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ABSTRACT 

Near-data in-storage processing research has been gaining 
momentum in recent years. Typical processing-in-storage 
architecture places a single or several processing cores inside 
the storage and allows data processing without transferring it 
to the host CPU. Since this approach replicates von Neumann 
architecture inside storage, it is exposed to the problems 
faced by von Neumann architecture, especially the bandwidth 
wall. We present a novel processing-in-storage system based 
on Resistive Content Addressable Memory (RCAM). RCAM 
functions simultaneously as a storage and a massively 
parallel associative processor. RCAM processing-in-storage 
resolves the bandwidth wall faced by conventional 
processing-in-storage architectures by keeping the 
computing inside the storage arrays, thus implementing in-
data, rather than near-data, processing. We show that RCAM 
based processing-in-storage architecture may outperform 
existing in-storage designs and accelerator based designs. 
RCAM processing-in-storage implementation of K-means 
achieves speedup of 4.6—68 relative to CPU, GPU and 
FPGA based solutions. For K-Nearest Neighbors, RCAM 
processing-in-storage achieves speedup of 17.9—17,470 and 
for Smith-Waterman sequence alignment it reaches speedup 
of almost 5 over a GPU cluster based solution.  
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1. INTRODUCTION 
In von Neumann architecture, execution time comprises 

data processing time TCPU (divided by scaling factor SCPU) 
and data transfer time TMEM which is a function of memory 
bandwidth ��: 
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Historically, TCPU scales much faster than TMEM. Further 
scaling of TCPU by increasing SCPU through improving the 
instruction level parallelism or adding more cores has a 
diminishing effect on overall execution time.   

The premise of near-data processing is reducing TMEM by 
cutting the physical distance and increasing the bandwidth 
between CPU and memory. Since inception, near-data 
processing mainly meant processing in memory (PIM). To 
process datasets larger than memory footprint, processing 

units are placed near storage, achieving “processing-in-
storage.” 

We believe that near-data processing-in-storage is 
inherently limited because it is largely based on replicating 
the von Neumann architecture near data storage. Hence it 
potentially faces some of von Neumann architecture 
problems, such as the bandwidth wall. 

This work presents a novel resistive CAM (RCAM)-based 
processing-in-storage architecture with in-data rather than 
near-data processing-in-storage. The RCAM processing-in-
storage system simultaneously functions as data storage and 
a massively parallel SIMD accelerator that performs the 
computations in-situ, resulting in increased performance 
through more complete utilization of the internal storage 
bandwidth, and reduced energy consumption.  

RCAM processing can be implemented in different 
hierarchies of resistive storage and memory. While it can be 
implemented in the mass storage, cost-wise a better place for 
RCAM processing-in-storage could be an intermediate 
storage hierarchy between the main memory and mass 
storage, for example a storage class memory.  

This paper makes the following contributions: 
 We present a RCAM architecture offering storage 

with in-data processing capabilities. 
 We develop a RCAM processing-in-storage based 

implementation of several algorithms in the fields of 
machine learning and bioinformatics. 

 We show that RCAM processing-in-storage 
implementations can outperform near-data or other 
(CPU, GPU or FPGA based) implementations both in 
performance and in power efficiency. 

The rest of this paper is organized as follows. Section 2 
presents the motivation and related work. Section 3 
introduces the architecture of RCAM processing-in-storage 
system. Section 4 reviews the principles of associative 
processing.  Section 5 explores RCAM programming, and 
applications. Section 6 presents simulation setup and 
comparative performance of several big data algorithms. 
Section 7 offers conclusions. 

2. Background and Motivation  
Near-data processing research has gained momentum 

recently. Typical processing-in-storage architecture places a 
single or several processing cores inside the storage and 
allows data processing without transferring it to the host 
processor. The concept of near-data processing-in-storage is 



illustrated in Figure 1a. A comprehensive review of near-data 
processing can be found in [8].   

Processing-in-storage research mainly focuses on 
processing data in NAND flash based solid state disk (SSD). 
Boboila et al. [10] proposed Active Flash, a processing in 
solid-state storage that expedites data analysis by migrating 
the data to the flash device. The authors explored energy and 
performance trade-offs of their processing-in-storage 
architecture. Bae et al. [7] introduced the notion of Intelligent 
SSDs, exploring the design considerations and examining 
their potential benefits in data mining applications. 
Continuing the work on Intelligent SSD, Jo et al. [31] studied 
optimal ways of combining CPU, GPU and SSD for efficient 
processing of data-intensive algorithms. Cho et al. [12] cited 
the lack of parallel processing abilities in earlier in-SSD 
processing architectures and proposed integrating a GPU, 
providing API sets based on the MapReduce framework. 
Kang et al. [33] introduced the Smart SSD model, which 
combines in-SSD processing with a powerful host system, 
and constructed a Smart SSD prototype. De et al. [17] 
introduced the FPGA-based Minerva, which executed 
application-specific operations in the NVM controller. Jun et 
al. [32] introduced and constructed BlueDBM, combining a 
flash based storage with in-store processing capability and a 
low latency high-throughput inter-controller network, and 
explored its performance benefits. Cho et al. [13] explored 
some of the questions which are also addressed by this paper. 
The authors made a case for Intelligent SSD by discussing the 
bandwidth trends and quantifying the potential benefits of 
processing-in-storage across a range of applications. 

While processing-in-storage research is relatively young, 
the wider concept of near-data processing, focusing mainly 
on processing in memory (PIM) has been thoroughly 
researched. The concept of mixing memory and logic has 
been around since 1960s. The DAPP, STARAN, CM-2, and 
GAPP computer architectures [51]  used large number of PUs 
positioned in proximity to memory arrays to implement a 
massively parallel SIMD computer.  

[47] suggested replacing the last level cache and the vector 
co-processor of a conventional high-performance CPU by an 
associative processor, which is a PIM accelerator, combining 
data storage and massively parallel SIMD processing 
capabilities. 

