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Abstract

Future semiconductor technology (such as 1 billion transistors per chip and over 1 GHz clocks
planned for the year 2010) places severe new constraints on the design of high performance
microprocessors. In particular, the chip is too large and the clock is too fast for single clock
synchronous operation. Rather, new forms of distributed architectures and asynchronous
interconnects are called for.

This research describes the architecture of the asynchronous microprocessor Kin, which supports
out-of-order and deep speculative Avid execution. Kin contains unique architectural features,
targeted to achieve high performance by utilizing generous hardware resources that will become
available by future technology. The research concludes that technological constraints necessarily
lead to asynchronous solutions. The development of Kin included addressing and solving
problems at the architecture level, as well as developing architectural concepts and design
methodologies for the required building-blocks. The highest level of Kin‘s architecture is
asynchronous, while the various units of Kin may be implemented internally as either
asynchronous or synchronous.

A new branching lookahead strategy, Avid execution, is shown to offer reduced misprediction
penalty and increased performance. Avid execution prefetches and executes the predicted path
as well as some of the non-predicted paths. Unneeded paths are dynamically pruned. The depth
of the alternative paths is dynamically adjusted according to the branch prediction accuracy and
confidence. Pathmarks are added dynamically to instructions for identification and efficient
pruning. Analytical study shows that Avid execution can significantly increase performance over
a single path speculative execution with similar resources. Simulation of SpecInt95 benchmark
confirms the analysis results. Avid execution is most suitable for asynchronous processors like
Kin, since it incurs dynamically changing computation loads at the various processor modules.

Decoding a variable length instruction set is a bottleneck in a high performance microprocessor.
The architecture and design of an optimized asynchronous instruction length decoder (AILD)
is presented as an example of a fully asynchronous module.

A novel doubly-latched asynchronous pipeline (DLAP) architecture is introduced. DLAP offers
improved performance over previous asynchronous pipelines in important special cases. DLAP
is also suitable as the target for an automatic synchronous-to-asynchronous conversion, and the
proper algorithm is described.
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As a transition from fully synchronous to fully asynchronous implementations, Kin can be
implemented as a multi-synchronous system, wherein a common clock is distributed over thin
wires, avoiding the massive power investment in clock distribution trees and circuits for phase
matching and skew minimization. Adaptive synchronization reduces the probability of
synchronization failures. In contrast with methods like clock stretching,  adaptive
synchronization adjusts data delays. We show that it is more widely applicable to high
performance microprocessors than other synchronization methods. Training sessions are devised
to minimize adaptation overhead.

Finally, statechart CAD methodology is adapted for the formal specification of asynchronous
systems. It is also useful for generating simulation models, validations, and direct synthesis.
Statecharts have been employed intensively in this thesis for the design and simulation of Kin,
Avid execution, AILD, and DLAP.
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Chapter 1 : Introduction

Microprocessor performance has risen over the past 20 years from 500 KIPS (thousand
instructions per second), to 300 MIPS (million instructions per second) today. The industry plans
to achieve 100 BIPS (billion instructions per second) by the year 2010, through the integration
of almost one billion transistors on a chip operating at over 1GHz [SIA94, Wei96]. This explosive
growth in performance has been made possible thanks to the rapid development of semiconductor
technology [Yu96], and improvements in architecture. Technological progress has contributed
both to higher clocking frequencies and to growing levels of integration. As more transistors are
integrated, more architectural features (pipeline, superscalar processing, out-of-order execution,
caches, etc.) are introduced into microprocessors, contributing to their growing utility.

While this impressive growth is expected to continue in the future [SIA94], we are facing a
turning point in computer architecture. The methodology that has brought us from the early
microprocessor days to the present is about to change. All microprocessors, past and present, are
designed as synchronous, single clock machines. In the future, this will no longer be feasible: The
basic axioms of synchronous design are intended for limited equipotential domains (where signal
propagation times over all wires are negligible). Synchronous methodology has been stretched a
bit further by able designers and power-hungry skew minimization techniques. But future large
chips will extend well beyond the synchronous domain simply because it will take any signal
(clock or data) many clock cycles to propagate from one part of the chip to another. In simple
electrical engineering terms, the processors of the future will transcend from lumped systems into
distributed ones.

This change has already started. Modern processors have introduced some elements of distributed
computing, such as decoupling modules with FIFO buffers and executing out-of-order. However,
at the circuit level, present day processors still insist on a single clock with minimal skew. In this
thesis we show that this aging paradigm is best exchanged for asynchronous architecture, which
is much more suitable for distributed systems. And in contrast with all previous research on
asynchronous architecture, we emphasize the high-level architecture, rather than the asynchronous
design of each and every circuit. In fact, while the physical constraints dictate asynchrony at the
high level, the individual modules may still be synchronous, and we investigate this in the thesis.
Unlike all other research projects on asynchronous processors, we do not promote a revolutionary
shift in all aspects of design and CAD tools. Rather, we consider how contemporary synchronous
designs can smoothly evolve into asynchronous ones. With this in mind, we search for the path
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that the industry will be willing to adopt, namely one that will not enforce any change until it has
become absolutely necessary.

This thesis investigates a processor architecture for the asynchronous future, including a novel
aggressive speculative execution method (necessary for high speed and suitable for asynchronous
processors). The thesis also delves into a number of associated issues: Fully asynchronous design
of one module, algorithmic conversion of synchronous pipelines into asynchronous ones, mixed
timed globally asynchronous locally synchronous systems, and the design methodology suitable
for high level asynchronous design.

1.1  Future Technological Constraints and Asynchronous Design

In this section we summarize the relevant constraints that may be posed by 2010 technology and
which directly affect this thesis [KG97].

While the electromagnetic field travels in vacuum at the speed of light (c = 30 mm / 100 pSec, in
VLSI terms), the electric signals inside chips progress about 10-100× slower, depending on the
drive strength (how much power and area are invested) and on the capacitive load of the bus.
Let’s assume c/20 signal (clock and data) propagation speeds; given a chip size of 25-35mm in
2010 technology [SIA94], typical signals will require 2.5-3.5 nSec to cross the chip end-to-end.
If the chip is clocked at 2GHz, about 5-7 clock cycles may be required for signal propagation
alone. As a result, it will no longer be feasible to separate the logical and physical design of the
pipelines, as is done today; rather, today's wire buses will be transformed into explicit pipeline
stages, whose only task is to move data around, and the number of stages per bus will depend
strongly on where the various modules are placed on the VLSI chip. To make the situation even
worse, the signal may arrive at the various receivers on multi-drop buses at different cycles. 

Other effects of technological progress on processor speed relate to clock distribution. Several
cycles may be required for the propagation of a single clock transition over the entire chip,
compared to less than a cycle today. A worse aspect of this is that many transitions will be present
simultaneously on the clock distribution wires. While this wavefront superpipelining is not
impossible, it is highly undesirable. Optical clock distribution (e.g., a strobe light flashing at the
chip from above, and multiple detectors and amplifiers spread over the chip) might provide a
solution. Clock skew is also expected to be a very difficult issue. If the clock is not distributed
optically, jitter of clock drivers and distribution lines will result in a skew much wider than the
clock cycle. This skew can be balanced only at the very high area and power cost of phase lock
circuits and powerful drivers. The power dissipated by complex VLSI chips increases as clock
frequency rises [Hor93, Int94, Str94]. An increasing portion (currently over 40% [Bow95]) of
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the power budget in a chip is required by the clock distribution network in order to contain clock
skew problems. This ratio is expected to grow even higher, when processors are predicted to
dissipate almost 200W [SIA94].

As technology progresses and operating frequency rises, only a small number (3-4) of logical gate
delays fit into the shorter clock cycle time per pipeline stage. This implies deeper pipelines which
are relatively difficult to design, and substantial effort must be devoted to balancing them. In
addition, severe performance penalty is incurred for stalling such pipelines.

Even if clock distribution problems (skew and power dissipation) are solved, signal propagation
delays will make it impossible to design a synchronous processor that operates with a common
single clock. This thesis applies asynchronous microprocessor architecture to answer future
technological and architectural constraints, forecast for the year 2010 and beyond, when feature
size is less than 0.1:, over one billion transistors are integrated on a single chip, and the clock (if
used) operates at over 1GHz.

Asynchronous design has been studied for the past 40 years, and has attracted new interest in
recent years [Async, Hau95]. Asynchronous systems eliminate or restrict the use of clocks, thus
avoiding some of the problems of clock distribution and accommodating excessive data
propagation delays. Instead of a global clock controlling when data can be safely moved from one
unit to another, asynchronous units employ local handshake over asynchronous channels [Hau95,
Sei80].  Asynchronous logic trades time for discrete events. Actual delays are hidden (abstracted),
and only sequences of events (as depicted by transitions) matter. Thus, the correctness of
computation is made independent of delays. Another advantage is that events can be treated
hierarchically and local details can be abstracted, similar to hierarchical logic design,  whereas the
design of continuous timing is global and 'flat'.

Clocks typically switch over the entire chip, feeding into every flip-flop, and thus dissipate
substantial power. Asynchronous handshake, on the other hand, is local, and happens only when
needed, thus minimizing power dissipation and spreading it more evenly over time. The local
handshake lines spread over shorter distances than the global clock distribution network. Thus,
less area and less power are required. Some of the handshakes can be completed concurrently
with computations, and they automatically accommodate for process variations and jitters.

Asynchronous circuits can be designed to operate according to the average case delay instead of
the worst case, thus achieving typically a factor of two in performance [GM90]. For instance,
while no carry is generated when adding 1+0, maximal carry propagation is needed for 1-1.
Synchronous adders must always allocate ample time for the worst case. Asynchronous adders
are self-timed, namely they detect and announce completion as soon as the computation is over.
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1Kin was the God of Time of the Maya.

In the case of 1+0, the asynchronous operation completes much earlier, saving time and power.
Moreover, if there is no addition to perform (i.e. the adder receives no valid inputs), the
asynchronous adder simply idles, whereas typical synchronous circuits compute every cycle,
unless special enabling control logic is employed. As another example, assume the modules in a
synchronous pipeline take t time units each to complete, but in 1% of the  cases one module needs
2t time units to finish its task. If the clock cycle is set to t, that rare case will cause the circuit to
fail. If the clock cycle is set to 2t, the performance is reduced by 50%. In an asynchronous
implementation, the same scenario will only cause a 1% performance degradation. Indeed, some
synchronous pipelines go into great complexity to achieve the same flexibility.

Asynchronous circuits are expected to achieve low power operation, resulting from eliminating
the clock, and taking advantage of varying computational load of the application. Some 80%
power saving has been reported by [vBB+94], by power supply voltage scaling of an
asynchronous DSP chip designed for a battery-operated consumer product, and slowing down
the operation of the circuit when appropriate. Other expected benefits from asynchronous designs
[Hau95] include a modular (easily scalable) design, correct by design, and testability [DGY95].

Applying asynchronous methodology to a synchronous microarchitecture is not simply removing
the clock. Rather, two issues should be addressed: The high level architecture, and the circuit
implementation (inside modules and at their interfaces). In the former, any implicit timing
assumptions made by system architects should be carefully reconsidered, to accommodate
arbitrary inter-module delays. We claim that this process leads to distributed architectures, with
data-flow flavor, and in the thesis we show how all relative timing assumptions are relieved. This
is demonstrated on Kin1, an asynchronous high performance processor. We also attend to the
circuit level, where both locally-synchronous and fully asynchronous implementations of Kin are
examined.

1.2  Timing Disciplines

Existing definitions of timing disciplines, as prevalent in the asynchronous literature, are
insufficient for the purpose of this thesis. Some more precise definitions are needed: 

Def. 1.1: A self-timed system is one which generates a completion signal.
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Def. 1.2: A uni-synchronous (unisync) system is one operated by a single global clock,
where all modules receive the same frequency and phase of the clock.

Def. 1.3: An asynchronous system is one which is not uni-synchronous.

Def. 1.4: A multi-synchronous (multisync) system is an asynchronous system operated by
a single global clock, where all modules receive the same frequency, but the
relative phases are considered arbitrary and unknown.

Def. 1.5: A multi-clocked system is an asynchronous system in which each module is
clocked independently of the others, and its local clock is not synchronized with
the other local clocks.

Def. 1.6: A mixed-timed system combines various timing disciplines in the same system.

Kin architecture (Chapter 2) comprises multiple fast self-timed units, interconnected over
asynchronous channels, using handshake communication protocols. The asynchronous
microarchitecture is a high level description and it allows flexible and robust implementation.
Although Kin is designed as asynchronous at its top level, its modules can be implemented
according to the various timing disciplines defined above. In this thesis we investigate the various
timing alternatives.

Multi-clocked and multisync systems both present two fundamental synchronization challenges:
At the low level, data lines coming into any module must be synchronized with the local clock.
At the higher level, inter-module data delays are long and in particular they are layout-dependent;
unlike contemporary practices, the architect of processors for future technology will not be free
to assume that data emanating during a particular cycle will arrive at their destination during the
same cycle (or any other specific cycle). Thus, it is safer at the high level to make the data self-
identifying and to introduce handshaking mechanisms. As a result, large integrated systems may
evolve as Globally Asynchronous, Locally Synchronous systems (GALS) [Cha84]. Such systems
consist of multiple synchronous modules (e.g., 100 modules, each having 10 million transistors),
each driven by its own clock driver. The modules intercommunicate asynchronously, as they are
ignorant of each other's clock. The multiple clocks may be completely independent, or they may
be driven by a single clock source, where each module receives an arbitrary phase but all operate
at the same frequency (multi-sync system). In a fully synchronous processor, substantial area and
power are invested to keep the multiple clocks in full synchrony, with minimal relative skew,
striving to ascertain the exact same phase in all parts of the chip. In GALS, this increasingly
difficult goal is abandoned. Instead, each module is left to deal with asynchronous inputs on its
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own. If the clocks of the various locally synchronous modules need to run at exactly the same
frequency, a minimal area, minimal power network will be used to distribute a single source sine
wave clock, and each module will derive its local clock from that sine wave. While such derived
clocks are subject to arbitrary relative phase delays and jitter, the main advantage is that
substantially less power and area are needed because sine waves incur less harmonics and
reflections than square wave clocks.

1.3  Previous Asynchronous Processors

Most of the previously published asynchronous microprocessor designs have rather simple and
straightforward architectures. Neither of those processors supports out-of-order execution nor
considers performance enhancement by branch prediction. The architecture is either based on
micropipelines or built from small building blocks (bottom-up design).

The first asynchronous microprocessor was built at Caltech [MBL+89]. It is based on four
common busses connecting the various units in the data path. The architecture is a pipeline with
only two stages (Fetch and Execute).

The AMULET [FDG+93, Pav94] is an asynchronous implementation of the commercial ARM
processor. Its architecture is based on micropipeline [Sut89]. It does not support out-of-order
execution, except for out of order completion of load instructions relative to normal ALU
instructions. All instructions are conditional, but the AMULET does not contain a prediction
mechanism. It suffers from a long penalty when a branch is taken.

The NSR RISC processor [Bru93] is based on a four stage pipeline (Fetch, Decode, Execute, and
Write Back). The processor units are each implemented as a micropipeline, and they communicate
through FIFO buffers (similar to what is designed in Kin). The processor supports a variable
delayed branch, but has no branch prediction or out-of-order execution. Its successor Fred
[RB96] has multiple functional units, but instructions are issued (in order) only one at a time, thus
limiting the level of parallelism.

The ST-RISC [DGY93] processor is built of FSM and combinational logic basic blocks, and
basically consists of Fetch-Execute stages. Modules communicate through FIFO buffers. A branch
processor and an ALU operate concurrently and communicate only when a conditional branch is
encountered. Neither out of order execution, nor parallel issue, nor branch prediction are
supported.

TITAC [NUK+94] was developed as a processing element in a parallel computer system. It was
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optimized for delay insensitivity, rather than performance. Its simple architecture is based on a
single accumulator.

The Counterflow Pipeline Processor (CFPP) developed by Sun [SSM94], has an interesting
architecture based on two pipelines, one for instructions (flowing in one direction) and the other
for results (flowing in the opposite direction). Neither branch prediction nor out-of-order are
supported, and performance may suffer from the many comparisons and arbitration required at
each stage.

STRiP [Dea92] is a pipelined RISC, implementing a predicted prefetch for both instructions and
data. Its implementation is based on a dynamic clock, where local clocks are generated in the
circuit and their speed changes according to the instruction being executed.

The A3000 [Wol92] is an asynchronous version of the MIPS-R3000 processor, and has five
pipeline stages. It is based on an extension of the micropipeline approach, by applying several
processing elements between the FIFO units, and constructed of parallel micropipelines.

SCALP [End95] design goal was low power operation. As reported, this goal was not achieved,
and the processor was 3-4 times slower than comparable processors. No branch prediction was
employed (all branches are treated as not taken), which severely limited the performance, due to
high latency when branch is taken (i.e., a high misprediction penalty).

All the previously designed asynchronous microprocessor architectures are targeted at current
technology, and are not extendable to take advantage of growing amount of resources to become
available by future technology. Kin architecture is aimed at exploiting future technology, and
taking advantage of the asynchronous architecture, as discussed in the rest of this thesis.

1.4  Thesis Outline

The thesis starts at the high conceptual level, descends into the more particular issues, and ends
by contributions in the area of Computer Aided Design (CAD).

Kin, a high performance processor architecture suitable for future technology (one billion-
transistors per chip) is presented in Chapter 2. Kin takes advantage of asynchrony to allow
aggressive Avid speculation, to overcome the limitation of branch predictions and dependencies,
and to support multi-execution. The novel Avid execution concept is defined and analyzed in
Chapter 3.
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As an example of fully asynchronous design of a critical component of Kin,  an asynchronous
instruction length decoder is presented in Chapter 4.

Automatic conversion of synchronous pipelines into asynchronous ones is discussed in Chapter 5.
A new pipeline scheme (a doubly-latched asynchronous pipeline) is introduced, which addresses
some of the limitations of existing proposals.

Chapter 6 presents a novel methodology for multi-synchronous implementation of  Kin, in which
the individual modules are all synchronous. That methodology eliminates most of the drawbacks
of existing clocking methods.

The design methodology of Kin is introduced in Chapter 7. Statecharts are employed for
specification, and special design rules are defined to adapt them for asynchronous design. A
complete model of Kin has been developed with the statechart tool, and has been used for
simulation and performance evaluation. Validation statecharts are also introduced.
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Chapter 2 : Kin Architecture

Kin  is an asynchronous microprocessor that supports out-of-order and deep speculative (Avid)
execution. Kin architecture comprises multiple fast self-timed units, interconnected over
asynchronous channels, using handshake communication protocols. The architecture of Kin
supports the Avid execution model (introduced in Ch. 3), where multiple alternative paths,
including the targets of some taken and not-taken branches, are prefetched and speculatively
executed in order to reduce misprediction stalls. A dynamic instance tag is associated with every
instruction, to enable management of the multiple paths. Instructions of different paths are
executed together in the out-of-order zone. Paths descending from the branch direction that was
not chosen are pruned without preempting useful execution. 

Kin has been designed at the conceptual level. A complete specification has been modeled, and
full simulation of standard performance benchmark (SpecInt95) on the microarchitecture of Kin
has been carried out. Kin is designed with future technologies in mind (such as 1B transistor
chips); thus, we suspect that full physical implementation will not be feasible for some time.

The novel architecture of Kin is presented in this chapter. The microarchitecture details and
instruction pruning are described in Sect. 2.1. Race and deadlock problems and possible solutions
are discussed in Sect. 2.2. Kin support of multi-execution is presented in Sect. 2.3, and Sect. 2.4
describes the model constructed for simulating Kin. Section 2.5 discusses possible implementation
methodologies for Kin, which are further described in other chapters in this thesis.

2.1  Microarchitecture

2.1.1  General Description

Kin is a general purpose microprocessor that supports out-of-order and deep speculative (Avid)
execution. The instruction set supported is not restricted and can be that of either a CISC or a
RISC processor [HP96a, Joh91]. Each machine language instruction fetched from the memory
is decoded in the processor and translated into (one or several) internal micro-operations (:Ops);
i.e., the processor uses a ‘RISC’ instruction format internally. Note that the only module of the
processor that needs to be changed when a different instruction set is required is the instruction
decoder; the rest of the processor remains unchanged. As an example, we simulated the support
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of three generic instruction types (ALU, Load-Store, and Branch).

Kin’s architecture is based on a distributed network of asynchronously interconnected modules,
with no central control. The architecture is designed as asynchronous at the top level, but modules
can be implemented according to various timing disciplines, as described in Sect. 2.5. Each
module operates at its own speed, and communicates with other modules only when needed. The
communication is done through asynchronous channels (which may contain FIFO buffers), by
using handshake protocols [Hau95, Sei80]. The data is encoded (e.g., as dual-rail, or bundled data
[Hau95]) to signal its validity, and is acknowledged. The use of FIFO buffers decouples the
processor. Ideally, all modules are balanced (i.e., on average they have similar delays). However,
if one of the modules is temporarily slow, it will not affect the other modules. Only when a FIFO
is full will the sending module be stalled.

