

1

Timing Measurements of Synchronization Circuits

Yaron Semiat and Ran Ginosar
VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel

ran@ee.technion.ac.il

Abstract

A regular (two-flop) synchronizer and six multi-
synchronous synchronizers are implemented on a
programmable logic device and are measured. An
experiment system and method for measuring
synchronizers and metastable flip-flops are described. Two
separate settling time constants are shown for a metastable
flop, confirming earlier results of Dike and Burton [1].
Clocking cross-talk between asynchronous clocks is
demonstrated. The regular synchronizer is useful for
communications between asynchronous clock domains,
while the other synchronizers can provide higher
bandwidth communications between multi-synchronous
and mesochronous domains.

1. Introduction
Synchronization is a challenging topic that has been

investigated intensively. Most treatments of the subject,
however, were limited to paper designs and analytic
studies. Actual laboratory measurements and in-depth
analysis of synchronizers have been performed in very few
cases [1] [2] [3] [4].

Large VLSI chips tend to employ asynchronous inter-
module timing due to two principal reasons. First, it is
sometimes more economical (in terms of area, power and
design time) to break a large synchronous chip (or section
of a chip) into multi-synchronous modules, which use the
same basic clock frequency but do not require the exact
same phase of the clock [5]. Multi-synchronous timing can
be based on thrifty clock distribution networks, which
avoid the heavy area and power penalty of assuring
minimal skew across a large chip. Second, interfacing the
chip to a variety of external busses ticking at different
frequencies imposes a requirement for the chip to contain
multiple unrelated clock domains. A communication chip
that connects a 100MHz data link to a 66MHz PCI bus is
one such example. Both types of multiple-clock domain
chips are sometimes termed GALS (globally
asynchronous, locally synchronous) systems.

Two separate clock domains are ‘mesochronous’ if
they are clocked at the same frequency but at a fixed
relative phase difference [6]. If the phase difference drifts
over time, they are called ‘multi-synchronous’ [5]. If the
clock frequencies are close but different, they are

‘plesiochronous.’ In multi-synchronous GALS systems, all
modules receive the same clock frequency. The design of
inter-module communications can take advantage of that
fact and employ mesochronous synchronizers for higher
bandwidth than possible with the more general two-flop
synchronizers [7]. However, relative clock phases drift
over time (typically due to intra-die temperature and
voltage temporal variations) thus requiring adaptive multi-
synchronous synchronizers [5] that either periodically or
continuously adapt to the varying phase differences.
Similar conditions often arise among separate chips on a
board, where the chips are clocked by the same system
clock.

The analysis of synchronizers for on-chip cross-clock
domain communications is quite difficult. Circuit
simulations of synchronizers only provide a partial
characterization [1] [2] [4]. Typical logic validation tools
are totally ignorant of synchronization failures. Post-
production testing also provides very little help. The only
useful metric proposed in the literature is that of MTBF,
which is only indirectly driven out of approximately
defined parameters. In this paper we extend the work of [1]
[2] [3], which have considered only simple synchronizers,
and we show lab measurement validation of a variety of
multi-synchronous adaptive synchronizers.

Section 2 explains the experiment system and the data
analysis method, and demonstrates them investigating a
metastable flip-flop. Section 3 describes seven different
synchronizers, one general and six for multi-synchronous
applications, and validates their performance by means of
timing measurements. The findings are analyzed in Section
4. Full-color figures of this paper are available on the web
[11].

2. The Experiment System
This section describes the setup used for all the

experiments. It demonstrates the waveforms of normally
switching and metastable flip-flops, and discusses clock
cross-talk noise.

2.1 Hardware
Figure 1 describes the hardware used for the

experiments. The setup follows that of Dike & Burton [1].
All designs have been implemented on the same Altera
EPF10K20 programmable logic device (PLD). Two pulse

2

generators provide the clock and data inputs, operating at
25.175 and 25.2 MHz, respectively. The slight difference
in the frequencies result in inputs having uniformly
distributed delays in reference to the clock, at a periodicity
of 25 KHz. The data output of the PLD is connected to the
trigger input of a HP83480A oscilloscope. The clock
signal is connected through the PLD to the data channel of
the scope. The digital sampling scope is capable of
continuous data accumulation and the results are available
for statistical analysis.

