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Architectures for the Post-Moore Era

A Resistive CAM 
Processing-in-Storage 
Architecture for DNA 
Sequence Alignment

A novel processing-in-storage (PRinS) architecture based 
on Resistive CAM (ReCAM) is described and proposed for 
Smith-Waterman (S-W) sequence alignment. The ReCAM PRinS 
massively parallel compare operation finds matching base pairs in a 
fixed number of cycles, regardless of sequence length. The ReCAM 
PRinS S-W algorithm is simulated and compared to FPGA, Xeon 
Phi, and GPU-based implementations, showing at least 4.7 times 
higher throughput and at least 15 times lower power dissipation.

W
ith the approaching end of Moore’s law, academia and industry have an 
increased interest in non–von Neumann computing paradigms. One such 
example is content-addressable associative processing.1 CMOS-based con-
tent addressable memories (CAMs) require large bit-cells, limiting chip 

capacity and forcing most data-intensive applications to employ less functional RAM. Novel 
resistive materials dissipate little heat and allow for 3D stacking. Combined with CMOS, 
resistive materials can be used in a CAM bit-cell, resulting in a small cell area, low leakage 
power, and increased overall chip area efficiency.

This article presents a novel resistive CAM-based storage system architecture with a 
processing-in-storage (PRinS) computing paradigm. The system, called Resistive CAM or 
ReCAM, is an in-storage accelerator that may scale up to hundreds of millions of process-
ing units (PUs) spread across multiple silicon dies, each containing several million PUs. In 
addition, the system performs the computations in situ, resulting in increased performance 
and reduced energy consumption on massively parallel workloads.

The first part of this article presents ReCAM’s PRinS system architecture and describes 
its main components. The second part demonstrates ReCAM’s PRinS implementation of 
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a key algorithm in bioinformatics, the Smith- 
Waterman (S-W) DNA local sequence align-
ment. We also present simulation results and 
compare the performance of ReCAM PRinS 
with four state-of-the-art large-scale accelerator 
systems. We show that an in-storage imple-
mentation of S-W on ReCAM can achieve on 
average 4.7 times higher throughput while dis-
sipating 15 times lower power compared with 
a 384-GPU implementation, the largest S-W 
implementation found in the literature.

ReCAM-Based  
Processing-in-Storage
Resistive memories store information by mod-
ulating the resistance of nanoscale storage ele-
ments. They are nonvolatile and free of leakage 
power, and they emerge as long-term potential 
alternatives to charge-based memories, includ-
ing NAND flash. The metal-oxide resistive 
RAM (ReRAM), employing one resistive device 
and possibly also one transistor (1R1T) per bit-
cell, is considered a potential technology to 
replace next-generation nonvolatile memories. 

Its main features are high reliability and fast 
access speed. Researchers have developed a test-
chip of a 32-Gbyte device with two ReRAM-
based memory layers and a CMOS logic layer 
underneath,2 demonstrating design techniques 
to achieve a high-density functional chip.

ReCAM Crossbar Array
While ReRAM may employ one transistor 
and one memristor (1T1R) cells, ReCAM uses 
2T2R cells, following work by Tohru Miwa 
and colleagues3 and Shoun Matsunaga and 
colleagues.4 Figure 1 shows the resistive CAM 
crossbar. A bitcell, shown in Figure 1a, com-
prises two transistors and two resistive elements 
(2T2R). The KEY register contains a data word 
to be written or compared against. The MASK 
register defines the active columns for write 
and read operations, enabling bit selectivity. 
The TAG register (see Figure 1b) marks the 
rows that are matched by the compare opera-
tion and may be affected by a parallel write. The 
TAG register enables the chaining of multiple 
ReCAM integrated circuits (ICs).
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Figure 1. A single resistive CAM (ReCAM) crossbar IC. (a) Two-transistor, two-resistor (2T2R) ReCAM 
bitcell. (b) TAG logic.
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In a conventional CAM, a compare oper-
ation is typically followed by a read of the 
matched data word. When in-storage process-
ing involves arithmetic operations, a compare 
is usually followed by a parallel write into the 
unmasked bits of all tagged rows, and addi-
tional capabilities, such as read and reduction 
operations, are included.5

