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Abstract–Front-end integrated circuits for signal processing 

are useful in neuronal recording systems that engage a large 
number of electrodes. Detecting, alignment, and sorting the spike 
data at the front-end reduces the data bandwidth and enables 
wireless communication. Without such data reduction, large data 
volumes need to be transferred to a host computer and typically 
heavy cables are required which constrain the patient or test 
animal. Front-end processing circuits can dissipate only a limited 
amount of power, due to supply constraints and heat restrictions. 
Reduced complexity spike detection and alignment algorithm and 
architecture, based on Integral Transform, are introduced. They 
achieve 99% of the precision of a PCA detector, while requiring 
only 0.05% of the computational complexity. 

I. INTRODUCTION 

Automatic and semiautomatic approaches to the reconstruction 
and analysis of neuronal activity have been the subject of 
extensive research  [1] [2]. Typical settings of neuronal 
recording experiments in test animals and human subjects 
require high bandwidth communications from the recording 
electrodes to the processing computer, where spikes are 
detected and sorted. When a large number of recording 
electrodes is needed, typical transmission resources are 
insufficient and power-hungry  [3]. In addition, the large 
number of wires results in heavy cables that severely constrain 
the subject. Consequently, it is desirable to pre-process and 
reduce the volume of the recorded data so that it can be 
transmitted wirelessly. 

We investigate implantable integrated circuits for power-
efficient front-end processing of spikes, in order to minimize 
the communication bandwidth from the recording electrodes 
to the back-end computer  [4]. In this paper we focus on 
power-efficient detection and alignment (D&A) of spikes as a 
pre-requisite to successful on-chip spike sorting  [5]. For 
instance, given a sampling rate of 24Ksps and 12 bit sampling 
precision, the raw data rate is 288Kbits/second. Spike D&A 
enables transmission of only active spike data and filtering out 
the inter-spike noise  [6]. Assuming a high rate of 100 
spikes/sec/electrode and 2msec/spike, D&A reduces the data 
rate to 60Kbits/sec. Spike sorting converts each spike to a 
short datagram (~20 bits), reducing the required data rate 
down to 2Kbits/sec per electrode, less than 1% of the original 
rate. 

Power requirements of typical D&A algorithms could be 
prohibitively high for simultaneous recording form a large 
number of electrodes. We consider D&A algorithms and 
architectures that trade off some subsequent classification 
accuracy in return for significant savings in power. A similar 

approach has been presented in  [7]. Spike detection algorithms 
have also been discussed in  [3] [8]- [12]. 

We introduce the Maximum Integral Transform Alignment 
(MITA) algorithm for spike D&A, and compare it with an 
algorithm based on principal components analysis (MPA). The 
MITA algorithm achieves 99% classification accuracy for 
about 0.05% of the computational efforts of PCA spike D&A. 
The system is overviewed in Section  II. The algorithms and 
architectures are described in Section  III, and their 
performance is analyzed in Section  IV. 

II. SYSTEM OVERVIEW 

In typical experimental setups, the signals recorded by the 
electrodes are amplified and transmitted over wires to a host 
computer where they are digitized and processed according to 
the experimental requirements  [13]. The main disadvantage of 
that experimental arrangement is the need to connect a cable to 
the subject, restricting its movement. The Neuroprocessor (an 
implantable integrated circuit) performs front-end analog 
processing, spike D&A and spike sorting, achieving 
significant data reduction and thus enabling wireless 
communications that replace cables and allow free movement 
of the patient or test subject.  

The architecture of the part of the Neuroprocessor that 
processes the signal from a single electrode is shown in Figure 
1. Spike processing must be adaptable, due to unstable 
recording conditions  [3] [10]. Therefore, periodically, raw data 
is transmitted to the host computer for training, and the 
recalculated parameters are sent back to the Neuroprocessor. 
The Spike Detector detects the presence of spikes in the input, 
determines their starting point, and initiates the operation of 
the Spike Sorter. The output logic produces the spike 
notification datagram.  