While embedding processing with conventional 2D 
DRAM chips is less practical, recent advancement in 3D 
memory and logic stacking technology may remove this 
obstacle. Citing severe bandwidth limitations in conventional 
computer architecture as datasets continue to grow, Ahn et al. 
[1] introduced Tesseract, a 3D Processing in Memory 
accelerator for large-scale graph processing. In another work, 
Ahn et al. [2] developed a hybrid memory cube based 
framework that automatically decides whether to execute 
PIM operations in memory or processors depending on the 
locality of data. Nair, Sura et al. [58][44] introduced the 
Active Memory Cube, a heterogeneous computing system 
including general-purpose host processors and specially 

designed in-memory processors that would be integrated in a 
logic layer within 3D DRAM memory. In another work, Gao 
et al. [43] developed hardware and software of a 3D stack 
memory and near-data processing architecture for in-memory 
analytics frameworks, including MapReduce, graph 
processing, and deep neural networks. Azarkhish et al. [6] 
developed Smart Memory Cube and designed a high 
bandwidth interconnect to serve the bandwidth demand of 
PIM architecture. Zhang et al. [64] explored PIM 
implemented via 3D die stacking. Akin et al. [3] addressed 
the issue of data reorganization in 3D stacked near-data 
processing architecture, introducing HAMLeT, a mechanism 
for host interference, bandwidth allocation, and in-memory 
coherence. Farmahini-Farahani et al. [22] proposed NDA, a 
near-DRAM acceleration architecture that processes data 
using accelerators 3D-stacked on DRAM devices. 

Recently, emerging memory technologies such as resistive 
memory have become a focus of PIM research. Somnath et 
al. [50] developed MBARC, a resistive crossbar in-memory 
LUT-based processing architecture. Chi et al. [11] introduced 
PRIME, a PIM accelerator of neural network applications. 
[48] introduced a resistive CAM based massively parallel 
accelerator. Shafiee et al. [56] developed ISAAC, an in-situ 
accelerator of neural network, where memristor crossbar 
arrays are used to perform dot-product operations in an 
analog manner.  

 
Figure 1: (a) Near-Data Processing in Flash Based Storage; (b) 
2D Near-Data Processing in RRAM Based Storage; (b) 3D Near-
Data Processing; (d) In-Data Processing in RCAM Based 
Storage. 



We believe that near-data processing-in-storage is 
inherently limited because it is based on replicating the von 
Neumann architecture in a storage. Hence it potentially faces 
some of von Neumann architecture problems, such as the 
bandwidth wall. We define the computation throughput of an 
in-storage processor as follows:  

�ℎ����ℎ�������������� =
�����������  [����]

������� [���]
 (2) 

For processing-in-storage systems to reach optimal 
performance, the peak computation throughput of an in-
storage processor should match the internal bandwidth of that 
storage. The upper bound of such bandwidth is defined by the 
maximum bandwidth of flash arrays, and ranges from few 
hundred MB/s to few GB/s depending on the number of 
parallel flash channels [49].  

Early works on in-SSD processing report the computation 
throughput of several MB/s to a few hundred MB/s 
depending on workload (for example, 7MB/s to 350MB/s in  
[10]). However, as the number of flash channels in SSD 
grows, so does the effective internal SSD bandwidth. A 
conventional response to the growing internal bandwidth is 
increasing parallelism by adding more in-SSD processing 
cores. One example of such increased parallelism is placing 
a processing core in each flash channel [31]. However, with 
the advancement of non-charge based memory technologies, 
there is a growing consensus that resistive memory has a 
potential to replace flash in future SSDs [4]. With bandwidth 
and latency characteristics similar to DRAM [14], resistive 
memory may significantly increase the upper bound of the 
internal SSD bandwidth. This may lead to the following two 
scenarios. First, increasing the parallelism by adding more in-
SSD processing cores will become inefficient and may 
eventually cause a reduction in performance [63]. Second, 
internal storage bandwidth is likely to become limited by the 
internal communication bus/network (Figure 1b) due to the 
surge in inter-core communication [63]. Both scenarios 
repeat the problems faced by manycore von Neumann 
architectures in the “macro” world. 

As suggested in [8], the compute throughput to internal 
SSD bandwidth balance can be regained through new system-
on-chip and die stacking technologies that enable network-
on-chip integration, a more efficient network software stack, 
and potentially new opportunities for near-data processing-
customized interconnect designs. 

The concept of 3D near-data processing architecture is 
illustrated in Figure 1c. 3D stacking of RRAM and a parallel 
in-SSD processor, with some ultra-wide vertical 
communication capabilities, has the potential to realize the 
bandwidth upside of the future NVM. This is certainly a valid 
potential direction of the near-data processing architecture 
development.  

In this paper, we propose a new processing-in-storage 
architecture that increases the compute throughput to match 
the potentially ultra-high internal bandwidth of the storage 
arrays. This architecture progresses from random addressable 

to content addressable (associative) storage (Figure 1d). This 
architecture enables massively parallel SIMD processing of 
the data inside the storage arrays. The processing is 
associative, making the dedicated in-storage processors 
redundant. There is no data transfer outside the storage arrays 
through a bandwidth limited internal SSD communication 
bus/network. We refer to the RCAM processing-in-storage as 
in-data rather than near-data processing architecture. The 
inherent performance (read/write access time and bandwidth) 
of the resistive memory can be utilized to the full extent, 
enabling very high computation throughput while reducing 
the energy consumption (mainly due to the lack of data 
movement inside the SSD).  