Any computational expression can be effi-
ciently implemented in ReCAM storage using 
line-by-line execution of the truth table of the 
expression.5 Arithmetic operations are typically 
performed bit-serially. Table 1 lists the oper-
ations used in S-W implementation and the 
number of cycles required per each one. Shift-
ing down a consecutive block of rows by one 
row position requires three cycles per bit. First, 
“compare-to-1” copies the source bit-column 
of all rows into the TAG. Second, “shift” moves 
the TAG vector down by setting the shift-select 
line (see Figure 1c). Third, “write-1” copies the 
shifted TAG to the same bit-column. Shifting 
32-bit numbers thus requires 96 cycles. Addi-
tion (in-place or not) is performed in a bit-serial 
manner using a truth table approach5 (32 bits 
times 8 truth-table rows times 2 for compare 
and write equals 512 cycles). “Row-wise max-
imum” compares in parallel two 32-bit num-
bers in each row. “Max scalar” tags all rows 
that contain the maximal value in the selected 
element. Additional operations, such as parallel 
and reduction arithmetic, may be required for 
other algorithms.

ReCAM PRinS System Architecture
Conceptually, the ReCAM comprises hundreds 
of millions of rows, each serving as a compu-
tational unit. The entire array may be divided 
into multiple smaller ICs (due to power per 
die restrictions; see Figure 2a), which use the 
same MASK and KEY. A row is fully contained 
within an IC. All ICs are daisy chained for shift 
and max scalar operations. Therefore, in prac-
tice, operations listed in Table 1 take several 
more cycles to enable inter-IC shift operations.

The ReCAM processing-in-storage system 
uses a microcontroller (see Figure 2b), similar 
to work by Qing Gao.6 It issues instructions, 
sets the key and mask registers, handles control 
sequences, and executes read requests. In addi-
tion, the microcontroller holds the associative 
instructions buffer, containing the truth tables 

Table 1. Operations used in Smith-
Waterman (S-W) score calculation. 
(“DNA base-pair match” operates on 
2 bits; all other rows of data operate 
on 32 bits.)

Instruction Cycles

Shift down one row 96

B ← A + B 256

C ← A + B 512

Row-wise maximum (A, B) 64

Max scalar (A) 64

DNA base-pair match 10

Register file

Instruction memory

(b) (a)

ALU

Operation truth-tables buffer

8X2 Add

Lookup
table

8X2 Sub

Lookup
table

4X2 Max

Lookup
table

4X1 AND

Lookup
table

2X1 NOT

Lookup
table

4X1 NAND

Lookup
table

4X1 XOR

Lookup
table

4X1 NOR

Lookup
table

Figure 2. ReCAM-based storage system. (a) Multiple separate ReCAM ICs 
connected by a reduction network. (b) Microcontroller.
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for associative instructions. Because instruc-
tions are performed bit-serially, these tables are 
typically small, as Figure 2b shows. Part of the 
associative instructions buffer is user-program-
mable with custom instructions, such as the 
match operation in Table 1.

ReCAM PRinS Smith-Waterman 
Implementation
This section presents the scoring step of the 
S-W dynamic programming algorithm. It then 
explains how to exploit the inherent parallelism 
of S-W and details the algorithm implementa-
tion on ReCAM.

Smith-Waterman Algorithm
S-W identifies the optimal local alignment of 
two sequences by computing a 2D scoring 
matrix, H.7 Each Hi,j element is calculated 
according to Equation (3). σ(ai, bi) is the match 
score between the base pairs in row i (ith ele-
ment of sequence A) and column j (jth element 
of sequence B). Matching base pairs score pos-
itively (for example, 12), whereas mismatch-
ing results in a negative score (for example, 
–1). The optimal alignment score between two 
sequences is the highest score in the matrix H.

{ }= − −E E G H Gmax (i); (ii)i j i j ext i j first, , -1 , -1

� (1)

{ }= − −F F G H Gmax (i); (ii)i j i j ext i j first, -1, -1,

� (2)
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The alignment may contain gaps in both 
sequences that are penalized in the score cal-
culation (by negative scores). According to the 
affine gap model,8 opening a gap is harder than 
extending it; therefore, the penalty for open-
ing a gap is larger. The affine penalty scheme is 
calculated with two additional matrices, E and 
F (see Equations 1 and 2). Gfirst and Gext are 

the penalties for starting and extending a gap, 
respectively. The matrices E, F, and H are ini-
tialized with E0,j 5 Ei,0 5 F0,j 5 Fi,0 5 H0,j 5 
Hi,0 5 0 for all i and j.

