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Abstract–Front-end integrated circuits for spike sorting will be 
useful in neuronal recording systems that engage a large number 
of electrodes. Detecting, sorting and encoding spike data at the 
front-end will reduce the data bandwidth and enable wireless 
communication. Without such data reduction, large data volumes 
need to be transferred to a host computer and typically heavy 
cables are required which constrain the patient or test animal. 
Front-end processing circuits must dissipate only a limited 
amount of power, due to supply constraints and heat restrictions. 
Two reduced complexity spike sorting algorithms are introduced, 
one based on Integral Transform and another on segmented 
PCA. The former achieves 98% of the precision of a PCA sorter, 
while requiring only 2.5% of the computational complexity. The 
latter algorithm is somewhat more accurate but incurs a higher 
complexity. 

I. INTRODUCTION 

Various methods have been proposed for the separation and 
sorting of action potential waveforms (“spikes”) originating 
from different neurons  [1]- [11]. Spike sorting requires high 
bandwidth communications between the electrodes and the 
sorting computer, as well as high-performance processing. 
When a large number of signals are to be handled, typical 
transmission resources are insufficient  [12]. We investigate 
Neuroprocessors, which are front-end integrated circuits for 
processing neuronal recordings, with spike sorting capabilities 
 [13]. In this paper we focus on spike sorting algorithms and 
architectures that trade off some classification accuracy in 
return for significant savings in power. The power 
requirements of hardware spike-sorting have also been 
discussed in  [14]. 

We introduce the Integral Transform (IT) and the Segmented 
PC algorithms for spike sorting, and compare them with an 
algorithm based on principal components analysis (PCA)  [1]. 
The IT algorithm achieves 98% classification accuracy for 
about 2.5% of the computational effort of PCA spike sorting. 
The Segmented PC algorithm, which combines features of 
both IT and PCA, is more accurate than the IT algorithm by a 
fraction of one percent, but incurs twice or three times the 
complexity. The Neuroprocessor system is overviewed in 
Section  II. The algorithms and architectures are described in 
Section  III, and their performance is analyzed in Section  IV. 

II. SYSTEM OVERVIEW 

In a typical experimental setup, the signals recorded by the 
electrodes are amplified and transmitted over wires to a host 
computer where they are digitized and processed according to 
experimental requirements  [15]. The main disadvantage of this 
arrangement is the need to connect a cable to the subject, 
restricting its movement. Instead, the Neuroprocessor chip 

performs front-end data processing  [13] and data reduction by 
means of spike detection and sorting to enable bidirectional 
wireless communications that replace cables and allow free 
movement of the patient or test subject. While it is feasible to 
transfer some raw signal recordings over the wireless channel, 
combining data collected by a large number of electrodes is 
prohibitive  [12], and additional data reduction must be carried 
out by the Neuroprocessor. In many neuronal experiments, the 
most important data is the indication of spikes, their sources 
(electrode and identifiable unit within the electrode), and the 
time of their occurrence. These indications are produced with 
a real time spike sorting algorithm, and the Neuroprocessor 
transmits only spike indications and avoids sending the raw 
signal. Communicating such indications requires much lower 
bandwidth and could be made feasible with low-power 
wireless links.  

The raw signal from a neuronal recording electrode may be 
sampled, for instance, at 25 Ksps and digitized at 12 
bits/sample, producing a data rate of 300Kbits/second. The 
Neuroprocessor generates a 20-bit spike notification message 
including a time stamp and electrode and unit identification. 
Assuming a (relatively high) spike rate of 100 spikes/second 
per electrode, the expected data rate is 2Kbits/second, less 
than 1% of the raw data rate. The architecture of the part of 
the Neuroprocessor that processes the signal from a single 
electrode is shown in Figure 1. Spike detection and sorting 
must be adaptable, due to unstable recording conditions  [5]. 
Therefore, raw data is transmitted to the host computer 
periodically for training, and recalculated parameters are sent 
back to the Neuroprocessor. At all other times, the spike signal 
is processed by the Detector and Sorter. The Detector 
identifies the presence of spikes in the input, determines their 
starting point, and initiates the operation of the Sorter. In this 
paper we focus on sorting algorithms and assume a given 
Detector. The output logic produces the spike notification 
message. 
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Figure 1: Neuroprocessor Architecture: one electrode section 

 



 

III. SPIKE SORTING ALGORITHMS AND ARCHITECTURES 

When exploring algorithms and VLSI architectures for real 
time spike sorting to be carried out at the Neuroprocessor, we 
seek to minimize power dissipation while still achieving 
acceptable levels of sorting accuracy. Following  [14], we 
consider the relative computational complexity of different 
architectures as a predictor of their power requirements. 

Signal processing VLSI architectures may employ analog 
computations to reduce power dissipation  [16]. In the 
following, we note the cases where we may benefit from 
analog computations, but the comparative analysis of the 
architectures is carried out in the digital domain. 

A. The Integral Transform Algorithm 

The Integral Transform (IT) sorting algorithm classifies the 
spikes projected onto the two-dimensional Integral Transform 
space. We assume that the spike signal can be split into two 
time intervals A and B, according to its positive and negative 
phases (Figure 2). Therefore, the two axes of the IT space 
represent the normalized discrete signal integrals over A and B 
(Figure 3): 
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Spike classification is based on linear separation in IT space, 
as follows: 

,B AI m I n set I otherwise set II> ⋅ + ⇒ ⇒  

Here ,m n∈ℜ  are the parameters of the separation line 
(Figure 3). They are determined by off-line learning, which 
may be based on any appropriate technique, such as SVM 
 [17].  