The main reason to prefer in-data RCAM processing-in-
storage over 3D stacked near-data processing is the per-bit 
connectivity of memory and processing: In RCAM, each 
memory bit is directly connected to processing transistors, 
whereas in 3D stacked near-data processing, the data must 
pass through memory interface circuits and through 3D 
vertical interconnects, typically much fewer in numbers than 
the number of bits. In RCAM processing-in-storage, the bulk 
of data ideally never leaves the memory. The computation is 
performed within the confines of the memory array. This 
potentially holds a significant performance and energy 
efficiency advantage: Using DRAM as an example, there is 
typically a reduction in available bandwidth of six orders of 
magnitude between the sense amplifiers and the CPU edge 
[8]. In addition, the cost of access in terms of energy increases 
from hundreds of femtojoules to tens of picojoules over a 
span of the same distance [8].  

The use of STT-MRAM and Resistive Ternary CAM for 
data intensive computing was pioneered by Guo et al.  
[27][28][29]. Guo et al. used the associative capabilities of 
CAM and Ternary CAM mainly for search operations, while 
the computing is largely done in a CPU. Their work targeted 
a different architecture, replacing RAM by resistive CAM or 
ternary CAM in NVDIMM rather than in mass storage. 
Adopting associative processing architectures such as 
Goodyear Aerospace’s STARAN or MPP to processing-in-
storage is also suggested in [8].    

3. Architecture 
Resistive memories store information by modulating the 

resistance of nanoscale storage elements. They are 
nonvolatile, free of leakage power, and emerge as potential 
alternatives to charge-based memories, including NAND 
flash. The metal-oxide resistive random access memory 
(RRAM) is considered as one of the potential technologies to 
replace next-generation nonvolatile memories [4]. Its main 
features are high reliability and fast access speed. A test-chip 
of 32GB device with two RRAM-based memory layers and a 
CMOS logic layer underneath has been demonstrated [38]. 
While RRAM [4] employs one transistor and one memristor 
(1T1R) cell, RCAM processing-in-storage uses 2T2R cells 
[36] and appropriate peripheral circuits [48] to support 
associative storage and processing. A number of alternative 



resistive CAM and ternary CAM cell designs have been 
proposed [5][21][41][42][61]. 

3.1 RCAM processing-in-storage system 

The top-level view of RCAM processing-in-storage 
system and its possible positions within memory hierarchy is 
presented in Figure 2.  

 

Figure 2: RCAM Position in Memory Hierarchy. 

RCAM processing-in-storage comprises a multitude of 
RCAM arrays, possible divided into multiple ICs, with a 
central microcontroller. The mass storage may be 
implemented by RCAM rather than RRAM or flash. This will 
enable massively parallel in-mass storage processing 
however this option comes at relatively high cost since 
RCAM is less dense than RRAM. Another candidate is an 
additional memory hierarchy between the main memory and 
mass flash or RRAM storage, similarly to a storage class 
memory. Such option could provide a better performance-
cost trade-off.       

3.2 RCAM Array 

RCAM array is the heart of RCAM processing-in-storage 
architecture, presented in Figure 3. It comprises a resistive 
memory crossbar, in which each memory line is also a 
baseline processing unit (PU), and a peripheral circuitry. The 
latter includes a microcontroller, key and mask registers, tag 
logic, and two optional circuits: a tag counter or reduction 
tree and a daisy-chain interconnect. The basic RCAM cell is 
created by virtually pairing two RRAM cells (memristors), 
holding complementary values � and ��. 

The resistive (memristor based) CAM is a scalable and 
highly dense alternative to CMOS CAM. Memristors are 
two-terminal devices, where the resistance of the device is 
changed by the electrical current or voltage. The resistance of 

the memristor is bounded by a minimum resistance ��� (low 
resistive state, logic ‘1’) and a maximum resistance ���� 
(high resistive state, logic ‘0’).  

The key register (Figure 3a) contains a key data word to be 
written or compared against. The mask register defines the 
active fields for write, compare and read operations, enabling 
bit selectivity. The tag marks the rows that are matched by 
the compare operation and are to be affected by the 
successive parallel write.  A daisy-chain like bitwise 
interconnect allows PUs to intercommunicate, all PUs in 
parallel. The tag counter is a reduction (adding) tree, enabling 
logarithmic summation of tag bits. This operation is useful 
whenever a vector needs to be reduced to a scalar.  

The RCAM compare operation is implemented as follows. 
The Match/Word line is precharged and the key is set on Bit 
and Bit-not lines. In the columns that are ignored during 
comparison, the Bit and Bit-not lines are kept floating. If all 
unmasked bits in a row match the key (i.e., when Bit line ‘1’ 
is applied to an ���  memristor and Bit-not line ‘0’ is applied 
to an ���� memristor, or vice versa), the Match/Word line 
remains high and ‘1’ is sampled into the corresponding TAG 
bit. If at least one bit is mismatched, the Match/Word line 
discharges through an ��� memristor and ‘0’ is sampled into 
the TAG.    

Write operation is performed in two phases. First, the 
� ≥ ��� voltage (where ��� is a threshold voltage required 
to switch to the "on" state) is asserted to applicable Bit lines 
(to write ‘1’s) and Bit-not lines (to write ‘0’s). Second, the 
� ≤ ���� voltage (where ���� is a threshold voltage to 
switch to the "off" state) is asserted to Bit-not lines (to 
complement the ‘1’s) and Bit lines (to complement ‘0’s). The 
write affects only the tagged rows.   

 

Figure 3: RCAM Array: (a) Resistive Crossbar and (b) 
Peripheral Circuitry 

Memristor sub-nanosecond switching time [59] allows 
GHz RCAM processing-in-storage operation. The energy 
consumption during compare may be less than 1fJ per bit. 
The write energy is in the range of 0.1pJ to 3pJ per bit [62], 
which may be prohibitively high for simultaneous parallel 
writing of the entire RCAM storage; the energy consumption 
is addressed in Section 6. 