In contemporary synchronous processors, the collective knowledge about an executed instruction
is distributed among the pipeline stages, the controller, the channels into and out of the register
file, etc. This location-dependent distribution of data and control information is unmanageable in
large distributed systems like Kin. Rather, instructions flow through the system carrying their own
identity tags. Each instruction is  a self-sustained packet, containing all the information needed
for its execution. It may leave some indications, e.g., an instruction entry in the reorder buffer,
but these eventually reunite with the instruction, e.g., when it commits or is pruned. Each module
receives instruction packets from its input queues, executes them at its own local rate, and sends
them towards their next stop over one or more of its output channels. This model resembles the
data flow architecture concept.

The Kin architecture is described in Fig. 2-1. It combines many known features, like multiple
execution units, out-of-order execution, register renaming, etc. [HP96a, Joh91, Tom67], and
some new ones (e.g., Avid Execution, Dynamic Instance Tagging, unified Multi-Execution, and
Pruning). Multiple instructions are executed concurrently by employing multiple execution units,
and instruction level parallelism is exploited by out-of-order execution, whereby independent
instructions are executed before preceding ones which are waiting for data and/or resources. To
preserve the serial nature of the code, instructions are committed (completed) in their original
serial order, typically more than one at a time. Speculative execution is employed to avoid
processor stalls; branches are predicted and code is prefetched from the more likely paths of the
program.
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Figure 2-1:  Kin asynchronous processor architecture.

2.1.2  Processor Modules and Instruction Pruning

The Prefetch Unit (Fig. 2-1) selects the address from where instructions should be brought and
handled. The proper instructions are then either prefetched from the Decoded Instruction Cache,
or (if not found there) are fetched from the Instruction Cache and are decoded before being
further processed. After the decoded instruction registers are renamed (in a Register Renaming
Unit), the instruction enters the ReOrder Unit (ROU), which manages the out-of-order execution.
The instruction is sent to a Reservation Station to wait for its operands before it is executed and
returns to the ROU to be committed (in-order). An instruction may be pruned before completing
the whole path through the processor units. The operation of each unit is explained below.

Kin architecture supports the Avid execution described in Ch. 3.  In Avid execution, the predicted
path is prefetched and executed. In addition, a small portion of the non-predicted path is also
prefetched and executed. Eventually, one of the two commits and the other is pruned. Pathmarks
distinguish between the alternative paths. Kin generates dynamic instance tags and employs branch
pruning (instruction purging) to discard unneeded instructions. The branching decision is made
by the Branch Unit (BU, in Fig. 2-1). The BU notifies the Prune Management Unit (PMU), and
the latter immediately issues a broadcast message prune() of the not-followed path. The message
is sent over special channels spanning the entire processor. Each unit, as it receives the prune()
message, scans its internal data structures and discards all redundant instructions identified by the
prune() message, and also updates the pruning table it has at its input. Subsequently, any
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Instruction Dynamic Instance Tag (DIT)
opcode operands root path context pc

Figure 2-2:  Dynamic Instance Tag structure.

instruction arriving at a unit is examined, and if it belongs to a pruned path, it is disposed of. This
process needs not be exhaustive: An instruction which escapes pruning in one unit will be pruned
eventually in another. At the latest, the instruction will be erased (without committing) when it
comes back to the reorder unit. This process seems slow, but the cumulative rate of disposal
meets the requirements. A beheading mechanism (explained in Ch. 3) is applied to control
pathmark growth. The PMU generates and distributes (at proper times) a behead() message over
the pruning channels. Every instruction arriving at a unit is checked to see if it should either be
discarded or beheaded, before it is processed. Not all the modules in Kin receive prune() and
behead() messages. Deciding which units should handle these messages and manage the proper
prune and behead tables is a tradeoff between the module execution time, the overhead of
handling prune/behead messages at that module, and the predicted performance gain by
preventing redundant instructions from leaving the module. For example, computing an integer
‘add’ in an execution unit takes about the same time as doing the compare operation required to
detect if the instruction should be discarded or executed. In Kin, we decided to handle
prune/behead messages in the Prefetch Unit (PU), Decoded Instruction Cache (DIC), Register
Renaming Unit (RRU), ReOrder Unit (ROU) and Reservation Station (RS). The PU must handle
prune/behead messages since it generates the dynamic instance tags. The DIC should prevent
unneeded instructions from entering the processor, to decrease the load. The RRU must keep
track of the paths for maintaining coherent renaming tables. Every instruction handled by the
processor passes through the ROU, and must be pruned there if necessary. Pruning is also
important in the RS so that irrelevant instructions will not wait there forever for results of other
pruned messages.

Prefetch Unit and Dynamic Instance Tagging
The pathmarks, which fully identify the path (see Ch. 3), are generated by the Prefetch Unit and
are attached to each instruction at prefetch, as part of a unique dynamic instance tag (DIT),
shown in Fig. 2-2. The Prefetch Unit determines which paths to follow according to the branch
prediction [LS84, YP92] and Avid execution depth. It issues requests for fetching from the
required instruction addresses, along with a proper DIT. The PU, having received a behead()
message, henceforth modifies the generated DITs accordingly (as explained in Ch. 3).

The same basic block of code (or part thereof) may be fetched simultaneously multiple times.
Consider a simple loop which ends with a conditional branch. Each time we reach that branch, we
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should most likely prefetch the  same loop again. Each time, the loop is prefetched (and tagged)
as a new instance, and must be treated separately by the rest of the machine (e.g., proper register
renaming), regardless of the fact that it is the same original code. Another example are
instructions after an ‘if’ clause. They might have different dependencies and require different
register renaming depending if the code in the ‘if’ clause was executed or not. This can only be
decided at run time. Since we wish to prefetch multiple levels of the branching tree
simultaneously, the instruction cache is multiported to provide all the required bandwidth,
including multiple separate accesses from the same line. Of course, access optimization techniques
are employed to replace brute force multiple reads of the same line by a single access and
intelligent duplication, but this should be transparent to the PU. Since many instructions should
be fetched and decoded more than once, and repeated decoding is inefficient, predecoded
instructions are maintained in a Decoded Instructions Cache (DIC). The relevant :Ops are fetched
from the DIC, and are sent with their DIT to the register renaming unit. Requested instructions
not found in the DIC are fetched from the Instruction Cache and are decoded by the decode unit.

Register Renaming Unit
A Register Renaming Unit (RRU) keeps and handles the renaming tables for the many possible
execution paths avidly prefetched, to allow them to be speculatively executed out of order. The
renaming process replaces architectural register names with virtual ones, thus filtering out false
dependencies [HP96a]. The condition codes are treated as one of the registers and are being
renamed accordingly. A new physical entry in the ReOrder Buffer (ROB) is allocated for each
:Op destination (architectural) register. This entry number serves as the virtual name of the
destination register. The :Op source registers are renamed according to the last name allocated
to them on the same path or their ancestor path.

ReOrder Unit
The ReOrder Unit (ROU) manages the out-of-order execution in a processor, and enforces an
in-order committing of instructions. A ReOrder Buffer (ROB) is used in the ReOrder Unit to keep
track of the instructions from many possible execution paths, generated by avid execution.
Instructions may be executed out of order, but they are committed (i.e., their results are written
to the ‘real’ registers and to memory) in the same order they appear in the code. Since Kin
supports Avid execution, the ROU needs to keep track of a binary tree of paths rather than just
a linear sequence of instructions. The reorder unit also keeps a copy of what is usually referred
to as the ‘real’ register file, containing the architectural registers. When a :Op arrives at the ROU,
not all of its operands are necessarily valid, so the committed register values and speculative
values from the ROB are searched in order to fill unresolved operands, before the :Op is
forwarded to the reservation stations. After commit, ROB instruction entries and RRU allocations
are released.
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Reservation Station and Execution Unit
Several Reservation Stations (RS) are used by the instructions as waiting posts until their
operands are available. These awaited operand values may arrive as a result of another instruction,
or fetched from memory. Ready instructions (i.e., ones which have all their operands ready) are
routed to one of several Execution Units (EU) in the processor. A scheduler (not shown explicitly
in Fig. 2-1) is used to determine which instructions go to which execution unit. This scheduler can
either be implemented as a simple router or as a sophisticated allocator. After execution, the result
of the instruction is distributed to the ReOrder Buffer and to all the Reservation Stations, wherein
other instructions might be waiting for it.

Load/Store Unit
The Load/Store Unit (LSU) handles memory access and bypass. It is used to take advantage of
locality of references in data access. It is similar to another cache level, but is implemented as an
independent smart associative table that tracks load and store operations. Ordering is enforced
only when true dependencies are encountered, to guarantee correctness: For instance, Store(X)
instructions can bypass Load instructions, but the LSU keeps a record of the previous value of
X until Store(X) commits, in case it is needed by an earlier Load(X). Similarly, Load instructions
can bypass Store instructions, except for Store to the same address, in which case the argument
is forwarded from the Store instruction. Thus, the LSU can return values even before they are
physically written to memory. Giving higher priority to Loads over Stores can increase the issue
rate of instructions, because Loads results with values/operands for successive instructions, while
Stores can wait without stalling any other instructions. Loads can be executed speculatively
without affecting correct operation. However, Stores can only be done at commit, at which time
it is known that the Store is on the actual true path of the program.

Branch Unit
The Branch Unit (BU) resolves a branch instruction and returns the result to the ReOrder Unit,
the Prune Management Unit and the Prefetch Unit. Upon receiving branch results, the Prefetch
Unit updates the prediction algorithm accordingly, and prefetches new instructions.

2.2  Race and Deadlock Problems

When designing a processor like Kin, one is likely to face the usual difficulties associated with
distributed systems and algorithms, such as races and deadlocks. We have encountered several
of them during the design and analysis of Kin. Knowledge and experience in the areas of
distributed computing, operating systems, and communication networks already exist, and many
solutions are applicable to distributed asynchronous processors.



18

Races
Races are a characteristic of an asynchronous microarchitecture. They might happen when two
items (e.g., instruction and operand) must meet and merge, but one is in transition along a channel
and the other chases the first. For instance, a :Op result might arrive at a unit before it is required
by another :Op: Suppose that some number ", computed by an execution unit, is to be stored
into architectural register R, and is also needed as operand for some instruction I. Assume that
I has just passed through the ROU, and is travelling through some FIFO channel from ROU to
one of the reservation stations. Just then, " is sent to all Reservation Stations and to ROU, where
it is stored in R. The various reservation stations realize that none has any instruction in waiting
for ", so they all discard it. When I finally enters one of the RSs, it is too late: " will not arrive
again. This misfortune happens due to the fact that I could have met " in any one of multiple
places (e.g., at the ROU before being sent to the reservation stations, or at the RS while waiting
in a reservation table), an otherwise desirable feature. We resolve this non-determinism by
maintaining multiple stored copies of ": each RS holds a Most Recent Results (MRR) table,
wherein (even unclaimed) results are kept for a while. Thus, the RS can keep track of  results
arriving while the :Ops needing them are on their way (e.g., waiting in the FIFO to be processed,
or waiting to be written to the reservation table). If the architecture is to be delay insensitive, then
the MRR might need to be as large as the ROB (because it might have to store the results of all
executed :Ops not yet updated in the ROB), and should be updated at commit and pruning time.
However, it is enough if it is as big as the sum of the FIFO sizes along the path that might cause
the race (e.g., the FIFOs on the channels from ROU to RS, from EU to ROU, etc.), with some
safety margins depending on the delay of the modules in the path. The MRR can be cleared
completely at certain safe points, e.g., when the affected FIFO channels are empty. Another
solution to this kind of race could also be having the reorder unit send the results it receives to
the reservation station. However, this will unjustifiably increase the communication bandwidth
between the reorder unit and the reservation stations that already receive the same results through
the bypass mechanism for performance reasons. Implementing the ROU and the RS as a unified
module, results in a complex and large module, without eliminating the potential for similar race
occurring when updating the shared table.

Mutual Exclusion
Mutual exclusion [Ray86] is required when executing some critical calculations such as updating
FIFO pointers, or table entries. Arbiters are used to impose mutual exclusion. Although they may
take a long time to resolve some conflicts, they never fail, and the asynchronous Kin is insensitive
to arbitrary delays (they may affect performance, but not correctness).

A mutual exclusion mechanism for accessing shared tables is demonstrated by the passive FIFO
shown in Fig. 2-3. While other types of FIFO channels are also implemented in Kin which do not
require arbitration, the arbitrated FIFO is desirable when the FIFO is expected to contain a large
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amount of data on average. Non arbitrated FIFOs consume substantial power when heavily
loaded, due to the need to move all the data along shift registers. The arbitrated FIFO is
implemented as a shared memory with pointers to its head and tail. The behavior of the FIFO
control is presented by the statechart ([Har87] and Ch. 7) in Fig. 2-4. It defines three concurrently
executing processes (separated by dotted lines): writing to and reading from the FIFO, and the
arbiter that imposes mutual exclusion access. The operation of the fair arbiter is defined by the
statechart in Fig. 2-5. The arbiter is implemented in hardware [Sei80, Mar85].

Deadlocks
Deadlocks in Kin might happen when cyclic buffers are clogged. This is the only kind of deadlock
that is possible in the architecture of Kin, since the processor units are self contained, and do not
depend on each other for resources or operation. The only correlation between the modules is by
messages sent between them. A module receives a message, processes it and forwards it to its
successor. The deadlock we have encountered in Kin was caused by a cycle of modules unable
to complete sending a message because the FIFO at the input of their successor in the cycle was
full. Each module is released only after is has successfully sent the message. When a module waits
to complete communication, it cannot read a message from its input FIFO and free an entry in it.
An abundance of distributed algorithms have been developed for prevention and avoidance of
such deadlocks, as well as for detection thereof and recovery in case they do happen.
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The simplest solution is to prevent, or avoid, deadlocks by making the FIFOs large enough. If
unlimited FIFOs were available, there would be no chance for a deadlock to happen. The question
is how to determine the practical size needed to prevent the deadlock. A heuristic algorithm can
be applied to calculate the size of the FIFOs, as a function of the ROB size, RS size, modules
execution time, instruction types and mixes, possible paths an instruction might take among the
modules in the processor, etc. The ROB module serves as a ‘sink’ to the :Ops in a sense that
every :Op arriving to it will be consumed eventually, without a risk of deadlock (Since triggering
the committing process is done by signaling, e.g., updating a mutually exclusive flag,  rather than
sending a message to it, there is no danger of having a closed cycle of FIFOs). The size of the
ROB is an upper bound on the number of :Ops being processed in the various modules. Thus,
by making the FIFOs as large as that number, we can obviously prevent the communication
deadlock from occurring. However, this  bound can be tightened by noticing the way a :Op is
being handled and processed by the modules in the processor: if a  (:Op) message is waiting in
one FIFO to be read and processed, it (or its result) cannot, at the same time, either be waiting
in another FIFO, or be sent out. I.e., the sum of the sizes of the FIFOs along each possible cycle
in the processor architecture should be equal to this bound. This method of choosing the size of
the FIFOs is delay independent, and might be improved by considering the module delays (which
change when using another implementation process), and statistical analysis of the instructions
being executed by the asynchronous processor.

Another option to prevent a deadlock is to have a ‘deadlock warning’. Since deadlocks always
contain a cycle of full FIFOs, detecting a cycle which is close to this situation can be treated as
a warning of a potential deadlock. This warning can trigger a mechanism to slow down (or even
temporarily stop) new messages from entering the modules cycle (similar to a ‘leaky-bucket’
mechanism [BG92]). This can be done in the asynchronous architecture without affecting the
correct operation of the system. The warning should be given early enough to enable some entries
to free before letting new messages propagate into the suspected cycle, but not too early so that
the processor will not have to slow down unnecessarily.

Algorithms to detect deadlocks and recover from them can either be centralized or distributively
controlled. The messages needed to be transferred for detection and recovery, must use separate
communication channels so they will not be stopped by the deadlock. An interesting idea might
be adapted from the algorithm described in [JS89] for uni-cast communication networks. An
‘emergency buffer’ can be allocated in each module to be used only in case a deadlock is detected.
Since all modules in the cycle are waiting for a free entry in their successor buffer, moving one
message from the FIFO to the emergency buffer will temporarily release the deadlock, and might
solve the problem if it enables some messages to be sent outside the cycle. However, for a reliable
solution, this algorithm should be further developed and defined. Since a deadlock in the
processor might be caused by a module outside the cycle (similar to multi-cast communication
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networks), the suggested algorithm does not guarantee a recovery from the deadlock.

We should consider the effect on performance when selecting the proper solution for the deadlock
problem. The processor modules are designed to be as balanced as possible to avoid creating
bottlenecks which limit the performance. Variances of module delays and instructions flow rate
can be used to simulate and analyze the architecture to select the proper FIFO sizes.  Simulations
of Kin showed that the FIFOs are most of the time either empty or have only a single message
waiting in them. Thus, small FIFO sizes can be used and in some cases the FIFOs are redundant
and a DLAP structure (introduced in Ch. 5) is quite adequate.

2.3  Multi-Execution on Kin

The high processing bandwidth of advanced processors is not fully exploited, because of true
dependencies in the code and mispredicted branches. Three separate efforts, all aimed at
increasing instruction processing rates by concurrent execution of multiple instructions are
typically employed: Out-of-order superscalar execution (multiple instructions of the same serial
code), multi-threading (multiple threads of the same program), and multi-processing (of different
programs). All three (and more) can be unified under a single multi-execution model, and are
handled almost identically by Kin. In addition, Avid execution (defined below in Ch. 3) is
employed to execute speculatively multiple alternative paths of the same context.

In Kin’s unified multi-execution model, instructions from different contexts co-exist
simultaneously within the processor. Each instruction is fully identified by its tag (Fig. 2-2): the
specific path it belongs to and the program counter along that path, its specific thread, and its
specific process. The prefetch, register renaming, and the reorder units take care of organizing
all this. Others, such as reservation stations, schedulers, and the various functional units (all
residing inside the Out-Of-Order zone), largely ignore the identification tag and simply process
instructions as they come.

Instructions are fetched under control of the Prefetch Unit (PU). The PU maintains multiple
contexts, one for each of the active processes and each of the active threads inside each process.
To support Avid Execution, the PU initiates parallel prefetches of multiple basic blocks per thread
and process, and also computes and assigns a unique pathmark per path. The PU prepares, for
each instruction, a unique dynamic instance tag (DIT). The DIT identifies the context (process
and thread), the pathmark (root and path), and the program counter (Fig. 2-2). The DIT and the
instruction are henceforth packaged together. The non-preemptive pruning mechanism is managed
by the PMU.



22

Like the PU, the in-order instruction management units RRU and ROU are multiplied in Kin to
support multiple contexts. Each instruction is channeled, based on the context portion of its DIT,
to the appropriate RRU and ROU. Furthermore, the RRU and ROU internal data structures are
implemented as associative tables, and their algorithms are enhanced to support the multiple
simultaneous paths of the same context. All three units (drawn as triangles in Fig. 2-1) maintain
binary trees of paths, rather than linear instruction sequences.

As described, Kin realizes minimal data dependencies (both register and memory), and exploits
Instruction Level Parallelism (ILP) of a program dynamically during its execution. Since Kin is
asynchronous, and operates as a distributed system, it is not limited by a single clock cycle period,
so its resource allocation can be dynamically adjusted according to the ILP characteristics of the
multi-execution paths it follows.

2.4  Kin Model

A model of Kin is specified based on statecharts [Har87] and C code. The architecture of Kin
(i.e., the modules, the channels between them (including fork and merge of channels), FIFOs on
the channels, etc.) is defined by using the Statemate MAGNUM tool [iLo96], which is based on
statecharts. Asynchronous communication handshake protocols, as well as mutual exclusion
mechanisms, are also implemented as statecharts. Internal algorithms completely specifying
module behavior (e.g., branch prediction algorithm, internal tables handling, etc.) are described
as program fragments in C code. The statechart model controls the operation of the model, and
activates the C code parts by interfacing and triggering the required computations. This formal
and operational specification of Kin enables us to execute event driven simulations, required for
asynchronous design. Modules react to messages arriving at their inputs, process the data and
generate proper outputs. Handshake protocols and mutual exclusions are controlled and executed
by statecharts. The interface between the statechart model and the external C programs uses
handshaking protocols for communications and regards the programs as self-timed modules. Each
program may be assigned a (variable) delay as its operation duration (Ch. 7).

Kin’s model has a (partly) synthesizable specification: The parts defined by statecharts can
automatically be synthesized into VHDL or Verilog description, and be converted to
asynchronous implementation afterwards (as explained in Ch. 5). The parts written in C can also
be defined by statecharts and treated in the same way.

Kin’s model was used for debugging and performance evaluations of the architecture and
specifically for simulating the avid execution concept with various depths. Animation of the model
helped us identify deadlocks, races and bottlenecks in earlier versions of the architecture. As
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explained in Ch. 3, we used SpecInt95 traces for the simulations, and gathered information on
average and worst case FIFO and table sizes, committing and pruning rates, and program
execution times. The author developed and constructed the model of Kin, and defined the
algorithms of all its modules. Some of the C programs were written by [Sha97], and used for
simulating Avid execution in Kin, as described in Ch. 3.