Performance of the spike sorter depends critically on the 
accuracy of the D&A algorithm. In this paper we focus on the 
D&A algorithms and assume a given Spike Sorter. 
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Figure 1:  Neuroprocessor Architecture: one electrode section 



 

III. SPIKE DETECTION AND ALIGNMENT:  
ALGORITHMS AND ARCHITECTURES  

When exploring algorithms and VLSI architectures for real 
time spike D&A to be carried out at the head-stage, we seek to 
minimize power dissipation while still achieving acceptable 
levels of sorting accuracy. Following  [14], we consider the 
relative computational complexity of two architectures as a 
predictor of their power requirements. 

A. Maximum Projection Algorithm (MPA) 

The Maximum Projection algorithm (MPA) is based on the 
analysis of principal component (PC) metrics. This algorithm 
is a VLSI-oriented version of a common software detection 
algorithm  [15]. It consists of on-line detection and off-line 
learning, which determines processing parameters. The PC 
metrics represent the projections of the input signal on the first 
two principal component vectors  [16]. The MPA algorithm 
comprises two steps: extraction and alignment. During 
extraction, a segment of the continuous input signal is 
extracted. Extraction is triggered by threshold crossing at the 
input (threshold level is determined in advance by off-line 
learning). The segment is digitized into M=K+N samples. The 
first K samples precede the threshold crossing time, and the 
remaining N samples follow that time. The alignment step 
seeks a spike of N samples long within the M samples 
segment, starting at an offset {1,..., }i K∈  from the beginning of 
the segment. Thus, alignment searches for the best offset i, 
namely the offset that yields the minimum error between the 
estimated and input signals.  

A VLSI architecture for on-chip D&A by means of principal 
component analysis (PCA) using two principal components is 
shown in Figure 2. Off-line learning and tracking provides PC 
and threshold values to the algorithm. The input is transferred 
through a FIFO register of K stages. The Threshold unit 
triggers operation of the Estimation unit. The Estimation unit 
computes the 2K projections on the two PC vectors (two 
projections at each offset i) and produces the estimated signal 
per each i. Once the Min Error unit finds the offset that yields 
the minimal estimation error, the corresponding projections 
P1i and P2i are sent to the output. Note that if no minimum is 
detected within the range of possible offsets, the last offset is 
selected. The performance of this architecture is described in 
Section  IV below. 
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Figure 2: MPA - VLSI architecture 

B. Maximum Integral Transform Alignment Algorithm 
(MITA) 

The Maximum Integral Transform Alignment algorithm 
(MITA) is based on separate integration of the positive and 
negative phases of the spike. We assume that the spike signal 
can be split into two time intervals A and B, typically 
according to the positive and negative phases of the spike 
(Figure 3). The length of these intervals and their relative 
position is determined by off-line learning. The MITA 
algorithm computes two integrals of the signal, over A and B, 
respectively. As in the MPA case, the MITA algorithm 
comprises two steps, extraction and alignment. The extraction 
step is the same as for MPA. Alignment is determined by 
finding the maximum of the A integral. Once it has been 
determined, both A and B integral values are produced at the 
output and may be employed for subsequent spike sorting. 

 
Figure 3: Two integration time intervals A, B  for the IT D&A algorithm 

A conceptual VLSI architecture for the MITA algorithm is 
shown in Figure 4. Note that integrals A and B do not overlap 
in time, and thus we first compute integral A, find the best 
offset, and only then compute integral B.  

 
Figure 4: Digital MITA - VLSI architecture 

The integration procedure can be considered as the result of 
passing the input signal through a Moving Average filter. A 
recursive implementation of the Moving Average filter is 
depicted in Figure 5. Unlike the MPA architecture, there is no 
need to maintain K sums in parallel: Consider the A integrals, 
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where DA is the number of samples in the A time interval. 
Then 
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Figure 5: Architecture of the Integral A-unit 

Initially, the DA-FIFO contains DA zeros. During the first DA 
steps, the accumulator computes IA1. Henceforth, one old 
element is subtracted from IA and a new one is added. 

Thanks to eliminating multiplications, the MITA architecture 
incurs a significantly lower computation cost than MPA. 