Another factor which potentially limits RCAM processing-
in-storage system is endurance (the number of program/write 
cycles that can be applied to a memristor before it becomes 
unreliable). Resistive memory endurance is shown at about 
10�� [62], which may suffice for only about one month. 
However, studies predict that the endurance of resistive 
memories may grow to the 10�� −  10�� range [21][45], 
extending RCAM processing-in-storage system endurance to 
a number of years.  

3.3 Tag and Match Circuits 

The tag logic is presented in Figure 4. It comprises a pre-
charge circuit, a Match line sense amplifier, a tag flip-flop, a 
multiplexor (implementing the daisy-chain TAG 
connectivity), a first_match circuit and an if_match circuit. 
The Match line is pre-charged during compare. The tag 
register latches the result of compare. The First_match circuit 
implements ‘match first,’ a frequent associative operation, by 
keeping only first match and resetting the remaining tags. 
If_match, another frequent associative operation, returns ‘1’ 
if a parallel compare operation results in at least one match.   

 

Figure 4. TAG Logic: (a) TAG, (b) First_match, (c) If_match. 

3.4 System Architecture and RCAM scaling 

Conceptually, RCAM may comprise hundreds of millions 
of rows, each serving as a processing unit (PU). Due to 
thermal limitations, the entire array may be divided into 
multiple ICs (Figure 5a).  

The RCAM processing-in-storage system uses a 
microcontroller (Figure 5b). It issues instructions, sets the 
key and mask registers, handles control sequences and 
executes read requests. In addition, the microcontroller 
contains the RCAM buffer, which stores the reduction tree 
outputs. The microcontroller may also perform some baseline 
processing, such as normalization of the reduction tree 
results. Presently, RCAM software, including both 
associative operations (SIMD array instructions) and 
sequential instructions executed on the microcontroller, is 
manually encoded at assembly language level.     

The scaling of conventional near-data processing 
architectures may be limited, similarly to high-performance 
parallel von Neumann architectures. When growing internal 

bandwidth of the storage arrays is met by increasing number 
of in-storage processing cores, the storage array to in-storage 
processor communication bottleneck worsens. As a result, 
the performance of processing-in-storage system may 
saturate or even diminish.  

RCAM processing-in-storage provides much better 
scalability. Its inherent parallelism allows increasing the 
performance of many workloads almost linearly as the 
datasets grow along with storage size. Since the bulk of data 
is never transferred outside the storage arrays through a 
bandwidth-limited communication interface, the 
performance limit is pushed further away. 

 

Figure 5: RCAM processing-in-storage system is composed (a) 
of separate multiple ICs and (b) a microcontroller.   

4. Associative Processing  
RCAM is a non-von Neumann associative in-storage 

processor. Most computations may be structured as series of 
Boolean functions, and Boolean functions can be 
implemented on RCAM using truth table executions. The 
data are stored in the RCAM array, one data element per 
RCAM row (PU). The truth table entries, embedded in the 
microcode, are broadcast entry-by-entry by the RCAM 
microcontroller.  

The input part of each truth table entry is matched against 
the entire RCAM content (the entire data set). The matching 
RCAM rows are tagged, and the corresponding truth table 
output values are written into the designated fields of the 
tagged rows. For an �-bit argument �, any Boolean function 
�(�) has 2� possible output values. Therefore, a naïve 
associative computing operation would incur �(2�) cycles, 



regardless of the data set size.  More efficiently, arithmetic 
operations can be performed on RCAM in a word-parallel, 
bit-serial manner, reducing time complexity from �(2�) to 
�(�). For instance, vector addition may be performed as 
follows [24]. Suppose that two �-bit RCAM columns hold 
vectors A and B. The sum of A+B is written onto another �-
bit column S (Figure 6a). A one-bit column C holds the carry 
bit. The operation is carried out as � single-bit additions (3):   

�[: ] | �[: ]� = �[: ]� + �[: ]� + �[: ] ,        � = 0,… ,� − 1   (3) 

where � is the bit index, ‘:’ means all elements of the vector, 
and c and s are, respectively, the carry and sum bits. The 
single-bit addition is carried out in a series of steps. In each 
step, one entry of the truth table (a three bit input pattern, 
Figure 6c) is matched against the contents of the 
�[: ]�, �[: ]�, �[: ] bit columns and the matching rows (PUs) are 
tagged; the logic result (two-bit output of the truth table, 
Figure 6c) is written into the �[: ] and ��[: ] bits of all tagged 
rows. During that operation, all but three input bit columns 
and two output bit columns of the associative array are 
masked out in each step. Overall, eight steps of one compare 
and one write operation are performed to complete a single-
bit addition over all rows, regardless of the number of rows. 

A snapshot of such vector addition, for � = 4, for the zero 
bit of the vector elements and the 2nd entry of the truth table 
is shown in Figure 6. During compare (Figure 6a), the input 
pattern ‘001’ is compared against bit columns c, a0 and b0, for 
all vector elements in parallel. The matching rows (two in this 
example) are tagged. During write (Figure 6b), the output 
pattern ‘01’ is written in bit columns c and s0 accordingly. 
Only the tagged rows are affected by write.     

 

Figure 6: Vector addition in RCAM example, for two 4-bit 
vectors, snapshot at zero bit, 2nd entry of the truth table: (a) 
Compare, (b) Write, (c) Full Adder Truth Table. 

A fixed-point � bit addition and subtraction take �(�) 
cycles. Fixed point multiplication and division in RCAM 
processing-in-storage architecture require �(��) cycles. 
Single precision floating point multiplication takes 4,400 
cycles [47], regardless of the data set size.  

5. Programming and applications  

5.1 Programming RCAM processing-in-storage 

In RCAM processing-in-storage, the host is responsible for 
running the OS and sequential code, and RCAM implements 
parallel SIMD kernels. The host transfers execution 

parameters such as dataset addresses, and triggers RCAM 
kernel execution. 