ALTERA
EPF10K20 CLOCK

OUTPUT
25.2 MHz

Pulse
Generator

HP83480A
Scope

TRIGGER

INPUT25.175 MHz
Pulse

Generator

Figure 1: Experiment setup

2.2 Synchronous Sampling of a Flip-Flop
In this experiment the data pulse-generator is turned

off. A toggling flop's output serves as a synchronous input
for the flop under test (Figure 2). Each data point
accumulated by the scope represents one sampled rising
transition of the CLOCK signal (Figure 3). Its horizontal
displacement indicates the delay from the clock input to
the data output of the flip-flop.

25.175 MHz
Pulse

Generator

HP83480A
Scope

TRIGGER

INPUT

FF
D Q

FF
D Q

CLOCK

Figure 2: Synchronous sampling circuit

Figure 4 shows the result of synchronous sampling by a
flip-flop. The delay between the clock and the output edge
is fixed, with only about 10ps delay variation (the scope’s
jitter at its trigger input is specified at 2.5ps). The variation
appears to be symmetrically distributed around the center
value. This experiment represents an accumulation of 2.2
million data points, collected over about 5 minutes. Note
that only 0.06% of all edges are sampled—this is used
below to filter out safe edges and to constrain the
measurement to potential metastable ones. The distribution
of the accumulated data along the horizontal (time) axis is
shown in Figure 5; the method used to generate that chart
is explained below in Section 2.4.

Figure 3: Collected data (the dotted area)

Figure 4: A synchronous flop

Synchronous sampling flip-flop

1

10

100

1000

10000

100000

1000000

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

Relative flip-flop propagation delay (ps)

Fr
eq

ue
nc

y

Figure 5: Flip-flop propagation delay frequency
distribution for synchronous sampling; t=0
represents the average propagation delay

2.3 Clock Cross-Talk Noise
The following experiment demonstrates the effect of

clock cross-talk noise. The circuit shown in Figure 2 uses
only one clock source. When turning the second pulse
generator on, a much noisier waveform is received, even
though that other signal is not used in the design. Figure 6
demonstrates this phenomenon.

3

Figure 6: Synchronized sampled data with clock
cross-talk noise

The noise distorts the 'clean' signal of Figure 4 in two
ways: Delay variation increases from 10ps to 150ps, and
the distribution around the mean is asymmetric and
multimodal. It appears that the noise is injected through
capacitive coupling of the two clock distribution networks,
which may be laid down side by side in the PLD. Note that
different designs may demonstrate different levels of cross-
talk noise, depending on the actual placement and routing
that happen to be generated for each implementation.
Unlike custom chip design, the PLD user typically has
very little control of such physical parameters. These
distortions should be taken into consideration while
analyzing the experiments in this paper, which all depend
on the two clocks operating simultaneously.

2.4 Data Analysis
The digital sampling scope, operating in a special data

accumulation mode, collects the data in the form of a two-
dimensional array of counter values. Each counter
represents the number of edges that have been sampled
when passing through the corresponding point on the scope
display. The array consists of 256×451 counter values. The
data file is subsequently aligned to enable accumulation
along the curved data axis, as shown on the left side of
Figure 7. Next, the data values are integrated along the
vertical axis, resulting in the chart on the right hand side of
the figure.

2 flip-flop synchronizer

1
10

100

1000

10000

100000

1000000

-120 -100 -80 -60 -40 -20 0 20 40 60 80

Time (ps)

Po
in

tsAlign Project

Figure 7: Data analysis method

2.5 Metastable Behavior of a Flip-Flop
The two pulse generators, being asynchronous to each

other, provide the clock and data inputs of the synchronizer
flop, as in Figure 8. A clock-data conflict occurs roughly at
a 25 KHz rate, and occasionally it leads to metastable
behavior. Most normal switching events are filtered out by

means of the clear signal, which precedes the data input
transition by Td.

