

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Resistive GP-SIMD Processing-In-Memory 

AMIR MORAD, Technion

LEONID YAVITS, Technion

SHAHAR KVATINSKY, Technion

RAN GINOSAR, Technion

GP-SIMD, a novel hybrid general purpose SIMD architecture, addresses the challenge of data

synchronization by in-memory computing, through combining data storage and massive parallel processing.

In this paper, we explore a resistive implementation of the GP-SIMD architecture. In resistive GP-SIMD, a

novel resistive row and column addressable 4F2 crossbar is utilized, replacing the modified CMOS 190F2

SRAM storage previously proposed for GP-SIMD architecture. The use of the resistive crossbar allows

scaling the GP-SIMD from few millions to few hundred millions of processing units on a single silicon die.

The performance, power consumption and power efficiency of a resistive GP-SIMD are compared with the

CMOS version. We find that PiM architectures and specifically, GP-SIMD, benefit more than other many-

core architectures from using resistive memory. A framework for in-place arithmetic operation on a single

multi-valued resistive cell is explored, demonstrating a potential to become a building block for next

generation PiM architectures.

Categories and Subject Descriptors: C.1.2 Multiple Data Stream Architectures (Multiprocessors),

C.1.3 Other Architecture Styles

General Terms: Design, Performance, Energy

Additional Key Words and Phrases: GP-SIMD, SIMD, Processing In Memory, PIM, In-Memory Computing,

Memristor, Resistive RAM

ACM Reference Format:

TBD

 INTRODUCTION

GP-SIMD is a highly-parallel, processing-in-memory SIMD architecture. In this

paper, we explore a resistive-memory implementation of GP-SIMD (ReGP-SIMD),

which achieves significantly higher integration than the CMOS-based GP-SIMD. In

resistive GP-SIMD, a novel resistive row and column addressable 4F2 crossbar is

utilized, replacing the modified CMOS 190F2 SRAM storage previously proposed for

GP-SIMD architecture. We find that for the same silicon area, ReGP-SIMD integrates

about 25× more memory and PUs and achieves about 5× better performance, but

dissipates about 15 times more power. Thus, while higher density and performance are

enabled by resistive technology, power density is increased.

GP-SIMD [29] is a novel, hybrid general purpose SIMD computer architecture that

addresses the issue of data synchronization (the data transfer between the sequential

This research was funded in part by the Intel Collaborative Research Institute for Computational

Intelligence (ICRI-CI), the Viterbi Fellowship, and by Hasso-Plattner Institute (HPI).

Author’s addresses: Amir Morad (*), E-mail: amirm@campus.technion.ac.il; Leonid Yavits (*), E-mail:

yavits@campus.technion.ac.il; Shahar Kvatinsky (*), E-mail: shahar@ee.technion.ac.il; Ran Ginosar (*), E-

mail: ran@ee.technion.ac.il; (*) Authors are with the Department of Electrical Engineering, Technion-Israel

Institute of Technology, Haifa 3200003, Israel.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with credits permitted.

To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this

work in other works requires prior specific permission and/or a fee. Permissions may be requested from

Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-

0481, or permissions@acm.org.

© TBD

DOI:TBD

Page 1 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

mailto:amirm@campus.technion.ac.il
mailto:yavits@campus.technion.ac.il
mailto:shahar@ee.technion.ac.il
mailto:ran@ee.technion.ac.il

2 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

and parallel processors) by in-memory computing, through combining data storage and

massively parallel processing. Figure 1 details the architecture of the GP-SIMD

processor, comprising a sequential CPU, a shared memory with two-dimensional

access, instruction and data caches, a SIMD coprocessor, and a SIMD sequencer. The

SIMD coprocessor contains a large number of fine-grain processing units, each

comprising a single bit ALU (for performing bit-serial computations), single bit

function generator, and quad, single bit register file. The GP-SIMD processor is thus a

large memory with massively parallel processing capability. No data synchronization

between the sequential and parallel segments [44] is required since both the general

purpose sequential processor and SIMD co-processor access the very same memory

array. The execution time of a typical vector operation in GP-SIMD does not depend

on the vector size, thus allowing efficient parallel processing of very large vectors. The

GP-SIMD is shown to achieve better power efficiency than conventional parallel

accelerators [28][29]. In general, applications with low arithmetic intensity (the ratio

of arithmetic operations to memory access [17][44]), such as sparse linear algebra

kernels, are likely to benefit from GP-SIMD implementation.

Resistive RAM (ReRAM) is a non-volatile random-access memory that works by

changing the resistance across a dielectric solid-state material [1][11][18]. ReRAM is

shown to have key advantages over SRAM: (a) ReRAM memory cells are significantly

smaller than CMOS SRAM (4F2 vs. 190F2), facilitating very high memory densities; (b)

ReRAM is non-volatile, incurring near-zero leakage power; and (c) ReRAM cells may

be placed in metal layers above CMOS circuits, and consequently ReRAM memory

array may be placed above logic, incurring near-zero chip area. ReRAM consists of a

normally insulating dielectric material that can be made to conduct through a filament

or conduction path formed after the application of a sufficiently high voltage. Once the

filament is formed, it may be RESET (broken, resulting in high resistance state) or

SET (re-formed, resulting in lower resistance state) by an appropriately applied

voltage. Only when sufficient high-voltage current flows through the ReRAM cell in

one direction, the electrical resistance increases; it decreases when current flows in the

opposite direction. When the current stops, the cell retains its resistance. ReRAM

requires similar write energy but suffers from finite endurance, relative to CMOS

memories. Both SRAM and ReRAM memories have a similar architecture (row- and

bit-line structure), and similar operation modes.

This paper extends the GP-SIMD architecture [29]. The contributions of this paper

include:

 Improvement of shared memory array for GP-SIMD: (a) Motivating the

replacement of CMOS shared memory by NVM; (b) Arguing that ReRAM is the

most suitable NVM technology for GP-SIMD shared memory; (c) Arguing that GP-

SIMD PiM architecture, being mostly memory based, benefits more than other

many-core architectures from using resistive memory;

 Resistive GP-SIMD: (a) Exploiting the unique characteristics of ReRAM crossbar

to enable 2D symmetric access (that is, read/write access from both the rows and

the columns of the crossbar); (b) Replacing CMOS shared memory array (cell size

190F2) by a novel symmetric ReRAM memory array (cell size 4F2), enabling

hundreds of millions of Processing Units (PUs) on a single silicon die and

enhancing effective parallelism and performance; (c) Discovering that dynamic

power dissipation becomes the limiting factor of ReGP-SIMD integration, and (d)

Outlining efficient levels of integration according to power limitations ;

 Resistive RAM multi-valued, in-cell arithmetic: (a) Design and analysis of multi-

valued addition and subtraction in a ReRAM cell, and (b) Design and analysis of

Page 2 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 3

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

multivalued multiplication and division in resistive GP-SIMD (a multi-valued cell

may store more than a single bit in its memory).

The rest of this paper is organized as follows. Section 2 discusses the GP-SIMD

architecture. Section 3 provides a detailed description of the ReGP-SIMD resistive

memory array and compares it with CMOS GP-SIMD. Section 4 discusses the ReGP-

SIMD performance, power consumption and power efficiency as extracted from cycle

accurate simulations, and compares it to CMOS implementation. Section 5 concludes

this paper.

 THE GP-SIMD PROCESSOR

In this section, we briefly describe the microarchitecture of GP-SIMD and discuss

CMOS SRAM-like implementation of the shared memory array. A comprehensive

description of the GP-SIMD architecture and software model can be found in [29]. Code

examples can be found in [28].