2.5  Implementation Methodologies

As explained above in Ch. 1, a uni-synchronous implementation is not feasible for Kin.
Technological constraints and sheer complexity dictate a distributed system, as opposed to single-
clocked fully synchronized contemporary processors. Kin is designed as an asynchronous system
at the architecture level and it is not based on a synchronous pipeline, i.e., there are no
synchronized stages operating at the same rate, where one can say exactly what happens at each
stage at specific points in time. Increasing performance by applying and managing avid execution
in such an asynchronous architecture is described in Ch. 3. Each of the units in Kin can be
internally implemented as an asynchronous circuit. As an example of a complete asynchronous
design, from architectural level to circuit implementation, Chapter 4 presents the architecture of
an asynchronous instruction length decoder. The processor architecture consisting of the modules
and channels (with or without FIFOs) can be considered as having a complex, non-linear, pipeline
structure. To increase performance, each module can be internally implemented as a pipeline. An
asynchronous pipeline implementation is presented in Ch. 5. If the processor is implemented as
a multi-synchronous circuit, the adaptive synchronization method, presented in Ch. 6, should be
applied.
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Chapter 3 : Avid Execution and Instruction Pruning

Performance of present processors is limited by a number of factors, including true and false
dependencies, limits to inherent instruction level parallelism in serial code, and pipeline stalls due
to misprediction of branches. Processors must concurrently execute and complete many more
instructions than provided by the average serial code. Although many execution units may be
available, data and control dependencies limit the instruction level parallelism. To exploit
instruction-level parallelism in full, it is not enough to look just at the instructions in a single basic
block (i.e., the instructions between consecutive branches). A wider window is required. On
average, every fifth instruction is a branch. To enable the prefetch of sufficiently many
instructions, processors have to look beyond the next branch even before it has executed. This
can be done by using various branch lookahead strategies.

As explained above (Ch. 1), technology advances will provide many more transistors to be
available for use in the design of complex processors. It will also dictate an asynchronous
architecture. We propose to take advantage of the available hardware resources, and the
asynchronous architecture, to gain higher performance, by applying a dynamically adjustable smart
speculative Avid Execution, defined in this chapter. The asynchronous architecture of Kin is most
suitable for handling the resulting variations of computational load, because it is not limited to a
worst case operation.

In the following sections, we examine the limitations to the execution rate of a program, and
analyze the effects of branch mispredictions and misprediction penalties. Previous work on
speculative execution methods is reviewed, and the novel Avid Execution concept (supported by
the asynchronous processor Kin, Ch. 2) is presented. Instruction pruning and beheading
mechanisms, used as part of the implementation of Avid execution in Kin, are defined.
Performance analysis, as well as simulation results, are given.

3.1  Introduction and Previous Work

3.1.1  Execution Model

Statistical analysis of program traces shows [HP96a] that 20% of all instructions are branches,
i.e., on average, every fifth instruction is a branch. Processor architecture is generally based on
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(3-1)

pipelines to increase parallelism and performance [HP96a]. Conditional branch instructions found
in programs cause the processor pipeline to stall, since the next instruction to be fetched after the
branch instruction is unknown until the branch is executed and resolved. To prevent this kind of
stall in the processor, various branching lookahead strategies are applied. The branch result is
predicted and instructions are fetched and handled from the predicted address. If the prediction
is correct, the processor operation continues without any stall, as the right instructions are already
in the pipeline. On a misprediction (when the prediction is incorrect), the pipeline is flushed to
clear it of all the wrongly fetched instructions. Instructions are then fetched from the proper
address and handled by the processor pipeline. Misprediction Penalty is defined as the time
required for the pipeline to fill up after a flush, until instructions start to commit again. This time
depends linearly on the pipeline depth, and the number of stages between the fetch and branch
resolution stages.

Out-of-order execution takes advantage of the Instruction Level Parallelism (ILP) found in
programs and reduces program execution time by executing independent instructions
concurrently. Value prediction methods [LS96, LWS96, GM97a, GM97b] are suggested for
speculatively reducing data dependencies in order to increase the available ILP. The higher the
parallelism utilized by hardware resources, the higher the instruction execution rate. It also means
that more branch instructions are executed at higher rate, and misprediction rate increases as well.
This adverse effect is compounded by another setback: The deeper the processor and the higher
the parallelism, the higher the penalty paid for misprediction. Most of the processor units are
stalled while flushing the wrongly fetched instructions and waiting for the correct ones to arrive.

Instruction execution rate (defined as the number of instructions executed per time unit) is thus
limited by several factors (mispredictions, available ILP, hardware resources parallelism, and
misprediction penalty). Figure 3-1 defines the following execution model. If there were no
mispredictions, the execution rate (presented by the dashed line) would be limited by the available
instruction level parallelism and the hardware resources available. However, since mispredictions
do happen, the processor is able to execute instructions only during n time units before a
misprediction is encountered. During that time, E instructions (the shaded area in the graph) are
committed. Following a misprediction, no instructions are committed for the next m time units
(the misprediction penalty time). After that, instructions start to commit again. As described in
the graph, misprediction might happen even before the maximum execution rate is achieved. This
phenomenon repeats itself and the average execution rate is thus as presented by the dotted line
in Fig. 3-1, and is given by
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The number of instructions that are executed before a misprediction occurs is a function of the
prediction accuracy of the branch prediction algorithm used, as can be seen from Fig. 3-2. Given
that about every fifth instruction is a branch, and  a prediction accuracy of p,  misprediction
occurs once every Emiss=5/(1-p) instructions. E.g., for a prediction accuracy of p=0.9, one out
of ten predictions is probably wrong and a misprediction is thus expected about once every 50
instructions. For a prediction accuracy of p=0.95, misprediction is expected once every 100
instructions, etc.

From studies (cf. [HP96a]) of instruction level parallelism (ILP) found in programs (when there
are no mispredictions), the ILP can be shown as a function of the instruction window size (Fig.
3-3). The ‘window’ is the set of instructions examined as candidates for potential execution. The
maximum window size is limited by the hardware resources available (e.g., the size of the reorder
buffer). ILP is defined as the number of independent instructions in the window that can be
executed concurrently. Figure 3-3 presents the ILP of four benchmark programs [HP96a], and
their average ILP. When a program executes, the window size gradually increases, and the
number of instructions candidates for execution depends on the number of new instructions
entering the window every time unit. The rate of new instructions is a parameter of the processor
width and parallelism (i.e., on the number of instructions that can be fetched, decoded, and
renamed concurrently, in the processor pipeline stages at each time unit). The window size is also
a function of the number of instructions leaving the window every time unit when issued to be
executed. This number depends on the available ILP which, as explained above, depends on the
instructions inside the window and the window size at that time.

In order to make the explanation and analysis clearer and easier to understand, we shall define the
average time period required to complete handling instructions at a processor stage as a ‘cycle’.
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Note that we use the term ‘cycle’ for convenience, and it does not necessarily imply that the
processor design has either a synchronous or an asynchronous implementation. ‘Cycles’ should
be thought of as time periods, which might be all equal, e.g., (one or several) clock cycles in case
of a synchronous processor, or having an average length and variance in an asynchronous
processor. The analyzed behavior, however, remains the same for synchronous and asynchronous
cases, since both are designed to be as balanced as possible to prevent execution bottlenecks.

We define the possible parallelism available by the hardware as w (processor width), and say that
at every cycle w more instructions enter the window. Also, every cycle some instructions
(according to the ILP) leave the window and are executed. By analyzing the behavior of the
average ILP as a function of the window size, we can conclude how many instructions can be
issued for execution. Results of executed instructions enable other instructions from the window
to be executed in the following cycles. The number of instructions executed every cycle is a
function of the hardware parallelism and the ILP. As explained above, the ILP is in turn a function
of the variable window size, which depends on the number of instructions entering and leaving
the window every cycle. The result of this dynamic process is shown in Fig. 3-4, which plots the
total executed instructions as a function of the number of cycles since the start of execution. The
processor width (hardware parallelism) is a parameter.

The dashed line in Fig. 3-4 marks Emiss=100 instructions executed (which, as explained above,
is the number of instructions expected to be executed before a misprediction occurs at prediction
accuracy of 95%). As can be observed from Fig. 3-4, the higher the hardware parallelism (the
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Figure 3-6:  Tree of possible execution
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more resources available), the less time (fewer cycles) required to complete Emiss instructions,
but obviously there are diminishing returns. Further, it is clear that the higher the processor
width (w), the more frequently a misprediction occurs. The lines in Fig. 3-4 are clearly linear, and
regression analysis yields the following empirical trends for E (the number of executed
instructions) as a function of the number of cycles n and the hardware parallelism w:

Assigning E=Emiss  and Eq. (3-2) into Eq. (3-1) yields:

This expression is plotted in Fig. 3-5. Again, it can be seen in Fig. 3-5 that a high hardware
parallelism w does not contribute to increase performance, since the limit is the ILP of the
program. Increasing the maximum window size available in hardware does not help either, since
the misprediction occurs long before the window fills up. As the misprediction penalty increases,
the effect of a higher width w becomes negligible, since most of the time is spent while paying the
misprediction penalty rather than doing computation. Thus, if the misprediction penalty is high,
investing in higher parallelism of the processor does not improve the average execution rate and
processor performance. The higher the hardware parallelism is, the higher the misprediction rate
is, and the deeper the pipeline - the higher the penalty paid for misprediction.
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(3-4)

The motivation for Avid execution is reducing the misprediction penalty, by utilizing ‘spare’
hardware resources not used due to limited ILP. Before defining and explaining Avid execution
principles, we briefly survey and discuss previous works on applying speculative execution. These
methods include single path speculative execution, eager execution, multiple path exploration,
and disjoint eager execution.

3.1.2  Previous Work

The tree of possible execution paths is shown in Fig. 3-6. The vertices of the tree are the branch
instructions. Each edge is a basic block, i.e., a sequence of nonbranch instructions terminated by
a branch instruction.

Single Path Speculative Execution
Contemporary processors employ Single Path Speculative Execution, whereby each branch is
predicted as either taken or not-taken, based on its past history  [Cra92, HP96a, LS84, YP92].
The branch prediction can either be static (e.g., based on trace profiling, or always predicted as
not taken) or dynamic (based on its behavior history at run time). For taken branches, the target
address is also predicted. Only instructions from the predicted path are prefetched. On
misprediction, the processor is flushed and the correct path is fetched. Current branch prediction
algorithms are p=85%-95% accurate [HP96a]. For p=90%, Emiss=50 (Fig. 3-2). For example,
if the misprediction penalty is 5 cycles, and on average 1.5 instructions are executed per cycle,
then the slowdown due to misprediction is 15%:

Figure 3-7 presents the misprediction effect on performance as a function of parallelism and
misprediction penalty (with prediction accuracy as a parameter).

As explained above, single path speculative execution is highly sensitive to the quality of branch
prediction and to pipeline depth.  An execution tree of depth n contains  n edges for single path
speculative execution, so the cost is linear in the overall depth of prediction. However, the
probability of correct prefetch over n levels falls off exponentially as pn.
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Eager Execution
In Eager Execution all paths are prefetched and (speculatively) executed. When a branch is
encountered, execution proceeds down both paths of the branch. Multiple resources are required
to support the parallel prefetch and execution of multiple paths. Once a branch is executed, its
‘losing’ sub-tree may be aborted and disposed of, and the corresponding resources can be
released. As explained below, Eager execution is not practical and has not been implemented in
any processor. Thus, no mechanism was developed for discarding irrelevant instructions. Since
Avid execution (as explained below) requires efficient instruction discarding, a special non-
preemptive pruning mechanism (Sect. 3.3) was developed for Kin (Ch. 2), and it is performed
continuously and simultaneously with regular execution, without flushing the processor. The
principal benefit of eager execution is that misprediction stalls are eliminated. However, eager
execution is exponentially wasteful:  Of the 2n-1 edges of a n-level execution tree, only n edges
are on the true path and eventually commit, while the remaining 2n-1-n edges should be
discarded. Since about 20% of all instructions are branches, the average basic block length is 5
instructions. If we consider an execution tree of depth n=3, then only 20 (out of 75) instructions
are to be committed, while 55 should be purged. As the tree depth grows, the ratio between the
required instructions and the irrelevant ones grows exponentially. Due to the enormous amount
of resources required to implement eager execution, and the relative high accuracy of prediction
algorithms available, eager execution is impractical.

Multiple Path Exploration
Multiple Path Exploration was suggested in [Mag80, MTM81]. The idea is to limit the eager
execution to a tree depth of m levels. Thus, 2m paths are explored simultaneously. After
processing a set of 2m paths, only one path remains valid, while all others are discarded. Another
set of 2m paths, generated from the valid path are explored next. A path code is used to identify
each path, similar to the pathmarks (Sect. 3.3) used for Avid execution. However, these path
codes have a constant length, and no pruning is applied. Only after all 2m paths are completed,
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the invalid ones are cleared. The system implementation presented in [Mag80, MTM81] contains
2m processors (one per each possible path), and a central processor which generates the
instructions of each branch path from the original program and issues them to the proper
machines. While the instructions of m branch levels are being executed, the controller generates
22m paths of the next m branch levels. Only 2m of these paths are used, and the rest are
discarded, when the valid path from the previous m levels block is determined. The results from
the data cache of the selected processor are copied into the shared memory, and the processors
are then assigned to the next 2m paths. Multiple Path Exploration requires approximately
exponential hardware resources. The same instruction might be executed many times concurrently
in different processors (since it belongs to many paths), even if eventually all of its copies are
invalidated. This implementation requires a very high power dissipation.

Disjoint Eager Execution
Disjoint Eager Execution [US95] is based on calculating cumulative prediction probabilities, and
assigning resources to the most likely code to be executed over all unexecuted code. The basic
blocks which have the highest cumulative probabilities are fetched and executed. On a
misprediction the processor is flushed. When the prediction accuracy pÿ1, disjoint eager
execution practically converges into single path speculative execution, since the first alternative
path will be selected only after taking n levels deep down in the execution tree, when  (1-p)>pn.
For values of p close to 1, the number of levels in the tree that will be followed before considering
any alternative path is very high. E.g., for p=0.9, the condition holds for n=22. But since p=0.9,
misprediction is expected about once every 10 branch predictions. For p=0.95, the condition holds
for n=59, while misprediction is most likely to happen about once every 20 branches. Thus, this
model is inconsistent for typical levels of p.

Implementing disjoint eager execution requires a dynamic computation of cumulative prediction
accuracies, every time the root of the execution tree changes (i.e., every time a branch instruction
is committed). Because of difficulties with dynamic computation of those probabilities, static
profile-based probabilities are proposed instead. The architecture presented in [US95] is based
on a static instruction window, which is replicated along with bookkeeping hardware matrices per
each execution unit. Unit latencies are assumed for the model, and low misprediction penalty is
expected if the misprediction does not change the contents of the static instruction queue. It is
stated that the effect on performance of using non-unit latencies in the model is not clear.
Dependency lists are computed and maintained, so that if a branch mispredicts, its dependent
instructions are squashed. A result is written to memory only when all of an instruction’s
depending branches have been resolved.

Avid Execution, defined in the following section, is designed to avoid the pitfalls of all these
methods.
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3.2  Avid Execution

3.2.1  Avid Execution Concept

Avid Execution results from combining the single path speculative and eager execution methods,
such that the probability of misprediction is kept very low, while the exponential cost of eager
execution is replaced by an approximately linear cost. The Avid execution method is basically an
eager execution whose eagerness is limited, based on prediction. As in single path speculative
execution, the predicted path is prefetched and executed. In addition, for each branch encountered
and predicted, parts of some k levels subtree which is predicted as not-taken are also fetched into
the processor, and are speculatively executed.

The number k of prefetched levels in the non-predicted subtree is adjustable. Figure 3-8 shows
two examples of Avid execution depth, for k=2 and k=5. The main predicted path is marked by
solid thick lines, and the extra (avidly handled) paths are drawn as dashed lines. Note that if k=0,
Avid execution is reduced to single path speculative execution. For k=1, about 50% of all
instructions fetched will be pruned, since for every predicted basic block another basic block from
the not-predicted path is also fetched. The price of exponential demand for resources is avoided
in case of Avid execution, and is replaced by an approximately linear one: For Avid execution
with depth k, the number of edges in the execution tree is (k+1)×n-1. Avid execution can produce
instructions at a sufficient rate to reduce or even eliminate the stall on misprediction, as analyzed
below in Sect. 3.2.2. The unneeded instructions are pruned asynchronously, without preempting
continuous operation of the processor, as described in Sect. 3.3.

Selecting the Avid depth can be done either statically (e.g., all conditional branches have the same
alternative path depth), or dynamically. Dynamic adjusting of Avid depth can be done per each
branch instruction, and can be based on statistics collected at run time. If confidence is applied
to prediction [JRS96, Smi81], the Avid depth can be adapted accordingly. For example, when a
saturating up-down counter is used for making prediction [LS84, YP92], predictions made at the
counter extremes are more accurate (about 85%-95% of them are correct) than predictions made
away from the counter extremes (when only about 60%-70% are correct) [Smi81]. When the
prediction confidence level is low, a deeper Avid depth should be used, and for high confidence
prediction a small Avid depth (or non at all) might be better. Obviously, k=0 for unconditional
branches.

Observe that the first edge of each alternative path described in Fig. 3-8, originating from each
branch instruction (a tree vertex), is the branch direction predicted as not being followed. The
following edges of the alternative paths are selected by branch prediction. Another option for
selecting the alternative paths in Avid execution (instead of following ‘single path’ alternatives),
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Figure 3-8:  Examples of Avid Execution depth (k).  m is the number of processor pipeline stages
between prefetch (PF) and branch resolution (EX) stages.

is to span a (limited depth) sub-tree from the path predicted as not taken. Avid execution can be
recursively applied to the alternative paths as well. Obviously, if the alternative sub-tree is as deep
as the predicted one, and follows all possible paths, then Avid execution becomes eager execution.

The more alternative paths followed by Avid execution, the more resources required. Our
simulations verify that following single path alternatives is quite adequate when prediction
accuracies are high. Spanning more alternative paths results in diminishing returns.

Some related methods have been previously proposed. IBM RS/6000 [Cra92, HP96a] predicts
every branch as not taken, but fetches instructions from the other path in case the prediction is
wrong. Instructions from the alternative path are not issued for speculative execution. Similarly,
IBM 360/91 [Cra92, HP96a] could prefetch instructions from both branch directions, but
speculative execution of instructions from both paths was not possible. The IBM 370 [Flo74] had
a small auxiliary instruction buffer for speculative prefetched instructions. Branches were
predicted as taken or not taken based on their type (i.e., opcode). Once a branch was resolved as
mispredicted, the content of the auxiliary instruction buffer was copied into the main instruction
buffer.

3.2.2  Performance Analysis of Avid Execution

Assume there are m stages in the processor between the prefetch stage (marked as ‘PF’ in
Fig. 3-8), in which instructions are fetched into the processor, and the execution stage (marked
as ‘EX’), where the branches are resolved. These stages include operations such as decoding,
renaming, operand fetching, scheduling, etc., of the instructions, as described in Ch. 2. If the Avid
depth is k=2 (Fig. 3-8 on the left), then each processor stage must be able to handle instructions
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(a)  Case I:   No penalty. (b)  Case II:   Reduced penalty.
Figure 3-9:  Misprediction penalties in Avid Execution.

from three basic blocks. For k=m, each processor stage handles instructions from m+1 basic
blocks. After the instructions of a basic block commit in-order, the entire subtree is shifted and
progresses in the processor stages, while new paths are predicted and prefetched. For every
branch on the predicted path, alternative paths (emerging from it) of length k are also predicted.
When a branch is resolved at the execution stage (possibly out-of-order), the redundant path is
pruned. Execution continues along the resolved path uninterrupted, regardless of whether it was
predicted or not. The misprediction penalty of stalling all processor stages while waiting for the
correct instructions to be fetched and handled is avoided, or reduced, as follows. Two cases of
misprediction penalty for Avid execution are presented in Fig. 3-9.

In this example, the Avid depth k=m. In Case I (Fig. 3-9(a)), execution is following the path
marked A. Assuming there is no misprediction of several previous branches, the Avid subtree
(including the alternative paths marked B to H) has been fetched and is handled in the various
stages of the processor. The first two predictions are proved correct (checkmarked ‘T’),
execution continues along path A, and paths B and C are pruned. The next prediction is incorrect
(marked ‘X’), and the rest of path A is pruned along with all the alternative paths emerging from
it (E through H). After the misprediction, execution starts following path D. Since path D has
already been predicted, fetched, and partially handled for depth m, none of the processor stages
is stalled.

Note that none of the alternative paths of the new main speculative path D has been prefetched,
so they must now be predicted and fetched. These ‘holes’ in the Avid tree are presented by dotted
lines. If there is no subsequent misprediction for at least m branches, then the Avid tree is
completed again. If a misprediction happens at a later time, e.g., at the ‘X’ mark leading to path
O, then again no misprediction penalty is incurred, since path O already has m basic blocks in the
processor.