We analyze applications to find highly parallelizable data 
intensive SIMD phases. We divide the application into 
sequential (run by the host) and in-storage kernels (executed 
on RCAM). The code intended to run on RCAM is translated 
into associative primitives.  

The host invokes the RCAM to perform its code fraction. 
It sends the workload parameters to RCAM and starts 
execution. Once RCAM execution completes, the host can 
access the RCAM output. 

There is no hardware support for data coherence between 
the host CPU and RCAM storage. RCAM has no access to 
the host main memory or on-chip cache. Therefore, the 
datasets on which RCAM operates must reside in RCAM and 
should not be left in the host memory. To avoid 
inconsistencies between the RCAM and host CPU memory, 
RCAM storage is inaccessible to the host CPU during the 
RCAM operation. 

5.2 Applications  

In this section, we discuss the implementation of several 
compute-intensive workloads from different application 
fields. The first is sparse matrix multiplication, frequently 
used in machine learning, for example in linear Support 
Vector Machine classification and regression. Another is K-
means, a clustering algorithm for classification. The third 
algorithm is K-Nearest Neighbors (KNN), another 
classification and regression kernel. Last, we present the 
Smith-Waterman sequence alignment, a basic tool in 
bioinformatics. All these algorithms, performed in RCAM 
processing-in-storage architecture in our work, are compared 
with CPU and accelerator-based implementations. 

Somewhat less ambitious applications include data 
intensive searches such as string matching, addressed by 
several near-storage or in-SSD architectures [33][49]. 
Clearly, whereas the complexity of reading data out of 
storage for performing search by in-SSD cores is of linear 
time complexity, performing search in RCAM processing-in-
storage architecture is closer to constant time complexity, and 
is not shown here. 

5.2.1 Sparse Matrix-Vector Multiplication 

Sparse matrix by dense vector multiplication (SpMDV or 
SpMV) is typically constrained by memory bandwidth 
limitations, and hence the efficient implementation of SpMV 
is critical to large scale linear algebra applications. 

We propose a fully associative algorithm for SpMV 
execution in RCAM processing-in-storage architecture. 
Revised versions of this algorithm can be used for dense 
matrix multiplication and sparse matrix by sparse matrix [46] 
or sparse vector multiplication.  

Figure 7 presents the algorithm of RCAM SpMV. Matrix 
A is assumed to be stored in RCAM in Compressed Sparse 
Row (CSR) format, where each nonzero element �� is stored 
alongside its column index ��. 



The algorithm includes three parts. The first part, 
broadcast, consists of a loop going over the elements of 
vector �. In a first cycle, the index of an element of �, ��, is 
compared against the column index field of the entire matrix 
� (in parallel for all nonzero elements of �, using the 
compare command). All index-matching rows holding 
nonzero elements of matrix � are tagged. 

 

Algorithm 1 SpMV  

//Let A, B, C denote matrix A and vectors B and C. 

//Each RCAM row holds a non-zero element of A (��, ��) 

 // Broadcast 

1: For each �� ∈ {�������� �� �}: 

     // Compare �� with all column indices of A, �� 

2:  Compare �� to all �� 

 // Write �� into all matching rows  

3: Write �� 

 // Associatively multiply the entire A by B 

4: �� ← �� ∗ ��         // �� is a matrix 

 // Reduction: all rows of A in parallel, each row is tallied 
5: For each (non-zero) row � of �: 

6:  �� ← ���������(���)  
 // � has non-zero elements where � has non-zero rows 

Figure 7: RCAM based SpMV pseudocode. 

In the second cycle, �� is written simultaneously into all 
tagged rows, alongside the index-matched elements of matrix 
�. The loop is repeated for all elements of vector �. Upon 
completion, each nonzero pair of elements of � and � 
required to calculate the product vector C is aligned (stored 
in the same row) in the RCAM. 

The second part (step 4) is the associative multiplication of 
the ��, �� pairs, performed in parallel for all pairs. The 
number of multiplications performed simultaneously equals 
the number of nonzero elements in �.  

The third part sums the products along each row of � (steps 
5, 6) using the reduction tree.  

RCAM SpMV has the computational complexity of 
�(��� + ���) where �� and �� are the  number of columns 
and rows, respectively.   

5.2.2 K-Means 

K-means is an unsupervised learning algorithm for 
clustering unclassified samples. It aims 

to partition � samples into K clusters, where each 

observation belongs to the cluster with the nearest mean. 
The K-means algorithm pseudocode, as implemented in 

storage, is presented in Figure 8. The algorithm minimizes 
the Euclidean distances between the samples and the cluster 
centers (the means), as follows. Prior to execution, the means 
are initialized by randomly choosing � samples and the 
minimum Euclidean distance of all samples is initialized to 
the highest possible value.  

The algorithm consists of two K iterations loops, 
assignment and update. The assignment loop finds the closest 
mean of each sample. The update loop recalculates the new 
mean coordinates. These two loops may be repeated until the 
mean coordinates convergence. 

In the assignment loop, each sample is assigned to the 
cluster whose mean yields the minimal Euclidean distance. In 
each iteration of lines 3-6 of Figure 8, the distance over a 
single attribute is associatively calculated in parallel for all 
dataset samples. Next, in lines 7-9, the minimal Euclidean 
distance and the cluster assignment are updated in parallel for 
all samples � ∈ �. Note that lines 2-9 are always executed in 
parallel on the entire storage, in a SIMD-like style. 

In the update loop, for each mean index �����, all samples 
assigned to this mean are tagged (line 11). Then, for each 
attribute and for all tagged rows, the sum of coordinates is 
calculated in parallel using the Reduction Tree (line 13), 
followed by counting the number of samples assigned to the 
mean (line 14) and finally calculating the new mean 
coordinates by the microcontroller (line 15). 

Note that the key computational steps are parallelized, and 
in the update loop parallelism is made possible by 
associativity.  