CLEAR

Td

25.2 MHz
Pulse

Generator

25.175 MHz
Pulse

Generator HP83480A
Scope

TRIGGER

INPUT

FF
D QCLEAR

Figure 8: Circuit demonstrating metastability

The accumulated data is shown in Figure 9. The
frequency distribution of the incremental flop clock-to-
output propagation delay (that is, how much longer it takes
relative to normal propagation delay) is plotted in Figure
10. The peak around zero represents a large number of
cases with normal propagation delay. The dip in the chart
between zero and 300ps is explained by Dike & Burton [1]
as resulting from Miller effects. When closely examined,
the chart to the left of 300ps reveals two slightly different
slopes, representing two separate values for the time
constants τ, as first discovered by Dike & Burton [1]: Deep
metastability is characterized by τms=130ps in the region to
the left of the 700ps point, and the deterministic region
(which shows an incremental delay between 300-700ps)
shows τdet=120ps. Thus, the deterministic region includes
cases where the flop propagation delay is longer by up to
700 ps relative to the normal flop delay, and in deep
metastability the flop takes more than 700 ps to resolve
and settle to either 0 or 1. Note how very close these two
τ values are.

Figure 9: A metastable flip-flop

4

 Metastability behavior

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

-1001003005007009001100130015001700

 Relative flip-flop propagation delay (ps)

 F
re

qu
en

cy

Figure 10: Flip-flop propagation delay frequency
distribution for metastable sampling; t=0
represents the normal propagation delay

3. Adaptive Synchronization Circuits
In this section different adaptive synchronizers are

presented. The test circuit is shown in Figure 11. As
explained in Section 2.1, the slight frequency difference of
the two pulse generators results in the data edges
continuously sweeping over the clock edges, and resulting
in periodic clock-data conflicts (at the beat frequency,
namely the difference of the two clock frequencies). This
setup actually creates a plesiochronous environment in
order to test mesochronous [6] [7] and multi-synchronous
[5] synchronizers.

25.175 MHz
Pulse

Generator

HP83480A
Scope

TRIGGER

INPUT

SY
N

C
HR

O
N

IZ
ER

25.2 MHz
Pulse

Generator

RECEIVER CLOCK

TRANSMITTER CLOCK

FF
D Q

FF
D Q

Figure 11: Synchronizer experiments setup

3.1 Two-Flop Synchronizer
A standard two-flop synchronizer is shown in Figure

12. It incurs at least one clock cycle penalty on latency,
and in certain cases it may consequently limit the
throughput.

ffffdata data_sync

clock

Figure 12: A two-flop synchronizer

The measured behavior of a two-flop synchronizer is
shown in Figure 13. MTBF for the two-flop synchronizer
is estimated at

40
130

308
122

200 25 1

10 years.
5000

nsT ps

W C D

e e
T F F ps MHz MHz

e

τ

= =

⋅ ⋅

= ≈

This is quite safe—recall that our universe is only 1010
years old… The synchronized output should appear like
that of Figure 4, but, apparently due to clock noise, it
resembles that of Figure 6 instead.

Figure 13: Two-flop synchronizer output

3.2 Data Delay Synchronizer
The data delay adaptive synchronizer [5] delays the

input data if the data are suspected to switch during the
'danger zone' around the clock rising edge. A
programmable digital delay line is inserted before the first
latch (Figure 14). Data timing is determined and the delay
is programmed during a training session. In our
measurements, the output of the synchronizer is blocked
during the training session. Note that the adaptation rate,
which is also the rate of entering a training session, is 25
KHz in the measurement system (the beat frequency). The
synchronized output is shown in Figure 20. The delay
variation is approximately one half that of the two-flop
synchronizer, but we believe that it is only an artifact of
the specific PLD place and route of this circuit. Figure 21
shows the output of the delay line; multiple delay regions
are evident. They are all aligned once latched, as in Figure
20.

DELAY LINE

DATA
DELAY

FSM

data data_sync

conflict
detect

conflict
detect

clksync_derive

sync_derive

conflict_del

conflict_180_del

conflict

conflict_180

clr_delay
inc_delay
training_on_int

Figure 14: The data delay synchronizer

5

The delay-line delays the input signal to a 'safe' time,
when sampling of the signal can be done correctly, without
metastable behavior. The delay line FSM controller
generates the clr_delay signal at the start of a training
session, setting the delay line to its minimum value. The
inc_delay control signal increments the amount of delay in
the delay-line by one unit every iteration of the training
session.

