domains are preferred over synchronous ones since they eliminate
the need for re-synchronization when crossing clock domains, do
not require complex clock distributions and are more flexible under
changing voltage and temperature conditions [8–12]. Thanks to
these advantages, ITRS [13] predicts that by the year 2020, 40% of
SoC global signaling will be performed asynchronously.

Dynamically changing clock frequencies and wire delay
variations call for robust synchronizers that provide high data
rate and low latency. The simple ‘two-flip-flop’ synchronizer
typically incurs significant multi-cycle latency and limits through-
ll rights reserved.

in).
put. An alternative solution is provided by two-clock FIFO

synchronizers. However, they are intended only for cases when
the two-clock domains are physically close to each other, because
they are intolerant to delay variations over long wires. Further,
they incur additional latency when the FIFO is empty. Other
synchronizers employ stoppable clocks [14–21]. They must take
into account additional latency due to clock tree delays [21,22,37].

Two synchronizers that employ two-phase protocols are
presented in this paper: low-latency and sub-cycle latency
synchronizers. The low-latency synchronizer employs two-flip-
flop synchronization circuits, and is shown to minimize latency
and enhance throughput relative to conventional two-flip-flop
synchronizers.

The sub-cycle latency synchronizer proposed in this paper
provides even higher throughput. It enables correct data sampling
at the earliest possible edge of the sampling clock. The new
synchronizer is based on locally delayed latching (LDL) [23],
which is similar to the two-flip-flop synchronizer that does not
require stopping of the clock. In contrast with the LDL synchro-
nizer of [22,23], the synchronizers presented in this paper employ
two-phase protocol over the communication channel and enable

data transfers on each clock cycle. The proposed circuits employ
standard interfaces, enabling seamless integration in modular SoC

designs. The goal of the synchronizers presented in this paper is to
enhance performance; power and area of the synchronizers are
immaterial, because only a tiny fraction of total power and area
are consumed by synchronizers in typical SoCs.

This paper considers the synchronization of mutually asyn-
chronous clock domains, namely where the two clock frequencies
are unrelated and could also change over time. Synchronizers
which are optimized for mesochronous and multi-synchronous
clock domains are treated elsewhere [24–26].

www.sciencedirect.com/science/journal/vlsi
www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2008.11.006
mailto:rostikd@tx.technion.ac.il

ARTICLE IN PRESS

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375368
The paper is organized as follows. Section 2 compares low
latency solutions, including novel two-phase two-flip-flop syn-
chronizers, Section 3 presents sub-cycle latency LDL synchroni-
zers, and simulations are described in Section 4.
2. Low-latency synchronizers

2.1. Two-flip-flop synchronizers

Standard asynchronous two-flip-flop synchronizers are widely
employed [27–29]. The main assumption of such synchronizers is
that the time reserved for metastability resolution provides a
satisfactory mean time between failures (MTBF). The latency of
the simple synchronizer is relatively high due to the time
preserved for metastability resolution. This latency can be
improved by sampling multiple times and employing speculative
or non-speculative voting [30,31].

The chosen handshake protocol directly affects the synchroni-
zation data rate. The data rate can be improved by moving from a
four-phase protocol to two-phase, especially in the case of long-
range communication where wires incur additional high latency.

A simple two-phase synchronizer is shown in [29]. Fig. 1 shows
a more aggressive design of the synchronizer. The synchronization
circuit in the receiver clock domain (right-hand side) comprises
F1, the XOR gate and the Enable input of REGR. The XOR gate and
the toggle F2 convert the two-phase REQ into four-phase RXE and
a single-cycle pulse VO. F4 provides for acknowledgement. The
READY input facilitates back-pressure (the asynchronous input is
not acknowledged if the receiver is busy).
Fig. 1. Fast two-flip-flop tw

010
NOTRDY0

EN=1
ENA=1
SNT=0

011
WACK1
EN=0
ENA=1
SNT=0

110
WDATA1
EN=1
ENA=0
SNT=0

111
DONE1
EN=0
ENA=0
SNT=1

VI=1
&&

TXS=0

VI=0
&&

TXS=1

TXS=1 VI=1

VI=1
&&

TXS=1

VI=0
&& TXS=0

VI=0

TXS=0 T

Fig. 2. TX FSM of the fast tw
The time reserved for metastability resolution is one clock
cycle, minus the logic path delay from F1 to the Enable input of
REGR. However, since the output of F1 branches to other targets,
the resolution time is actually the clock cycle minus the
maximum over the (bold, red) logic paths to REGR, F2, F3 and
F4. All these paths should be constrained to as short a delay as
possible. Otherwise, the synthesizer and/or physical design EDA
tools may create longer logic and wire delays (as long as these
delays are shorter than the clock cycle). Such extended delays may
erode the time left for metastability resolution, and hence they
should be eliminated by means of timing constraints. Similar
constraints should be made for the synchronization circuit in the
sender clock domain.

When fast clocks are used, a single-cycle time may be
insufficient for reliable operation; the time for metastability
resolution can then be extended by inserting additional flip-flops
in front of F1 and/or F5.