 

 

5.2.3 K-Nearest Neighbors (KNN) 

K-nearest neighbors (KNN) is frequently used for 
classification. It computes the distances between an 
(unclassified) input query vector and a dataset of classified 

Algorithm 2 K-Means Implementation in RCAM 

// �: the group of samples 

// Every � ∈ � is stored in a separate RCAM row 

//Assignment: assign each sample with a cluster 

// Each of the k means is a tuple: (�����, ����)  

1: For each ����� ∈ [1, �]: 

 Do-all � ∈ �: 

2: Write ���� coordinates to ���� columns 

3: For each ���� ∈ {������ ����������}: 

4:    �������� ← ����� − �������� 

5:    ���������� ← (��������)
� 

6:    ��������_���� ← ��������_���� + ���������� 

7:   Tag rows with ��������_���� < ���_������ 

8:   Write ���_������ ← ��������_���� 

9:   Write ���������_���� ← ����� 

// Update: calculate new mean coordinates 

10: For each ����� ∈ [1, �]: 
11:  Tag rows with ���������_���� == ����� 

12:  For each ���� ∈ {������ ����������}: 
13:   ������� ← ���������(�����) 
14:   �������_���� ← ���������(����ℎ_�����) 
15:   �������� ← �������/�������_���� 

Figure 8: K-Means Pseudocode for a single iteration of the 
algorithm. 



samples. Each sample consists of multiple attributes (features 
or dimensions). The query vector classification is usually 
determined by the majority vote of � nearest database 
samples, hence the name �-nearest neighbors. Distance is 
most commonly Euclidean, although Manhattan or Hamming 
distance might occasionally be used. 

In a von Neumann machine, the required computational 
effort is proportional to dataset size and is the main cause for 
limited performance on large datasets. In contrast, in-data 
implementation of KNN is not limited by dataset size and can 
therefore provide high performance on very large datasets. 

KNN algorithm pseudocode on RCAM is presented in 
Figure 9. This implementation calculates the Euclidean 
distance between the query vector and the dataset samples, 
followed by serially selecting the K closest samples. The 
algorithm comprises two steps. The first step computes the 
Euclidean distance (squared) between the query vector and 
each dataset sample. In each iteration of the first step (lines 
1-4 in Figure 9), deltas of one attribute are calculated in 
parallel for all samples (line 2), squared (line 3) and added to 
the final distance ������ (line 4). The number of iterations in 
the first loop equals the number of attributes M.  

The second step (lines 5-9) iteratively finds the K dataset 
samples that are closest to the query vector (the nearest 
neighbors), one by one.  

 
Every iteration tags the minimal unmarked Euclidean 
distance (lines 6-7), reads the tagged sample class (line 8) and 
increments a histogram counter for that class (line 9, 

performed by the mirocontroller). Overall the loop is iterated 
K times. 

5.2.4 Smith-Waterman DNA Sequence Alignment 

Searching for similarities in pairs of protein and DNA 
sequences (also called Pairwise Alignment) has become a 
routine procedure in Molecular Biology and it is a crucial 
operation in many bioinformatics tools. The Smith-
Waterman algorithm (S-W) [57] provides an optimal solution 
for the pairwise sequence alignment problem. However, the 
optimality comes with a high computational cost, requiring a 
number of operations proportional to the product of the two 
sequences. The algorithm allows for some parallelism, but 
requires serial steps proportional to the length of the longest 
sequence of the two compared.  

S-W identifies the optimal alignment of two sequences by 
computing a two-dimensional scoring matrix. Matchings 
base-pairs score positively (e.g., +2), while mismatching 
result in negative score (e.g., -1). The optimal alignment 
score between two sequences is the highest score in the 
matrix. The alignment may contain gaps in both sequences 
which are penalized in the score calculation (negative scores). 
According to the affine gap model [26], opening a gap is 
harder than extending it, therefore the penalty for opening a 
gap is larger. The S-W has two steps, scoring (to find the 
maximal alignment score) and trace-back to construct the 
alignment. The first step is the most computationally 
demanding and is the focus of our work.  

Figure 10a shows snapshot of the scoring matrix during 
algorithm execution. Scores are represented by 32-bit 
integers. In a parallel implementation, the matrix is filled 
along the main diagonal and the entire anti-diagonal scores 
are calculated in parallel, as the figure illustrates. Two anti-
diagonals are required to calculate the score of a new anti-
diagonal, therefore in each iteration only three anti-diagonals 
are stored in memory. The data set may be distributed over a 
large number of ICs, as in Figure 5. Figure 10b shows the 
RCAM memory map of two neighboring ICs at the beginning 
of an iteration. � and � contain the sequences, where each 
base-pair takes 2-bit and resides in a separate row. � and � 
are partial score results of the affine gap model. 
��[0], ��[1] and ��[2] contain scoring matrix anti-
diagonals. Shift operations move data between rows inside a 
RCAM IC and between daisy-chained ICs. Figure 10c shows 
the RCAM memory map at the end of the iteration and the 
mapping between RCAM and the scoring matrix.  

 

Algorithm 3 KNN Implementation in RCAM 

//K denotes the number of nearest neighbors. 

//Every sample � ∈ � may be stored in several consecutive 

RCAM rows; the code assumes one row per sample for 

simplicity. 

//Each sample is characterized by M attributes 

//Calculate distance of each dataset sample from query 

1: For each ���� ∈ [1,�] 

 Do-all � ∈ �: 

2: �������� ← ��������� − ����� 

3: ���������� ← (��������)
�   

4:   ������ ← ������������� + ���������� 

//Assume unique ������ values 

//Find � closest samples 

//Histogram of all classes maintained by microcontroller 

//Start with all samples unmarked 

5: Loop K times 

6:  Tag all unmarked samples 

7:  Tag and mark first row with min value of ������ 

8:  Retrieve ����� of tagged row to microcontroller 

9:  On microcontroller: Histogram[�����]++ 

//Classification: Class with highest histogram 

Figure 9: KNN Pseudocode. 