Figure 3-9(b) shows Case II. After switching to path D, a second misprediction occurs as early
as after only * correctly predicted branches. Execution should now follow path M, which has not
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(3-5)

(3-6)

(3-7)

yet reached the execution stage. Some of the processor stages are stalled while waiting for the M
path to proceed through them. While path M moves forward towards the execution stage, its
alternative Avid paths are predicted and prefetched to restore the proper Avid tree. Since part of
the alternative path M does exist in the processor at the time of the misprediction, only a reduced
penalty is incurred. This is in contrast to what happens after misprediction on a single path
speculative execution processor, wherein the whole processor is flushed and stalled.

Average execution rate (as defined in Sect. 3.1.1) is used to measure the performance
improvement that can be achieved by Avid execution (this measure is similar to the ‘instructions
per cycle’ parameter used for synchronous processors performance). We identify the possible
cases of mispredictions, and weigh the different misprediction penalties according to the
probability of their occurrence. We concentrate on cases of having two mispredictions, separated
by some correctly predicted branches. For prediction accuracies as high as can be achieved today
(i.e., p>0.9), the probability of three successive mispredictions is (1-p)3, which is negligible. 

If i is the number of consecutive basic blocks executed without a misprediction between two
successive mispredictions, then i-1 consecutive branches were correctly predicted. The
misprediction penalty depends on the number of stages between the prefetch and execution
stages (m), on the Avid depth (k), and on the number of basic blocks executed without a
misprediction (i). The last two parameters affect the size of the ‘bubble’ in the processor. Thus,
the misprediction penalty (in ‘cycles’) is given by

and the average rate Ri is defined as

where n is the time (number of ‘cycles’) required to execute Ei instructions between the two
mispredictions.

Mispredictions which occur once every m branches or more (i.e., i$m) have the same reduced
penalty, which depends on k  (if k=m, then there is no penalty, as explained above). The total
average execution rate is defined as the weighted sum of execution rates and probabilities of all
possible cases, and is calculated as:

where p is the prediction accuracy.
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k Average Rate
[#instr/time]

% Performance

0 6.62 100

1 7.09 107

2 7.64 115

3 8.28 125

4 9.03 136

5 9.93 150

Table 3-1:  Average execution rates achieved by various Avid depths (k),
for m=5, p=0.95, and high bandwidth (execution limited by ILP).

As an example of performance improvement achievable by Avid execution, consider a case of
m=5, p=0.95, and enough hardware resources available (for the alternative paths as well) so
execution is limited only by ILP and mispredictions. As can be seen from Tab. 3-1, up to 50%
increase in performance can be achieved by Avid execution, depending on the avid depth applied.

Obviously, Avid execution can contribute more to performance gain when misprediction penalty
(m) is higher, since reducing that penalty has a larger effect on overall performance. The lower
the prediction accuracy (p), the higher the increase in performance that is achievable by Avid
execution, because mispredictions happen more often and Avid reduces the penalty paid.

On the other hand, even though Avid execution can optimally use any ‘spare’ processing
bandwidth which is not utilized due to limited parallelism in code, it might also hamper
performance if there are insufficient resources. The deeper the avid depth, the more resources are
required. Most of the instructions are pruned at early stages of the processor, but if the
bandwidth (w) is not wide enough the extra instructions might slow the execution down. Still, if
the reduction of misprediction penalty increases performance more than the decrease in execution,
the overall performance is increased. Some examples are presented and further explained by
simulation results in Sect. 3.5.

3.3  Pathmarks, Pruning Management, and Beheading Mechanism

Avid execution prefetches and executes both directions of each branch. Eventually, one of the two
commits and the other is pruned. Many of the instructions flowing through the processor should



37

be discarded. As explained in Ch. 2, Kin performs clean-up tasks (‘pruning’) on the fly, without
preempting execution, and without stalling the processor for a centralized flush. Pruning removes
the unneeded instructions, while the others (the relevant ones and the ones that are still
speculative) remain untouched. Pruning does not stall the processor: Rather, it is executed
concurrently while the processor continues to fetch, issue, execute, and commit instructions. Since
Kin is an asynchronous processor, it cannot rely on a central clock or control to be used for
simultaneously flushing unneeded instructions. Non-preemptive pruning employs pathmarks and
a distributed algorithm to discard useless instructions.

Pathmarks distinguish alternative paths. Each edge of the execution tree is assigned a unique
pathmark, based on prefix notation of binary trees. If an edge (a basic block, terminated by a
branch instruction) is marked by m, then the sequentially following edge and the branch target
edge are marked m0 and m1, respectively (Fig. 3-10). The root is marked by the empty string. The
pathmark is described by accumulating these bits as a road map to follow from the root until the
edge the instruction is on. Note that the marks of all edges in the (dashed) subtree of node n are
prefixed by n. The pathmarks, which fully identify the path, are generated dynamically during
program execution and are affixed to each instruction at prefetch, as part of the Dynamic Instance
Tag (DIT), as explained in Ch. 2.

When a branch is resolved (i.e., executed), one of the directions (according to the branch result)
is made obsolete, and all the sub tree emerging from it should be pruned. All instructions from the
obsolete subtree that have already been fetched and issued into the processor (none of them has
been committed of course) can be ‘marked for deletion’ by broadcasting a single prune() message
to all the units. This message contains the prefix that defines the sub tree to be expunged. Pruning
is performed by comparing pathmark prefixes. All instructions having a matching pathmark prefix
are discarded. Once the branch marked m is executed, the subtree that must be pruned is known:

Figure 3-10:  Pathmarks based on prefix notation.
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m1 if the branch was not taken, m0 otherwise. Respectively, a message prune(m1) or prune(m0)
is distributed to the entire processor over the pruning channels, as described in Ch. 2.
Out-of-order is supported: Assume that a branch mk (which is the k-descendant of m, where k is
some binary word) is encountered before m. An appropriate prune(mki) message (i0{0,1}) is sent.
When, at a later time, the prune(m) message is sent, it overrides the former one, which is
contained in the latter.

The pathmark length grows very fast, as one more bit is attached on every branch. On the other
hand, much of the information of the pathmark becomes irrelevant when processing progresses
down the tree. Consider a mark m, L-bits long. Once a branch instruction marked m commits, the
pathmarks of all useful subsequent instructions in the processor will be prefixed by m. Since the
m prefix is now redundant, it should be beheaded. A distributed beheading algorithm is used to
contain pathmarks growth.

To behead prefixes, a root mark R is added to the DIT (Fig. 2-2). Occasionally (e.g., every L
committed branches), a behead(R,m) message (R=path root, m=path prefix) is generated (by the
PMU) and distributed over the pruning channels.  Following the receipt of such a message, each
unit modifies each instruction it handles as follows: If the instruction’s DIT contains root mark
R and pathmark prefix m (of L bits), then the root mark is updated to R+1 and the pathmark is
left-shifted by L bits. In effect, linear pathmark growth is thus replaced by logarithmic growth of
the root mark.

A similar prefix notation of binary trees is used in the multiple path exploration scheme [Mag80,
MTM81], to distinguish between the 2m paths that are executed. However, in that application all
paths have the same length, and there is no need to use beheading since the next new 2m paths
are introduced into the processor only after one of the previous paths has committed, and the
entire processor is cleared of old instructions.

FIFOs can be used for the implementation of the pruning and beheading tables. Thus, a limited
number of messages are kept at all times. New messages arriving will ‘push’ older ones out. This
way the old and redundant messages are automatically discarded.

Since Kin processor is an asynchronous and distributed processor, races such as a new prune
message being tested against an instruction which has not been beheaded yet should be resolved.
This can be handled by either having the beheading process update the pruning tables, or
rechecking for pruning after beheading an instruction. Cumulative beheading is also handled.

The number of the execution tree levels which exist simultaneously in the processor, although
changing dynamically, is limited by the available hardware capacity. The number of bits in the



39

pathmarks reflects this limit. It need not necessarily accommodate the worst case; upon saturation,
execution may be delayed until the beheading mechanism frees some bits in the pathmarks. The
number of different root values that might exist in the processor is also limited, and the root mark
may be allowed to ‘wrap around’. A beheading message can be sent whenever a branch commits.
But, to reduce the overhead of behead messages, the beheading information is accumulated by
the PMU (see Ch. 2), and broadcasted only after L branches commit. The value of L is a function
of the commit rate in the processor and the number of bits in a pathmark.

Kin‘s Prefetch Unit generated the DITs, but it has no knowledge that an instruction is a branch,
until it is decoded and recognized as a branch in the decode unit. Since no prediction is available
for branches when they are encountered for the first time, some extra bits are used (as part of the
DIT) to indicate a basic block id. The basic block id is changed whenever the decoding unit sees
a branch instruction for the first time (it means, of course, that this branch has been treated as
predicted not-taken, but the other edge of the branch has not been prefetched). This way the
pruning (if needed) can be done to a part of an edge, starting after the mispredicted branch.

3.4  Asynchronous Architecture for Avid Execution

Avid execution is more suitable to asynchronous architectures than to synchronous ones. Since
a lot of hardware resources are utilized and the architecture is complex, a large chip is required
(or even a multi chip) to implement the processor design. As explained in Ch. 1, due to signal
propagation delays and clock distribution problems, the processor will have an architecture of a
distributed system, most suitable for asynchronous design.

The workload that the processor needs to handle is largely varied. Since an adaptive Avid depth
is applied, the amount of instructions handled varies a lot over time. Handling the register
renaming for instructions from variable paths on the execution tree requires flexible comparisons
and updating. Even the ‘in-order’ commit process is not the same as currently done in
contemporary synchronous processors, since the instructions to be committed are not necessarily
saved continuously in the ReOrder Buffer; rather, the ROB contains ‘holes’ and should be
searched associatively. A variable number of instructions can be ready to be committed at different
times. To increase performance, it is better to be able to operate at speeds close to the average
case and slow down occasionally, than to always work as slow as the worst case of the variable
load. This is easily achieved by a self timed asynchronous architecture.

Broadcasting prune and behead messages (required as part of Avid execution) to various
processor units may slow down a synchronous processor because of long signal transmission time,
affecting the clock cycle time. A dynamic and distributed algorithm is applied for instructions
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pruning, and it is most suitable for an asynchronous architecture. There is no central control, and
each unit handles the pruning at its own speed. There is no stall of the whole processor while
pruning is done, since there is no need to wait until all the units acknowledge that they have
completed the pruning. The rate in which prune and behead messages are generated and handled
is not constant, and it can vary significantly as a function of some properties of the executed
program (e.g., the length of the basic blocks), and even during the execution of a code (e.g., as
prediction accuracies change). An asynchronous architecture is tolerant to such variances, while
a synchronous design will either have to work much slower all the time, or will fail when
occasionally a long computation occurs.

Avid Execution requires a wide memory bandwidth to prefetch and decode many instructions
concurrently. Increasing code density, thus reducing the number of bytes fetched from memory,
is achieved by using a variable length instruction set. Chapter 4 describes the design of an
asynchronous instruction length decoder that speeds up the decoding of such instructions.

Avid execution was developed for asynchronous processors like Kin. Although it can be adapted
for use in a synchronous processor (if such a complex and large processor is ever feasible as a
single synchronous processor), its performance potential will not be fully exploited by a
synchronous processor, for the reasons explained above.

3.5  Simulation Results

A model of Kin with Avid execution was developed by the author, as described in Ch. 2. The
author defined the Avid execution and pruning handling algorithms that were implemented, and
specified the tests to be made, as well as analyzed their results. Simulations of synthetic traces,
and SpecInt95 benchmark programs, were carried out on the Kin model by [Sha97], with various
parameters, as explained below. This section summarizes and analyzes the simulation results.

A branch prediction algorithm, based on [YP92] was implemented. Various prediction accuracies
were obtained by changing the size of the branch target buffer (implemented as a 1-way set
associative). The pathmarks were limited to 32 bits, and 16 bits (of which at most 5 were used
during simulation run) were allocated for the root mark. Beheading was issued every two branch
commits.

Avid execution was simulated for three possible (fixed) Avid depths: k=0, 1, or 2. The processor
hardware width (i.e., the number of instructions that can be handled concurrently in each
processor unit) was varied as either 20, 40 or 80 instructions. Avid execution spanning an ‘eager’
subtree for k=2 was also simulated, and demonstrated a diminishing return, as expected. The
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p 80% 85% 90% 95% 100%

R % R % R % R % R %

k=0 3.56 100 4.97 100 6.22 100 9.95 100 19.69 100

k=1 3.56 100 4.35 88 5.52 89 6.99 70 9.90 50

k=2 3.56 100 4.35 88 4.97 80 5.54 56 6.61 33

(a) Trace with No Dependencies.

p 80% 85% 90% 95% 100%

R % R % R % R % R %

k=0 1.04 100 1.16 100 1.22 100 1.30 100 1.43 100

k=1 1.26 121 1.32 114 1.35 111 1.38 106 1.43 100

k=2 1.42 137 1.42 122 1.42 116 1.43 110 1.43 100

(b) Trace with Full Dependencies.
Figure 3-11 : Synthetic traces simulation results (for w=20).

results were at best the same as those obtained by Avid execution spanning a ‘single path’ for k=2,
and at times worse, due to high prediction accuracies and lack of resources.

Two synthetic traces were generated and simulated on a processor model of width w=20,
assuming several prediction accuracies (p=85%-100%). Each of the traces contained basic blocks
of length 5. The first trace had no dependencies between instructions, thus the performance was
limited only by branch mispredictions. The second trace was built with full dependency (i.e., every
instruction depends on its predecessor), hence execution was limited by data dependencies and
branch mispredictions.

The simulation results are summarized in Fig. 3-11. The values in the tables are the average
execution rate (i.e., the number of instructions committed per time period), and the performance
percentage of Avid execution (for k=1,2) relative to the case of a single path speculative execution
(k=0). When there are no dependencies (Fig. 3-11(a)) and no mispredictions (i.e., p=100%), Avid
execution reduces the execution rate (from 19.69, which is almost equal to the processor width
w=20), to 50% and 33%, for k=1 and 2, respectively, as expected, since it uses resources that can
be used for the ‘true’ path. Since there are no dependencies, the execution along the ‘true’ path
can proceed with no stall, except when a branch is mispredicted. When the prediction accuracy
is reduced to p=80%, Avid execution does not decrease the performance any more. With even
lower prediction accuracies, the overall performance can be increased by applying Avid execution
.
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When there are many dependencies between the instructions (Fig. 3-11(b)), the available
resources in the processor are not fully utilized, and execution is mainly stalled due to the data
dependencies. When the branch prediction is not perfect (i.e., p<100%), Avid execution can use
the ‘spare’ idle resources to work concurrently on some of  the instructions from alternative paths.
For p=95%, Avid of depth k=1 is 6% better, and Avid of depth k=2 is 10% better than the single
path speculative case. The performance improvements grow to 21% and 37% (for k=1,2,
respectively), when p=80%. Similar behavior was observed for other tested synthetic traces,
which had smaller and larger basic block sizes.

Obviously, non-synthetic programs have a mixture of dependencies between the instructions they
contain. All SpecInt95 programs were simulated with several Avid execution depths (k=0, 1, 2)
and various processor widths (w=20, 40, 80) [Sha97]. The simulation results for w=40 are
presented in Fig. 3-12, and analyzed below. Not all simulations yielded a prediction accuracies
higher than 90%, thus they do not reflect the diminishing return point, expected at higher
prediction accuracies, where Avid execution utilizes resources that might be better used in the
‘main’ predicted path. The highest prediction accuracy achieved was 97%, for the Ijpeg program.

The simulation of Compress95 (Fig. 3-12(a)) shows that for k=2, performance is best up to
p=86% (except for the case of p=84%, where k=1 performs better). Above p=88%, k=0 is best.
For Gcc (Fig. 3-12(b)), k=2 is better than k=1, up to p=83%, where they become equal. At that
point, they both give 11% higher performance than k=0. For Go program (Fig. 3-12(c)), k=2
shows better performance than either k=1, or k=0, up to p=85%. Simulation of Ijpeg
(Fig. 3-12(d)) resulted in highest performance for k=2 up to p=77%, then k=1 gives better
performance up to p=97%. They are always better than k=0. A similar behavior was seen for the
Li program (Fig. 3-12(e)), where k=2 performs better than k=1, up to p=92%. At p=93% they
switch, but are still both better than k=0. M88ksim program (Fig. 3-12(f)) also behaves the same,
but the switch in performance gain between k=2 and k=1 occurs at p=76%. For Perl
(Fig. 3-12(g)), k=2 is best up to p=86%, and then k=1 is better but k=0 becomes the best. Vortex
(Fig. 3-12(h)) always resulted in best performance for k=2 (up to p=95%), while even k=1 was
better than k=0.

As explained in Sect. 3.1, the average execution rate is affected by several parameters, namely the
instruction level parallelism, the prediction accuracy, the processor width and the misprediction
penalty (pipeline depth). The effects of prediction accuracies and different instruction level
parallelism are shown in Fig. 3-12. To demonstrate the effects of the other parameters on the
execution rate and the performance gain by applying Avid execution, the same program
(M88ksim) was simulated on the Kin model, with different parameter values. The results are
summarized in Tab. 3-2.
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(a)  Compress95 (b)  Gcc

(c)  Go (d)  Ijpeg

(e)  Li (f)  M88ksim

(g)  Perl (h)  Vortex
Figure 3-12:  SpecInt95 simulation results (for w=40). The graphs describe the average execution rate (R)
as a function of prediction accuracy (p), with Avid execution depth (k) as the parameter.

Table 3-2 contains both the absolute values of the execution rates measured for every case, as
well as the performance percentage relative to what was achieved by k=0 in each comparable case.
As can be seen, when the processor width is doubled from w=20 to w=40, the execution rate (for
k=0) increases by less than 8% in the best case. This is due to execution rate limited by instruction
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level parallelism (data dependencies) and misprediction penalty. However, Avid execution has
more free resources to utilize and for p=88% increases the performance by 6% in case of w=20,
and by 12% in case of w=40. For p=71%, performance is better by 20-30% when Avid execution
is applied. Further increasing the processor width to w=80, results in a diminishing return, due to
the limited parallelism found in the program. It is worth noting that the simulation model suffered
from a limited number of pathmark bits (which causes the processing of Kin to stall when
pathmark bits are exhausted, until some are beheaded). This can be avoided if more bits are
allocated for the pathmarks, but it is not expected to change the results very much.

The wider the processor, the more instructions are handled concurrently. Thus, more branch
instructions are executed, more mispredictions happen per time period, and more often the
misprediction penalty has to be paid. As can be seen from Tab. 3-2, k=2 is better than k=1 only
up to p=76% for w=20, and w=40, but it remains better for p=88% for w=80. Similar behavior
was observed for the other traces simulated, where the ‘switch’ between the performance gains
of k=0,1,2 occurs at different prediction accuracies, depending on the processor width.

Kin does not have a pure pipeline structure, but the units in it can be viewed abstractly as pipeline
stages. By changing relative timing of the units we could change the pipeline effective ‘depth’, and
affect the misprediction penalty. Setting the processor width to w=20, and changing the pipeline
depth (the misprediction penalty) is also described in Tab. 3-2. Although the execution rates
increase because of the lesser stall on each misprediction, the performance increase gained by
Avid execution remains relatively the same (comparing by percentage of improvements).

Due to the limited number of pathmark bits implemented in the simulated model, we tested the
effect of deeper Avid depth by using a very short pipeline (equal to 2-3 stages deep, compared
to maximum Avid depth of k=2). As can be noticed from the results in Table 3-2, the execution
rates increased due to the even smaller misprediction penalty, and Avid execution resulted in an
average performance improvement of 25% for the case p=88%, and much more (up to 80%
better) for lower prediction accuracies.

Another interesting effect of Avid execution found in the simulations was regarding the total
number of instructions (and bytes) fetched from the memory. In several cases k=1 actually
resulted in less instructions being fetched, since k=0 had to flush many of the instructions brought
from memory. Hence, Avid execution not always resulted in an increased memory bandwidth.