The synchronizer operation is explained by the transmitter
FSM in Fig. 2. Note that TXS (the TX state) is derived from the (bold,
red) synchronization circuit and hence, its toggle time depends on
metastability resolution, and can happen either one or two cycles
after latching F5. The TX FSM accommodates this variability of
toggling time by providing for either case. The output registers
REGD and REGV are controlled by the FSM and by TX Enable (TXE),
the resolving signal from the sampling flip-flop is marked in bold
and red.

In mesochronous operation, the minimal data cycle time
(REQ+-REQ+) is four clock cycles in the worst case, when the
two clocks are in phase, and only three clock cycles when the
clocks are out of phase. When the two clocks are mutually
o-phase synchronizer.

001
DONE0
EN=0
ENA=0
SNT=1

101
WACK0
EN=0
ENA=1
SNT=0

000
WDATA0
EN=1
ENA=0
SNT=0

100
NOTRDY1
EN=1
ENA=1
SNT=0

TXS=0 VI=1

VI=1
&&

TXS=1

VI=0
&&

TXS=0

VI=1
&&

TXS=0

VI=0

VI=0
&& TXS=1

XS=1

o-phase synchronizer.

ARTICLE IN PRESS

Table 1
Data cycles of two-flip-flop synchronizers [32].

Simple four-phase Simple two-phase Fast four-phase Fast two-phase

Best

(off-phase)

Worst

(in-phase)

Best

(off-phase)

Worst

(in-phase)

Best

(off-phase)

Worst

(in-phase)

Best

(off-phase)

Worst

(in-phase)

Mesochronous clocks 10 12 4 6 4 6 3 4

Asynchronous clocks 6 � TX+6 �RX 3 � TX+3 �RX 3 � TX+3 �RX 2 � TX+2 �RX

TX RX TX RXFIFO

TX RX

TX RX
CONTROL
(ASYNC)

CONTROL
(ASYNC)

CONTROL
(ASYNC)

CONTROL
(ASYNC)

CONTROL
(ASYNC)

CONTROL
(ASYNC)

TX RXFIFO

Fig. 3. Fast synchronization: (a) single clock domain transfer, (b) buffered single

clock domain transfer, (c) two-clock FIFO synchronizer, (d) stoppable clock and LDL

synchronizers and (e) synchronization over long interconnect.

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375 369
asynchronous, the data cycle depends largely on the slower clock
and, if the clock ratio is larger than two, the data cycle is two clock
cycles of the slower clock. Table 1 summarizes the data cycle
figures for all cases and for simple and fast four- and two-phase
synchronizers. The simple and the fast four-phase synchronizers
are presented and analyzed in [32].

2.2. Two-clock FIFO

The two-clock FIFO synchronizer can transfer data on each
clock cycle if the FIFO is neither full nor empty. The FIFO, however,
is a more complex design that incurs higher data latency and does
not support communication over long interconnect (at least one of
the two communicating clock domains will have to be stretched
over a long distance, making it impractical to maintain low skew
at high frequencies). In [33], a mixed-timing FIFO was proposed
for communication between arbitrary combinations of synchro-
nous and asynchronous domains. Mixed timing relay stations
were also introduced for more efficient treatment of long
interconnects. Source–synchronous communication, based on a
self-timed single-stage FIFO with a single stage for mesochronous
clock domains was presented in [34] and expanded to multi-
synchronous, plesiochronous and asynchronous cases in [35]. The
extensions are more complex relative to the mesochronous case,
requiring additional special treatment at the transmitter and
receiver sides.

2.3. Stoppable clocks

Data synchronization can be also performed by controlling the
capturing clock. Stoppable local clocks technique was proposed for
GALS systems in [15–20,36–38]. The technique incorporates a local
ring-oscillator clock generator in each synchronous ‘island’ with a
set of MUTEXes [39] that stop the clock temporarily when new input
data arrive. Handshake clocks [14] can be employed, stopping the
capturing clock based on inputs from other domains. A stoppable
clock technique suitable for linear pipelines was presented in [21].
In order to achieve performance enhancement, stoppable clock
techniques are sometimes accompanied by FIFOs [15,36].

2.4. Categorizing synchronizers

Based on the works listed above, we categorize the synchro-
nization approaches into a number of simple cases (Fig. 3). When
the transmitter and receiver belong to the same clock domain and
are placed close to each other, no synchronization is required (a).
A FIFO can be inserted for additional buffering (b). Fast
synchronizers should be employed when transferring data
between different clock domains, to enable high throughput and
low latency and to reach as much as possible the performance of
intra-clock domain transfers as in (a).