 Top Level Architecture

Figure 1 shows the architecture of a GP-SIMD processor, comprising the sequential

CPU, shared memory array, L1 data cache, SIMD coprocessor, SIMD sequencer,

interconnection network and a reduction tree. The sequential processor schedules and

operates the SIMD processor via the sequencer. In a sense, the sequential processor is

the master controlling a slave SIMD co-processor. Any common sequential processor

may be used, be it a simple RISC or a complicated processor. At the very least, the

selected processor should execute normal sequential programs. The SIMD coprocessor

contains r fine-grain bit-serial Processing Units (PUs), where r is the number of rows

in the shared memory array. Each PU contains a single bit Full Adder (”+”), single bit

Function Generator (”Logic”) and a 4-bit register file, RA, RB, RC and RD, as depicted

in Figure 2. A single PU is allocated per row of the shared memory array, and

physically resides close to that row. The PUs are interconnected using an

interconnection network [29]. The set of all row registers of the same name constitute

a register slice. Note that the length of the memory row (e.g., 256 bits) may be longer

than the word-length of the sequential processor (e.g., 32 bits), so that each memory

row may contain several words.

Figure 1. GP-SIMD top level architecture:

Shared memory is accessed by rows from the PUs

and by columns from the sequential processor

 Figure 2. GP-SIMD Processing unit

Page 3 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

4 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

 Circuit Implementation

The GP-SIMD PU utilizes its memory row as its register file for storing variables

and temporaries. The width of the memory array is much higher than the word width

of the sequential processor (e.g., 256 distinct columns vs. 32-bit word). A typical GP-

SIMD memory array is depicted in Figure 3. To enable 2D access (word access by the

sequential processor and column access by the SIMD co-processor), two types of cells

are proposed. A shared-memory cell consisting of a 7-transistor CMOS SRAM bit is

used in the shared columns (Figure 4), and a SIMD-Only cell using a 5-transistor cell

is used in the SIMD-only columns (Figure 5).

Figure 3. GP-SIMD memory segmentation
into shared and SIMD-only cells

 Figure 4. Shared cell Figure 5. SIMD Only cell

The standard 6T CMOS SRAM bit cell (depicted by the blue-color drawings of

Figure 4) is amended by a pass-gate to enable column read/write access (depicted by

the red-color drawings). In the SIMD-only static bit cell (Figure 5), a 4T latch (blue) is

connected by a pass-gate (red) to enable column read/write access. The bit_line,

bit_line_not, word_line and associated pass-gates of Figure 4 are eliminated in Figure

5 as the sequential processor does not address these cells. When the width of the shared

memory array is sufficiently small (e.g., 256 columns), a single pass-gate transistor is

tied to the row_data. In wider arrays, a differential pair, namely, row_data and

row_data_not, and an additional pass-gate transistor may be required.

Reading and writing to the two dimensional memory array is performed as follows:

 By sequential processor: to read data from memory, the bit_line and bit_line-not

lines are pre-charged, the word_line is asserted, and the bit lines are sensed. To

write data to the memory, the bit_line, bit_line-not and the word_line are asserted.

 By SIMD co-processor: to read data from memory, the column_line is asserted, and

the row_data is pre-charged. To write data to the memory, the column_line and

the row_data are asserted.

 RESISTIVE GP-SIMD

The CMOS GP-SIMD is composed primarily (>96%) of leaky SRAM memory. We are

thus compelled to search for a memory technology offering zero leakage power and

much smaller footprint relative to the SRAM cell, as found in non-volatile memory

(NVM) technology (NVM needs no power to retain its value – thus neither refresh

power nor leakage power is consumed). In this section we outline alternative NVM

Page 4 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 5

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

memories, describe the novel ReRAM crossbar outlining its advantages for GP-SIMD,

and present the resistive implementation of the GP-SIMD’s shared memory array.

 Alternative Non-Volatile Memory technologies

One of the limitations of commercially available flash non-volatile memory is its low

endurance. Flash cells may withstand around 100,000 write cycles before the wear

begins to deteriorate the integrity of the storage [38]. Further, endurance drops with

scaling to smaller geometries, and modern multilevel 16nm NAND flash are limited to

~2000 write cycles. The size and power consumption of circuits such as charge pump

further limits flash scalability. As VLSI geometries get smaller [16], the yield and

reliability of flash cells decrease dramatically [32]. These limitations lead to the

development of alternative nonvolatile memory technologies, such as Ferroelectric

RAM (FeRAM), Magnetoresistive random access memory (MRAM), Spin-transfer

torque random access memory (STT-RAM) potentially replacing MRAM in CMOS

based designs, Phase-change memory (PRAM), Conductive-bridging RAM (CBRAM),

and Resistive random access memory (ReRAM).

 Resistive Memory (ReRAM)

ReRAM consists of a normally insulating dielectric material that can be made to

conduct through a filament or conduction path formed after the application of a

sufficiently high voltage. Once the filament is formed, it may be RESET (broken,

resulting in high resistance state) or SET (re-formed, resulting in lower resistance

state) by an appropriately applied voltage. Only when sufficient high-voltage current

flows through the ReRAM cell in one direction, the electrical resistance increases; it

decreases when current flows in the opposite direction. When the high-voltage current

stops, the cell retains its resistance. The resistance does not change during read

operation in which low voltage is utilized. Further promising features include low

operating voltage, small cell area, and fast write time. To further increase ReRAM

density, a “crossbar” structure is employed, as depicted in Figure 6. In the crossbar

arrays, ReRAM cells are sandwiched between N wordlines and M bitlines forming

N×M memory matrix, each having area as small as 4F2 (where F is the minimum size

feature of the silicon process). The ReRAM cells are very similar to “via” (small

openings in an insulating layer that allows a conductive connection between metal

layers). The Resistive Crossbar is usually placed in the higher metal layers, above the

CMOS logic and associated routing, limiting the impact on routing complexity. Since

a crossbar array permits a multilayered structure, its effective cell area may be further

reduced [1][11][18].

Figure 6. ReRAM cross-bar diagram

The resistance of ReRAM is changed by applying electrical current. The resistance

is bounded by a minimum resistance 𝑅𝐿𝑅𝑆 (low resistive state, logic ‘1’) and a maximum

Page 5 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

6 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

resistance 𝑅𝐻𝑅𝑆 (high resistive state, logic ‘0’). Write reliability is a serious concern in

ReRAM crossbar arrays: Voltage applied across a crossbar varies based on the location

of the cell as well as the data pattern stored in other ReRAM cells in the array, due to

wire resistance and sneak paths.

Sneak paths are undesired paths for current, parallel to the intended path. The

source of the sneak paths is the fact that the crossbar architecture is based on the

ReRAM cell as the only memory element, without gating. Figure 7 shows an array with

a simple voltage divider and its equivalent circuit. The figure shows the ideal case in

which the current flows from the source to the ground passing through only the desired

cell at the intersection between the activated column and row. Unfortunately this is

not the real case as shown in Figure 8. In these figures, the dots represent ReRAM

cells, the green lines show the desired path and the red ones show three possible sneak

paths (note, many other sneak paths exist). The current flows through many sneak

paths beside the desired one. These path act as an unknown parallel resistance to the

desired cell resistance as shown in Figure 8. What makes the sneak paths problem

harder to solve is the fact that the paths depend on the content of the memory. This is

due to the fact that the current will sneak with more intensity through the paths with

smaller resistance, which is memory content dependent.

Figure 7. Current flow (green) during read / write,

without ‘sneak path’

 Figure 8. Three possible current ‘sneak paths’ (red)

Write is performed in two steps. First, SET is used to write all 1’s along a row. Next,

RESET writes the 0’s in the remaining positions along the same row [31] (Figure 9).

Figure 9. SET-before-RESET
Write 1X1 followed by Write X0X (*)

 Figure 10. ReRAM having in-cell diode for sneak path
mitigation

(*) Writing is disabled for the column(s) marked with X.

Page 6 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 7

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Read operation is also affected by sneak current, especially when the selected cell of

a row is in high resistance state and the others are in low resistance state [5]. In order

to alleviate read disturbance, parallel read can be employed to read all the cells in the

same row. A per-cell diode [1][34] may be used to terminate read and write sneak paths,

as depicted in Figure 10. If diodes are utilized, the ReRAM is driven with sufficient

voltage V on write access, overriding the reverse biased diodes as well as the ReRAM

write threshold.

A conventional resistive crossbar (Figure 12a) utilizes a single ReRAM device as its

per-cell storage element. Access to the stored data is enabled by asserting a designated

word_line and reading or writing from/to the crossbar columns [7]. Such a crossbar

implementation may have a row driver for address select, column drivers for pre-

charging the bit_lines and column sensors for inferring the data during crossbar read

access.