A training session begins upon arrival of the conflict
signal, which suggests that the data is in the danger zone.
The training session stops when conflict180 arrives,
indicating that the data is around the middle of the cycle,
and therefore safe to sample. Those two conflict signals are
synchronized by the sync_derive units. The conflict detect
modules are designed with margins so that missing a signal
(due to metastable state in the sync-derive synchronizers)
will not prevent the circuit from entering its training
session eventually.

Figure 15 describes the implementation of a delay-line
in the Altera PLD device, using multiplexers and Altera
delay elements (“lcells”), which provide a nominal 1.5
nsec fixed delay each. Minimal delay is achieved by
loading the shift register with all ‘1’s. The delay is
increased by left shift with a ‘0’ entering from the right.

data

data_del.....
lcelllcell

'0'

'1'

'0'

'1'

'0'

'1'

'0'

'1'

SHIFT REGISTER 0

Figure 15: Delay-line circuit in Altera PLD

The conflict detect module (Figure 16) is designed to
detect situations where the data signal is inside a time
window around the clock rising edge. Both rising and
falling edges of the data signal are analyzed. The time
window is set by the fixed delay-lines in the module. Note
that conflict signals in the module have half a cycle width:
If the delayed_data_g2 (or delayed_data_n_g2) signal is
high it will be high only when its ME's R2 input is high,
and since the latter is a clock signal it will be high only for
half a cycle. Since it is connected to an AND gate,
conflict1 and conflict2 will be of half-cycle width,
propagating to the output conflict signal. The conflict
signal may altogether be missed, due to the very clock-data
conflict that it tries to detect! The sync_derive circuits,
which synchronize the conflict signals, sample the conflict
at both the rising and falling edges of the clock, in order
not to miss its high value, and repeat the sampling every
cycle to increase the probability of catching a conflict.

conflict1

conflict2

data_g1

delayed_data_g2

data_n_g1

delayed_data_n_g2

data

clk

data_del

conflict

me
R1

R2

G1

G2

me
R1

R2

G1

G2

me
R1

R2

G1

G2

me
R1

R2

G1

G2

clk_del

Figure 16: Conflict detector circuit

The mutual exclusion element (ME) is shown in Figure
17. This LUT-based PLD implementation provides a very
high probability of mutual exclusion, and in practice we
have been unable to detect any failure. But this circuit
cannot completely guarantee it; for absolute mutual
exclusion, either a full-custom or gate-based cells are
required [8]. To counter that limitation, the conflict
detector is operated multiple times during a training
session; the probability of a mutual exclusion element
failing on all attempts is negligible.

R1

R2
O2

O1
G1

G2

Figure 17: PLD mutual exclusion element

The sync derive module (Figure 18) synchronizes the
conflict-detector output. The conflict signal can suffer
delay and the chance of being missed, as described above.
The synchronizer samples the conflict signal every cycle,
to increase the likelihood that it is eventually caught. The
training session allows ample time for conflict resolution;
it may take many cycles. Hence, the conflict signal is
synchronized with a two-flop synchronizer. Since the
conflict signal is only half a clock period wide, it is
sampled at both the rising and falling edges of the clock.

output_reFFD
CLR

output_fe

clk

output

input

clk

FFD
CLR

FFD
CLR

FFD
CLR

FFD

CLR

Figure 18: Sync derive circuit

6

Upon arrival of a conflict signal, the FSM (Figure 19)
resets the delay line to its minimum value. It subsequently
iterates between WAIT_ CONFLICT180 and
TRAINING_INC states. In each iteration it increments the
delay line by one unit, and checks whether conflict_180
signal has arrived.