A two-clock FIFO (c) may achieve high data rates, but it incurs
higher latency. Stoppable-clock synchronizers (d) communicate
with local clock generators to minimize the latency, and LDL
synchronizers (also described by d) control the synchronous
interfaces by introducing dynamic local clock delays. For long-
range interconnect, wire delays degrade significantly the data
cycle regardless of the synchronization circuits speed. In order to
improve the throughout, pipelining can be employed along the
link (e). The pipeline can be either synchronous (with TX or RX

clocks) or asynchronous.
To facilitate modularity and ease of integration, the transmitter

and receiver should not be aware of the synchronizer and should
provide standard interfaces, not only in (a)–(c) but also in (d)–(e)
of Fig. 3.
3. Sub-cycle latency synchronization

In our previous works [22,23], the LDL synchronizers employed
four-phase protocols and the ports did not support data transfer
on each clock cycle. Four-phase protocols incur high latency,

ARTICLE IN PRESS

TX-CLK

RX-CLK

Fig. 4. Sub-cycle latency synchronization.

CLOCK
LEAVES

LATCHINPUT DATA REG2

ACK

CL

REQ
CONTROL

YY1L

Y

Locally
Synchronous

Island

DL

Valid

REG1

VREG
Ready

Fig. 5. LDL input port connected to a synchronous island.

M/S DCTRL HP

CLOCK
Y

CONFLICT

Minimal Clock
High-Phase

-Y+Y

Y1+

REQ REQ+

CLOCK
Y1

L

Time reserved for
metastability Resolution

Controller delay
(data latching)

Y1-

Fig. 6. LDL time budgets for worst-case operation.

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375370
especially over long links. In this work we present new LDL

architecture which overcomes these obstacles. The two-phase
version of the LDL synchronizer can achieve sub-cycle latency. The
section starts with definitions (including the meaning of ‘sub-
cycle’ latency), presents LDL concepts, and describes LDL input and
output.

3.1. Definitions

The forward latency of a synchronizer is defined as the time
from writing a data word into the output register of the sender
(TX) to writing the same data word into the first register of the
receiver (RX), namely it is the time for moving the data from the
TX to RX clock domain. The data cycle is the time between two
successive writings of the first register of the receiver. Throughput

(in data words) is the inverse of the data cycle. The data cycle and
throughput of intra-clock domain transfer are the clock cycle and
the clock frequency, respectively, and we wish to attain similar
cycle and throughput in fast synchronizers. Typically, such sub-

cycle latency synchronizers incur latency less than a single clock
cycle (of the slower clock), managing to latch the data safely into
RX on the earliest clock edge, imitating the latency of intra-clock
domain transfers. Fig. 4 exemplifies the timing of such a
synchronizer: the TX data is sampled on the first RX clock
following the transfer.

Interconnect delay affects both latency and throughput of the
synchronizer. The latency is extended by the delay, and the data
cycle is extended by four and two times the interconnect delay in
four- and two-phase synchronizers, respectively. Pipelining the
communication link reduces this data cycle penalty at the expense
of additional latency.

3.2. Locally delayed latching

Locally delayed latching [23] does not require stopping the
clock of locally synchronous islands. LDL is unaffected by any
dynamic scaling of the clock cycle [1–3]. An asynchronous input
port (Fig. 5) controls both the input latch and Y1, the clock input to
the first sampling register. The local clock Y is uninterrupted. The
port issues a valid indication for each new data word, prevents
write-after-read hazards and can be stopped when the locally
synchronous island is not ready to receive data.

Instead of stopping the clock Y, Y1+ is delayed when a conflict
is imminent. Y1� is unaffected: only the high-phase is shortened
(see Fig. 6). The worst case occurs when the incoming REQ

conflicts with clock Y and REQ wins the arbitration, possibly after
the metastability resolution time M/S. In this case, the high-phase
of Y1 (HP) is maximally shortened. For other cases, the high-phase
of Y1 is either shortened by a smaller extent or not shortened at all
[22]. The shorter cycle leaves less time for computing in the
combinational logic immediately following the first register (CL in
Fig. 5).

In effect, the time for metastability resolution is borrowed
from the next clock cycle. Consequently, LDL poses several timing
restrictions [22]. Once metastability is resolved, the controller
latches the incoming data by pulsing L for DCTRL time. All this must
complete at least HP time before Y�, so that the clock Y1 can be
high for at least HP time (the minimal high-phase width required
by the technology, usually 2–3 gate delays). Note that HP also
contains the delay of the gated clock tree Y1 and may be affected
by word-width. Thus, the minimal high phase of the Y clock is
bounded by M/S+DCTRL+HP. In case of a symmetric clock, this
defines the minimal half-clock cycle of Y. Note that M/S and HP are
system requirements, while DCTRL depends on the implementation
of the controller. In addition, as explained above, in case of conflict
the time DL available for computation by the combinational logic
(CL between REG1 and REG2) is shortened down to half a cycle
[22]. Thus, that logic stage should be constrained to a delay of less
than half a cycle.