 Motivation for using ReRAM over alternative NVM technologies

The resistive GP-SIMD employs a resistive shared memory array instead of the

CMOS memory of the original GP-SIMD design [29]. ReRAM is currently the most

promising among all non-charge-based memory technologies intended to replace

CMOS memory arrays, mainly due to its lowest footprint, CMOS compatibility,

scalability, high endurance and low energy. TABLE 1 highlights the advantages and

disadvantages of several leading NVM technologies: ReRAM, STT-MRAM and PCM

[23][36].

TABLE 1

Leading NVM Technologies

 ReRAM STT-MRAM PCM

Endurance High endurance (>1012)

Very high read/write

endurance (but <1016)

Moderate endurance (>107)

Low voltage

switching

Fast low voltage switching

(<1V): much faster than Flash

Fast low voltage switching

(<1V): much faster than Flash

Reasonably fast at low voltage

Read Non-destructive read Non-destructive read Non-destructive read

Maturity Reasonable maturity Reasonable maturity Reasonable maturity

Cell Area Small cell (4F2) Relatively large cell area

(>> 6F2).

Large cell (12-30F2) due to

heater circuitry

Process Scaling Scales well to smaller VLSI

geometries

Poor scalability of magnetic

torque to smaller VLSI

process geometries

Scales well to smaller VLSI

geometries

CMOS Compatible CMOS compatible (may be

placed above logic)

CMOS compatible Poor compatibility

Write power High write power (large

peripheral devices)

High write power (current

driven → large peripheral

devices)

Large write power because of

heating (but current scales

with cell dimensions)

Off-On resistance

ratio

High Small, ECC needed High

ReRAM is a symmetric bit cell that requires no special per-bit pass gate to control

access to its latch (unlike DRAM cell with one such transistor and SRAM cell with two).

Reading and writing are simply enabled by passing current through the ReRAM cell.

It is thus uniquely suited for GP-SIMD, since it enables access from either rows or

columns without additional control devices per cell. A resistive crossbar array may

thus facilitate row and column addressability.

Key CMOS SRAM, ReRAM and PU characteristics are contrasted in TABLE 2

[27][37][8][41][45][33][24]. ReRAM is CMOS compatible and hence the ReRAM

crossbar may be placed on top of ReGP-SIMD PU logic, offering additional space

savings. Further, ReRAM may be integrated in layers, reducing ReGP-SIMD storage

Page 7 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

8 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

cell to 4𝐹2/𝑘 footprint (where 𝑘 is the number of vertically integrated ReRAM layers

[1]).

TABLE 2

CMOS SRAM, ReRAM vs. PU

 CMOS SRAM ReRAM DRAM

(For reference)

Memory area, cell (F2) 190 4 6

Read latency, cell (ns) 0.1 0.25 0.3

Write latency, cell (ns) 0.1 0.25 0.2

Read energy, cell (fJ) 1 0.5(*) 5

Write energy, cell (fJ) 1 1(*) 5

PU area, cell (F2) 1900 -

PU energy, cell (fJ) 5 -

(*) Extrapolated read and write energy values, based on consistent progress in scaling ReRAM speed and

energy.

 A Novel Symmetric 2-D access to Resistive Shared Memory Array

The conventional array (Figure 12a) is designed for access to columns of one row at

a time. In the novel design of the two-dimensional symmetric access array (Figure 12b),

row and column sense amplifiers and drivers are allocated to both the sequential

processor and the SIMD. In a similar manner to [26][37], these circuits may be

disconnected by pass-gates, allowing interleaved access either by the sequential

processor or by the SIMD. Each cell consists of a single ReRAM device. The crossbar is

thus designed to enable area efficient access to either the columns of one row (by the

sequential processor) or to all rows of a single column (by the SIMD processor). In

ReGP-SIMD, sneak currents affect both the read and write operations as in a standard

ReRAM crossbar. To mitigate, a diode may be placed above ReRAM (hence consuming

no additional area).

The top level architecture of the resistive GP-SIMD (ReGP-SIMD) closely follows

the CMOS based GP-SIMD architecture of Figure 3, but (a) the storage element is

ReRAM based; and (b) the storage is placed above of the PUs to conserve real-estate

(Figure 11).

Figure 11. Shared Memory Array placement in CMOS (next to the PUs) and Resistive GP-SIMD (above the PUs)

Page 8 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 9

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Two modes of shared memory access are enabled. First, the sequential processor

can access a row (see Figure 12c). Second, the SIMD processor can access a complete

column, as in Figure 12d. While in the shared CMOS array (Figure 4) three transistors

are needed to enable both modes of access (in addition to the storage 4-transistor latch

itself), in ReRAM all that is needed is the storage node. The resistive storage element

may be accessed from either of its two terminals, thus enabling symmetric two-

dimensional access at much reduced area: 4F2, in contrast with 190F2 required for the

CMOS shared memory cell. Further, partitioning the memory array to Shared and

SIMD-only sections (as used in the CMOS GP-SIMD) is no longer required for area

savings.

(a) Resistive crossbar (b) ReGP-SIMD crossbar

(c) R/W access by sequential processor (d) R/W access by SIMD co-processor

Figure 12. Crossbar array. Red lines denote current flow. Red dots denote pass-gates. Yellow dots denote connected pass-
gates. Gray dots denote bias voltage for mitigating sneak paths.

Reading and writing to the memory crossbar array by the sequential processor and

the SIMD are interleaved. The shared memory array is clocked four times faster than

the sequential processor. Depending on the current sequential processor instruction

and SIMD microinstruction (namely, if there is access to the array), up to four

operations out of the following six possibilities may take place during a single access,

requiring either one read or two writes for each processor:

Sequential processor access (Figure 12c):

1. Read: SIMD’s row and column circuits are disconnected from the array. Sequential

processor’s column sensing circuits and row drivers are connected to the array. The

bit_lines are precharged and the appropriate row driver corresponding to the

sequential processors’ addressed row grounds its word_line. Current flows from

the bit_lines through all SET ReRAM devices connected to the grounded word_line.

The columns sensing circuits sense changes on the bit_line, and output the

corresponding bits to the sequential processor.

2. Write ones, SET: SIMD’s row and column circuits are disconnected from the array.

Sequential processor’s row drivers are connected to the array. The bit_lines

Page 9 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

10 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

designated to be SET are grounded, and the appropriate row driver corresponding

to the sequential processors’ addressed row asserts its word_line. Current flows

from the word_line through all designated ReRAM devices connected to the

asserted bit_line, and sets them to low resistance.

3. Write zeros, RESET: SIMD’s row and column circuits are disconnected from the

array. Sequential processor’s row drivers are connected to the array. The bit_lines

designated to be RESET are asserted, and the appropriate row driver

corresponding to the sequential processors’ addressed row grounds its word_line.

Current flows from the bit_lines through all designated ReRAM devices connected

to the grounded word_line, and resets them to high resistance.

SIMD co-processor access (Figure 12d):

4. Read: Sequential processor’s row and column circuits are disconnected from the

array. SIMD’s Row sensing circuits and column drivers are connected to the array.

The word_lines are precharged and the appropriate column driver corresponding

to the SIMD co-processors’ addressed column grounds its bit_line. Current flows

from the word_lines through all SET ReRAM devices connected to that column.

The rows sensing circuits sense changes on the word_lines, and outputs the

corresponding bits to the SIMD PUs.

5. Write ones, SET: Sequential processor’s row and column circuits are disconnected

from the array. The SIMD’s column drivers are connected to the array. The word-

lines designated to be SET are grounded, and the appropriate column driver

corresponding to the SIMD co-processors’ addressed column asserts its bit_line.

Current flows from the bit_line through all designated ReRAM devices connected

to the asserted bit_line, and sets them to low resistance.

6. Write zeros, RESET: Sequential processor’s row and column circuits are

disconnected from the array. The SIMD’s column drivers are connected to the array.