Filling the scoring matrix H is the compu-
tationally intensive part of S-W. In a sequential 
implementation of the algorithm, cell filling is 
performed in either row- or column-wise order. 
A parallel implementation allows all indepen-
dent cells to be computed in the same iteration. 
Such cells reside on the same antidiagonal. The 
matrix is filled along the main diagonal, shown 
in Figure 3.

The sequential time complexity is O(nm), 
in which n and m are the respective lengths of 
the sequences. Parallel time complexity on p 
parallel processing units is O(nm⁄p). In ReCAM, 
the processing unit is a memory row. Since 
ReCAM may comprise hundreds of millions of 
rows, unlike GPU or FPGA implementations, 
p could be larger than max{n, m}, even for very 
large n and m. Hence, ReCAM can achieve lin-
ear time complexity of O(max{n, m}).

Smith-Waterman Algorithm  
in ReCAM PRinS
In this work, we focus on finding the maximal 
alignment score. Therefore, storing the entire 
matrix in memory is not needed. This is in con-
trast to the full algorithm, which also contains 
the traceback part for finding the alignment.7
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Figure 3. Parallel S-W scoring snapshot of 
matrix H. Thick borders separate ReCAM 
implementation to three logical sections. The 
grayed-out cell scores have already been 
computed. The three plain-colored antidiagonals 
are stored in ReCAM. The green and red 
antidiagonals are used to compute the score of 
the blue antidiagonal. White-colored cell scores 
are yet to be computed. The cell marked with “X” 
contains the global maximum score.
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Four antidiagonals are required to com-
pute a new antidiagonal of H: two of H (see 
Equations 1–3 and the green and red parts of 
Figure 3), one of E (see Equation 1), and one of 
F (see Equation 2). Thus, five matrix antidiago-
nals are stored in the ReCAM in each iteration 
(E, F, AD[0], AD[1], and AD[2] in Figures 3 
and 4). A tmp field stores partial results. The 
overall space complexity required for executing 
the algorithm is therefore O(min{n, m}).

Each of the five antidiagonals is mapped 
onto a 32-bit column in the ReCAM. Every 
ReCAM row retains one element of the vectors 
seqA, SeqB, E, F, AD[0], AD[1], AD[2], and 
tmp. The first two numbers are the 2-bit ele-
ments of sequences A and B, respectively.

S-W algorithm implementation on 
ReCAM can be divided into three logical sec-
tions. The first section, marked 1 in Figure 3, 
starts at the top-left cell and covers a triangle 
with each edge of length min{m, n} cells. In it, 
the most recently scored antidiagonal is longer 
by one cell than the previous one. The third 
section (marked 3 in Figure 3) is of a similar 
shape and the same dimensions, ending at the 
bottom-right cell. In it, every new scored antid-
iagonal is one cell shorter than the previous 
one. The second section (marked 2 in Figure 3) 
is a parallelogram between the first and third 
sections. In it, all antidiagonals are of the same 
length.

Figure 5 presents the pseudocode of the 
S-W score finding on ReCAM. Three ReCAM 
columns are required to store last two scored 
antidiagonals of H and the presently computed 
one, notated as AD[2]–AD[0] in code. During 
execution, these columns are cyclically buff-
ered; the oldest scores are replaced by the new 
ones (see line 4 in Figure 5). Three additional 
32-bit columns are used to store antidiagonals 
of E, F, and tmp.