We only implemented and simulated a fixed Avid depth scheme. It indicates however that better
performance can be achieved when an adaptive Avid depth is used, based on prediction accuracy
(or prediction confidence) of each branch, as defined in Sect. 3.2.
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p 50% 56% 61% 71% 76% 83% 88%

R % R % R % R % R % R % R %

w=20

k=0 2.29 100 2.65 100 2.79 100 3.87 100 4.10 100 4.78 100 5.32 100

k=1 3.35 146 3.43 129 3.88 139 4.54 117 4.91 120 5.55 116 5.65 106

k=2 3.73 163 3.92 148 4.24 152 5.00 129 5.14 125 5.51 115 5.62 106

w=40

k=0 2.27 100 2.63 100 2.83 100 4.03 100 4.42 100 5.07 100 5.48 100

k=1 3.51 155 3.55 135 4.08 144 4.84 120 5.34 121 6.14 121 6.14 112

k=2 3.94 174 4.31 164 4.50 159 5.22 130 5.69 129 6.09 120 6.09 111

w=80

k=0 2.39 100 2.70 100 2.96 100 4.01 100 4.39 100 4.70 100 5.48 100

k=1 3.63 152 3.66 136 4.23 143 4.96 124 5.22 119 5.68 121 6.00 109

k=2 4.13 173 4.47 166 4.64 157 5.27 131 5.47 125 5.94 126 6.05 110

w=20,  Shorter pipeline

k=0 3.46 100 3.91 100 4.12 100 5.44 100 5.65 100 6.74 100 7.51 100

k=1 5.04 146 5.12 131 5.65 137 6.64 122 6.93 123 7.81 116 7.83 104

k=2 5.49 159 5.74 147 6.14 149 7.12 131 7.38 131 7.86 117 7.95 106

w=20, Very short pipeline

k=0 3.51 100 4.04 100 4.21 100 5.38 100 6.06 100 6.93 100 8.38 100

k=1 5.51 157 5.53 137 6.26 149 7.19 134 7.83 129 9.13 132 10.34 123

k=2 6.35 181 6.77 168 6.98 166 7.99 149 8.62 142 9.57 138 10.63 127

Table 3-2:  M88ksim trace simulations performance results.

3.6  Concluding Remarks

Greater investments in hardware resources might result in diminishing returns, when no
meaningful performance increase is achieved and performance might even suffer because of larger
chips and deeper pipelines. Avid execution is aimed at better utilization of the available resources.

We have developed, analyzed, and simulated the Avid execution concept, along with proper
pruning and behead mechanisms. The Avid parameters (e.g., depth) can be adjusted dynamically
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according to prediction confidence. We introduced the Dynamic Instance Tag (DIT) to uniquely
define a path, and defined a set of operations on the DIT to insure that useful computation is
executed and useless computation is discarded. Avid execution applies pathmarks and pruning to
execute instructions from many paths as soon as their operands are ready, but stop executing the
remaining instructions on a path as soon as it is known that it will not be taken.

We have simulated a fixed Avid scheme, but other alternatives (e.g., dynamically adjusted, and
various spanning trees) were defined, and should be further simulated and analyzed regarding their
effect on performance. The structure of the spanned tree (the Avid depth and width) can be
dynamically adjusted, depending, for example, on the prediction accuracy, the prediction
confidence, and the distance (in tree levels) from the main predicted path (without computing
cumulative probabilities). We expect higher performance improvements when a dynamic Avid is
applied.

Asynchronous architectures (such as Kin) are best suitable for Avid execution, because of the
design complexity (large chips) and great variance of computation load. As explained in Sect. 3.5,
Avid execution does not necessarily result in excessive memory bandwidth requirements.

As any speculative algorithm, Avid execution is limited by branches whose target address varies
and is not predictable because it is calculated at run-time (e.g., a jump through a register). These
branches can either be handled by the compiler (e.g., by replacing a multiple target branch with
a sequence of compare and jump instructions), or by better predictors implemented in hardware.
When Avid execution detects a mispredicted branch target, all instructions in the processor are
pruned, and execution continues from the correct address with a new root number, so no
centralized flushing is required.

Avid execution can use ‘hints,’ which may be provided to it by the compiler, regarding what to
do with the branch the first or each time it is encountered. The help provided by a compiler can
include initial information about the target address, the branch prediction, the branching
probability, and the recommended depth of Avid execution, per each branch instruction.
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Chapter 4 : An Asynchronous Instruction Length Decoder

Kin architecture is asynchronous at its highest level, while the implementation of each module can
follow almost any timing discipline. To complete this investigation at all levels of the design, a
fully asynchronous implementation of a non-trivial module in Kin has also been attempted. This
author has been fortunate to take part in such a study performed at Intel Corporation. While the
Intel team focused on ‘hacking’ an asynchronous instruction length decoder (AILD) for best
performance, the author investigated a strictly formal specification of the same module, employing
the statechart tool (Ch. 7). Thus, the architecture of the AILD presented in this chapter is not the
same as the circuit designed at Intel. A secondary purpose of this effort was to provide a
verification frame for the Intel project. The third goal was to investigate the applicability of the
statechart tool and of our methodology to the complete design cycle. At the same time, the author
also contributed to the Intel design, as described below.

Avid Execution (Ch. 3) requires a wide memory bandwidth to prefetch and decode many
instructions concurrently. While a variable length instruction set reduces the number of bytes that
need to be fetched from memory, its decoding is difficult and may pose a bottleneck in a high
performance microprocessor. The AILD architecture employs extensive parallelism to accelerate
this operation as much as possible. 

4.1  Introduction

The Intel x86 processor family implements a variable length instruction architecture wherein
instructions can vary in length from one byte to eleven bytes or more [Int94]. However, memory
systems, and in particular the cache memory used to store instructions prior to execution, typically
store data in fixed size blocks, such as 16 bytes. Instructions are fetched in 16 byte lines aligned
on 16 byte boundaries. Accordingly, in a variable length instruction architecture, each fixed sized
line fetched from memory contains instructions of various lengths that may start anywhere within
the line and may even cross line boundaries.

The decoding of a variable length instruction is, by nature, a serial operation, since the beginning
of a particular instruction can be determined with certainty only after the beginning and length of
a previous instruction have been determined. To decode several instructions concurrently, a fast
length decoding mechanism is needed to mark the beginning of each instruction, before the
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relevant bytes can be sent to be decoded. Decoding variable length instructions is rather simple
if the length is explicitly stated at the beginning of each instruction, or a ‘control field’ is
associated with each group of instructions, indicating the layout of the instructions within the
group, as in [End95]. Neither of  these cases applies to the x86 instruction set, and cannot be used
for existing programs code. In the AMD-K5 [Chr96], which is an x86-compatible microprocessor,
the decoder partially decodes instructions in a serial manner when they enter the instruction cache.
Five bits of information are stored along with each byte to indicate instruction boundaries,
distinguish between key bytes such as prefix versus opcode, etc. This adds a large amount of
overhead in the cache size, and does not avoid the serial decoding of instruction length. In this
chapter we describe the architecture of a highly parallel asynchronous instruction length decoder.
Lengths are speculatively calculated in parallel, and a fast marking mechanism is used to detect
the first byte of each instruction.

Current implementations of the variable length instruction decoding circuits are synchronous
(clocked). Each unit in a synchronous system must complete its calculation within the given clock
cycle, and the clock cycle is determined according to the worst case delay of all units. Hence, the
design should be optimized for the worst case, even though only a small subset of all the
instructions in the instruction set are encountered most of the time. Unlike synchronous circuits,
the asynchronous instruction length decoder can be optimized for the most frequently used
instructions, by handling the common cases very fast, while rare cases are handled more slowly.

The self-timed design of the instruction length decoder is optimized for the common (most
frequent) instructions, and its speed is not limited by the slowest path. Thus, average case (instead
of worst case) performance can be achieved. There is no need to optimize the rarely used circuits
and computations, and data dependency is exploited for faster operation. The design takes
advantage of the fact that a small subset of the instructions are executed most frequently, and the
length decoding is optimized for this subset. Statistical analysis [BGK+97] of instruction traces
of SpecInt92 benchmark programs shows that only 30% of all possible opcodes are used for 90%
of the time. The statistical analysis also indicates [BGK+97, HP96a] that 99.8% of the instructions
are seven bytes long or less, and 92% are no longer than 5 bytes. Only 1% of the instructions
include a prefix.

The format of an instruction from the x86 instruction set [Int94] consists of an opcode, ModR/M
and SIB bytes, and displacement and immediate fields. All the parts except the opcode are
optional. The opcode is either one- or two- bytes long. The existence of a ModR/M byte depends
on the opcode, with no easy-to-decode rule. When present, the ModR/M byte indicates the
existence of the SIB byte and the existence and length of the displacement and immediate fields
(up to four bytes each). Some instructions have a displacement field even though there is no
ModR/M byte. An instruction may be preceded by prefix bytes which affect the instruction. Only
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two prefixes affect the instruction length. The maximum valid instruction length is 11 bytes
(excluding prefixes). The length of an instruction is defined by up to four bytes (1-2 bytes opcode,
and more optional bytes), however, in many cases a single byte suffices.

The AILD design is optimized for the common cases (common instructions and lengths), while
rare cases are handled more slowly. The goal was to decode 3-4 instructions in one nanosecond,
which is five times faster than a 200MHz PentiumPro processor.

4.1.1  Author’s Contribution

The design and implementation of an asynchronous x86 instruction length decoder were
undertaken at Intel Corporation by a group of researchers [BGK+97]. This section seeks to clarify
the contribution of the author to the work described in this chapter.

The author participated in the design of the AILD, and contributed to the architecture definition,
design methodology, and logic design. Considering alternative designs, making design decisions,
and choosing an implementation for the AILD were done by the whole group but with substantial
input from the author.

The entire AILD architecture and interfaces between the modules were specified and codified by
the author using statechart models (some examples are shown in Sects. 4.2.1 and 4.2.5). It
contributed to the completeness and correctness of the architecture and better understanding of
the control protocols needed to be implemented. It defined the module behaviors at various levels
of details.

Section 4.2.1 contains the description of the AILD architecture. The author contributed to the
design by defining a regular structure of the columns, including the routing of the many marking
lines that flow between columns and rows. The author also defined the logic for decoding the
marking and priority encoded switches for the steering circuit, based on the one-hot encoding of
the lengths.

The author contributed to the definition and characterization of handling special cases, such as
prefixes, long instructions, and branches, which are described in Sects. 4.2.2-4.2.4.

The author did not directly contribute to the implementation synthesis, described in Sect. 4.3; it
is brought for completeness of the description. However, the statechart model built by the author
was used to help understanding the architecture and changes made during the implementation
phase.
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Figure 4-1:  Block diagram of the Asynchronous Instruction Length
Decoder architecture.

4.2  AILD Architecture

4.2.1  General Description

A block diagram of the asynchronous instruction length decoder architecture is shown in Fig. 4-1.
It consists of multiple identical units arranged in ‘columns’, corresponding to each byte in the
input instruction line. Thus, for a 16-bytes instruction line, there are 16 columns. Each column
includes a byte latch (which stores the byte from the instruction line), length decoding logic,
marking units, and cross-bar switches.

Once a new instruction line is fetched from the fixed line-size memory, each byte of the instruction
line is separately input to a corresponding byte latch, and processed in the length decoder of that
column. Once all bytes are latched, a new instruction line can be made available. Each length
decoder processes the respective byte, together with any additional bytes as may be required by
the length decoding algorithm. The length decoders compute the length of the instruction,
assuming that the byte being processed is the first byte of an instruction. Since all length decoders
perform the calculations in parallel, all speculative lengths are available, and once a column is
marked as being the first byte of an instruction, the proper bytes can be steered to the instruction
decoder unit.
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Figure 4-2:  Length decoder interconnections and handshake signals.

The AILD design is optimized for common cases, and the handling of rare cases involves
communication between length decoders, as explained below. The handshake signals and
interconnections between length decoders, and between length decoders and marking units are
described in Fig. 4-2. Thin lines indicate single lines, and thick lines denote groups of several lines.
The use of each signal is described in the following sections.

The length decoder outputs the speculative length to the marking units in its column. The length
is used to mark the first byte of the next instruction, if the current column is found to be the first
byte of an instruction. The marking lines are directly coupled to the proper marking units of
subsequent instruction bytes. The marking outputs of the marking units in columns close to the
end of the line, are wrapped around to the marking units at the beginning of the line, and therefore
mark the first byte of the first instruction in the next fetched line. The generation and transmission
of the marking information flow through the marking units in a self-timed manner. Since the
marking scheme is very fast, a possible bottleneck might occur at the steering circuit which
transfers the instruction bytes to a buffer at the instruction decoder unit. The marking propagates
and wraps around before the bytes are steered forward and replaced by new bytes from next line.
To avoid such a stall, several ‘rows’ of marking units and steering circuits are used. The marking
signals from row k are hardwired to the marking unit of row k+1, modulo the number of rows
(see Figs. 4-1, 4-3). The number of rows is defined by the timing of the marking process. Dashed
lined in Fig. 4-1 demonstrate examples of marking between columns and rows.
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Figure 4-3:  Marking unit interconnections and handshake signals.

A marking unit waits for an indication that its column contains the first byte of an instruction, as
provided by the marking signal received over the marking lines from previous marking units
(Fig. 4-3). A marking unit also waits for an indication that the bytes that comprise the instruction
have been loaded into their respective byte latches and are ready for transmission. This indication
is given by the Inst_Rdy signal, provided by the length decoder over the handshake lines (see Figs.
4-2, 4-3). The Buf_Avail signal, produced by the instruction steering circuit, indicates to a
marking unit that the instruction steering circuit is available to receive an instruction for decoding
and execution. These signals can arrive in any order. The instruction bytes are transferred to the
output buffer of the same row as the marking unit that has processed those instruction bytes, and
thus are incrementally spread across each output buffer, and can be fetched in order by the
instruction decoder unit. The length of the instruction, as well as some other indications (such as
Long and Pref, as explained below), are also transferred to the buffer along with the instruction
bytes.

4.2.2  Handling Branch Instructions

Branch instructions can change the control flow in a program. As explained in Ch. 3, branch
prediction is applied to prevent stall in the processor operation, by predicting whether a branch
instruction will be taken, and what its target address will be. The proper information is added to
the bytes fetched from the cache line. A branch instruction can appear at any byte location in a
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cache line, and the bytes following a taken branch are not used. Similarly, bytes preceding a
branch target in a line are irrelevant. Each byte in the line can have at most one of three mutually
exclusive indication bits set: taken_branch (the byte is the first byte of a branch instruction
predicted as taken), branch_target (the byte is the first byte of an instruction which is a target of
a branch), unused (the byte is not part of any instruction and should be ignored, e.g., bytes
between the branch instruction and the target instruction).

When an instruction indicated as a taken branch is marked, the next marked instruction should be
the instruction at the branch target, rather than the next instruction in sequential order. Branch
handling units (Fig. 4-1) are used to control the marking of branch instructions in the rows of the
instruction marking circuit. When a taken_branch indication is set, normal marking of the next
instruction is aborted and the branch handling logic is activated. Instead of sending a marking
signal to a marking unit on the next row, a token_out signal (Fig. 4-3) is sent to the branch
handling unit of the next row, indicating that a target instruction should be marked as the next
instruction. The branch handling circuit for the next row signals  all marking units of that row (by
the inject line, Fig. 4-3) that the first byte of the target instruction is identified by a set
branch_target bit. The column containing the byte having its branch_target bit set will thus be
marked by the branch marking process. The normal self-timed marking process then continues
with subsequent columns, as explained in Sect. 4.2.1. A branch target FIFO buffer is used to avoid
conflicts caused when multiple instruction bytes have their branch_target bits set in a single
instruction line [BGK+97].

4.2.3  Handling Long Instructions

The marking and steering mechanisms described above can handle instructions of any
pre-determined instruction length. However, the x86 instructions are typically short (i.e., length
1-7), while the maximum instruction length is 11. If the marking and steering are implemented for
length n+1 instead of length n, then n+1 additional wires are needed and cross each column, each
row. Having dedicated marking lines for lengths 8 to 11 will require about 40 more lines per
marking unit row, which implies more area, wires, power, and latency, and will complicate the
design of the marking circuit. Thus, the AILD is optimized for the most frequent instruction
lengths, and long instructions are handled by a special mechanism (without using dedicated
marking lines) as described in this section.

Since the most frequent instruction lengths are short, the AILD accordingly implements the
self-timed marking and steering for up to length 7. Longer instructions are handled by being
separated into two parts, head and tail, each at most 7 bytes long. There are two possible
solutions to handle the two parts of a long instruction. The first one handles long instructions by
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having an instruction head of a fixed length (equal to 4), with a variable length of the instruction
tail (4-7 bytes long). The second solution handles long instructions by having an instruction tail
of a fixed length (equal to 7), with a variable length of the instruction head (1-4). As described
in Fig. 4-2, the first solution was preferred for the AILD architecture, since it requires the length
decoder to communicate with only one other length decoder (rather than four), and thus less
handshake lines are needed.

The algorithm of handling a long instruction according to the first solution (fixed head, variable
tail) is as follows. The length decoder at column i (LDi) decodes the actual length (say 10). When
column i is marked as containing the first byte of an instruction, LDi sends to the length decoder
of column i+4 (modulo the number of  bytes in the memory line) a long instruction indication,
with the tail length (say 10-4=6). This is done via the Long_Out lines, which are the Long_In lines
for the receiving column (Fig. 4-2). The four possible tail lengths are encoded as one-hot lines,
for the reasons explained below. LDi+4 acknowledges the message, via the Long_Out_Ack line
(Fig. 4-2). LDi sets its length output to 4, while LDi+4 sets its length output to the tail length, as
indicated by its Long_In lines (say 6). The marking and steering of the head and tail operate as
described above in Section 4.2.1. The head is placed in output buffer k (where k is the row
number of the marking unit that was indicated as the first byte of the instruction). The tail is
placed in output buffer k+1 (modulo the number of rows). A Long indication bit is also sent to
the output buffer k, so that the instruction decoder unit would know the bytes in that buffer are
only the head of the instruction.

4.2.4  Handling Prefixes

The opcode of an instruction may be prefixed by (up to four) prefix bytes [Int94]. The prefixes
are one byte long each, and are uniquely defined by that one byte. Prefixes have neither value nor
operands, and typically the instruction decoder sets a single bit flag when a prefix is encountered.
There are only two prefix values, operand size (66H) and address size (67H), which affect the
length of an instruction. Each of these prefixes affects the instruction length in a different way.

Since each length decoder speculatively calculates the instruction length assuming that an
instruction starts at the byte of its column, prefixes cause a problem with this paradigm. However,
prefixes are hardly used at all (statistical analysis shows only 1% of the instructions to have a
prefix). The solution (for the AILD) is to consider a prefix as an instruction of length one. A
prefix is decoded as a separate instruction, and information about it is forwarded to the affected
instruction.

The length decoder in column i detects whether the byte in its column is a prefix. Each prefix
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(length affecting or not) is decoded as an instruction of length one. The information about length
affecting prefixes is accumulated and passed on until the first byte of the instruction is reached,
and these indications are then used to recalculate the instruction length. The indication passed on
by length decoder i (LDi) to the next length decoder (LDi+1) is based on the indication received
from the previous length decoder (LDi-1) about prefixes detected, and the current byte (in column
i). Handshake lines, as described below, are used for communication in case of a length affecting
prefix.

The algorithm of prefix handling is as follows. The length decoder at column i (LDi) detects byte
i (Bi) as a prefix. LDi uses any previous prefix indication and current byte information to
determine which information (if any) to send to LDi+1. When column i is marked, LDi sends the
prefix information to the length decoder in the next column (LDi+1) on the prefix lines (encoded
as one-hot lines for the three possible cases: 66, 67, or both). The prefix indication is done via the
Pref_Out lines. Pref_Out lines of column i are the Pref_In lines of column i+1 (Fig. 4-2). LDi+1
acknowledges the prefix lines (via the Pref_Out_Ack line, see Fig. 4-2) and latches that
information. LDi sets its length output to one. If the byte in column i is not a prefix, namely it is
the first byte of an instruction, then LDi+1 redoes its length calculation according to the prefix
indications it has received. The marking and steering in both columns i and i+1 proceed as
described in Sect. 4.2.1.

4.2.5  The Length Decoder Operation

The entire AILD architecture was specified by using statecharts, to guarantee completeness and
correctness of the architecture and interconnections between the modules. The statechart of the
length decoder (Fig. 4-4) is presented in this section as an (abstract) example. This is only a
partially detailed statechart (as some details are eliminated to make it more clear), but it
summarizes the various options the length decoder handles. For the syntax and use of statecharts,
refer to Ch. 7. The following operational description depends on the detailed discussions of the
previous sections.

When a new byte is latched in the byte latch, the length decoder starts to decode it. If it receives
an indication over the Select_In lines (case marked by ‘Î’ in Fig. 4-4), it knows the byte is one
of the bytes of an instruction which started at some previous column. When the current byte is
steered to one of the output buffers (i.e., when valid_ack becomes false, marked by ‘ÎÎ’ in
Fig. 4-4), the length decoder operation is restarted to prepare to handle the next byte.

A Long_In indication (‘Ï’ in Fig. 4-4) means that the byte is the first byte of the tail of an
instruction, and the length is forced to the value received. An input at the Pref_In lines (‘Ð’ in
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Figure 4-4:  A simplified statechart of length decoder behavior.

Fig. 4-4) indicates that a length affecting prefix has been detected, and the length is recalculated
accordingly.

If none of the above three cases occur,  further handling depends on the column being marked.
If the byte is recognized as a prefix (refer to ‘Ø’ in Fig. 4-4), the length is forced to 1 (as
explained above), and for a length affecting prefix, the information is sent to the length decoder
at the next column by a proper handshake protocol. Otherwise, the byte is handled as the first byte
of an instruction (provided, of course, it is not an unused byte). If the length calculated is longer
than 7 (‘Ù’ in Fig. 4-4), the handshake over the Long_Out line is initiated, and the length is forced
to 4 (the fixed head length), as explained above. When either the local length is short, or forced
to a short value, (‘Ú’ in Fig. 4-4) the marking process continues by the marking units, as detailed
above.