The word_lines designated to be RESET are asserted, and the appropriate column

driver corresponding to the SIMD co-processors’ addressed column grounds its

bit_line. Current flows from the word_lines through all designated ReRAM devices

connected to the grounded bit_line, and resets them to high resistance.

Reading and writing by the SIMD or by the sequential processor are not concurrent.

Thus, the SIMD sequencer may issue: (a) no access operation if the SIMD neither reads

nor writes to the array; (b) a single access operation if the SIMD reads from the array;

(c) two access operations if the SIMD writes to the array, and similarly for the

sequential processor. Hence, zero to four shared memory operations are executed per

a single clock cycle of the sequential processor (combining one SIMD memory operation

and one memory operation of the sequential processor). The shared memory array is

thus clocked with a frequency of four times the clock of the sequential and SIMD

processor. That is, four distinct shared memory operations may be executed in a single

sequential- or SIMD-processor cycle, and interleaving happens within that single clock

cycle. Note that the interleaved addressing enables the sequential processor and the

SIMD co-processor to read from and write to the shared memory without conflicts, as

accesses are separated into distinct operation.

A more advanced implementation may allow the sequential processor to access the

shared memory array on all four timeslots if the SIMD processor is not accessing it.

However, our simulation and comparative analysis does not assume such

implementation.

Page 10 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 11

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Utilizing the novel ReRAM crossbar reduces ReGP-SIMD storage cell to 4𝐹2/𝑘

footprint (where 𝑘 is the number of vertically integrated ReRAM layers [1]). As shown

in Section 4, with a single ReRAM layer, such level of integration allows placing 200M

(𝑘=1) 256-bit PU ReGP-SIMD on a single 200mm2 silicon die. To compare, the CMOS

GP-SIMD cell area is approximately 190𝐹2 [6], limiting the GP-SIMD to 8.2M PU in

the same silicon area. As detailed in Section 4, only the shared memory array scales

with ReRAM. The PU however is implemented in CMOS, and thus limits the

scalability of ReGP-SIMD. However, the architect may increase the number of bits per

row to 475 (matching PU width) without changing the characteristics of ReGP-SIMD.

The switching time of ReRAM may reach the range of a hundred picoseconds [8][39],

allowing memory access rates at frequencies of more than 1 GHz. The energy

consumption of the resistive cell during read is less than 1fJ per bit. Unfortunately,

the ReRAM write energy is in the range 1fJ per bit, and in addition to the energy

required by the PU CMOS logic [29], prohibits scaling ReGP-SIMD to 200M rows, as

shown in Section 4. However, write energy depends on the ReRAM material, and

fortunately research of efficient ReRAM materials is likely to result in lower write

energy consumption in the future. Further, resistive implementation of logic [21] may

result in a power- and area-efficient ReRAM PU.

 SIMULATIONS AND COMPARATIVE ANALYSIS

In this section, we evaluate power and performance of ReGP-SIMD and compare it

to CMOS GP-SIMD.

 Cycle Accurate Simulation, DMM

We use the previously reported GP-SIMD cycle-accurate simulator [29].

Simulations are performed on Intel® XEON™ C5549 processor with 32GB RAM, and

simulation times vary from few minutes to few hours depending on the size of the

matrix. The simulator employs the ReGP-SIMD performance and power figures

obtained by SPICE simulations. We use CMOS 22nm process with operating frequency

of 1GHz, and single precision floating point arithmetic. To evaluate ReRAM

characteristics, we use the TEAM model [20][22][43]. Access time to the shared

memory by the SIMD PU is significantly shorter than in CMOS GP-SIMD, due to the

elimination of long wires (all word bits are laid above the corresponding PU). Access

time for the sequential processor is the same in ReGP-SIMD as in the CMOS version;

the memory is partitioned for this purpose, as described in [29]. The CMOS SRAM and

ReRAM simulation parameters are outlined in TABLE 2.

Following [28] and [29], Dense Matrix Multiplication of a two √𝑁×√𝑁 matrices

(DMM) workload has been selected for our simulations, where 𝑁 is the data set size,

scaled for simplicity to the processor size (following the methodology suggested in [28]),

i.e., 𝑁 = 𝑛𝐺𝑃𝑆𝐼𝑀𝐷 . Note that simulations do not cover the cases where the data size

exceeds the size of the processor (requiring off-chip data synchronization). For √𝑁 ×

√𝑁 dense matrix multiplication (DMM), the sequential execution time is 𝑂(𝑁3 2⁄). The

GP-SIMD DMM algorithm utilizes 𝑁 PUs and yields parallel execution time of 𝑂(𝑁),

with √𝑁 data elements being broadcast every step [28]. The GP-SIMD simulator is

cycle based, recording the state of each register of each PU, and of the memory row

assigned to it. Each command (for example, floating point multiply) is broken down to

a series of fine-grain single bit PU operations. In a similar manner to SimpleScalar [4],

the simulator also keeps track of the registers, buses and memory cells that switch

during execution. With the switching activity and area power models of each baseline

Page 11 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

12 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

operation detailed in [29], the simulator tracks the total energy consumed during

workload execution.

We follow the assumptions detailed in [29] and in section 3, and simulate speedup

and power for growing datasets corresponding to the growing number of PUs and hence

growing total area. The die area as a function of the integrated number of PUs for the

CMOS and resistive designs are depicted in Figure 13(a). In all simulations, each PU

is allocated 256 memory bits. The matrix dimension √𝑁 is simply the square root of

the number of PUs. The area of both designs was limited to 250mm2. The simulated

performance as functions of the number of integrated PUs is depicted in Figure 13(b).

The power consumption and the power efficiency results are shown in Figure 13(c) and

(d), respectively. Performance and power in both versions depict power law

relationships to area and data set size (performance at an approximate exponent of 1/3,

and power having exponent slightly larger than 1). Power efficiency thus depicts a

power law relationship having an exponent of approximately -2/3.

Figure 13. Cycle accurate simulations. CMOS GP-SIMD vs. ReGP-SIMD: (a) Die area; (b) Performance (GFLOPs); (c)

Power (Watt); and (d) Power efficiency (GFLOPs/W).

4.1.1. GP-SIMD vs. ReGP-SIMD having identical PU count

At area of 196mm2, the CMOS GP-SIMD integrates 8.1M PUs and achieves

maximum DMM performance of 337 GFLOPS while consuming only 35.9W. The

 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09
 1

 10

 1e+02

 1e+03

Number of PUs

D
ie

 A
re

a
 (

m
m

2
)

(a) Die Area (mm2)

CMOS GP-SIMD

Resistive GP-SIMD

 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09
 10

 1e+02

 1e+03

 1e+04

Number of PUs

P
e

rf
o

rm
a

n
c

e
 (

G
F

L
O

P
s

)

(b) Performance (GFLOPs)

 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09
 0.1

 1

 10

 1e+02

 1e+03

Number of PUs

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
a

tt
)

(c) Power Consumption (Watt)

CMOS GP-SIMD

Resistive GP-SIMD

CMOS GP-SIMD

Resistive GP-SIMD

 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09
 1

 10

 1e+02

 1e+03

 1e+04

Number of PUs

P
o

w
e

r
E

ff
ic

ie
n

c
y

 (
G

F
L

O
P

s
/W

)

(d) Power Efficiency (GFLOPs/W)

CMOS GP-SIMD

Resistive GP-SIMD

Page 12 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 13

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Resistive GP-SIMD having the same number of PUs occupies only 8mm2 and achieves

the same DMM performance of 337 GFLOPS while consuming only 29.4W (TABLE 3).

TABLE 3

GP-SIMD vs. ReGP-SIMD having identical number of PUs, executing DMM

 Resistive

GP-SIMD

CMOS

GP-SIMD

Ratio

 (Resistive / CMOS)

Die Area (mm2) 8 196 0.04

Number of PUs (×106) 8.1 8.1 1

Matrix Dimension (√𝑁) 2844 2844 1

GFLOPS 337 337 1

Power (W) 29.4 35.9 0.8

Power Density (W/mm2) 3.67 0.18 20.1

Power Efficiency (GFLOPs/W) 11.5 9.4 1.2

Given the same number of PUs, the CMOS GP-SIMD occupies area 24.5 times

larger than the resistive version and achieves only about four-fifths of the power

efficiency. This is also evident in Figure 13. The significant area savings of ReGP-SIMD

may outweigh the additional cost of the resistive layer making ReGP-SIMD the

preferred solution for cost effective implementation.