The metastability resolution time requirement is derived from
global SoC MTBF requirements. Assuming SoC MTBF requirement of
100 years and 100 synchronizers in the SoC, the desired MTBF of a
single synchronizer should be 10,000 years [40]. This requirement
can be achieved if the M/S period in Fig. 6 is at least 43t [22],
where t is the metastability resolution time constant and is
assumed to be about one FO4 gate delay [41]. Typical SoCs employ
clock cycle times T in the range 100–400 FO4 gate delays [13]. For
T ¼ 100 FO4, metastability resolution period of 43t takes almost
one half of a symmetric clock cycle. For slower SoCs, e.g. where the
fastest clock cycle is 170t, a quarter clock cycle suffices to achieve
this MTBF. LDL can support faster clocks than T ¼ 100t by
extending the total time budget (changing the duty cycle by
enlarging the relative portion of the high phase) using low-
complexity minimal phase generation circuit [22]. For more

ARTICLE IN PRESS

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375 371
aggressive designs (such as high-speed processors or high-speed
ASIC modules) where To50t, a modified approach based on
multi-cycle resolution time or on multi-synchronous clocking is
required [25,26].

The said three time-intervals (Fig. 6) and interconnect delay
between TX and RX are the main parameters influencing LDL

synchronization performance in terms of latency and throughput.
In addition, standard interfaces are required at the transmitter and
the receiver in order to support seamless integration into standard
HDL design. In the following, a FIFO-like interface is employed.

In the LDL synchronization the data is sampled at the closest
receiver clock edge when there is no conflict between the data and
clock. Hence, this scheme supports sub-cycle latency require-
ments. When a conflict occurs, a single clock cycle penalty is paid
only in statistically half of the conflict cases.
3.3. Two-phase LDL input port

Fig. 7 shows the LDL input port. An asynchronous controller
provides for the REQ/ACK handshake and for control of the MUTEX.
When the controller has data, it raises ASK, which eventually leads
to LATCHED+ that captures the new data into REG. At that time, Y1
is kept low.

When the receiver is not ready to accept a new data word, READY

signal is de-asserted, blocking new data latching into REG1 and
blocking de-assertion of VALID. Note that even when the READY is low,
the LDL-IP can latch a new data word into REG, preparing it for the
next valid synchronization cycle. However, once a new data word is
latched inside REG, the next handshake is blocked by VALID ¼ high.

The two-phase protocol minimizes the penalty caused by the
interconnect delay. The controller signal transition graph (STG)
[44], circuit implementation and example waveforms are shown
in Fig. 8. Note the D-FFs that are wired to operate as toggle (T)
Fig. 7. LDL input port.

REQ
R

S

T
t

s

TACK

REQ+

ACK+

REQ-

ACK-

ASK+

LATCHED+

ASK-

LATCHED-

Fig. 8. Two-phase input-port
elements. This simple circuit employs only standard library cells.
It converts the two-phase REQ/ACK protocol into the four-phase
ASK/LATCHED protocol. The circuit assumes that the delay for the
path ASK+-LATCHED+ should be longer than ASK+-T-S�, to
avoid set–reset conflict. This condition is easily met thanks to the
port structure.
3.4. Two-phase LDL output port

The output port is shown in Fig. 9, in addition to special
interface circuitry within the synchronous island the output port
interfaces the synchronous island by two signals, similar to a
standard FIFO handshake: VALID and FULL. Upon FULL, additional
data are stalled. In addition, the output port generates the
possibly delayed clock Y1.

The STG of the asynchronous controller of the output port, its
circuit and example waveforms are shown in Fig. 10. The circuit
converts the four-phase RI/ASK protocol to the two-phase RO/AO.
The controller delay DCTRL consists of the delay of the C-element
(R+-RI� in Fig. 9) and the internal controller delay RI–-ASK– (a
single gate delay). The critical delay of the output port is very
similar to that of the input port. The circuit employs the timing
assumption similar to the one of the input port.

The output port must synchronize FULL, as specified in Fig. 11:
the assertion of VALID on Y1+ sets FULL, blocking the transmission
of the next word. FULL is de-asserted following the toggle of AKIN

and only during the low-phase of the clock Y (also Y1), thus
preventing contention at the sampling register REGF.

Operation is demonstrated in Fig. 13. For each new data, VALID

is asserted, leading to raising FULL and self-resetting VALID

(AR ¼ asynchronous reset in Fig. 9). If the targeted input
port acknowledges (toggling AKIN) within a single TX clock cycle
(de-asserting FULL), new data can be sent on the next clock cycle
(case]1 in Fig. 13). Thus, data can be transferred on each clock
cycle of TX. When FULL is high during the rising edge of TX clock Y1,
the data is not changed (output flip-flops are disabled, case]2 in
Fig. 13). In the intermediate situation, when the incoming
acknowledge contends with clock Y, there are two possible cases.
In the first case, clock Y wins over the acknowledge signal ASK and
therefore FULL is de-asserted only on the next falling edge of Y (one
clock penalty in sending data, case]3 in Fig. 13). In the second
case, the acknowledge signal ASK wins over clock Y. Then, FULL is
de-asserted and later on clock Y1 is unblocked, resulting in
shortened Y1 cycle (case]4 in Fig. 13). Note that in both]3 and]4
cases we have to retain the next data over the normal clock edge,
which is obtained by clocking REGD and REGV registers by Y1. In
the following we discuss implementation issues of the output port.

The LDL output port of Fig. 9 requires making two timing
assumptions as follows:

TA1: Whereas both E+ (the Enable of REGD, REGV) and Y1+
emanate from FULL–, the former must precede the latter (Eq. (1)).
REQ

ASK

t
LATCHED

ACK

s

ASK

LATCHED

asynchronous controller.