IV. RESULTS 

A. Algorithm Validation  

The Neuroprocessor spike D&A algorithms described above 
are compared (by simulation) to a software implementation of 
PCA  [15] [16]. All algorithms are applied to the same data set. 
Figure 6 illustrates the algorithm validation scheme. First, part 
of the data is used for off-line training, producing 
configuration parameters for the algorithm. Second, the 
parameters are downloaded to the Neuroprocessor simulation 
model. Third, a simulation of the Neuroprocessor spike D&A 
algorithm is applied to the entire data set. Once the PCA based 
software D&A algorithm is also executed on the same data, 
the results are sorted by a software spike sorting algorithm 
 [17] and then are compared.  
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Figure 6: Algorithm validation 

Note that we do not compare the results of alignment of the 
software algorithm vs. those of the Neuroprocessor; rather, we 
employ spike sorting before making the comparison. This is 
due to the fact that the sorted results are more meaningful than 
the raw alignments: Certain variations in spike alignment do 
not affect spike sorting, so they are filtered out anyway by the 
sorter. 

B. Spike Data Preparation 

Real spike data was taken from electrophysiological 
recordings of multiple spike trains, obtained from 
microelectrodes implanted in multiple cortical regions 
 [17] [18]. Neuronal signals from the electrodes were amplified, 
band-pass filtered (300 – 6000 Hz, four poles Butterworth 
filter), and sampled at 24 Ksps/electrode. The data is up-
sampled 4 times for improved alignment precision. Spikes last 

about 2 msec, resulting in 200 samples points. Spike detection 
and alignment were first applied by the software algorithm; 
only stable spike trains (as judged by stable spike waveforms, 
stable firing rate and consistent responses to behavioral 
events) were included in this study. The data set contained 
about 1,000 spikes per cluster. The projections of recorded 
spikes on PC space are shown in Figure 7.  

C. Analysis of Spike D&A Algorithms 

The results of a linear classifier applied to the results of the 
MPA and MITA D&A algorithms are shown in Figure 7 and 
Figure 8, respectively. The two algorithms are compared in 
terms of computational complexity and accuracy of D&A, due 
to the danger that any reduction in computational complexity 
may come at the expense of precision. We count the number 
of additions and multiplications required in each case per each 
spike. Multiplication is counted as about ten additions, and 
total computational complexity is expressed as the total 
number of equivalent additions. The computational 
complexity is roughly proportional to the relative power 
consumption of each algorithm. The results are shown in 
Table 1 for K=50 and for spikes 200 samples long. It is 
evident that (a) the MPA algorithm performs as well as 
software D&A but incurs a high complexity (and power); (b) 
the MITA spike sorting algorithm achieves about 99% 
precision at about 0.05% of the complexity (relative to MPA).  

The two spike D&A algorithms were applied to a difficult data 
set, in which the two spike clusters were very close to each 
other, and we chose two classification polygons that shared 
one common edge. The error rate of the two algorithms was 
maximal in this case; when the clusters are further apart, lower 
detection and alignment error rates are obtainable. 

 
TABLE 1: COMPUTATIONAL COMPLEXITY AND CLASSIFICATION ERRORS 

OF THE SPIKE D&A ARCHITECTURES 

Algorithm Add Mult Computational  
Complexity 

Error 
Rate 

MPA 50,000 50,000 550,000 0.0% 

MITA  250 0 250 1.2% 
M=K+N=250, K=50, N=200 

 
Figure 7: Classification results of the simulated MPA algorithm  



  

 
Figure 8: Classification results of  the simulated MITA algorithm 

V. CONCLUSIONS 

We have considered low-power architectures for spike D&A 
integrated circuits. Such systems may be useful for implanting 
near recording electrodes, or for using in large multi-electrode 
arrays, in either research or clinical applications. These 
systems enable substantial reduction of the communication 
bandwidth, which is essential when a large number of 
recording electrodes is involved. We have described two VLSI 
architectures for spike D&A: MITA integrates the signal in 
segments and MPA implements a common PCA analysis. The 
algorithms have been simulated with real data obtained from 
neuronal recordings. The results are analyzed in terms of 
classification errors (relative to sorting achieved with software 
PCA classification) and computational complexity (estimated 
based on the number of additions and multiplications). The 
MITA algorithm yields only marginal accuracy degradation 
relative to MPA, while incurring only a very small fraction of 
the computational complexity. Thus, we have selected the 
MITA algorithm for power-efficient spike detection in a 
neuronal processing integrated circuit. 
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