4.1.2. Area Constrained ReGP-SIMD

At area of 200mm2, the CMOS GP-SIMD contains 8.2M PUs and achieves

maximum DMM performance of 340 GFLOPS while consuming only 36.6W (TABLE

4). Given the same area, the ReGP-SIMD would consume unrealistic power of ~830W.

At these figures, ReGP-SIMD achieves about 5 times the performance of the CMOS

version, but only about one-fifth of its power efficiency.

TABLE 4

GP-SIMD vs. ReGP-SIMD (constrained area 200mm2) executing DMM

 Resistive

GP-SIMD

CMOS

GP-SIMD

Ratio

 (Resistive / CMOS)

Die Area (mm2) 200 200 1

Number of PUs (×106) 202 8.3 24.5

Matrix Dimension (√𝑁) 14213 2873 4.9

GFLOPS 1564 340 4.6

Power (W) 830.3 36.6 22.7

Power Density (W/mm2) 4.15 0.18 22.7

Power Efficiency (GFLOPs/W) 1.9 9.3 0.2

4.1.3. Power Ratio Analysis

CMOS GP-SIMD and the ReGP-SIMD software models are identical, and for the

purpose of simulation, the very same code is executed on both, making the number of

read/write operations to the shared memory array identical. TABLE 4 states that while

the number of ReGP-SIMD PUs is 24.5× larger than the number of CMOS GP-SIMD for
the same silicon area, power dissipation of ReGP-SIMD is only 22.7× higher than that of

CMOS GP-SIMD. This effect is explained by observing DMM implementation on both

architectures. For large matrices, broadcast consumes the largest part of compute time.

Broadcast consists of many reads and a single write [28]. Since the energy for reading

Page 13 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

14 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

ReRAM cells is significantly lower than reading CMOS memory, power increases less

than the increase in the number of PUs.

4.1.4. Power Constrained ReGP-SIMD

To address the high power requirement of ReGP-SIMD, we consider a version

constrained to dissipating 150W in TABLE 5. It requires only 39mm2. A same area

CMOS version achieves only ~1/25 of its density and ~1/5 of its performance. Power

efficiency remains ~1:5 in favor of the CMOS GP-SIMD, but both versions exhibit

similar or better DMM power efficiency (23.6 and 4.8 GFLOPS/W) than NVidia

GTX480 GPU (5 GFLOPS/W according to [9] scaled to 22nm CMOS).

TABLE 5

ReGP-SIMD (constrained power 150W) and CMOS GP-SIMD (same area) executing DMM

 Resistive

GP-SIMD

CMOS

GP-SIMD

Ratio

 (Resistive / CMOS)

Die Area (mm2) 39 39 1

Number of PUs (×106) 39.4 1.6 24.5

Matrix Dimension (√𝑁) 6276 1268 4.9

GFLOPS 721 149 4.8

Power (W) 151.4 6.3 24

Power Density (W/mm2) 3.88 0.16 24

Power Efficiency (GFLOPs/W) 4.8 23.6 0.2

GTX480 Performance (GFLOPs/W) 5

4.1.5. Area and Power Constrained ReGP-SIMD

When both area and power constraints are applied, CMOS and resistive GP-SIMD

exhibit the relative ratios shown in TABLE 6 (the highlighted cells shows the limiting

factor of each architecture).

TABLE 6

ReGP-SIMD (constrained power 150W) and CMOS GP-SIMD (constrained area 200mm2) executing DMM

 Resistive

GP-SIMD

CMOS

GP-SIMD

Ratio

 (Resistive / CMOS)

Die Area (mm2) 39 200 0.2

Number of PUs (×106) 39.4 8.3 4.8

Matrix Dimension (√𝑁) 6276 2873 2.2

GFLOPS 721 340 2.1

Power (W) 151.4 36.6 4.1

Power Density (W/mm2) 3.88 0.18 21.2

Power Efficiency (GFLOPs/W) 4.8 9.3 0.5

 Cycle Accurate Simulation, SpMM

In the previous section, ReGP-SIMD and CMOS GP-SIMD were simulated using

the compute intensive Dense Matrix Multiplication (DMM) benchmark. In this section,

ReGP-SIMD and CMOS GP-SIMD are compared using a Sparse Matrix Multiplication

(SpMM) benchmark, leading to irregular read and write patterns. Our cycle accurate

simulation results are compared with those of nVidea K20 [35], Intel XEON PHI [35]

and the Associative Processor (AP) [42]. We followed the methodology outlined in [28]

Page 14 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 15

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

and simulated 1,000 floating-point square matrices with the number of nonzero

elements spanning from one hundred thousand to eight million, randomly selected

from the collection of sparse matrices from the University of Florida [12]. Figure 14(a),

(b) present the selected test-set.

As detailed in [28], the sparse N×M matrix multiplication algorithm has a

computational complexity of 𝑂(𝑁𝑁𝑁𝑍𝑀𝑁𝑁𝑍𝑙𝑜𝑔𝑀), where 𝑁𝑁𝑁𝑍 is the number of nonzero

rows of the multiplier matrix A and 𝑀𝑁𝑁𝑍 is the average number of nonzero elements

per row (equal to number of nonzero elements of the multiplier matrix A, denoted by

𝐴𝑁𝑁𝑍, divided by 𝑁𝑁𝑁𝑍), and the efficiency grows with the number of multiplier matrix’s

average nonzero elements per row, and with the number of multiplicand matrix’s

columns. Further, GP-SIMD performance depends on data word-length rather than on

data set size. If matrix elements are presented in a floating-point format, the word-

length is 32 bit (IEEE754 single precision). Data set size in SpMM typically equals the

number of nonzero elements in the sparse matrix.

Although the efficiency of the GP-SIMD SpMM algorithm [28] grows with the

number of columns of the multiplicand matrix, for fair comparison we limit our

analysis to multiplicand matrices of 16 columns, as used in [35]. Further, we assume

that both ReGP-SIMD and CMOS GP-SIMD integrate 8 million PUs. We consider test-

case sparse multiplier matrices having 1M columns or less and up to 8M nonzero

elements, and dense multiplicand matrices having 16 columns. Figure 14(c) presents

the sparse by dense matrix multiplication execution times for these matrices.

The spread in execution times depicted in Figure 14(c) stems from the sensitivity of

the GP-SIMD SpMM algorithm to the average number of non-zero elements per row.

This sensitivity is shared, although possibly to a lesser extent, by conventional SpMV

and SpMM implementations (on GPU or multi-core) [19][25]. Since the average of

nonzero elements per row in our test-set is somewhat capped (see Figure 14(b)), as the

number of nonzero elements grows, so does the average number of rows and columns

of matrices. The execution time of Broadcast command (see [28]) depends on both the

number of columns of matrix A and the number of rows. As the matrix gets larger

(large number of rows each having a small number of nonzero elements), the execution

time hinders the power efficiency of GP-SIMD. For two matrices with a similar number

of nonzero elements, the difference of two orders of magnitude in the average number

of nonzero elements per row results in a similar difference in the execution time.

The performance of the GP-SIMD SpMM algorithm as a function of the average

number of nonzero elements per row is presented in Figure 14(d). The figure

demonstrates a close to logarithmic dependency of the GP-SIMD SpMM algorithm

performance on the average number of nonzero elements per row. Hence, if the average

number of nonzero elements per row is small (which is consistently the case in the

University of Florida collection matrices), the effectiveness of the ReGP-SIMD and

CMOS GP-SIMD SpMM algorithm is limited. Also shown in Figure 14(d) are

performance data for AP and two commercial processors (Intel XEON-PHI and K20

[35]). The simulated power consumption of the GP-SIMD SpMM and AP (as well as

reported power of NVidia K20 [13]) is presented in Figure 14(e).