In summary, the events detailed above (and described in Fig. 4-4) are mutually exclusive: Either
a byte is selected as part of an instruction (if one of the Select_In lines is activated), or it is
marked. If it is marked, it is either signaled to respond to a previous detected prefix (if one of the
Pref_In lines is set), or signaled (by Long_In lines) to be the tail of a long instruction, or (when
Inst_Rdy_Ack arrives) to use the result of its local computation regarding prefix, long and short
instructions.
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4.3  AILD Implementation

Four phase handshake protocols are used for the communication between length decoders, and
between length decoders and marking units, as can be observed from the different signals and
acknowledge lines in Figs. 4-2, and 4-3. All units in the AILD are designed as self-timed circuits.
Completion detection and data transferred could be implemented using the bundled-data approach
[Hau95]. However, it would require design effort to guarantee fulfillment of the bundling
condition between the units, and prevent taking advantage of variable data dependent delays.
When the possible data values to be communicated are few, it is better to encode them using a
delay insensitive code [Ver88]. We have chosen to use one-hot encoded lines for the lengths sent
from the length decoders to the marking units, and for the long and prefix indications sent
between length decoders. When one of the input lines is set, the receiving unit is signaled to
handle the input, according to the value uniquely defined by the set line. Using the one-hot
encoding for the instruction length, for example, makes the marking and selecting (for steering)
logic implementation simpler [BGK+97].

For higher performance, the delay-insensitive operation of some of the signals was compromised,
and they were implemented as self-resetting signals. These signals are pulsed, based on timing
assumptions, to accelerate operation by eliminating the use of handshake protocols (e.g., there
is no acknowledge of a mark being received) [BGK+97].

The length decoding logic was designed as a self-timed circuit, optimized for the common
instructions, thus achieving better average case performance [BGK+97]. Statistical information
was used to implement the length decoding logic as an unbalanced tree of gates (skewed
monotonic logic), where frequently occurring instructions are decoded using shorter paths of logic
and rare instructions are decoded using longer paths. Dual-rail and self-timing approach are used
for a monotonic and hazard free domino logic implementation. Completion detection is done by
having the output length encoded as one-hot lines. The contribution to the length calculation from
following bytes (other than the byte from the length decoder column) is calculated separately, and
combined only at the last stage, so that if they are not needed and not ready they do not stall the
local calculation.

The controllers of the various AILD units were specified as either burst-mode or timed circuits,
and were synthesized by the appropriate tools [Yun96, Mye95]. Several levels in the design
hierarchy were formally verified [Ste94].
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4.4  Concluding Remarks

Decoding variable length instruction sets is a major bottleneck in high performance processors.
The design of an asynchronous instruction length decoder was described as an example of
applying self-timed techniques and using asynchronous design for high performance circuits. The
design is optimized for the common cases, thus achieving a better average case performance. The
complex design of the AILD was achieved by integrating various concepts of asynchronous design
methodologies. The architecture design of the AILD is independent of the implementation style
of its modules.

The AILD architecture is based on speculative parallel length computation with a fast marking
system. It is optimized to handle the common cases (instruction lengths and types) very fast, and
provides proper mechanisms to handle special cases (i.e., rare instructions, prefixes, long
instructions, and branches). Asynchronous control, based on one-hot encoding and handshake
communication are applied, and the circuit operation is event driven, reacting to computation
completion.

Currently, the AILD design is being implemented in Silicon and sent for fabrication. It is expected
to be tested and analyzed within a few months.
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Chapter 5 : A Doubly-Latched Asynchronous Pipeline

Synchronous and asynchronous systems use pipelines as their basic architecture. The faster the
pipeline, the better the performance. The pipeline structure is widely used as the basis of computer
architecture, and other processing modules, in order to increase performance [HP96a, WH90].
Kin architecture (described in Ch. 2) can be considered a complex, non-linear, pipeline. Each of
the modules in the processor can be implemented internally as a pipeline, for higher parallelism
and performance.

In this chapter we present the Doubly-Latched Asynchronous Pipeline (DLAP), developed as part
of our research. The DLAP is an asynchronous pipeline with master-slave (dual) registers, which
offers improved performance. DLAP is capable of truly decoupled operation: All pipeline stages
can shift data simultaneously, and execution is faster than previous asynchronous pipeline designs
when variable delays are encountered. Implementations based on both edge triggered registers and
transparent latches are shown, fully analyzed, and compared to previous designs.

Converting synchronously designed circuits into asynchronous ones has the advantage of using
existing synchronous synthesis tools, and achieving data dependent and low power operation,
without redesigning the circuit. DLAP was found suitable for automatic synchronous-to-
asynchronous conversion.

5.1  Introduction

Asynchronous micropipelines were first introduced in [Sut89]. They were based on a 2-phase
communication protocol. Four-phase handshake protocol pipelines are presented in [MBM89,
MBM91], where edge triggered registers are employed. Various similar control structures were
proposed in order to enhance the performance of the asynchronous pipeline [DW95, FD96, FL96,
YBA96], based on either edge triggered registers or transparent (level sensitive) latches.
However, all those asynchronous pipeline designs suffer from one of the following drawbacks:
They either achieve only 50% utilization of the pipeline stages (only every other stage is active
at any one time, while idle stages contain bubbles), or (in some cases) incur a long backwards
propagation of the acknowledge signals. The backwards latching scheme cannot be avoided when
only a single register is used in each stage, since a storage element cannot release its value until
the following stage has signaled that it is ready for another value. This might result in a major



60

performance problem for deeply pipelined circuits, e.g., rings or linear pipes with data dependent
stage delays. In [SS93] it was shown that pipeline performance depends on the number of bubbles,
namely registers ready to accept new values. When only a single bubble exists in the above
mentioned designs, their performance is limited by the lack of bubbles. Synchronous pipelines, on
the other hand, are not limited: If each register is master-slave, then a bubble is always available,
and all values can propagate simultaneously.

Asynchronous circuits are expected to achieve lower power consumption and/or higher
performance, by eliminating the driving clock. In addition, computational delays can be data
dependent. While synchronous designs are timed according to the worst case delay over all stages,
asynchronous circuits can be designed to determine and signal its own completion time, typically
saving time and power. On average, self-timed operation with completion detection results in
about 2× speedup of the individual units; power saving depends on the particular application, but
can reach as high as 80% [vBB+94]. We have developed an algorithm for converting synchronous
circuits into asynchronous ones, thus exploiting some advantages of asynchronous circuits while
retaining investments in synchronous designs and tools.

A general description of the DLAP structure and operation is presented in Sect. 5.2. The design
of edge-triggered registers and transparent latches based DLAP and implementation details are
described in Sects. 5.3 and 5.4, respectively. Simulation results and comparative analysis are
reported in Sect. 5.5. Section 5.6 extends the DLAP concept to non-linear pipelines, and Sect. 5.7
defines the synchronous-to-asynchronous conversion algorithm.

5.2  The Doubly-Latched Asynchronous Pipeline

DLAP (Doubly-Latched Asynchronous Pipeline) is shown in Fig. 5-1. It is designed for a single
rail, 4-phase communication protocol between the stages. DLAP imitates the operation of a
synchronous master-slave pipeline, by decoupling the pipeline stages. If the pipeline is balanced,
DLAP operates the same as a synchronous pipeline: since all pipeline stages finish their
computation at the same time, they can all latch the values concurrently into the master part of
the registers, while the slave parts retain the previous values. Subsequently, all values latched into
the masters are simultaneously transferred to the slaves. DLAP takes advantage of variable delays,
as other asynchronous pipelines do. However, unlike other implementations, DLAP is truly
decoupled: Thanks to double latching, a stage that has completed early can start processing the
next data even if the following stage is still occupied. This is demonstrated in Sect. 5.5 below.
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Figure 5-1:  A Doubly-Latched Asynchronous Pipeline (DLAP).

Figure 5-2:  A DLAP stage structure.

Figure 5-3:  The DLAP test circuit.

A single stage controller for DLAP is shown in Fig. 5-2. The controller communicates with
neighbor stages by Ready (Ri, Ro) and Acknowledge (Ai, Ao) lines. The latching of data into the
master and slave registers is controlled by appropriate signals (Lm, Ls). The Done lines (Dm, Ds)
signal when latching has occurred. If the Done signals cannot be generated by the registers, they
can be created by routing back the Latch signals after passing through all the registers in the
column, ensuring that all have been triggered [Pav94].

An example DLAP test circuit is shown in Fig. 5-3. The ReadyOut signal emerging from stage
i is delayed before entering stage i+1. That delay matches the computation delay of the
combinational logic between the two stages. We employ an asymmetrical delay [Sei80] in order
to make the reset phase as short as possible. If the logic generates a completion signal (e.g.,
DCVSL [MBM89] or dynamic logic [FL96]), there is no need to add a special matched delay in
the control circuit: ReadyOut feeds the combinational logic and the completion signal serves as
ReadyIn for the following controller.
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Figure 5-4:  STG for a Master-Slave Edge
Triggered stage controller.

Figure 5-5:  A Master-Slave Edge Triggered
stage controller circuit implementation.

DLAP can be implemented with either edge-triggered registers or transparent latches, as discussed
in the following two sections. In the former case the control is simpler, while in the latter case
simpler registers may be employed.

5.3  Edge-Triggered DLAP

The behavior of a controller for an edge triggered register based DLAP stage is defined by the
Signal Transition Graph (STG) [Chu87] of Fig. 5-4. STG nodes represent signal transitions
(underlined signals are inputs), directed edges are precedence relations, and the black dots are
tokens, shown at the initial marking. The graph is ‘executed’ by moving tokens around. A
transition is enabled by the presence of tokens on all edges leading to it. The transition removes
those tokens and places new ones on all edges emanating from it (thus, the number of tokens may
change). As described in Fig. 5-4, the master register is activated by the rising edge of Lm when
a new value is ready (Ri is set), and the previous value has been moved to the slave (as marked
by the internal signal B, for ‘bubble’). Similarly, the slave register is activated by the rising edge
of Ls, when a new value is ready at the master, and the previous value has been consumed by the
following pipeline stage. Petrify [CKK+96] has been employed to ensure that the STG is safe,
persistent, and has a complete state coding so it can be implemented as a speed independent
circuit with no hazards. The control circuit implementation synthesized by Petrify is depicted in
Fig. 5-5.

Some waveforms obtained from the simulation of a DLAP test circuit (Fig. 5-3) based on edge
triggered registers are presented in Fig. 5-8. We have designed the two types of DLAP (edge
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triggered and latched), and have simulated them with SPICE for a 0.8:, 5V, typical CMOS
process. Transistor sizing are optimized for speed and symmetric transitions. We have loaded the
latch control signals (Lm, Ls) to simulate the drive of 32 bit registers. The simulated register
driving delay time is 0.9nS. Note that this delay is included in the cycle time (to ensure the correct
operation of the control circuit). The relative timings are summarized in Sect. 5.5. Observe that
since the pipeline is balanced, all Ri lines are set simultaneously. Consequently, all masters are
triggered simultaneously (Lm lines). After completing the handshake on the Ai/Ao lines, all the
slaves are triggered (Ls lines), and Ro signals are set. Following the computational delays, the Ris
are set again. The cycle time (from Ri+ to the following Ri+) is 10.9nS, which includes a
combinational logic delay of 5.03nS, a logic reset delay of 1nS, and four times 0.9nS for driving
the two registers. In other words, the control overhead is only 1.27nS. The response time (passing
the data through the double registers, i.e., Ri+ to Ro+) is 2.9nS (which also includes twice 0.9nS
register driving delay).

5.4  Latched DLAP

Transparent latches are simpler than edge triggered registers. To save power, the latches are used
according to the ‘blocking latch’ scheme [YBA96], i.e., they are kept closed at all times except
when data must be latched. Power is saved because hazards are blocked. Note that since the
latches are transparent, master and slave cannot be both open at the same time. Consequently, the
controller is a bit more complex than for edge triggered DLAP. An extra internal signal (G, for
‘gate’) is needed to mark which of the two latches has been opened last, and to ensure that the
STG has a complete state coding. The proper STG is presented in Fig. 5-6, and the
implementation (synthesized by Petrify [CKK+96]) is presented in Fig. 5-7.

The waveforms obtained from the simulation of a DLAP test circuit (Fig. 5-3) based on
transparent latches are presented in Fig. 5-9, and the relative timings are summarized in Sect. 5.5
below. Comparing this to the waveforms of the edge triggered DLAP, one can see that the
pipeline is balanced and all the masters are enabled at the same time (Lm signals), followed by a
simultaneous transfer of the data through the slaves (by activating the Ls signals). Note also that
the Lm and Ls signals are mutually exclusive. The cycle time (from Ri+ to the following Ri+) is
12.06nS (including the combinational logic delay of 5.03nS, the logic reset delay of 1nS, and
3.6nS for driving the two registers; thus, the control overhead is only 2.43nS). The response time
(Ri+ to Ro+) is 6.9nS, including four times the 0.9nS for driving the registers.
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Figure 5-6:  STG for a Master-Slave Latch stage
controller.

Figure 5-7:  A Master-Slave Latch stage
controller circuit implementation.

Figure 5-8:  Waveforms of Master-Slave Edge
Triggered DLAP test circuit.

Figure 5-9:  Waveforms of Master-Slave Latch
DLAP test circuit.

5.5  Comparative Analysis

As explained above, we have designed the two types of DLAP (edge triggered and latched), and
have simulated them with SPICE. The basic test circuit with several stages and the resulting
waveforms are presented in Figs. 5-3, 5-8, and 5-9, respectively. The measured times are
summarized in Tab. 5-1. Note that the register driving delays are included in the cycle time.
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Edge Triggered DLAP
[nS]

Latch DLAP
[nS]

Comments

1 Ri+ ÿ Ai+ 1.10 2.06

2 Ai+ ÿ Ri- 2.24 1.62 Including logic reset delay
of 1nS

3 Ri- ÿ Ai- 1.13 0.60

4 Ai- ÿ Ri+ 6.43 7.78 Including computational
delay of 5.03nS

5 Cycle time
(Ri+ ÿ Ri+)

10.90 12.06 Sum of lines 1-4 (include
the delay set and reset
times)

6 Response Time
(Ri+ ÿ Ro+)

2.90 6.90 Measured on a single
empty pipe stage (i.e., the
time to pass data through
the master and slave)

Table 5-1:  DLAP SPICE simulation results.

The latched DLAP (relative to the edge triggered DLAP) incurs slightly longer cycle time  (about
1nS longer), due to the need to precisely sequence more transitions. The total overhead is still
negligible compared to typical computational logic delays.

Relative to synchronous pipelines, DLAP requires about twice as many registers and a small
control circuit per stage. However, when replacing each edge-triggered FF with double latches,
the area overhead is kept to a minimum. The timing overhead required (for edge-triggered DLAP)
is one more register loading delay. The return to zero phase of the handshake protocol is kept to
a minimum. These times are typically negligible compared to the logic computational time.

Four phase handshake protocol pipelines with edge triggered registers are also used in [MBM89,
MBM91], where two types of control circuits are presented: ‘Half handshake’ utilizes only 50%
of the pipe, as only every other stage operates at a time. ‘Full handshake’ is more efficient, and
acknowledge signals propagating backwards sequentially, can sometimes overlap stage operation.
Four phase pipelines with transparent latches are presented in  [DW95, FD96, FL96] (the latter
employs dynamic logic). The latches are left open most of the time, resulting in possibly higher
power dissipation due to data hazards. Their ‘semi-decoupled’ and ‘fully-decoupled’ schemes are
similar to the ‘half-handshake’ and ‘full-handshake’ of [MBM89], respectively. A 2-phase
protocol micropipeline using double edge triggered registers is presented in [YBA96], as well as
a 4-phase protocol micropipeline using latches and ‘blocking latch’ scheme. The design is
reportedly faster than [DW95], but it is still a semi-decoupled circuit, limited to 50% pipeline
utilization.
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The cycle time of a semi-decoupled pipeline includes approximately twice the processing delay
of the combinational logic because of its 50% duty-cycle operation (i.e., a stage must wait for the
following stage to clear before initiating its own next calculation). In a fully decoupled pipeline,
even if all stages finish evaluation at almost the same time, a stage cannot latch the result in its
output register until the following stage has. When the pipe is full, operation is limited by a single
‘bubble’ flowing backwards, and the latency overhead is relative to the length of the pipe. The
master/slave action of the storage in a DLAP serves the purpose of interleaved bubbles in the
pipeline, and relaxes the coupling between the stages. Thus, DLAP is more tolerable to changes
in the output rate from the pipe than the other asynchronous pipelines.

We employ a scheduling notation (Fig. 5-10) to compare the latency incurred by four kinds of two
stage pipelines, namely a synchronous pipeline, a ‘semi-decoupled’ (‘half handshake’)
asynchronous pipeline, a ‘fully-decoupled’ (‘full handshake’) asynchronous pipeline, and DLAP.
Three tasks (i, j, k) are to be processed, and the computational delays of each task per each
pipeline stage are listed in Tab. 5-2. A synchronous design requires the clock cycle time to
accommodate the worst case of all calculations over all stages, namely two time units, thus
requiring eight time units to complete the computation (Fig. 5-10(a)). The semi-decoupled (or half
handshake) pipeline [DW95, FD96, MBM89] achieves only 50% utilization. Since the pipeline
contains only two stages, and they must operate alternatively, the computation takes eight time
units (Fig. 5-10(b)). In a fully-decoupled (‘full handshake’) asynchronous pipeline [FD96,
MBM89] task k cannot start execution at stage A, since task j is stalled there until task i frees
stage B. Thus, the computation requires six time units to complete (Fig. 5-10(c)). The DLAP
completes the computation in only five time units (Fig. 5-10(d)), since stages A and B are
decoupled by the double latches between them, and task k is not stalled.

We designed a three stage fully-decoupled pipeline [FD96] and a full-handshake pipeline
[MBM89, MBM91] in MOSIS 0.8: CMOS process, and ran detailed SPICE simulations to
compare the performance with DLAP. The results are summarized in Tab. 5-3. Values in the
overhead columns are calculated as the difference between the measured cycle time and the
slowest (stage or output) delay. The pipelines were implemented as balanced, i.e., all stages of
the pipeline had the same delay. The processing delay of the combinational logic (the data path
in each pipeline stage) was measured as 11.2nS, and its resetting time as 1.8nS. Thus, its total
contribution to the cycle time was 13nS. The cycle time (i.e., Ri+ ÿ Ri+) was measured for both
an empty pipeline case, and a full one.
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Figure 5-10:  Scheduling comparison of alternative
pipelines: (a) synchronous; (b) semi-decoupled
asynchronous; (c) fully-decoupled asynchronous;  and (d)
DLAP.

Task  i Task  j Task  k

Stage A 1 1 2

Stage B 2 1 1

Table 5-2:  Processing times (in relative time
units).

The tested empty pipeline had an output rate lower than the processing rate, so the pipe never
filled up, and operation was not limited by lack of bubbles. The cycle time was determined by the
stage logic delay and the pipeline control circuit (including the latching time). The results show
that DLAP cycle time is slightly slower than other asynchronous pipelines. However, it is only
1.5-2nS slower, mainly because of the extra register load required. Since DLAP is best for
data-dependent delays, this extra overhead is tolerable.

When the pipe starts from an empty state, the acknowledge propagates backwards concurrently
to data forwarding, and thus it does not depend on the number of stages in the pipe. Since the
pipeline is balanced (i.e., all stages in the pipe take the same time to complete), stage i starts
processing before stage i-1 does, and it also finishes its work earlier. Therefore the acknowledge
from stage i is ready when stage i-1 needs it. When a DLAP starts working from an empty pipe
state it has a similar behavior, and although it has many bubbles - they do not help, since the
bubbles are not a limiting factor. Since DLAP has one more latch to load in each stage over
fully-decoupled, and its latches are normally kept closed and not normally open, then obviously
the overhead of the cycle time includes the time of opening and closing of that latch, even if the
control circuit takes the same time. Driving the latches usually takes longer than the control. Thus,
DLAP is not faster than other asynchronous pipelines when the pipeline is empty most of the time.
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Edge Triggered Registers Transparent Latches

Full-Handshake DLAP Fully-Decoupled DLAP

Cycle Overhead Cycle Overhead Cycle Overhead Cycle Overhead

Empty Pipe 17.0 4.0 18.7 5.7 17.0 4.0 19.2 6.2

Full Pipe 20.2 0.7 22.0 2.5 20.8 1.3 22.3 2.8

Table 5-3:  Cycle time and overhead SPICE simulation results (measured in nS).