ARTICLE IN PRESS

Fig. 9. LDL output port.

ASK

RI

AO
R

S

T
t

s

T RO

RI

ASK
t

RO
AO

s

RI+

ASK+

RI-

ASK-

RO+

AO+

RO-

AO-

Fig. 10. Two-phase output-port asynchronous controller.

FULL+

Y1+Y1-

0

1

FULL-

VALID+VALID-

0

1

AKIN

Fig. 11. FULL signal generation.

FULL-

E+

ASK-

T SU

Y1+

Fig. 12. Timing assumption]1.

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375372
This requirement is easily met in the circuit (DTA1 ¼ 0 in Fig. 9)
(Fig. 12).

TA1 : DelayðFULL�! EþÞ

oDelayðFULL�! ASK�! Y1þÞ � TSU (1)

TA2: Hold time TH should be satisfied for registers REGD and
REGV. Clock Y1 is phase shifted relative to Y by the MUTEX
metastability resolution time in cases of contention between Y

and ASK (case]3 in Fig. 13). Note that the skew incurred by non-
conflict MUTEX delay is eliminated by balancing Y and Y1 clock
trees. In the case of contention, the skew between Y and Y1 can be
as large as TMUTEX+DCTRL. Thus

TA2 : TH4TMUTEX þ DCTRL (2)

The value of TMUTEX+DCTRL is very high and therefore hard to
meet by simple delay line. As shown below, TA2 is achieved by
adding a negative-triggered FFs (PRE-D and PRE-V).

The sub-cycle latency LDL synchronizer supports throughput of
one data item per cycle (DPC). To enable that, the synchronous
interface must be able to supply data words at the highest rate,
while satisfying the timing assumptions above. SDATA (Fig. 9) may
carry new data only if FULL was low at the previous clock cycle.
When FULL is set, REGD contains a data item, a second data item is
provided on SDATA but cannot be stored into REGD, and the
synchronous pipeline behind may be ready to overwrite SDATA on
the next rising edge of Y. To avoid loss of the word currently on
SDATA, auxiliary registers [42] RAUX and RAUXV are added (Fig. 9).
The hold requirement (2) is satisfied by the negative edge
triggered PRE_D and PRE_V registers, which stabilize the inputs
of REGD, REGV during the next Y1+, even when Y1 is delayed
relative to Y and the data on SDATA has changed. Note that SDATA

and VALIDIN must be valid within half a cycle, which is easily met.
Consider the timing of PRE-D and REG-D. PRE-D is latched one

half-cycle after the FFs that precede it (Y1� is not delayed relative
to Y�). Thus, it is possible to insert logic that requires half a cycle
before PRE-D. Similarly, REGD is latched no sooner than half a
cycle after PRE-D, allowing the insertion of logic between them.
Thus, this interface circuit allows useful work and does not incur
any idle latency. In cases of conflict, in approximately half the
cases (when Y wins at the MUTEX) single-cycle latency is inserted.
However, in the other half of the cases (ASK wins at the MUTEX)

ARTICLE IN PRESS

FULL

Y

VALID

DATA d0 d1 d2 d3 d4

Y1

d5

42
1

3

TM/S

d6

TM/S+DCTRL

Fig. 13. LDL output port operation.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

RX cycle / TX cycle

Fo
rw

ar
d

La
te

nc
y

[T
X

C
lo

ck
 C

yc
le

] DI=0.5 TxClk

DI=1.0 TxClk

DI=2.0 TxClk

DI=3.0 TxClk

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0
RX cycle / TX cycle

Fo
rw

ar
d

La
te

nc
y

[T
X

C
lo

ck
 C

yc
le

]

0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5

Fig. 14. LDL synchronization latency bounds.

5.0

10.0

15.0

20.0

25.0

30.0

ar
d

La
te

nc
y

[T
X

C
lo

ck
 C

yc
le

]

FIFO
2-Flop
LDL

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375 373
there is no added latency and no loss of throughput. Another
solution for the hold requirement, requiring no negative-triggered
FFs, is presented in [32].

The proposed LDL synchronizer contains standard logic cells
(both MUTEX and C-element can be implemented by standard
cells, although it is better to add these cells to the technology
library), and gated and inverted clocks. Furthermore, all timing
constraints required for the design of the LDL interfaces can be
specified as normal constraints for standard synthesis, STA and
place-and-route EDA tools. The asynchronous input and output
ports are also synthesizable by standard EDA tools, and no special
asynchronous design tools are required.
0.0
0

RX Clock / TX Clock

Fo
ra

w

0.5 1 1.5 2 2.5 3 3.5

Fig. 15. Latency of two-flop, two-clock FIFO and LDL synchronizers.
4. Performance simulations

In this section we compare the performance of the sub-cycle
latency LDL synchronizer with the fast two-phase two-flip-flop
synchronizer of Section 2.1 and with a standard two-clock FIFO

synchronizer [43]. A FIFO depth of 10 and bursts of 1000 words were
employed. The analysis is not limited to any specific fabrication
process, since it is based on cycle time ratios, and on scaleable
measures such as the number of FO4 gate delays per clock cycle in
SOCs. Thus, the results depend only on architecture. Note also that
only performance measures (latency and data rate) are discussed;
power and area are ignored, since only a tiny fraction of total power
and area are consumed by synchronizers in typical SoCs.