The ReGP-SIMD and GP-SIMD SpMM power efficiency is in the range of 0.1 to 100

GFLOPS/W (Figure 14(f)) with ReGP-SIMD taking the lead thanks to power efficient

resistive implementation. The power efficiency declines with the number of nonzero

elements (requiring higher power consumption). The SpMM/SpMV power efficiency of

advanced contemporary GPUs such as NVidia’s K20 and GTX660 is in the 0.1-0.5

GFLOPS/W range [13]. A wide variety of multicore processors such as quad-core AMD

Opteron 2214, quad-core Intel Xeon E5345, eight-core Sun UltraSparc T2+ T5140 and

Page 15 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

16 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

eight-SPE IBM QS20 Cell reportedly reach the SpMM power efficiency of up to 0.03

GFLOPS/W [40]. Several FPGA SpMV and SpMM implementation were proposed (for

example [28][10]), however these studies focused on optimization of performance or

energy-delay, and power dissipation figures were not reported. The ReGP-SIMD, GP-

SIMD and AP power efficiency advantage stem from in-memory computing (there are

no data transfers between processing units and memory hierarchies) and from low-

power design made possible by the very small size of each processing unit.

Figure 14. (a) University of Florida Sparse Matrix Collection (1000 matrices) matrix dimension vs. average number of

nonzero elements per row, (b) Histogram of the average number of nonzero elements per row, (c) Execution cycles vs.

number of nonzero elements, (d) Performance (GFLOPs) vs. number of nonzero elements, (e) Power consumption (Watt) vs.

average number of nonzero elements, (f) Power efficiency (GFLOPs/W) vs. average number of nonzero elements

 Additional Considerations

While the shared memory array benefits from ReRAM scalability, the PU however

is CMOS based and thus limits the scalability of ReGP-SIMD. A notable advantage of

ReGP-SIMD is the ability to place the resistive crossbar on top of the PU logic [24],

thus leading to material area savings. The PU consumes an equivalent area to 10

SRAM cells [29], each of 190F2. On the other hand, a row consisting of 256 resistive

0 50 100 150 200 250 300 350 400
 1

 1e+02

 1e+04

 1e+06

Average number of nonzero elements per row

M
a

tr
ix

 d
im

e
n

s
io

n
,
N

(a) Avg. nonzero elements per row vs. matrix dim.

0 50 100 150 200 250 300 350 400
 1

 10

 1e+02

 1e+03

Average number of nonzero elements per row

N
u

m
b

e
r

o
f
M

a
tr

ic
e

s

(b) Histogram of nonzero elements per row

 1e+04 1e+05 1e+06
 1e+05

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

Number of nonzero elements

E
x
e

c
u

ti
o

n
 c

y
c
le

s

(c) Exec. cycles vs. nonzero elements

GP-SIMD and ReGP-SIMD, exec. cycles

GP-SIMD and ReGP-SIMD, trend

 1e+04 1e+05 1e+06
 0.001

 0.01

 0.1

 1

 10

 1e+02

 1e+03

Number of nonzero elements

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

s
)

(d) Perf. vs. nonzero elements

GP-SIMD and ReGP-SIMD, GFLOPs

GP-SIMD and ReGP-SIMD, trend

Associative Processor

Intel XEON PHI

NVidia K20

 1e+04 1e+05 1e+06
 0.001

 0.1

 10

 1e+03

Number of nonzero elements

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

W
a

tt
)

(e) Power consumption vs. nonzero elements

GP-SIMD, Watt

GP-SIMD, trend

ReGP-SIMD, Watt

ReGP-SIMD, trend

Associative Processor

Intel XEON PHI

NVidia K20

 1e+04 1e+05 1e+06
 0.001

 0.01

 0.1

 1

 10

 1e+02

Number of nonzero elements

P
o

w
e

r
e

ff
ic

ie
n

c
y
 (

G
F

L
O

P
s
/W

)

(f) Power efficiency

GP-SIMD, GFLOPs/W

GP-SIMD, trend

ReGP-SIMD, GFLOPs/W

ReGP-SIMD, trend

Associative Processor

Intel XEON PHI

NVidia K20

Page 16 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 17

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

cells each of 4F2, consumes only 5.4 equivalent SRAM cell area. Thus, the total row

area consisting of both the PU and the resistive storage is only 10 SRAM cells. Due to

the near-zero leakage of resistive RAM cell, the number of resistive bits in a single row

could have been extended to 475 without having an impact on GP-SIMD overall area

and power consumption, as the majority of the ReGP-SIMD area would consists of PUs

with shared memory overlaid on top. In addition to saving area, access time by the PU

is significantly reduced because no long wires are needed. A hybrid CMOS-memristor

PU is possible [21] to further scale the ReGP-SIMD.

The benefit of placing ReRAM cells over the logic is much more pronounced in

processing-in-memory architectures than in other multicores. For instance, if CMOS

memory occupies 50% of the chip area in a multicore, replacing memory by resistive

cells laid on top the logic might cut chip area by two. In contrast, CMOS GP-SIMD

memory occupies more than 96% of chip area and converting to ReGP-SIMD (where

the entire memory area is eliminated) may result in area reduction by a factor of 25.

Another noticeable power advantage of ReGP-SIMD is its near-zero leakage power

of the crossbar resistive array, while static power consumption in GPUs or CMOS GP-

SIMD cannot be neglected [29]. If a way to reduce the write energy of ReRAM, and a

more efficient implementation of the PU logic are found, so that the ReGP-SIMD

performance is no longer limited by its power density, it can reach above 3.9 TFLOPs/s

while processing data sets of more than 200M elements in a 200𝑚𝑚2 die, as shown in

TABLE 4.

Another factor potentially limiting the use of ReGP-SIMD is the resistive memory

endurance, which is in the range of 1012 [30]. Given that during arithmetic operations

(cf. [29]), with write operation typically occurring once every third cycle (taking vector

add as an example, and considering only SIMD accesses to the array), the probability

of a single bit to be written is (1
256⁄) ∙ (1

3⁄) ≈ 1 ∙ 10−3 per cycle. At 1GHz, it limits the

endurance-driven MTBF of a ReGP-SIMD to ~1 ∙ 106 sec, less than two weeks.

However, recent studies predict that the endurance of resistive memories is likely to

grow to the 1014 − 1015 range [30][14], which may extend the endurance-driven MTBF

of a ReGP-SIMD to a number of years.

Lastly, we note that the GP-SIMD retains the entire data structure (two large dense

matrices, temporaries and program variables) on chip, and thus neither time nor power

are spent for data exchange with off-chip memory. Note further that a 200M rows GP-

SIMD array having 256 bits per row translate to 6.4GByte on-chip memory. However,

the architect may increase the number of bits per row to 475 (matching PU width)

without changing the characteristics of ReGP-SIMD. Additional layers may be used to

increase the overall ReGP-SIMD on-chip storage, further reducing off-chip

communication bandwidth (and hence power) in cases of very large work-load. For

example, a 200mm2 die may have 11.8 GByte (475 bits per row) on-chip storage, 23.6

GBytes with double ReRAM layer, and so on.

 FUTURE RESEARCH DIRECTION: RERAM MULTI-VALUED ARITHMETIC

Multi-valued resistive memory may become available in the future

[27][37][8][41][45][33]. Certain such devices may portray a linear range of operation:

the resistivity may be set to a value k by applying a certain fixed voltage for time kt0

(a ‘pulse’), where t0 is a constant time unit. Moreover, the device is additive: If a first

pulse lasting k1 time units is followed by a second pulse lasting k2 time units, the

resulting stored value is k1+k2 (as long as the result lies within the range of allowed

values for the multi-valued device). Reading a multi-valued cell requires converting

the voltage to a digital number, e.g. by means of an analog-to-digital converter at the

Page 17 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

18 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

periphery of the ReRAM array. Writing, on the other hand, calls for converting a digital

number into pulse duration.

Addition may be performed by passing a timed voltage pulse corresponding to the

first operand, to the resistive cell storing the second operand. The voltage is applied in

the direction that decreases the resistivity of the cell. Subtraction is performed

similarly, by applying the voltage in the opposite direction. To exemplify the

accumulation process, assume a resistive cell capable of storing four bits or 16 levels.