 

6. Evaluation 

6.1 Simulation Platform 

We assume that RCAM is implemented in 28nm 
technology. We simulate RCAM using the associative 
processor simulator [47], with operating frequency of 
500MHz. We have developed an in-house power simulator to 
evaluate the power consumption of the RCAM. The latency 
and energy figures used by both the timing and power 
simulations are obtained using SPICE simulation and are 
detailed in [48]. 

6.2 Sparse Matrix Vector Multiplication 

To simulate sparse matrix multiplication, we have used the 
21 square matrices from the UFL Sparse Matrix Collection 
[15] (listed in Figure 11), having 327,000 - 37  million 
nonzero elements. These matrices are also used for 
performance study by Saule et al. [55]. Performance of 
SpMV is presented in Figure 11(a), together with 
performance on Intel Xeon Phi SE10P and NVidia K20 [55]. 
These Xeon Phi SE10P and K20 SpMV implementations 
have �(����) computational complexity (���� is the 
number of nonzero elements).  

 

 

Figure 11: SpMV (a) Performance, (b) Power Consumption 

It appears that these Xeon Phi SE10P and K20 
implementations assume that matrices are preloaded to main 
memory (DRAM). Therefore, the time and energy spent on 
fetching those matrices from storage to main memory are not 
included in the evaluation [55]. In contrast, RCAM 
processing-in-storage architecture implements in-data 
SpMV, thus saving latency and energy consumption of the 
data transfer, and freeing the CPU and GPU to other tasks.  

Power simulation of RCAM SpMV is based on upper-
bound energy figures from [62], applicable to 28nm, same 
technology node as K20. The simulated power consumption 
of the SpMV is presented in Figure 11(b). The SpMV power 
efficiency of GPUs such as the 28nm NVidia GTX Titan is 
around 0.1 GFLOP/s/W [19] (we assume that K20 power 
efficiency is similar). The simulated SpMV RCAM power 
efficiency is in the similar low range of 0.3-0.4 GFLOP/s/W. 
The reason for low power efficiency lies in memristor write 
energy, which dominates RCAM energy consumption during 
arithmetic operations. 

Figure 12 shows the GPU/CPU to RCAM computational 

complexity ratio 
����

�������
 as a function of nnzA (calculated for 

2,740 matrices of the UFL Sparse Matrix Collection). It 
shows the trend of potential RCAM speedup (over GPU and 
CPU implementations) with the growing dataset size (the 
number of nonzero elements in a sparse matrix).     

 

Figure 10: (a) Snapshot of the dynamic programming matrix, 
showing the direction of progress for the parallel algorithm. 
(b),(c) The matching organization of data in the RCAM array 
at the beginning of an iteration (b) and its end (c). AD[2] 
contents in (b) is being replaced with the new result (c). Bottom 
rows in a RCAM IC are daisy-chained to the next IC in a shift 
instruction. 



 

Figure 12: GPU/CPU to RCAM complexity ratio  
����

�������
 

6.3 K-Means  

Several evaluations are performed. We compare our 
RCAM processing-in-storage architecture with an FPGA 
[37][53], Multicore CPU [18], single GPU [9],  and a 10-GPU 
cluster [54] K-means implementations. Table 1 provides a 
summary of the platforms and datasets. Figure 13 presents the 
average runtime per iteration (log scale) of each architecture, 
including the relative speedup and power efficiency of 
RCAM. Li et al. [37] showed a simplified MapReduce 
implementation on Xilinx ZC706 FPGA and about 2 million 
samples, each with 4 attributes. Their average time per 
iteration was 8.5ms, compared to 0.57ms on RCAM, yielding 
speedup of 15 and 1.5× better power efficiency. Ramanathan 
et al. [53] presented an implementation with work-stealing 
method of run-time load balancing on an Altera Stratix V 
FPGA. The total runtime is about 350ms with 16 iterations, 
while RCAM completes the same task in 75ms, resulting in a 
4.6 speedup. The relatively small speedup is attributed 
mainly to the high clusters-to-samples ratio. The small 
dataset also leads to 2.1× lower power efficiency of ReCAM. 
More data samples may lead to lower FPGA performance and 
power efficiency, while keeping RCAM’s the same. Ding et 
al. [18] used a high-end eight-core Intel i7-3770K CPU. We 
used their largest evaluated dataset for comparison, 
containing 2.5M samples, each with 68 dimensions. An 
iteration with 10,000 clusters has taken 432.9 seconds on the 
CPU on average, compared to 6.38 seconds on RCAM, 
leading to a 58.4× speedup and 20.8× higher power efficiency 
of RCAM. Bhimani et al. [9] presented GPU implementation 
of K-means, using NVIDIA K20M with 225W TDP and a 
1164×1200 pixel RGB image. The total runtime in case of 
240 clusters is 294 seconds in 166 iterations, while on RCAM 
it takes only 5 seconds, showing 58.4 speedup. Compared 
with 250W dissipated by a single RCAM chip, RCAM has 
52.9× higher power efficiency. Rossbach et al. [54] used a 
ten NVIDIA Tesla K20M GPU cluster with a very large data 
set of 1 billion samples, occupying roughly 150GB. Their 
average iteration time is 30.6 seconds, compared with 0.65 
seconds on RCAM, yielding speedup of 47. Each of the 
machines in the cluster has two Intel Xeon E5-2630 CPUs, 

which leads to a 415W TDP per machine. In total, the ten 
GPU cluster has 4.9× lower power efficiency than RCAM. 
The large speedup over the big dataset is attributed to the 
insensitivity of RCAM to dataset size, unlike the GPU 
cluster, which is limited by the communication bandwidth of 
each GPU.  