ENABLE_COUNTER
TRAINING_ON

WAIT
CONFLICT

180

conflict_180

counter_done

INC_DELAY
START_COUNTER

TRAINING_ON

TRAINING_INC

conflict

CLR_DELAY
START_COUNTER

TRAINING_ON

TRAINING_CLR

IDLE

Figure 19: Data Delay FSM

Figure 20: Data delay synchronizer output

Figure 21: Delay line output of the data delay
synchronizer

3.3 Dual Data Delay Synchronizer
To minimize the slow-down caused by training

sessions in plesiochronous or periodic applications [5] [7],

a second delay line is introduced in Figure 22. Imminent
clock-data conflicts are continuously monitored; once
detected, the delay is adjusted off-line and subsequently
loaded into the data delay. The synchronized output is
shown in Figure 24. Note that the synchronizer is
insensitive to small mismatches in the delays of the two
delay lines. The PLD technology, however, can assure
sufficiently tight matching of the two delays; similar
matching is also feasible in custom VLSI designs.

DUAL
DATA

DELAY
FSM

data data_delDELAY LINE

MIRROR DELAY LINE
clr_delay

inc_delay

update_delay

data_del_mirror

conflict
detect clksync_derive

conflict_180_delconflict_180

Figure 22: The dual data delay synchronizer

counter_done

CLR_DELAY
START COUNTER

TRAINING_CLR

WAIT
CONFLICT

180

ENABLE_COUNTER

counter_done

TRAINING_INC
UPDATE_DELAY

co
nflic

t_1
80

IDLE

ENABLE_COUNTER

UPDATE_DELAY

conflict_180

INC_DELAY
START COUNTER

START_IDLE

START COUNTER

Figure 23: Dual data delay FSM

If a conflict_180 signal has not arrived for a given
number of cycles (Figure 23), counter_done rises and the
machine clears the delay line. Then it waits until a
conflict_180 signal arrives. If it doesn't arrive after a given
number of cycles it increments the delay in
TRAINING_INC state. When conflict_180 signal arrives,
the value of the mirror delay is transferred to the delay line
through the UPDATE_DELAY state.

7

Figure 24: Dual data delay synchronizer output

3.4 Clock Delay Synchronizer
While Data Delay Synchronizers may adjust the delay

independently for each separate input channel, they
employ a large number of delay elements, which may incur
a prohibitive area and power price. In contrast, the Clock
Delay Synchronizer [7] adjusts only the timing of the first
latching clock (Figure 26). The output is shown in Figure
25.

Figure 25: Clock delay synchronizer output

DATA
FF 0

FF 1

CLK

DCLK

phc_fsmconflict
detect

sync
derive

conflict conflict_sync

DATA_SYNC
'0'

'1'

TKO

Figure 26: Clock delay synchronizer

The input data are sampled by two flip-flops FF0 and
FF1. CLK is the receiving module's clock. CLK samples
FF0 and CLK delayed by TKO samples FF1. The conflict-
detector and sync_derive circuits are described in Section
3.2. The control FSM is shown in Figure 27. Upon
conflict_sync, FF1 is selected. Otherwise, FF0 is selected.
Note that the clock delay synchronizer may be adjusted
continuously, rather than through training sessions. The
two alternative selections are evident in Figure 28: The

bright line on the right is the output of FF0, and the one on
the left is FF1. The two darker lines result from switching
of the selector. An alternative design, more appropriate for
wide data buses, samples the data only once but applies
either CLK or CLK+TKO to the sampling register (Figure
29).

conflict

'0' '1'

conflict

Figure 27: Clock delay synchronizer FSM

Figure 28: Selector output in the clock delay
synchronizer

DATA

REGCLK
DCLK

fsmconflict
detect

sync
derive

conflict conflict_sync

DATA_SYNC
'0'
'1'

TKO

Figure 29: Simpler Clock delay synchronizer

3.5 FIFO Synchronizer
The dual-clock asynchronous FIFO provides another

common means for crossing clock domains. A simplified
version is suitable for multi-synchronous applications [7].
The input data are latched into a cyclic FIFO register
(Figure 30) using XCLK, the transmitter clock, and are
read using the receiver’s clock, CLK. The XP pointer
selects the register that latches the input data, while RP
selects the register being read. The pointers are
incremented by their respective clocks. The difference
between XP and RP determines the FIFO latency, and it
can be set as low as approximately one clock cycle

8

(depending on the phase difference of the two clocks).
During a training session, XP is synchronized with CLK
and compared with RP. If they are misaligned, RP is
modified. Alternatively, if a longer latency is allowed, RP
may be adjusted continuously during operation. The
waveform of the experiment is shown in Figure 31.