4.1. Forward synchronization latency

Fig. 14(a) shows upper and lower bounds of the LDL

synchronizer latency for back-to-back connection (no intercon-
nect delay). The latency is lower than half a cycle when RX clock is
faster than TX, clearly indicating sub-cycle latency. When RX clock
is slower than TX (higher than 1 on the horizontal axis), the
latency grows with the RX clock cycle. In (b), the upper and lower
bounds are shown for different interconnect delays DI. Note that
the lower bound is always limited by the interconnect delay. Note
that mesochronous (same frequency) and periodic (integral
frequency ratio) clocks result in increased latency difference
between best and worst cases, as well as other special values of
the ratio of cycle times [32].

Fig. 15 compares two-flip-flop, FIFO and LDL synchronizers. The
latency of the FIFO is the longest, and the LDL synchronizer incurs

ARTICLE IN PRESS

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375374
the least latency. Note that the two-flip-flop synchronizer
experiences worst case performance for integral clock relationship
(e.g. RX/TX ¼ 2), whereas the LDL synchronizer does not [32].

The LDL synchronizer outperforms two-flip-flop synchronizers
even when interconnect delays are considered (Fig. 16). Note that
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0
RX Clock / TX Clock

Fo
rw

ar
d

La
te

nc
y

[T
X

C
lo

ck
 C

yc
le

]

2-Flop
LDL

0.5 1 1.5 2 2.5 3 3.5

Fig. 16. Latency of LDL and two-flop synchronizers for 1.0 � TX-CLK interconnect

delay.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0
RX Clock / TX Clock

W
or

ds
 p

er
 T

X
cl

oc
k

cy
cl

e

DI=0.0 TX-CLK

DI=0.4 TX-CLK

DI=0.5 TX-CLK

Dl=1.0 TX-CLK

DI=2.0 TX-CLK

1 2 3 4

Fig. 17. LDL synchronization throughput bounds.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0
RX Clock / TX Clock

DI=0

W
or

ds
 p

er
 T

X
cl

oc
k

cy
cl

e

LDL
FIFO
2-Flop

0.5 1 1.5 2 2.5 3 3.5

Fig. 18. Throughput comparison for LDL
the FIFO is not included in this comparison since a standard FIFO is
not suitable for operation in the presence of long interconnect
delays.

4.2. Data rate

Lower and upper bounds of data rate of the LDL synchronizer
for different interconnect delays are shown in Fig. 17. Note that the
theoretical lower bound of the data cycle is twice the interconnect
delay, namely the flight time of REQ and ACK. To the right of ‘1’, the
upper bound is hyperbolic as the data rate is bounded by the
inverse of RX cycle. The level lines demonstrate the effect of DI.
Only in certain cases the upper and lower bounds differ, similarly
to Fig. 14. These differences originate from certain periodic
relations of the clocks, as explained in [32].

LDL and FIFO throughputs are similar as evident from the
overlapping charts in Fig. 18 and are about twice faster than
the fast two-flip-flop two-phase synchronizer (as expected, see
Table 1). As the interconnect delay grows, the synchronizer
overhead becomes relatively smaller, and the synchronizers
converge to relatively similar performance, but LDL always
outperforms the two-flip-flop synchronizer.
5. Conclusions

Two novel synchronizers that employ two-phase protocols
have been presented: a low-latency two-flip-flop and a sub-cycle
latency LDL synchronizers. They facilitate clock domain crossings
both when the two domains are physically adjacent and when
they are separated by long interconnect.

The low-latency two-phase two-flip-flop synchronizer is
shown to introduce only minimal latency, and to enable short
data cycles of 2–4 clock cycles, compared to 6–12 clock cycles of a
simple two-flip-flop synchronizer.

The two-phase LDL synchronizer is significantly faster than its
four-phase predecessor [22,23]. It is termed ‘sub-cycle latency’
because it does not add any latency penalty (relative to
synchronous data transfers) when crossing clock domains, and it
enables sending data every clock cycle (similar to synchronous
data transfers). The LDL sub-cycle latency synchronizer consists of
asynchronous input and output ports, and certain modifications of
the synchronous islands of a GALS system. The LDL synchronizer
outperforms standard synchronizers (FIFO and two-flip-flop) in
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RX Clock / TX Clock
DI>0

W
or

ds
 p

er
 T

X
cl

oc
k

cy
cl

e

LDL, DI=0.5
2-flop, DI=0.5
LDL, DI=1.0
2-flop, DI=1.0
LDL, DI=2.0
2-flop, DI=2.0

0 0.5 1 1.5 2 2.5 3 3.5

, two-flop and FIFO synchronizers.