 
 

 

6.4 KNN  

We compare RCAM processing-in-storage 
implementation with FPGA [52], GPU [30] and Nearest 
neighbor Content Addressable Memory (NCAM) [35] KNN 
implementations. Table 2 summarizes the platforms and 
datasets used in these works. Figure 14 plots runtime (log 
scale) results, relative speedup and power efficiency of 
RCAM. Pu et al. [52] presented a FPGA implementation of 
KNN using Stratix IV 4SGX530 and the KDD-CUP 2004 
quantum physics dataset, with 20,480 samples out of the total 
50,000, each sample with 5 attributes. For K=20, runtime was 
69ms. On RCAM, the runtime for the same dataset, 
regardless of the number of samples, is 2.3ms, resulting in 
speedup of 30 and 3× improved power efficiency. 

Gutierez et al. [30] proposed a GPU-based KNN on 
NVIDIA K20M. They applied it to KDD-CUP 1999 dataset 
of 4.9 million instances, each having 41 attributes, and 
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Table 1: K-Means compared datasets and platforms with 
RCAM. 

Work 

Ref. Platform 

Dataset 

Clusters Samples Attributes 
Size on 

disk 

[53]  FPGA 1M 1 4MB 128 

[37] FPGA 2M 4 31.6MB 4 

[18] Intel i7 2.5M 68 318.8MB 10000 

[9] GPU 1.4M 5 21.3MB 240 

[54] 
10-GPU 
Cluster 

1B 40 157.2GB 120 

 

Figure 13: Speedup and power efficiency of RCAM K-Means 
vs. existing solutions. 



achieved runtime of 33.9 sec. On RCAM, the same task 
completes in 1.9ms, showing speedup of 17,470 and 
improved power efficiency of 15.7k×.  

Lee et a. [35] presented a NCAM processing-in-memory 
architecture, combining custom logic and HMC (hybrid 
memory cube). They compared NVIDIA Titan X GPU 
performance to NCAM on two image classification datasets, 
SIFT [40] and ImageNet [34]. The data samples are quite 
large (up to 16 KB). While the NCAM improves runtime over 
the GPU by an order of magnitude (17× and 5.2× on SIFT 
and ImageNet, respectively) and shows a significant benefit 
of a non-von Neumann concept, the RCAM processing-in-
storage architecture demonstrates additional 1-2 orders of 
magnitude speedup (17.9 and 67.9, respectively) relative to 
NCAM, thanks to in-data rather than near-data processing. 
Compared with NCAM, ReCAM shows lower power 
efficiency of 0.9× and 0.2× for SIFT and AlexNet datasets, 
respectively. The lower power efficiency can be attributed to 
the highly specialized design of NCAM, which targets to 
accelerate KNN, in contrast to the larger scope of 
applications with high performance on RCAM. 

 

 

6.5 Smith-Waterman 

The CUPS metric (Cell Updates per Second) is used to 
measure S-W performance. Performance results are 
compared to other works in Table 3. A four Xeon Phi 
implementation achieves 0.23 TCUPS [39]. A FPGA 
implementation of S-W reaches 6.0 TCUPS on the 
RIVYERA platform [60] having 128 Xilinx Spartan-6 
LX150 FPGAs. A multi-GPU implementation reached 11.1 
TCUPS on a cluster of 128 compute nodes with a total of 384 
Tesla M2090 GPUs [16]. On RCAM with a total of 8GB in 
32 separate ICs, each 256MB and 8M rows, we demonstrate 
53 TCUPS, computing a total of 57.2×1012 scores, achieving 
4.7 times higher throughput than the GPU version. Table 3 
also shows computed GCUPS/Watt ratios; RCAM is close to 
twice better power efficiency than the FPGA solution and 
80× better than the GPU system. 

 

7. Conclusions 
Near-data processing-in-storage is inherently limited 

because it is based on replicating von Neumann processors 
near storage. Therefore, it potentially faces some of von 
Neumann architecture problems, such as the bandwidth wall. 
To resolve this problem and allow for full utilization of ultra-
high internal bandwidth of future resistive memory based 
SSD, we propose a novel in-data processing-in-storage 
architecture based on Resistive Content Addressable 
Memory (RCAM). Unlike near-data in-SSD processing, 
RCAM enables storage with in-data associative processing 
capabilities. It can contain hundreds of millions of data rows, 
each row serving as an associative processing unit. RCAM 
requires no in-storage processing cores external to the storage 
arrays. There is no data transfer outside the storage arrays. 
Therefore, the internal bandwidth of the resistive memory 
based storage can be utilized to its fullest extent, considerably 
improving computation throughput of processing-in-storage 
system. 

The RCAM architecture, capable of general purpose 
associative processing, has been applied to a variety of 
challenging data and compute intensive problems, such as 
various machine learning and bioinformatics algorithms. The 
paper investigated SpMV, K-Means, KNN and Smith-
Waterman sequence alignment algorithms and compared 
RCAM to other published analyses.  

Table 2: KNN compared datasets and platforms with RCAM. 

Work 

Ref. 
Platform 

Dataset  

Name Samples Attributes K 

[52] FPGA 
KDD-Cup 

2004 
20.5k 5 240 

[30] GPU KDD-Cup 99 4.9M 41 1000 

[35]  

CPU 
SIFT [40] 1M 128 16 

NCAM 

GPU 
AlexNet [34] 1M 4096 32 

NCAM 

 
Figure 14: Speedup and power efficiency of RCAM KNN vs. 
existing solutions. 

Table 3: Summary of state-of-the-art performance for S-W 
scoring step in previous works and in RCAM. 

Accelerator Xeon Phi FPGA GPU RCAM 

Performance 
(TCUPS) 

0.23 6.0 11.1 53 

Number of ICs 4 128 384 32 

Power (kW) 0.8 1.3 100.0 6.6 

GCUPS/W 0.3 4.7 0.1 8.0 

Reference [39] [60] [16]  
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