Figure 4 shows a ReCAM crossbar snap-
shot at the beginning (Figure 4a) and end 
(Figure 4b) of a single iteration of Figure 5. At 
line 5, seqB is shifted one ReCAM row down 
in order for all to-be-matched base pairs to 
reside in the same ReCAM rows (second col-
umn from the left in Figure 4). AD[left_AD] 
is also shifted one row down for the match-
ing cells to be aligned (see line 6 in Figure 5, 
and AD[0] in Figure 4). After calculating the 
matching score (line 7), AD[left_AD] is no 
longer required, and is therefore used to store 
temporary results. Next, the max between 
the match score and zero is calculated (see 
line 8). Note that (ii) in Equations 1 and 2) 
belongs to the same antidiagonal; therefore, it 
is enough to calculate (ii) once for both E and 
F (see line 9). Lines 10 to 16 compute Equa-
tions 1 to 3. In line 15, after E is calculated, 
its columns are shifted one row down to have 
the values of E aligned with the appropriate 
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Figure 4. Organization of data in the ReCAM crossbar array at the (a) beginning and (b) end of a single iteration of Figure 5. 
The contents of AD[2] are being replaced with the new result. Bottom rows in a crossbar IC are daisy-chained to the next IC in 
a shift instruction.
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ones in AD[right_AD]. In sections 1 and 2 of 
Figure  3, the down-shifted columns require 
zero-padding of the top-most ReCAM row 
(not shown in Figure 5). At the end (line 17), 
the global max is updated with the maximal 
H cell score. After a specific base pair of seqB 
has been aligned with all seqA base pairs, it is 
cyclically shifted to its original position (not 
shown in the figure).

The total number of iterations is the 
sum of lengths of the two sequences. Each 
iteration performs 17 instructions. The num-
ber of ReCAM rows affected by an instruc-
tion is marked by [*]. That number increases 
(decreases) in section 1 (3) and remains con-
stant in section 2 (the minimum of the lengths 
of the two sequences).

At the beginning of execution (the first cell 
of section 1), only the topmost ReCAM row 
is active. Each subsequent iteration activates 
an additional row until reaching min{m, n} 
active rows in an iteration. During section 2, 
the number of active rows remains constant. 
During section 3, the number of active rows 
decreases, starting with the topmost row to be 
inactive and subtracting one active row in each 
iteration. The average number of active rows is 
(n 3 m)/(n 1 m).

Simulation
The S-W algorithm is simulated on ReCAM 
using the cycle-accurate simulator introduced 
in our previous work,5 employing ReCAM per-
formance and power figures obtained by Spice 

SmithWatermanScore(A, n, B, m) {

1	 init (tmp, AD[2…0][*], F[*], E[*], seqA[*], seqB[*]) ← (0, …, 0, A, 0)

2	 max_score ← 0	 //scalar to hold the maximal cell value

3	 for i50 to n1m-1 do {

4		  right_AD ← i mod 3; middle_AD ← (i–1) mod 3; left_AD ← (i–2) mod 3

5		  seqB[*] ← B[i…1]	 // Prepare subsequence B for next iteration

6		  shift AD[left_AD][*] 1 row down

7		�  AD[right_AD][*]← AD[left_AD][*] 1 match(seqA[*], seqB[*])	 //(i)in Eq. (3)

		�  //AD[left_AD] is not needed anymore. Will be used as a temp variable

8		  AD[right_AD] ← max{AD[right_AD][*], 0} 		  // (iv) in (3)

9		  AD[left_AD][*] ← AD[middle_AD][*] – Gfirst 		  // (ii) in (1)&(2)

10		  tmp ← F[*] – Gext

11		  F[*] ← max{AD[left_AD][*], temp}		  // (i) in (2)

12		  AD[right_AD][*] ← max{AD[right_AD][*], F[*]} 	 // (ii) in (3)

13		  temp ← E[*] – Gext

14		  E[*] ← max{AD[left_AD][*], tmp}		  // (i) in (1)

15		  shift E[*] 1 row down

16		  AD[right_AD][*] ← max{AD[right_AD][*], E[*]} 	 // (iii) in (3)

17		�  max_score ← max{maxScalar(AD[right_AD][*]), max_score }	 //scalar� inst.