ARTICLE IN PRESS

R. Dobkin, R. Ginosar / INTEGRATION, the VLSI journal 42 (2009) 367–375 375
terms of latency and throughput. The presented circuits have
standard interfaces and require standard logic cells, thus enabling
straightforward integration into standard designs.

References

[1] G. Semeraro, D.H. Albonesi, S.G. Dropsho, G. Magklis, S. Dwarkadas, M.L. Scott,
Dynamic frequency and voltage control for a multiple clock domain
microarchitecture, in: IEEE/ACM International Symposium on Microarchitec-
ture, 2002, pp. 356–367.

[2] L.S. Nielsen, C. Niessen, J. Sparsø, C.H. van Berkel, Low-power operation using
self-timed and adaptive scaling of the supply voltage, TVLSI 2 (4) (1994)
391–397.

[3] W.R. Daasch, C.H. Lim, G. Cai, Design of VLSI CMOS circuits under thermal
constraint, TVLSI 49 (8) (2002) 589–593.

[4] D.M. Chapiro, Globally-asynchronous locally-synchronous systems, Ph.D.
Dissertation, Stanford University, 1984.

[5] D. Bormann, P. Cheung, Asynchronous wrapper for heterogeneous systems,
Proc. ICCD (1997) 307–314.

[6] L. Scheffer, An overview of on-chip interconnect variation, SLIP (2006) 27–28.
[7] R.O. Topaloglu, A.B. Kahng, Generation of design guarantees for interconnect

matching, SLIP (2006) 29–34.
[8] J. Bainbridge, S. Furber, Chain: a delay-insensitive chip area interconnect, IEEE

Micro 22 (5) (2002) 16–23.
[9] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, M. Renaudin, An asynchronous NOC

architecture providing low latency service and multi-level design framework,
ASYNC (2005) 54–63.

[10] T. Felicijan, S.B. Furber, An asynchronous on-chip network router with
Quality-of-Service (QoS) support, Int. SOC Conf. (2004) 274–277.

[11] T. Bjerregaard, J. Sparso, A scheduling discipline for latency and bandwidth
guarantees in asynchronous network-on-chip, ASYNC (2005) 34–43.

[12] R. Dobkin, V. Vishnyakov, E. Friedman, R. Ginosar, An asynchronous router for
multiple service levels networks on chip, ASYNC (2005) 44–53.

[13] International Technology Roadmap for Semiconductors (ITRS), 2003–2005,
http://www.itrs.net/www.itrs.netS.

[14] J. Kessels, A. Peeters, P. Wielage, S.J. Kim, Clock synchronization through
handshake signaling, ASYNC (2002) 59–68.

[15] S. Moore, G. Taylor, R. Mullins, P. Robinson, Point to point GALS interconnect,
ASYNC (2002) 69–75.

[16] S. Oetiker, F.K. Gürkaynak, T. Villiger, H. Kaeslin, N. Felber, W. Fichtner, Design
flow for a 3-million transistor GALS test chip, ACiD Workshop (2003).

[17] T. Villiger, H. Kaeslin, F.K. Gürkaynak, S. Oetiker, Wolfgang Fichtner, Self-timed
ring for globally-asynchronous locally-synchronous systems, ASYNC (2003)
141–150.

[18] J. Muttersbach, T. Villiger, W. Fichtner, Practical design of globally-
asynchronous locally-synchronous systems, ASYNC (2000) 52–61.

[19] K.Y. Yun, R.P. Donohue, Pausible clocking: a first step toward heterogeneous
systems, ICCD (1996) 118–123.

[20] K.Y. Yun, R.P. Donohue, Pausible clocking-based heterogeneous systems,
TVLSI 7 (4) (1999) 482–488.

[21] A.E. Sjogren, C.J. Myers, Interfacing synchronous and asynchronous modules
within a high-speed pipeline, TVLSI 8 (5) (2000) 573–583.

[22] R. Dobkin, R. Ginosar, C.P. Sotiriou, High rate data synchronization in GALS
SoCs, TVLSI 14 (10) (2006) 1063–1074.

[23] R. Dobkin, R. Ginosar, C. Sotiriou, Data synchronization issues in GALS SoCs,
ASYNC (2004) 170–179.

[24] Y. Semiat, R. Ginosar, Timing measurements of synchronization circuits,
ASYNC (2003) 68–77.

[25] R. Kol, R. Ginosar, Adaptive synchronization, ICCD (1998) 188–189.
[26] D.J. Kinniment, Synchronization and Arbitration in Digital Systems, Wiley,

New York, 2008.
[27] R. Ginosar, Fourteen ways to fool your synchronizer, ASYNC (2003) 89–96.
[28] W.J. Dally, J.W. Poulton, Digital Systems Engineering, Cambridge University

Press, Cambridge, UK, 1998.
[29] N.H.E. Weste, D. Harris, CMOS VLSI Design, third ed., Addison-Wesley,
Reading, MA, 2005.

[30] D.J. Kinniment, A. Yakovlev, Low latency synchronization through specula-
tion, PATMOS (2004) 278–288.