The tested full pipeline had an output rate higher than a stage processing rate, which caused the
pipe to fill up. The measured delays of the slow output processing and resetting times were
t(Ro +ÿ Ao+) = 16.8nS, and  t(Ro -ÿ Ao-) = 2.7nS, respectively. When the delay of the pipeline
sink stage is longer than each pipe stage, the pipeline becomes full, and its throughput and cycle
time are limited by the output rate. All the pipe stages and pipeline source are stalled until the
bubble propagates from the last stage to the first one. The longer the pipeline, the longer the
backwards acknowledge delay. Since the DLAP starts with n bubbles, it takes a longer time until
the number of bubbles is gradually reducing and all the 2n registers are filled, before the pipe is
stalled. Because is has more bubbles, DLAP is more tolerable to temporarily slow outputs than
the other asynchronous pipelines. However, when the pipeline sink is slow for long enough, the
DLAP will eventually be stalled just the same.

DLAP is best for cases of variable (data-dependent) delay stages, as showed by the scheduling
analysis. It is also suitable for automatic conversion from (balanced) synchronous pipelines, to
asynchronous ones, without redesign, as described in Sect. 5.7.

5.6  Non-Linear DLAPs

Evidently, a linear DLAP is not enough to implement complex data-path structures, which are
needed in a processor design. Non-linear DLAP data paths can be created by using Fork and Join
interconnection circuits. A Fork is basically a two output pipeline stage. Figure 5-11 shows the
implementation of an edge triggered Fork DLAP. Note that both following stages share the same
Ro line, while their Ao lines are combined by the C-Element. Similarly, the Join is a two input
pipeline stage, as presented in Fig. 5-12. The Ri signals are combined by the C-element.

Many synthesized circuits have complex structures that contain loops (aka rings). A DLAP ring
can be constructed by employing Join and Fork circuits as shown in Fig. 5-13.
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Figure 5-11:  A Fork stage implementation, two
output pipeline interconnection circuit.

Figure 5-12:  A Join stage implementation, two
input pipeline interconnection circuit.

Figure 5-13:  A ring DLAP.

A ring structure based on fully-decoupled pipeline scheme must contain an extra register (i.e., an
empty stage) to prevent a deadlock [MBM91]. The single bubble going backwards around the
loop might limit and slow down the ring operation. DLAP ring is faster than a fully-decoupled one
when stage delay is shorter than the acknowledge round trip delay. Using semi-decoupled pipeline
to construct a feedback loop yields a ring with only half stages full, since only alternate blocks can
store valid values [MBM91]. DLAP rings have enough many bubbles and can operate the same
way as synchronous rings.

5.7  Synchronous to Asynchronous Conversion

5.7.1  Motivation

Several advantages can be achieved by converting synchronous circuits to asynchronous ones.
The clock signal in synchronous circuits always switches (i.e., it has 100% activity) and it must
arrive to all parts of the chip with the same phase. The power dissipated by complex VLSI chips
increases as clock frequency rises [Hor93, Int94, Str94]. Growing portion (currently over 40%
[Bow95]) of the power budget in a chip is required by the clock distribution network in order to
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reduce clock skew problems. Asynchronous logic does not use a clock. Logic elements can be
self-timed: they can detect and announce when the computation is complete and the outputs are
ready [Hau95, Sei80]. They also wait for inputs to be announced before starting the computation.
Registers load their inputs under local control, rather than on a global clock edge. Thus,
eliminating the clock and replacing it with local handshakes can save power.

Since power is a square function of the operating voltage, much power can be saved, even with
the same circuit design, by applying a scalable power supply [NNS+94]. If the circuit is self timed,
reducing the power will only cause it to work slower, but will not affect its correct operation. This
can be exploited in portable devices, e.g., at standby mode or while processing data requiring
variable computation loads [vBB+94].

Asynchronous pipelines can potentially have higher performance than synchronous pipelines
because they are not restricted to operate according to the worst case delay. Using self-timed
logic enables the circuit to operate according to actual data-dependent delays, i.e., the average
case delay.  The worst case delay might be very rare and  the average case delay is usually about
half of the worst case delay [GM90].

When self-timed logic is not available, a delay (matching the worst case delay of the pipeline
stage) can be used to signal the end of the combinational logic evaluation time. The worst case
delay is matched per each pipeline stage and does not affect the delay of other stages. Even in this
case complex asynchronous pipelines can be faster than synchronous pipelines. In a complex
pipeline (e.g., a microprocessor) data can go through short or long alternative paths, depending
on the instruction:  A pipeline stage containing an ALU with an adder and a multiplier can have
a variable matched  delay, since only one of the units is active at a time. Thus, each possible path
operates at a rate affected only by the slowest unit in its path, and not affected by other paths.

Synchronous synthesizers are widely used as CAD tools for designing VLSI circuits. They are
proven reliable and able to handle large and complex designs. Currently available asynchronous
synthesis tools [Async] typically generate only rather small asynchronous controllers, and do not
handle data path elements. Using a post-synthesis conversion, enables us to take advantage of the
design structure and combinational logic of the data path synthesized by the synchronous tool,
while achieving the benefits of asynchronous circuits.

Synchronous to asynchronous circuit conversions can also be used in mixed-timed designs.
Converting the synchronous modules to asynchronous ones eliminates the synchronizers needed
at the synchronous module inputs, and prevents synchronization failures (cf. Ch. 6). Changing one
or some of the modules requires no changes in other parts of the design.
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We consider synchronous logic synthesized into netlists according to the common architecture
of ‘register-and-cloud’ pipelines [Per94], where ‘clouds’ of combinational logic are separated by
clocked registers. We would like to take advantage of the general pipeline structure and of the
combinational logic clouds, but we need to get rid of the clocked registers, thus converting a
synchronous circuit into an asynchronous one. To that end, we must identify the best target
asynchronous pipeline. The DLAP architecture was found to be most suitable to such a
synchronous-to-asynchronous conversion, since it can imitate the synchronous operation, and can
also benefit from variable computation load. The master-slave architecture of the DLAP operates
the same as synchronous pipeline does. DLAP is also ‘synchronous compatible’ when values are
loaded in parallel before the pipeline operation starts.

This section describes the methodology to convert a synchronous design to an asynchronous one,
at the gate level, based on a DLAP architecture. Our previous work on post synthesis conversion,
targeted at different implementation styles is described in [KGS96, KGS97].

5.7.2  Post-Synthesis Conversion Algorithm

The conversion algorithm applies to synchronous netlists which are typically synthesized by a tool
like Synopsys. The algorithm retains the (possibly complex) pipeline structure as generated by the
synthesizer. The combinational logic (the ‘cloud’) between the registers is not altered. However,
if the combinational logic of the design is not self timed (i.e., it does not generate a completion
signal), matching delays are generated by the conversion algorithm and are used to generate
proper completion signals, as explained in Sect. 5.2.

The same algorithm is suitable for either edge-triggered registers or transparent latches based
DLAP as the conversion target architecture. The only difference is replacing each original edge-
triggered flip-flop with either double edge-triggered flip-flops, or double transparent latches, and
adding the proper DLAP stage controller. As explained above, the double latches architecture has
less area overhead, and is only slightly slower than the edge-triggered version.

The input to the conversion algorithm is a synchronous netlist, containing edge-triggered D
flip-flops, and combinational logic blocks. The netlist includes the definitions of the design primary
inputs, primary outputs, and list of registers. The algorithm also requires as input the delays of the
combinational logic blocks between pipeline stages. These delays are obtained from a timing
analysis tool that analyzes the worst case delay of each data path between all pairs of points
connected by logic. Such a data path begins at either a primary input or an output of a flip-flop,
and ends at either a primary output or an input to a flip-flop. 
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(a)  Original circuit. (b)  Post conversion circuit.

Figure 5-14:  Synchronous-to-asynchronous conversion.

Every flip-flop (FF) bit of every original register is replaced with two latches (or FFs), the first
one feeding the second. The clock signal is replaced by either of the two latch signals (Lm, Ls, as
explained in Sect. 5.2) connecting to the clock input of the first (master) FF and second (slave)
FF, respectively. The required Done signals are generated by returning the latch signals (driven
by the DLAP controller), which are delayed by the register driving delay (Fig. 5-2).

A DLAP stage controller circuit is added for every pair of latches (or a group of pairs, treated as
a bus, as explained below). The DLAP stage controllers are interconnected as follows: If stage
X produces data for stage Y (cf. Fig. 5-14(a)), then the ReadyOut signal of the stage controller
X is connected to the ReadyIn input of stage Y (cf. Fig. 5-14(b)) via a proper matched delay unit.
The AcknowledgeIn output of stage Y is connected to AcknowledgeOut input of stage X (refer
also to Figs. 5-1 and 5-2).

Hence, each flip-flop in the original netlist is replaced by a DLAP stage, containing either two
edge-triggered D-FF, or two transparent latches, with a proper DLAP stage controller. Each stage
controller generates the local ‘clock’ signals, to latch data into the stage. The control lines are
connected (through properly matched delays) to reflect the data flow. The architecture of the
netlist, and interconnections between the DLAP controllers determines the dependencies among
them. Splitting computation paths (from a single source to several destinations) is done by Fork
controllers, and merging multiple computation paths requires Join controllers, as described in
Sect. 5.6.

Designs usually contain many busses, i.e., several bits emerging from a set of flip-flops, and
passing through a combinational logic block before entering a set of flip-flops (e.g., a 32-bit
number). All signals that are buses are aggregated and treated as one, using the worst delay for
the bus delay. This peep-hole local optimization significantly reduces the number of paths (and
therefore controllers and delay units) that have to be handled. For example, two 32-bit busses
feeding an adder require only two DLAP controllers rather than 64. In case some bits are
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extracted from the bus towards different destinations, the relevant delays are calculated and
separate delay units are used. 

The post synthesis conversion algorithm has been implemented and tested on a collection of small
circuits, e.g., a simple finite input response (FIR) filter design. The converted design was tested
by simulation, after modifying the testbench program (dropping the dependence on a single clock
signal and adopting a single rail, 4-phase communication protocol). The design was verified by
using test vectors, and comparing the results to those generated by the original synchronous
design. The modified testbench controls the response of the environment to events and responses
of the design under test, and can be used to test various environment behaviors.  Work is
underway to complete the programming and perform large scale tests.

5.8  Concluding Remarks

The DLAP scheme is not limited to the implementation of an asynchronous microprocessor. It
applies to any asynchronous circuit structured as a simple or complex pipeline. In our quest for
high performance asynchronous implementations for Kin, as well as for efficient conversion of
synchronous circuits into asynchronous ones, we have examined various asynchronous pipeline
schemes [MBM89, MBM91, DW95, FD96, FL96, YBA96, SS93], and have found that none
operates as efficiently as a balanced synchronous pipeline. Consequently, we have developed the
doubly-latched asynchronous pipeline (DLAP) which employs master-slave registers. DLAP is
capable of truly decoupled operation: All pipeline stages can shift data simultaneously, and
execution is faster even if variable delays are encountered. We have shown implementations based
on either edge-triggered registers or transparent latches. Both designs have been defined with
STGs, verified, and fully simulated and compared with previous architectures.

DLAP is best for variable (and data-dependent) delays, both of the internal stages and the output
process, and it is best for rings which suffer from lack of bubbles. It is suitable for balanced
pipelines. However, if the computational load per stage is small (relative to the overhead), it is
slightly slower than a fully-decoupled pipeline due to the extra registers.

DLAP is suitable for automatic synchronous to asynchronous conversion from (balanced)
synchronous pipelines, in order to eliminate clocks (for power saving, or for easier interface to
other asynchronous units), without redesign.

The DLAP controllers described in this chapter operate according to the four-phase
communication protocol. However, DLAP controllers can also be implemented for two-phase
protocol operation, which might be faster (due to the fact that only half the number of handshake
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transitions are required [AML97]). The DLAP pipe control logic is fully contained, hence the
handshake overhead can be reduced without affecting anything else.

A variance of DLAP can be constructed by employing a semi-decoupled pipeline with logic units
only at every other stage. However, it appears that this would require more hardware, and
consume more power, than the DLAP scheme presented in this paper, because of the redundant
internal handshake transitions.

Newer versions of Petrify and other synthesis tools may be applied to the STGs presented in this
paper, to synthesize simpler DLAP control circuits. The circuits generated can be implemented
with Set-Reset FFs instead of C-elements for standard cell implementation. Faster DLAP
controllers might be implemented based on generalized C-elements, or designed to operate
according to non-blocking schemes, as in [FD96], or semi-blocking, where the first latch is
normally open, while the second one is normally close. The control circuits we used were
designed to be delay insensitive. However, simple engineering optimization techniques can be
applied for lower latency overhead, e.g., overlap control circuit timing with latch operation.
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Chapter 6 : Adaptive Synchronization for
Multi-Synchronous Systems

While the highest architectural level of Kin is asynchronous, as described above in Ch. 2, the
various units in it may be implemented according to different timing disciplines. Chapters 4 and
5 presented asynchronous design methodologies, where the circuits are either originally designed
as asynchronous, or converted from synchronous designs. In this chapter we present another
possible implementation for Kin, as a multi-synchronous system. This proposed implementation
can be used as an alternative migration path from a complete synchronous design to a complete
asynchronous design.

Multi-synchronous clocking discipline is based on a common clock distributed over thin wires,
avoiding the massive power investment in clock distribution trees and circuits for phase matching
and skew minimization. Hence, all the processor units operate at the same clock frequency, but
have an arbitrary clock phase. Adaptive synchronization is used to substantially reduce the
probability of synchronization failure (when data are sent between the units), and reduce
performance degradation caused by synchronizers. In contrast with clock-manipulating
techniques, such as clock stretching, adaptive synchronization adjusts data delays. Thus, adaptive
synchronization can be used to handle synchronization problems that are harder to solve by clock
phase adjusting methods, e.g., when data are received from more than one source.

6.1  Introduction

With the advance of technology, the integration levels of VLSI chips grow from millions of
transistors per chip towards the hundreds of millions. VLSI chips, e.g., microprocessors, grow
larger and run faster. Over half a billion transistors on a die and clock rates in excess of 1 GHz
are predicted for year 2010 [KG97, SIA94]. Distributing a single 1 GHz clock to all parts of a
0.5B transistors chip becomes very expensive: To assure minimal skew and short rise and fall
times, a growing portion of total power is dissipated by the clock distribution network, including
the phase lock loops, buffers, and tuning circuits [Fri95]. For instance, currently over 40% of the
power budget in an Alpha chip are consumed by a clock distribution network for reducing clock
skew problems [Bow95].
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Asynchronous design, as discussed and presented in previous chapters, is often proposed as a
viable solution, removing the clock altogether [DGY93, Hau95, Pav94, SSM94]. In this chapter,
however, we propose a new clocking method which both saves power and facilitates
synchronization.

A possible solution to the clock distribution problem lies in non-synchronized operation, wherein
the various modules on the chip do not maintain a known relative clock phase to each other, and
intercommunicate asynchronously. However, the design of non-single clocked synchronous
systems should be closely woven with the concern for synchronization. In addition, it seems
useless to synchronize far-apart clocks, since data lines spanning large portions of the chip may
be subject to substantial propagation delay (close to, or in excess of, the clock cycle) and be out
of sync in any case. On the other hand, since the relative skew of the clock as it arrives at the
various modules is immaterial for non-synchronized operation, the clock signal can be distributed
over networks that are designed to dissipate minimal power and occupy minimal area.

This chapter discusses some previous work done on synchronization issues, and defines
multi-synchronous systems. Then, in contrast with clock-manipulating techniques, an adaptive
synchronization is presented, to adjust data delays, and substantially reduce the probability of
synchronization failure. It is further proposed that the adaptive synchronization be performed
semi-statically, adapting various data delays from time to time. The suggested adaptive
synchronization approach is compared with synchronizers and stoppable clock schemes.

6.1.1  Previous work

The most tightly coupled, highest performance systems today (such as high end microprocessors)
operate on a single common clock with minimal skew (dissipating a lot of power to achieve that),
avoiding synchronization issues altogether. Variations include multiple synchronized clocks
operating at several frequencies and phase locking. For low bandwidth communications among
systems with uncorrelated clocks, synchronizers are employed successfully [CM73, CW75,
Mar81, Pec76, RMC+88, Sei80, Sei94, Sto82, Vee80]. Alternative methods that have been
proposed include stretchable clocks and clock tuning [Cha84, Cha87, Keh93, Pec76, PN95,
RMC+88, Sei80, YD96]. Self-clocked data (such as Manchester coding on Ethernet [MB76], and
start/stop bits on RS232 serial communications) are exchanged when even lower bandwidth is
needed.

The synchronization problem has received a lot of attention [Cha87, CM73, CW75, Gre95,
Keh93, Mar81, Pec76, PN95, RMC+88, Sei80, Sei94, Sto82, Vee80, YD96]. Solutions have
been developed for a wide range of applications, from intra-chip communications to wide area
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networks. As technology progresses, integration levels and computational speeds increase, and
systems which used to require multi-board implementations are expected to fit inside single chips.
Likewise, the synchronization methods that were once applicable to backplanes and multiple
boards should now be considered for the inner circles of chips.

Low level clock/data synchronization is typically handled by synchronizers. However, they are
principally suitable for low bandwidth communications, and a number of issues render them less
effective in high performance chips. First, synchronizers may occasionally fail due to metastability
[CM73, CW75, Mar81, Pec76, Sto82, Vee80]: A synchronizer might enter a metastable state, or
take abnormally long time to settle. While the probability of failure has been kept very low, this
is exponentially more difficult to achieve when the cycle time becomes aggressively shorter (as
described below in Sect. 6.5). Second, in high performance systems, modules may receive many
data inputs concurrently from many other modules and at high rates; consequently, the probability
of at least one input switching at the same time as the clock is growing beyond negligible levels.
Third, synchronizers incur at least one clock cycle delay; this may lead to unacceptable long
latencies accumulating over multi-module paths, and be especially limiting on cyclic paths such
as between a reservation station and the execution units of a high performance processor.

Stretchable (or stoppable) clocks [Cha84, Cha87, Pec76, RMC+88, Sei80, YD96] have been
proposed as an alternative to synchronizers. A ring-oscillator based clock generator is attached
to each synchronous module. An arbiter detects clock/data conflicts and stretches the ‘off’ phase
of the clock (thus trading failure for a long delay). Stretchable clocks are subject to two
drawbacks. First, the multiple clock generators typically develop frequency variations, due to
temperature and supply voltage in-die variations. As a result, relative inter-module phase shifts
drift continuously, causing frequent recurrences of conflicts.  Second, as with synchronizers, high
bandwidth communications received over many channels increase the probability of clock/data
conflicts. This fact leads to a high rate of clock stretching events, severely impeding performance.

Many other variations have also been proposed. [Keh93] suggests clock (phase and frequency)
tuning for performance enhancement. [Sei94] hides some synchronization latency by inter-module
FIFO buffers. In the STARI protocol [Gre95], asynchronous FIFOs are employed;
synchronization is achieved on the first data transfer, and is automatically maintained thereafter.
The FIFO must be kept about half full, and each insertion and removal operation must complete
within one cycle. If these requirements are violated (e.g., on FIFO underflow), synchronization
is lost. [PN95] employs analog adjustable clock generators, achieving local self-alignment of all
clocks.

We have developed a clock synchronization method that applies an external crystal clock, rather
than a self generated one. That method and its limitations are presented in Appendix A. It was
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found less desirable than data adaptive synchronization, which is the subject of this chapter.

6.1.2  Multi-Synchronous Systems

Consider a 0.5B transistor chip comprising 100 synchronous modules of 5M transistors each.
Various clocking schemes may be employed. A single clock is feasible, but as mentioned above
the cost in power and area may be prohibitive for some applications. In multi-clocked systems
each module is clocked independently of the others, and as explained above, using synchronizers
severely limits performance. Instead, we propose a multi-synchronous (multisync) scheme (as
defined above in Sect. 1.1), whereby all modules feed off the same external crystal clock, while
arbitrary relative clock phases are permitted. 

Most synchronization methods assume that the arrival (switching) time of data at any module is
uniformly distributed over the clock cycle, as in Fig. 6-1(a). However, in multisync systems, the
arrival time of certain data channels incident upon a certain module may be distributed unevenly,
e.g., as in Fig. 6-1(b). When one synchronous module outputs data to another, data output is
synchronized with the local clock of the sender. Since the phase difference between the receiver
and sender clocks, as well as the data interconnect delay, are stationary, data arrival time at the
receiver is correlated with the receiver clock. Stationarity can be assumed because the delays and
phase differences among the modules in the system are functions of the implementation, of
physical parameters, and of temperature and supply voltages, and they typically change very
slowly during operation. However, in systems with a high degree of connectivity the combined
distribution of all channels incident upon a specific module looks more like Fig. 6-1(c), and the
danger of clock/data conflicts cannot be ignored.

A multi-synchronous system is presented in Fig. 6-2. The common clock is distributed over thin
wires (saving area and power, compared to minimal skew clock distribution nets). While clock
frequency is the same for all modules, the actual phase shifts are considered unknown (a similar
clocking is described in [Gre95], but there the system has to be reset upon synchronization loss).
While the clock phase differences among modules are affected by supply voltage and temperature,
these variations appear like very slow drifts, and take a huge number of cycles to be noticed.
Thus, we may safely assume that the phases do not shift for relatively long time, and the phase
differences can be considered stationary.