DATA

DATA_SYNC

x_ff1

x_ff2

x_ff3

xp

inc

XCLK

CLK rp

clock
delay
sync

inc

Figure 30: FIFO synchronizer with multi-
synchronous support

It is interesting to compare the area utilization of the
FIFO and the delay-line synchronizer circuits (Section
3.2). Assume that for a wide data bus (e.g., 32 bits) we can
ignore the control circuits. The FIFO synchronizer requires
three flops per data bit. When operating at, e.g., 200 MHz
(a typical SOC clock frequency), and assuming that the
delay of each delay unit is 50 psec, the delay-line
synchronizer requires about 100 buffers per data line,
making the FIFO synchronizer a favorable solution. On the
other hand, in very high-speed designs operating at, e.g., 2
GHz (a typical CPU design), only 10 delay buffers per data
line may be required. In such cases, the delay-line
synchronizer may turn out to be more area-efficient.
Further analysis is provided in Section 4.

Figure 31: FIFO synchronizer output

3.6 Clock-Edge Synchronizer
The clock-edge synchronizer [9] analyzes four different

samples of the same input data, taken with four different
phases of the clock, and selects the safest sample out of the
four possibilities. This synchronizer incurs a significant

data latency, because phase selection is performed only
after data sampling and analysis. Another disadvantage is
the requirement for a 90 degrees phase of the input clock.
Figure 32 shows the structure of this synchronizer, and the
measured data are shown in Figure 33.

edge
detect

edge
detect

DATA_SYNC

DATA

CLK0

CLK90 decision
logic

FF

Input stage
Decision
stage 1 Decision stage 2 Data multiplexer

edge
detect

FF edge
detect

shift reg
shift reg
shift reg
shift reg

FF

FF

FF

FF

FF

FF

FF

Figure 32: The clock edge synchronizer

The input is sampled by four different phases of the
clock, and an additional clock cycle is allowed for settling
of any metastability and aligning the four samples with the
clock. Edge detectors locate the edge at a quarter cycle
resolution. The decision logic selects the sample that is
about one half cycle away from the first edge. The entire
selection process takes about five clock cycles, and the
latched inputs are delayed by the shift-registers until the
selection process is done.

Figure 33: Clock-edge synchronizer output

3.7 Low Latency Clock Edge Synchronizer
The low-latency clock-edge synchronizer is an

adaptation of the clock-edge synchronizer described above
to multi-synchronous synchronization. We take advantage
of the fact that most of the time the data arrival phase stays
stationary. In Figure 34, the decision logic monitors the
input and changes the selection setting only if there is a
change in data arrival timing. Note that only two data
phases are employed, as opposed to four in the original
design. The resulting output waveform is shown in Figure
35, and is quite similar to that of Figure 33, validating that
in multi-synchronous situations there is no need for the
more complex circuit of Section 3.6. A similar
synchronizer has been proposed in [10].

9

DATA_SYNC
decision

logic

Input stage
Decision
stage 1 Decision stage 2 Data multiplexer

edge
detect

edge
detect

DATA

CLK0

CLK90

edge
detect

FF edge
detect

FF

FF

FF

FF

FF

FF

FF

Figure 34: Low latency clock-edge synchronizer

Figure 35: Low-latency clock-edge synchronizer
output

4. Analysis
Table 1 shows hardware complexity (in terms of PLD

logic elements), latency (in clock cycles), throughput and
applicable modes of adaptation for the synchronizers and
32-bit data channels. All synchronizers are appropriate for
multi-synchronous clock domains, while the two-flop one
can also bridge asynchronous domains. In some cases,
continuous adaptation can be obtained at the cost of either
increased latency (Clock Edge and FIFO synchronizer) or
increased hardware (Dual Data Delay synchronizer). The
Clock Delay synchronizer is suitable for continuous
operation without any added complexity.