	 }

Figure 5. Pseudocode of the S-W algorithm on ReCAM.
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simulations. The simulated ReCAM parame-
ters are listed in Table 2. The power figure was 
taken from our earlier work.5

The simulation employs sequence data 
retrieved from the National Center for Bio-
technology Information (NCBI), comparing 
human (GRCh37) and chimpanzee (panTro4) 
homologous chromosomes, similar to work 
by Edans Flavius de Oliveira Sandes and col-
leagues.9 The CUPS (cell updates per second) 
metric is used to measure S-W performance. 
Results are compared to other works in Table 
3. A multi-GPU implementation9 reached 
11.1 TCUPS on a cluster of 128 computing 
nodes with a total of 384 Tesla M2090 GPUs. 
An FPGA implementation of S-W reaches 
6.0 TCUPS on the RIVYERA platform10 
having 128 Xilinx Spartan-6 LX150 FPGAs. 
A four-Xeon-Phi implementation achieves 
0.23 TCUPS.11 On ReCAM, we demon-
strate 53 TCUPS, computing a total of 57.2 
3 1012 scores. The table also shows computed 
GCUPS/W ratios; ReCAM is close to twice 
better than the FPGA solution and 80 times 
better than the GPU system.

The simulated ReCAM PRinS power dissi-
pation is 6.6 kW. The optimal setting to sustain 
this power figure with minimal performance 
overhead is dividing the ReCAM into 32 sepa-
rate ICs, each with 256 Mbytes and 8 million 
rows. The multi-GPU implementation using 
384 Tesla M2090 GPUs and 256 Intel Xeon 
E5-2670 CPUs might dissipate 100 kW, 15 
times higher power. Table 4 shows additional 
comparisons of ReCAM and the multi-GPU 
cluster,9 demonstrating up to 3.7 times faster 
execution and 4.7 times higher throughput on 
ReCAM.

Scalability of ReCAM PRinS 
Sequence Alignment
Consider the case of 1 billion organism 
sequences. Each sequence is hundreds of mil-
lions of base pairs in size, on average. Analyz-
ing the contents of these sequences can lead to 
discoveries such as identification of disease-car-
rying genes, determination of evolutionary 
events, and identification of regions that can be 
used to silence genes.12 Performing an all-to-all 
alignment of the entire sequence database in a 
conventional datacenter is not scalable. Every 
two sequences will require fetching to the main 
memory, close to the processing unit (CPU 
or accelerator). The high communication cost 
between separate storage units causes the sys-
tem to be I/O-bound in an all-to-all type of 
computation.

On the other hand, ReCAM-based storage 
is more scalable. Its inherent parallelism allows 
for scalability when adding more ICs, increas-
ing storage capacity at no performance cost. 
The computing capability is linearly scalable 
in the number of ICs. Therefore, performing 
an all-to-all alignment of large sets, such as 1 
billion sequences, does not require external 
communication for the ReCAM, in contrast 
to datacenter-scale storage. A more effective 
solution, in terms of performance and energy, 
is using ReCAM as primary storage when large 
alignment operations are constantly performed.

T his article explores PRinS implementation 
for the scoring step of the Smith-Waterman 

DNA sequence alignment algorithm on a novel 
solid-state storage device, based on ReCAM. 
ReCAM enables storage with in-situ processing 
capabilities. It can contain hundreds of millions 
of data rows, each serving as a processing unit. 
The proposed ReCAM PRinS system is divided 
into multiple ICs to accommodate power den-
sity constraints.

This research can be extended in several 
ways. First, the ReCAM PRinS S-W scoring 
algorithm can be extended to provide complete 
DNA sequence alignment (that is, both matrix-
fill and traceback steps), maintaining the same 
performance and power advantages. Second, the 
ReCAM PRinS algorithm can be applied in par-
allel to complete DNA sequences of two organ-
isms, and not only to specific chromosomes. 

Table 2. Simulated ReCAM parameters.

ReCAM parameter Value

Active storage size 8 Gbytes

Frequency 1 GHz

Power per integrated circuit 200 W

No. of integrated circuits 32
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Third, the proposed S-W ReCAM PRinS algo-
rithm can be applied to the wider challenge of 
aligning protein sequences. That problem is 
more challenging than DNA alignment because 
the required substitution matrix is typically 20 
3 20 rather than 2 3 2, and the ReCAM could 
store the entire substitution matrix, resulting in 
efficient parallel processing.

ReCAM PRinS architecture, capable of 
general-purpose associative processing, can also 
be applied to other challenging problems, such 
as machine learning and graph algorithms. 
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