If the cell stores 9, and we wish to subtract 6, we subject the cell to a 6t0 voltage pulse

in the direction that increases the resistivity of the cell. At the end of the operation,

the cell contains 3. Since no carry operation is implemented, this is saturation

arithmetic (note that we assume power-of-2 multi-valued cells).

The single bit ReRAM cell dissipates about 1fJ when driven from RON to ROFF and

vice versa. Multi-valued arithmetic requires driving the cells from and to levels within

the ReRAM’s dynamic range limited by RON and ROFF. Thus, a single cell arithmetic

operation may dissipate up to 1fJ. However, the peripheral circuitry incorporates A/D

converter for reading out the contents of the multi-valued cell, taking larger area and

consuming more power. These parameters have been simulated and validated using

the TEAM model [20][22][43] and the SPICE simulator.

Assume N bit multivalued ReRAM Cell storing a 2’s complement binary number in

which the last (most significant) bit represents the overflow (“O”), and the second to

last bit represents sign (“S”). The addition and subtraction flow diagram is depicted in

Figure 15. Initially, the first operand (A) is stored in the ReRAM cell. The cell is then

subjected to a timed pulse corresponding to the second operand (B). The cell

accumulates both operands and retains the result in-place. The result is read back to

the PU, and subsequently overflow condition is tested as follows:

The PU retains the sign bit of the operands (OPA_SIGN, OPB_SIGN) and result

sign bit (RES_SIGN). Following arithmetic operation,

If (OPA_SIGN == OPB_SIGN == 0) && (RES_SIGN ==1)

//both operands are positive and the result is negative

Overflow detected

elseif (OPA_SIGN == OPB_SIGN == 1) && (RES_SIGN ==0)

//both operands are negative and the result is positive

Overflow detected

If(O==1)

 Reset “O” bit

The overflow detection protects from overflowing the cell’s dynamic range. If

overflow is found, saturation is applied followed by write-back. When the overflow (“O”

bit) becomes “1”, the ReRAM is driven with sufficient interval to reset it back to zero,

preserving the result that has not over-flown. Thus, fixed point m bit

addition/subtraction consumes, worst case, four cycles, regardless of the ReGP-SIMD

vector size. Note that we assume that it takes a single cycle to switch the resistive cell

from low to high resistivity (i.e., from the value 0 to N-1 in N bit multivalued cell).

Page 18 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 19

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Figure 15. Addition and Subtraction

take four cycles

Figure 16. Long word Addition and Subtraction;

each loop iteration takes six cycles.

A long word containing K bits (including the sign bit), where K>N-1, may be

partitioned into L=⌈K/(N-1)⌉ ReRAM cells. The long addition and subtraction flow

diagram is depicted in Figure 16. Initially, the first operand (A) is partitioned into l

ReRAM cells (the sign bit is allocated only in the most significant cell). Addition of the

first cell is performed in the same manner as above. If overflow is found, the overflow

bit is reset and carried to the next cell. First the carry is added to that cell, followed by

the second operand’s N-1 bits. The process repeats until all L ReRAM cells are

addressed. The last step is testing for saturation condition; if the last cell is saturated,

all previous L-1 cells are set to saturation. Thus, fixed point K bit vector addition,

where K>N-1, requires 6×⌈K/(N-1)⌉+L+5 ∈O(K/(N-1)) cycles, regardless of the ReGP-

SIMD vector size.

Figure 17. In-cell (m×m) Multiplication takes 1+5m cycles

Page 19 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

20 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fixed point single-cell multiplication and division in multi-valued ReGP-SIMD are

computed serially, performing a series of add-shift and subtract-shift vector operations

(see flow diagram in Figure 17). When multiplying A×B, and assuming the product

may be stored in a single ReRAM cell (that is, log2 𝐴 × 𝐵 < 𝑁 − 1), both operands are

fetched to the PU. If the ith bit of B is one, the operand A (left-shifted by i places) is

added to the accumulator which resides in the ReRAM. For each i, the loop takes five

cycles. Thus, fixed point m×m bit vector multiplication requires 1+5m∈O(m) cycles.

The above may be extended to long word operands following the flow-diagram of Figure

16. Cell reset is accomplished by reading the content of the multi-valued cell and

adding to it the negated 2’s complement content. The fixed point single-cell

multiplication may be extended to fixed point long word multiplication in a similar

manner to long word addition.

The potential energy and area savings of multi-valued ReRAM computation is a

promise worth investigating. In a standard 45nm CMOS process, a register file access

consume 6pJ (12pJ for read and write) while an 8bit integer addition consume only

0.03pJ [15]. The total 8bit load/add/store operation thus entails 12.03pJ. With an 8bit

multi-bit ReRAM cell, the energy for the same operation is expected to be less than 1fJ,

four orders of magnitude lower energy than typical CMOS. More so, the addition is

performed on a tiny 4F2 cell, with processing time similar to SRAM cell access time.

This ReRAM multi-valued arithmetic capability can potentially transform the

resistive crossbar to a massively parallel multi-cell processor grid, capable of executing

many calculations in parallel, in a small footprint. Further, multi-valued arithmetic

may significantly improve ReGP-SIMD power efficiency as the operations are

performed right on the cell, concurrently for the entire cell-column, rather than moving

information in bit-wise manner back and forth between the cell-column and the PUs.

 CONCLUSIONS

GP-SIMD architecture combines a general purpose sequential processor and a

massive parallel SIMD co-processor with a large shared memory array. Since the

shared memory is accessible by both processors, data is not transferred (synchronized)

back and forth between separate memories of the two processors. Unlike conventional

processors or SIMD accelerators, GP-SIMD’s core component (and by far, the largest

area-wise) is the shared memory array, thus it stands to benefit the most from a

reduced bit-cell architecture offered by a resistive crossbar.

This paper explores a resistive design of the GP-SIMD (ReGP-SIMD), which has

the potential to scale the GP-SIMD from a few millions of PUs to a few hundred

millions of PUs on a single silicon die. In resistive GP-SIMD, a novel resistive row and

column addressable 4F2 crossbar is utilized, replacing the modified CMOS 190F2

SRAM storage previously proposed for GP-SIMD architecture. We find that PiM

architectures and specifically, GP-SIMD, benefit more than other many-core

architectures from using resistive memory.

Our simulations show that although high power density and finite endurance of the

ReRAM and the CMOS PU limit the potential of ReGP-SIMD, it allows significantly

better scalability and performance as compared to a CMOS GP-SIMD as well as other

conventional SIMD accelerators. Future progress in ReRAM technologies is likely to

offer continuous scalability, improved power efficiency, and higher endurance for

ReRAM and thus further enhance ReGP-SIMD. A hybrid CMOS-memristor PUs are

possible to further scale the ReGP-SIMD. Additional notable advantage is the

placement of the PUs under the resistive shared memory crossbar leading to a

Page 20 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

Resistive GP-SIMD Processing-in-Memory 21

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

significant area savings over the CMOS GP-SIMD. Finally, we noted that the large

ReGP-SIMD on-chip memory helps to reduce the latency and power consumption of

addressing an off-chip memory.

A conceptual multi-valued arithmetic in a single resistive storage device is explored.

Such a device can potentially transform the resistive crossbar to massively parallel

multi-cell processor grid, capable of executing a large amount of calculations in parallel,

in a small die. Future research is needed to optimize such devices and to devise PiM

architectures that realize and extend these density and performance potentials.

ACKNOWLEDGMENT

This research was funded in part by the Viterbi Fellowship and by Hasso-Plattner

Institute (HPI).

REFERENCES

[1] Alibart F., et al. “Hybrid CMOS/nanodevice circuits for high throughput pattern matching applications,”

IEEE Conference on Adaptive Hardware and Systems, 2011

[2] Alibart F., et al. “High precision tuning of state for memristive de-vices by adaptable variation-tolerant

algorithm.” Nanotechnology 23.7 (2012): 075201

[3] Banerjee K., et al., “A self-consistent junction temperature estimation methodology for nanometer scale

ICs with implications for performance and thermal management,” IEEE IEDM, 2003, pp. 887-890.