Table 1: Comparing the synchronizers for 32-bit
wide data channels

Synchronizer HW
(LE)

Latency
(cycles) Throughput Adaptation

Mode
Two-Flop 35 1-2 1/Latency None
Data Delay 700 0-1 1 Training
Dual Data Delay 725 0-1 1 Continuous
Clock Delay 90 0-1 1 Continuous
FIFO (*) 135 0-1 1 Training
Clock Edge 676 5 1 Continuous
Low Latency
Clock Edge 100 0-1 1 Training

(*) FIFO can adapt continuously at the cost of increased latency.

5. Summary
Actual measurements of a variety of synchronizers

have been presented. We follow the methods of [1] and [2]
for testing the metastability settling time constants of
synchronization circuits. Failures of simple flip-flops has
been demonstrated and measured. Subsequently, we
analyzed a standard two-flop synchronizer as a base line,
and investigated the characteristic settling of a number of
plesiochronous synchronizers. All appear to perform
successfully, providing a spectrum of area, power, latency
and throughput trade offs to the designer.

All experiments were carried out on a standard
programmable logic device, requiring a fully digital
implementation and not allowing for any custom circuits or
layout. Thus, the tested synchronizers are appropriate for
FPGA and SoC designs based on standard cells. The two-
flop synchronizer is appropriate for any asynchronous
clock domain crossing, while the remaining synchronizers
are suitable only for mesochronous, multi-synchronous or
plesiochronous domain crossings.

We have also demonstrated the effects of multiple
clocks on synchronization. Cross-talk between clocks of
different frequencies has shown to result in increased jitter
and calls for additional safety margins in the construction
of successful synchronizers.

Additional research is required to further study
synchronizers, such as identifying the time width of the
danger zone, establishing methods for pre-silicon
validation, optimizing the circuits, and verifying them on
ASIC and full-custom VLSI.

Acknowledgement
We are grateful for the many helpful comments

received from Charles Dike and the anonymous referees,
and to the staff of the High Speed Digital Systems Lab at
the Technion, who made these measurements possible.

References

[1] C. Dike and E. Burton, "Miller and Noise Effects in
a Synchronizing Flip-Flop," IEEE Journal of Solid-
State Circuits, 34(6), pp. 849-855, 1999.

[2] J. Jex and C. Dike, “A fast resolving BiNMOS
synchronizer for parallel processor interconnect,”-.
IEEE Journal of Solid-State circuits, 30(2), pp. 133-
139, 1995.

[3] C. Foley, “Characterizing metastability,” Proc. 2nd
IEEE Symp. Adv. Res. Asynchronous Circuits and
Systems, pp. 175-184, 1996.

[4] D.J. Kinniment, A. Bystrov, and A.V. Yakovlev,
“Synchronization Circuit Performance,” IEEE

10

Journal of Solid-State Circuits, 37(2), pp. 202-209,
2002.

[5] R. Ginosar and R. Kol, “Adaptive
Synchronization,” 1998 IEEE International
Conference on Computer Design (ICCD’98), Oct.
1998.

[6] D.G. Messerschmitt, Synchronization, in T.H.
Meng, Synchronization Design for Digital Systems,
Kluwer Academic Publishers, 1991.

[7] W.J. Dally and J.W. Poulton, "Digital Systems
Engineering", Cambridge University Press, 1998.

[8] K. van Berkel, F. Huberts and A. Peeters,
“Stretching Quasi Delay Insensitivity by Means of
Extended Isochronic Forks,” Proc. 2nd Working
Conf., Asynchronous Design Methodologies, pp.
99-106, 1995.

[9] N. Sawyer, “Data to clock phase alignment,” Xilinx
application note XAPP255, v1.0 Sep 2000.

[10] F. Mu, C. Svensson, "Self-Tested Self-
Synchronization Circuit For Mesochronous
Clocking", IEEE Transactions on Circuits and
Systems-II Analog and Digital Signal Processing,
48(2), pp.129-140, 2001.

[11] A color version of this paper is under
http://www.ee.technion.ac.il/~ran � publications.