Linear classification has been selected in an attempt to 
minimize hardware and computational complexities. In simple 
cases, one line may suffice for sorting spikes into two clusters. 
In general, any number of lines may be employed, either to 
further constrain the classification space, or to enable sorting 
into three or more clusters, or both.  

A conceptual VLSI architecture for the IT algorithm is shown 
in Figure 4. The input is integrated over the first time interval 
(A) and the result is stored as IA (storage is omitted from the 
figure). During the second interval (B), the integrator 
generates IB. Subsequently, the parameters m and n are used to 
generate mIA+n that is compared to IB. A mixed-signal version 
of this architecture could employ an analog integrator at the 
input, resulting in reduced rate analog-to-digital conversion.  

 
Figure 2: Spike representation by two integration time intervals A, B 

 
Figure 3: Spikes projection on the Integral Transform (IT) space 
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Figure 4: IT  VLSI architecture 

B. Principal Component Sorting 

A conceptual VLSI architecture for on-chip sorting by means 
of principal component analysis (PCA) using two principal 
components and linear classification is shown in Figure 5. 
Each input sample is multiplied by two PC coefficients, and 
the two accumulated projections are linearly compared. 

Figure 5: PC  VLSI architecture 

 



 

C. Segmented Principal Component Sorting 

The segmented PC algorithm on k segments (kPC) 
approximates PCA while using a reduced number of 
multiplications. The signal is integrated over several time 
intervals (k1 segments for PC1 and k2 segments for PC2). Each 
integral is multiplied by the average of the principal 
component values over the same interval, as follows: 
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The expressions for PC2 are similar. A VLSI architecture for 
the kPC algorithm is shown in Figure 6. 

Figure 6: Segmented PC  VLSI architecture 

Another level of savings in computational complexity can be 
achieved by approximating the multiplication coefficients α(p) 
and β(q) by powers of 2 (thus, multiplications are achieved by 
simple bit-shifting). This reduced complexity version of kPC 
is designated kPC2 in the next section.  

IV. RESULTS 

A. Algorithm Validation 

The hardware spike sorting algorithms described above are 
compared (by simulation) to a software implementation of 
PCA  [18]. Details of the PCA sorting are described in  [19]. 
All algorithms are applied to the same data set. Figure 7 
illustrates the algorithm validation scheme. First, part of the 
data is used for training, producing configuration parameters 
for the hardware algorithm. Second, the parameters are 
downloaded to the Neuroprocessor simulation model. Third, a 
simulation of the Neuroprocessor spike-sorting algorithm is 
applied to the entire data set, and the results are compared 
with the output of the software (PCA) algorithm.  

Figure 7: Algorithm validation 

B. Spike Recording Method 

Real spike data was taken from electrophysiological 
recordings of multiple spike trains, obtained from 
microelectrodes implanted in multiple cortical regions  [20]. 
Neuronal signals from the electrodes were amplified, bandpass 
filtered (300 – 6000 Hz, four poles Butterworth filter), and 
sampled at 24 Ksps/electrode. A software algorithm for spike 
detection was first applied; only stable spike trains (as judged 
by stable spike waveforms, stable firing rate and consistent 
responses to behavioral events) were included in this study. 
The data set contains about 1,000 spikes per cluster. The spike 
sorting algorithms have been applied to this data under a 
number of simplifying assumptions, ignoring classification 
errors such as overlapping signals, burst-firing neurons and 
non-stationary background noise.  

C. Analysis  

The reduced computational complexity of the proposed VLSI 
algorithms comes at the expense of precision. We count the 
number of additions and multiplications required in each case 
per each spike. Multiplication is counted as about ten 
additions, and computational complexity is expressed as the 
total number of equivalent additions. The computational 
complexity is roughly proportional to the relative power 
consumption of each algorithm  [14]. The results are shown in 
Table 1. The two versions of the kPC algorithm are tested with 
seven segments per each component. It is evident that the IT 
spike sorting algorithm achieves about 97.8% accuracy at 
about 2.5% of the complexity of the full PCA. The very small 
added accuracy levels offered by kPC and kPC2 come at the 
price of 2-3 times higher complexity. 

TABLE 1: COMPUTATIONAL COMPLEXITY AND CLASSIFICATION ERRORS 
OF THE  SPIKE SORTING ARCHITECTURES 

Algorithm Add Mult Computational 
Complexity 

Error 
Rate 

PCA 400 400 4400 0.0% 

7PC 165 15 315 1.4% 

7PC2 175 1 185 1.7% 

IT 100 1 110 2.2% 

 



 

V. CONCLUSIONS 

We have described low-power architectures for spike sorting 
integrated circuits. Such systems may be implanted near 
recording electrodes, or employed as front end electronics for 
large multi-electrode arrays in either research or clinical 
applications. These systems enable substantial reduction of the 
communication bandwidth, which is essential when a large 
number of recording electrodes is involved. 

Three VLSI architectures for spike sorting were compared: IT 
integrates the signal in segments, PC implements the common 
PCA analysis and segmented PC combines features of both. 
All three algorithms employ linear classification in the 
appropriate two-dimensional spaces. 

The algorithms have been simulated with real neuronal spike 
data. The results are analyzed in terms of classification errors 
(relative to sorting results achieved with software PCA 
classification). The computational complexity of each 
algorithm was estimated based on the number of additions and 
multiplications involved. 

The IT algorithm yields only marginal accuracy degradation 
relative to full PCA, while incurring only a small fraction of 
the computational complexity. Consequently, it is proposed 
for power-efficient spike sorting in neuronal processing 
integrated circuits.   
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