[31] S.J. Kim, J.G. Lee, K. Kim, A parallel flop synchronizer for bridging
asynchronous clock domains, AP-ASIC (2004) 184–187.

[32] R. Dobkin, R. Ginosar, Zero phase latency synchronizers using four and two
phase protocols, CCIT TR642, EE Publication No. 1599, EE Department,
Technion, 2007, http://www.ee.technion.ac.il/�ran/papers/zerolatency.pdf
/www.ee.technion.ac.il/�ran/papers/zerolatency.pdfS.

[33] T. Chelcea, S.M. Nowick, Robust interfaces for mixed-timing systems, TVLSI 12
(8) (2004) 857–873.

[34] A. Chakraborty, M.R. Greenstreet, Efficient self-timed interfaces for crossing
clock domains, ASYNC (2003) 78–88.

[35] A. Chakraborty, M.R. Greenstreet, A minimal source–synchronous interface,
ASIC/SOC (2002) 443–447.

[36] S. Chakraborty, J. Mekie, D.K. Sharma, Reasoning about synchronization
techniques in GALS systems: a unified approach, FMGALS (2003).

[37] J. Mekie, S. Chakraborty, D.K. Sharma, Evaluation of pausible clocking for
interfacing high speed IP cores in GALS framework, VLSI Des. (2004) 559–564.

[38] R. Mullins, S. Moore, Demystifying data-driven and pausible clocking
schemes, ASYNC (2007) 175–185.

[39] C.L. Seitz, System timing, in: C.A. Mead, L.A. Conway (Eds.), Introduction to
VLSI Systems, Addison-Wesley, Reading, MA, 1980 (Chapter 7).

[40] R. Ginosar, MTBF of multi-synchronizer SoC, /http://www.ee.technion.ac.il/
�ran/papers/MTBFmultiSyncSoc.pdfS.

[41] C. Dike, E. Burton, Miller and noise effects in a synchronizing flip-flop, JSSC 34
(6) (1999) 849–855.

[42] L. Carloni, A. Sangiovanni-Vincentelli, Coping with latency in SoC design, IEEE
Micro (special issue on SoC) 22 (5) (2002) 24–35.

[43] Synopsys Design Ware FIFO, http://www.synopsys.com/products/designware/
docs/doc/dwf/datasheets/dw_fifo_s2_sf.pdf/www.synopsys.com/products/
designware/docs/doc/dwf/datasheets/dw_fifo_s2_sf.pdfS.

[44] T.A. Chu, C.K.C. Leung, T.S. Wanuga, A design methodology for concurrent
VLSI systems, in: Proceedings of the ICCD, 1985, pp. 407–410.

Rostislav (Reuven) Dobkin received his B.Sc. and M.Sc.
degrees in Electrical Engineering from the Technion—

Israel Institute of Technology in 1999 and 2003,
respectively. He is currently pursuing his Ph.D. in the
same institute. Through the years 1997–2000 he
worked within RAFAEL ASIC Experts design group and
between 2001 and 2002 he lead a VLSI design group in
IC4IC LTD., developing family of chips for communica-
tions. In parallel, Reuven served as a teaching assistant
at the Technion EE Department since 1999. His research
interests are VLSI architectures, parallel architectures,
asynchronous logic, high-speed interconnect, synchro-

nization, GALS systems, NoC.

Ran Ginosar received his B.Sc. from the Technion in
1978 and his Ph.D. from the Princeton University in
1982, both in Electrical and Computer Engineering. He
worked at the AT&T Bell Laboratories in 1982–1983,
and joined the Technion in 1983. He was a visiting
Associate Professor with the University of Utah in
1989–1990, and a visiting faculty with Intel Research
Labs in 1997–1999. He co-founded five companies in
the areas of electronic imaging, medical devices, and
wireless communications. He is an Associate Professor
at the Department of Electrical Engineering and
Computer Science and he serves as Head of the VLSI

Systems Research Center at the Technion. His research

interests include VLSI architecture, asynchronous logic and synchronization,
networks on chip, electronic imaging, and neuro-processors.

http://www.itrs.net
http://
http://www.ee.technion.ac.il/~ran/papers/zerolatency.pdf
http://www.ee.technion.ac.il/~ran/papers/zerolatency.pdf
http://
http://
http://www.ee.technion.ac.il/~ran/papers/MTBFmultiSyncSoc.pdf
http://www.ee.technion.ac.il/~ran/papers/MTBFmultiSyncSoc.pdf
http://www.synopsys.com/products/designware/docs/doc/dwf/datasheets/dw_fifo_s2_sf.pdf
http://www.synopsys.com/products/designware/docs/doc/dwf/datasheets/dw_fifo_s2_sf.pdf
http://
http://

	Two-phase synchronization with sub-cycle latency
	Introduction
	Low-latency synchronizers
	Two-flip-flop synchronizers
	Two-clock FIFO
	Stoppable clocks
	Categorizing synchronizers

	Sub-cycle latency synchronization
	Definitions
	Locally delayed latching
	Two-phase LDL input port
	Two-phase LDL output port

	Performance simulations
	Forward synchronization latency
	Data rate

	Conclusions
	References