[4] Burger D., T. Austin. “The SimpleScalar tool set, version 2.0,” ACM SIGARCH Computer Architecture

News 25.3 (1997): 13-25.

[5] Cassuto, S., et al., “Sneak-Path Constraints in Memristor Crossbar Arrays,” Proceedings of the IEEE International

Symposium on Information Theory, pp. 156-160, July 2013.

[6] Chang, M. T,, et al. “Technology comparison for large last-level caches (L 3 Cs): Low-leakage SRAM, low write-

energy STT-RAM, and refresh-optimized eDRAM.” High Performance Computer Architecture (HPCA2013), 2013

IEEE 19th International Symposium on. IEEE, 2013.

[7] Chen Y., et al., “An Access-Transistor-Free (0T/1R) Non-Volatile Resistance Random Access Memory

(RRAM) Using a Novel Threshold Switching, Self-Rectifying Chalcogenide Device,” IEEE IEDM, pp.

37.4.1-37.4.4, 2003.

[8] Chang M.-F., et al., “A 3T1R Non-volatile TCAM Using MLC ReRAM with Sub-1ns Search Time,” IEEE

International Solid-State Circuits Conference (ISSCC) Dig. Tech. Feb. 2015

[9] Chung E., et al. “Single-chip heterogeneous computing: Does the future include custom logic, FPGAs,

and GPGPUs?” 43rd Annual IEEE/ACM International Symposium on Microarchitecture, 2010.

[10] Colin L., et al., “Design space exploration for sparse matrix‐matrix multiplication on FPGAs.”

International Journal of Circuit Theory and Applications 41.2 (2013): 205-219.

[11] Cong Xu., et al., “Design Implications of Memristor-Based RRAM Cross-Point Structures,” DATE, pp.

1-6, 2011.

[12] Davis T., et al., “The University of Florida sparse matrix collection,” ACM Transactions on

Mathematical Software (TOMS), 38, no. 1 (2011): 1.

[13] Dorrance R., et al., “A scalable sparse matrix-vector multiplication kernel for energy-efficient sparse-

BLAS on FPGAs”, 2014 ACM/SIGDA international symposium on Field-programmable gate arrays.

[14] Eshraghian K., et al. “Memristor MOS content addressable memory (MCAM): Hybrid architecture for

future high performance search engines”, IEEE Transactions on VLSI Systems, 19.8 (, 2011): 1407-1417.

[15] Horowitz, M., “1.1 Computing's energy problem (and what we can do about it).” Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2014 IEEE International. IEEE, 2014.

[16] ITRS Roadmap (http://www.itri.net).

[17] Kamil S., et al., “An Auto-Tuning Framework for Parallel Multicore Stencil Computations,” IEEE

International Symposium on Parallel & Distributed Processing 2010, pages 1-12.

[18] Kawahara A., et al., “An 8Mb Multi-Layered Cross-Point ReRAM Macro With 443MB/s Write

Throughput,” IEEE Journal of Solid-State Circuits, Vol. 48, No. 1, January 2013.

[19] Kurzak J., et al., “Scientific Computing with Multicore and Accelerators”, CRC Press, Inc., 2010.

[20] Kvatinsky S., et al. "Models of Memristors for SPICE Simulations," Proceedings of the IEEE Convention

of Electrical and Electronics Engineers in Israel, pp. 1-5, November 2012.

[21] Kvatinsky S., et al. “MRL - Memristor Ratioed Logic,” Cellular Nanoscale Networks and Their

Applications (CNNA), 2012 13th International Workshop on, vol., no., pp.1,6, 29-31 Aug. 2012.

[22] Kvatinsky S., et al. “TEAM: threshold adaptive memristor model”, IEEE Transactions on Circuits and

Systems I, 2013.

[23] Lauwereins R., “New Memory Technologies and their Impact on Computer Architectures.” HiPeac’15

Page 21 of 22 Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

22 A. Morad et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

keynote, 2015.

[24] Liu T-Y., et al., "A 130.7 mm2 2-Layer 32 Gb ReRAM Memory Device in 24 nm Technology," Proceedings

of the IEEE International Solid-State Circuits Conference, pp. 210-211, February 2013.

[25] Liu X., et al., "Efficient sparse matrix-vector multiplication on x86-based many-core processors”,

International conference on supercomputing, ACM, 2013.

[26] Meng-Fan C., et. al., “A 0.5V 4Mb logic-process compatible embedded resistive RAM (ReRAM) in 65nm

CMOS using low-voltage current-mode sensing scheme with 45ns random read time,” Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International pp.434,436, 19-23

Feb. 2012.

[27] Ming-Chi W., et. al., “Low-Power and Highly Reliable Multilevel Operation in ZrO2 1T1R RRAM,”

Electron Device Letters, IEEE, vol.32, no.8, pp.1026, 1028, Aug. 2011.

[28] Morad A., et. al., “Efficient Dense And Sparse Matrix Multiplication On GP-SIMD.” Power and Timing

Modeling, Optimization and Simulation (PATMOS), Sept. 2014.

[29] Morad A., et. al., “GP-SIMD Processing-in-Memory.” ACM Transactions on Architecture and Code

Optimization (TACO), Dec. 2014.

[30] Nickel K., “Memristor Materials Engineering: From Flash Replacement Towards a Universal Memory,”

Proceedings of the IEEE International Electron Devices Meeting, December 2011.

[31] Niu D., et al., “Design Trade-Offs for High Density Cross-Point Resistive Memory,” ISLPED, 2012, pp.

209-214.

[32] Ou E., et. al., “Array Architecture for a Nonvolatile 3-Dimensional Cross-Point Resistance-Change

Memory,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2158-2170, Sep. 2011.

[33] Patel, R., et al., “Arithmetic encoding for memristive multi-bit storage,” VLSI and System-on-Chip

(VLSI-SoC), 2012 IEEE/IFIP 20th International Conference on, vol., no., pp.99,104, 7-10 Oct. 2012.

[34] Patel R., et al., “Multistate Register Based on Resistive RAM”, IEEE Transactions on VLSI, 2014.

[35] Saule E., et al., “Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi.”

arXiv preprint arXiv:1302.1078 (2013).

[36] Seungbum H., et al., “Emerging Non-Volatile Memories”. Springer, 2014.

[37] Shyh-Shyuan S., et. al., “A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance

write scheme,” VLSI Circuits, 2009 Symposium on , vol., no., pp.82,83, 16-18 June 2009.

[38] Thatcher J., et al., “NAND Flash Solid State Storage for the Enterprise, An in-depth Look at Reliability,”

Solid State Storage Initiative (SSSI) of the Storage Network Industry Association (SNIA), April 2009.

[39] Torrezan A., et al., “Sub-nanosecond switching of a tantalum oxide memristor.” Nanotechnology 22.48

(2011): 485203.

[40] Williams S., et al., “Optimization of sparse matrix–vector multiplication on emerging multicore

platforms.” Parallel Computing 35, no. 3 (2009): 178-194.

[41] Wong, H.-S.P., et al., “Metal–Oxide RRAM,” Proceedings of the IEEE, vol.100, no.6, pp.1951,1970, June

2012.

[42] Yavits L., et al., “Computer Architecture with Associative Processor Replacing Last Level Cache and

SIMD Accelerator,” IEEE Trans. On Computers, 2014

[43] Yavits L., et al., “Resistive Associative Processor”, Computer Architecture Letters, 2014.

[44] Yavits L., et al., “The effect of communication and synchronization on Amdahl’s law in multicore

systems”, Parallel Computing Journal, 2014.

[45] Zangeneh, M., et al., “Design and Optimization of Nonvolatile Multibit 1T1R Resistive RAM,” Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.22, no.8, pp.1815,1828, Aug. 2014.

[46] Zhuo L., et al., “Sparse matrix-vector multiplication on FPGAs.” Proceedings of the 2005 ACM/SIGDA

13th international symposium on Field-programmable gate arrays, pp. 63-74. ACM, 2005.

Page 22 of 22Transactions on Architecture and Code Optimization

https://mc.manuscriptcentral.com/taco