Consider modules A and B in Fig. 6-2, which  are tightly coupled over an asynchronous channel
without a FIFO, for high bandwidth communication. Similar to clock delays, the data delay *AB
is also stationary and is considered unknown. Module A generates output transitions on DA at a
fixed phase difference relative to its own clock CA. The data propagate to module B, which
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Figure 6-1:  Arrival time distribution of inputs
(over a clock cycle T):  (a) uniform distribution
(asynchronous input);  (b) clustered distribution
when the sender and receiver clocks are correlated
(single synchronous input);  (c) combined
distribution of many independently correlated
inputs is similar to uniform distribution (multiple
synchronous inputs).

Figure 6-2: A multi-synchronous system.

samples DataRdy on the rising edge of its own clock CB. New data are sent over from A to B at
a high rate, e.g., on almost every clock cycle. Since the relative clock phase difference )A-)B
of modules A and B is presumed unknown, the data may arrive at B simultaneously with the rising
edge of clock CB, creating a clock/data conflict and possibly resulting in a metastable state at the
input of B, and in loss of data. If the relative clock phases and data delays remain fixed
(stationary), and since both modules operate at the same clock frequency, this unfortunate
situation is most likely to recur. The use of synchronizer in this case does not solve the problem,
because the synchronizer may enter a metastable state on every conflict, increasing the probability
of failure.

The novel method we propose suggests adjusting data timing rather than the clock, thus
converting data arrival time distributions into forms like Fig. 6-1(b) and substantially reducing the
synchronization problem. [Sei94] has employed pipeline synchronizers in order to convert the
uniform distribution of asynchronous inputs into a non-uniform distribution, useful for a
synchronous receiver. The latency of the pipeline synchronizer is rendered unnecessary when the
sender is also synchronous, as discussed above.

In the following we assume the system architecture to be asynchronous (as is the case for Kin),
thus altering various delays do not affect system correctness. We describe systems operating with
a four-phase handshake protocol, but the results may also be applied to two-phase handshake.

6.2  Data Adaptive Synchronization

Data adaptive synchronization adjusts the delays on the data lines instead of adjusting the local
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Figure 6-3:  (a) Adaptive Synchronization; (b) Combined data arrival time distribution — data delays
are adjusted to avoid conflicts.

clock phase. Since the communication channels are connected point to point,  the delays on them
can be changed so that they do not conflict with the local clock, without affecting the other
channels (this approach also applies to bus taps). We add a data coordination circuit for each
communication channel, as in Fig. 6-3(a). When a conflict is detected, the data delay is adjusted
to prevent conflicts in future communications.

Note that three different phases are assumed stationary in the multisync model (Fig. 6-2): The
clock phase difference )A-)B, the sender data phase DA-CA, and the data delay *AB.
Consequently, the phase of the arriving DataRdy at module B relative to CB is also stationary.
In other words, the arrival time distribution is represented in this model by Fig. 6-1(b), and is
highly non-uniform. In the following, we take advantage of this fact and control data delays so
as to assure that the center of this distribution is safely remote from the clock transition for every
data line in the system. This is achieved by tuning the data delay *AB.

The adaptive mechanism architecture for a specific module is shown in Fig. 6-3(a). Data input
channels DIi are subject each to given data delays *Ii (ref. *AB in Fig. 6-2). Adaptive
synchronization circuits Ai, clocked by the local clock CKin, monitor the DataRdyi lines, and
control adjustable data delays *i, whose value is in the range 0 # *i < T (T is the clock cycle). The
function of the Ai is to separate the clock and data transitions. The multiple input delays can be
adjusted independently of each other, so the combined data arrival time distribution at the entry
to the module looks like Fig. 6-3(b). Adaptive synchronization applies equally well to single
sender, multiple receivers buses (Fig. 6-4).
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Figure 6-4:  Adaptive Synchronization for single
sender, multiple receivers buses; each receiver adjusts
its own data input.

Figure 6-5:  Adaptive Synchronization circuit. Figure 6-6:  Adjustable delay circuit, consisting
of multiple delay lines and a selector.

6.3  Data Adaptive Synchronization Circuit

The principles of adaptive synchronization resemble self-clocking communication mechanisms,
such as in UARTs. The challenge is to obtain proper operation even at the presence of
metastability. Consider the adaptive synchronization circuit in Fig. 6-5, with an adjustable delay
(Fig. 6-6). A four-phase data signaling discipline is assumed, wherein DataRdy rises to ‘1’ after
the new data are available (the circuit may be readily extended to two-phase operation as well).
The receiving module (cf. Fig. 6-2) latches the inputs upon the positive edge of its local clock,
and only if DataRdy is ‘1'. Thus, the purpose of the adaptive synchronization circuit is to detect
the phase of DataRdy relative to the local clock, and to adapt the *i delay if that phase is
dangerously close to 0 or T (2B).
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Figure 6-7:  Phase detection waveforms.

Figure 6-8:  Typical phase detection counter
outputs: (a) data transition is safely within the
cycle; (b) data delay should be increased to avoid
clock/data conflicts.

First, the data is fed into a phase detector. Let’s assume that the DataRdy lines switch (up or
down) on every cycle. In [Keh93], several delayed phases of the clock are used to detect data
transition time. In Fig. 6-5, several delayed versions of the data are employed instead. The xor
gates generate a sequence of pulses, as in Fig. 6-7. The delays marked ‘d’ assure a small pulse
overlap. The outputs of the xor gates are the enable signals of counters which are triggered by the
local clock edge. On the rising edge of the clock, one or two of the counters increment their
count. This is repeated for a large number of cycles, e.g., 1000 times. At the end of that time, the
counters are expected to show a distribution similar to either Fig. 6-8(a) or Fig. 6-8(b). In either
case, two or three counters show large counts, and the remaining ones are close to zero. The
spread is caused by pulse overlap, by clock and delay jitter, and by pulse/clock conflicts which
may result in metastable states, in long settling times, and in indeterminate counting. In spite of
such physical difficulties, the phase detector is robust thanks to many repeat counts, and it
produces a very clear indication of the relative phase of the DataRdy line. The circuit in Fig. 6-5
is similar to delay lock loop (DLL) circuits, except that the proposed circuit is digital rather than
analog, and its operation is algorithmically controlled.

Next, the MaxFinder circuit determines, according to which counter has won, if the *i delay of
the data lines should be changed, and by how much. For example, the count depicted in
Fig. 6-8(a) indicates no change, while that of Fig. 6-8(b) calls for adding a delay of at least T/5.
The adjustable delay consists of multiple parallel delay lines and a selector (Fig. 6-6). Notice that
although the phase detector examines only the DataRdy line, *i is applied to all data lines of the
i’th channel.
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Although the examples present circuits for the case wherein the clock cycle is divided into five
periods, at high frequencies it might be simpler to implement using only three such periods (since
the clock cycle time may be only a few gate delays long). The circuit complexity of a proper
adaptive synchronization circuit, for a 32-bits data path, is approximately 5,000 transistors
(comprising the delays, xor gate, counters, comparators and switches in the max finder circuit,
and the adjustable delay circuits). Thus, the total overhead per a 5M transistor module with 10
input channels is about 50,000 / 5M = 1% (recall that it replaces a massive clock distribution
network). The extra power consumption is similarly marginal.

Adaptive synchronization is suitable for a wide range of applications. Typical data delay range is
0.1T < *Ii < 1.5T for a 0.5B transistors, 1GHz chip, but the delay may be much larger than T for
multi-chip and MCM configurations. In such cases, new asynchronous data signaling methods
could be used, such as multiple message windows (wherein multiple messages are sent before an
acknowledge is expected). As long as relative delays are stationary, adaptive synchronization
remains applicable.

6.4  Training Sessions

Adaptive synchronization may be performed continuously, in parallel with normal circuit
operation. However, modifying the data delays may cause timing problems at the time of change,
so this is best carried out while the system is not performing any real task. In addition, during
normal operation it cannot be guaranteed that all DataRdy lines switch frequently enough. And
continuous adaptation may be unnecessary if all delays are highly stationary and stable.

Consequently, special training sessions are proposed for adaptive synchronization. During a
training session the system stops performing all real computations. Instead, all DataRdy lines are
toggled every cycle, and all adaptive synchronization circuits operate and adjust the *i delays. Any
synchronization failures during a training session can obviously be ignored. The training session
requires a relatively small number of counting cycles. Since all adaptive synchronization circuits
operate in parallel, 100,000 clock cycles (0.1mS at 1GHz)  seems a safe bound on the required
session duration.

A training session is always employed after reset, for initial adjustment of all delays. Thereafter,
training sessions can be invoked either periodically or as required. Periodical training frequency
depends on process parameters (especially delay stability) and operational parameters (such as
clock frequency and dynamic temperature and voltage variations), but it is estimated that at 2010
technology much less than one training per second will be required. The expected performance
overhead in thus much less than 105 cycles / 109 Hz = 0.01%.
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Training sessions are also proposed in [SCI92], wherein a point-to-point communication ring
architecture is defined. Training sessions are utilized to send sync packets at ringlet initialization,
and once every time interval appropriate for normal operation of the particular implementation.
Clock skew in [SCI92] is handled (using Phase Lock Loop circuits) by observing incoming clock
and local clock phases.

Significant temperature and voltage variations may be sensed on-chip by special sensors in order
to invoke a training session when a problem seems imminent. Alternatively, the adaptive
synchronization circuits themselves may be modified to act as the sensors. If any such circuit
detects that any switching phase approaches 0 (or 2B) closer than some safety threshold, a
hardware interrupt is invoked to start a training session. In addition, a training session can also
be triggered when a higher level logic (or software) detects a synchronization or communication
failure. A similar tuning idea is used in [Keh93].

6.5  Probability of Synchronization Failure

In this section we analyze the failure probability of the adaptive synchronization (A/S), and
compare it to synchronizers.

Synchronization failure might happen at a training session, failing the delay adaptation process and
causing the system to fail, or during regular operation, after a successful training. Failures during
training sessions do not affect system operation, and might only cause the training itself to fail.
These synchronization failures can happen in the phase detection circuit (Fig. 6-5), when one of
the counters enters a metastable state while incrementing its count, due to marginal triggering.
Since a training session takes many cycles, the counters are allowed sufficient time to resolve any
metastability before their outputs are read. Thus, the probability of failure of the training session
is practically zero. After a successful training session, all delays are adapted properly so that data
is expected to arrive at a module around the middle of the local clock cycle, and avoid
synchronization failures. However, due to possible jitters in clock phase and line delays, the data
arrival time might randomally change from cycle to cycle, and become dangerously close to a
clock edge. The system model for the failure analysis is described in Fig. 6-9. The phase of the
clock at module B is affected by the delay along the clock distribution network from the clock
source to module B. Data sent from module A will arrive at module B with a phase affected by
the delay of the clock signal to module A, the internal logic delay from clock edge to data output,
and data propagation delay to the input of B (Fig. 6-9(a)). We assume normally distributed jitters,
and define two random variables with normal (Gaussian) distribution, Xc and Xd, representing the
phases of the clock and data at module B, respectively.  Xc = N(:c,Fc) is normally distributed
with mean :c (equal to the clock cycle time T) and standard deviation Fc (caused by jitter
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(6-1)

effects). Without limit of generality, we take the phase of the clock to be 0 (i.e., :c=T), since we
are only interested in the relative phase of data to clock, and cyclically the phase is 2Bk (k an
integer). Xd =  N(:d,Fd), where :d is the expected arrival time within a clock cycle.  After a
training session, :d is expected to be at the middle of the clock cycle, i.e., :d= T/2, assuming Xc
is centered on 0+2Bk (see Fig. 6-9(b)). Note that Xd is actually a sum of three normally
distributed variables, so its variance (F2

d) is calculated as the sum of three variances. Assume ,
is the time window within a clock cycle (Fig. 6-9(c)) in which data must be stable (generally
considered to be the setup-and-hold period) to avoid metastability.

When using a synchronizer, there is no knowledge of the data arrival time, so uniform arrival time
distribution is assumed. Once a synchronizer has entered the metastable state, the probability that
it will still be metastable some time later has been shown to be an exponentially decreasing
function [Cha83, RC82]. The probability of synchronization failure of a synchronizer is given by

It equals to the probability that a synchronizer which enters a metastable state (at time t=0), still
remains in the metastable state at the time its output should be stable for sampling in the next
clock cycle. The parameter J is the exponential time constant of the decay rate of the metastability
(discussed below).

The probability of failure of the adaptive synchronization is the probability that the values of the
two random variables Xc and Xd are too close (within ,) to each other, i.e., the data switches too
close to the clock edge. This probability can be calculates as the probability that a random
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(6-2)

(6-3)

(6-4)

(6-5)

variable, equal to the difference of the two random variables, has a value in the forbidden range:

Note that the normal distribution of the difference random variable spans beyond [0,T], and
because of the 2B cycling, Xc should be considered at both 0 and T. Since we assumed normal
distributions, each of the probabilities in Eq. 6-2, can be calculated by the Gaussian function, with
the proper parameters [Pap91], e.g.,

The value of the Gaussian function is determined by the error function, erf(x), whose value can
be obtained by the ERF(x) function with parameter transformation:

Technology is defined by the gate delay, which also limits the highest clock frequency that can be
used. However, the clock frequency increases faster than the gate delay decreases, as can be
observed from Fig. 6-10 (based on data from [KG97, SIA94, Wei96]). Since gate delay does not
scale linearly with frequency, less gates are available in a clock cycle time, as frequency rises. The
probability of failure goes up because the clock cycle time T(=:c) shrinks faster than , (the
settling window). To compare the failure probabilities, we assume the following model: The
metastability window , width is assumed to be equal to a gate delay, the parameter J to be 1/3
of a gate delay, and the jitter (which equals 6F) to be half a gate delay (and no more than 15% of
the clock cycle). Figure 6-11 presents a logarithmic graph comparing the synchronization failure
probabilities of a synchronizer relative to the A/S scheme. The graphs of the probability of failure
for the synchronizer and A/S were calculated according to the assumed model for various gate
delays, and the lines show the trend, as explained below.

For high communication bandwidth (e.g., almost every cycle), the mean time between failures
(MTBF) is given by
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Figure 6-11:  Probability of synchronization failure.

The failure probabilities required to achieve an MTBF of once a year and once a minute at the
various technologies are also presented in the graph. As can be observed from the graph, using
a synchronizer can be practical for lower frequencies, but as clock frequency increases, the
synchronizer has less time to resolve and the probability of failure rises rapidly. Using a sequence
of synchronizers decreases the failure probability, but increases the latency and affects
performance. Note also that the failure probability presented is of a single synchronizer, and since
many synchronizers are required (for every bit in every bus between modules), the failure
probability is worse than drawn on the graph. When synchronizers fail to deliver a flawless
operation at higher frequencies, A/S still applies. The zero values of A/S failure probability cannot
be plotted on the logarithmic graph. The inter-module clock jitter will be the limiting factor on
maximum clock frequency in A/S scheme. At even higher frequencies, when A/S fails, it can be
used together with a synchronizer, to decrease the probability of the synchronizer entering a
metastable state. Beyond a certain technology (e.g., when the jitter is more than 15% of the clock
cycle), all synchronization methods fail, and the only solution is to use a complete asynchronous
design, with asynchronous communication, as described in other chapters of this thesis.

6.6  Concluding Remarks

The architecture of Kin (described in Ch. 2) and its support of Avid execution (detailed in Ch. 3)
implies a large and complex microprocessor. A single clock is either impractical or impossible for
such very high performance chips, e.g., as predicted by the SIA technology roadmap for the year
2010 (over 0.5B transistors operating at over 1GHz clock) [SIA94]. We have presented an
adaptive synchronization solution for multi-synchronous systems. Multi-synchronous architectures
(locally synchronous, globally asynchronous) could be a viable alternative to a fully asynchronous
design. We focus on common clock multi-synchronous systems, where a single crystal clock is
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distributed over minimal area, minimal power networks, so that all modules operate on the same
clock frequency (or its frequency divided versions) but at unknown phase differences.

We take advantage of the stationary nature of clock and data delays, and of the consequential
non-uniform arrival time distribution of asynchronous signals. Data timing is dynamically adjusted
to avoid clock/data conflicts.

We have presented a novel adaptive method addressing the synchronization problem. While most
previously proposed methods manipulate the clocks, adaptive synchronization adjusts data delays.
The method exploits the high stability of delays and the stationarity of most relative phases. The
probability of synchronization failures is reduced substantially. Timing adaptation can be limited
to special training sessions (as commonly practiced in data communication networks). Thus, the
synchronization monitoring circuits are kept off the critical paths. The adaptation circuits incur
only marginal overhead in area, power and performance. A study of alternative methods (such as
synchronizers and stretchable clocks) shows that they may not be as usable as adaptive
synchronization.

The solution presented in this chapter was developed as a possible implementation methodology
for Kin, but it can also stand by itself and be used in any other systems.
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Chapter 7 : Adapting Statecharts Methodology
for Asynchronous Design

This chapter describes how to apply a novel methodology, based on statecharts, to the design of
large scale asynchronous systems. The design is specified at multiple levels, simulated, animated,
and compiled into synthesizable VHDL code by using the Statemate Magnum CAD tool . We add
a validation sub-system to check correct operation. Statemate Magnum is originally synchronous,
but we employ it for asynchronous design by avoiding any design dependence on the clock, and
simulating with fast clock and on-line delays. We have used statecharts to specify and simulate
several systems, large and small, including the asynchronous instruction length decoder (described
in Ch. 4), the doubly-latched asynchronous pipelines from Ch. 5, and Kin model (as explained in
Ch. 2). The methodology is demonstrated here through a simple FSM design example.

7.1  Introduction

Numerous applicable methodologies have been developed for the design of asynchronous logic
[Hau95]. Most of those methodologies and tools were developed for the design of small systems.
Only a few tools and methodologies have addressed large scale system level design. They include
the CHP [Mar90] and Tangram [vBKR+91] compilers, the combination of commercial and special
tools for the PostOffice [CDS93] and AMULET [Pav94]. However, no single and complete
methodology and tool set have been demonstrated as yet for the design of large scale
asynchronous systems.

The research described in this thesis focuses on the architecture and design methodology of a
microprocessor, which is a large scale asynchronous system. We were looking for one complete
CAD system, based on a well-understood methodology, suitable for all levels of the system, for
all timing disciplines, and for all design tasks including specification, design, simulation, animation,
validation, verification, debugging and synthesis. Naturally, since the CAD system is the tool
rather than the research, and since such a grand CAD system requires immense resources to
develop and maintain, we have turned to the domain of commercial CAD products in our quest.
Unfortunately, no large scale commercial CAD systems are available for asynchronous design.

Thus, we employed a commercial synchronous CAD system and adapted it for the design of
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asynchronous circuits. A design discipline is developed by which any explicit dependence on the
clock is carefully avoided. The circuit is synthesized by the tool into a synchronous structure, but
it is subsequently converted into an asynchronous one, as described in Sect. 5.7.

This chapter describes the adaption of the novel commercial high-level CAD system Statemate
MAGNUM™ [iLo96] to the design of large scale asynchronous systems. Statemate MAGNUM
(Magnum for short) is based on statecharts [Har87], and is introduced succinctly in Sect. 7.2.
Magnum provides an environment for a hierarchical graphical specification of the design, and also
facilities for simulation, animation, verification, and compilation into either a software program
(in C or Ada) or a hardware description (in VHDL or Verilog, at either the behavioral or RTL
levels).

The application of Magnum is described through the design of a small quasi-delay insensitive finite
state machine (qDI FSM) [DGY92b]. Section 7.3 defines the FSM and Sect. 7.4 explains its
design with Magnum. In Sect. 7.5 we describe special validation statecharts for asynchronous
logic. Simulation is discussed in Sect. 7.6.

7.2  The Statechart-based Statemate MAGNUM CAD System

Statecharts [Har87] constitute a specification formalism [HP96b, HPS+87] for reactive systems,
and can be used to design complex discrete-event systems and communication protocols.
Asynchronous  systems can be considered as reactive systems, since data are transferred by using
handshake protocols and each module reacts to changes in its inputs, does some processing, and
signals to other modules when done. Statecharts extend conventional state-transition diagrams
of finite state machines by adding hierarchy, concurrency and communications. While statecharts
describe system behavior, structural, functional and data-flow aspects of the system are specified
with the related activity charts. The nature of these charts is demonstrated in Sect. 7.4 wherein
they are applied to the design of qDI FSM.

Historically, statecharts were applied to the design of real-time, reactive software systems.
Recently the same methodology has also been applied to hardware specification. Magnum
presently compiles the specification into either VHDL or Verilog. It can compile into either
behavioral or RTL styles, and it can target the code for various commercial synthesizers and
simulators. We have successfully employed the Compass RTL synthesizer on the Synopsys-
targeted VHDL.

The applicability of tools like Magnum to asynchronous design is far from obvious. Magnum is
inherently a tool for designing synchronous logic. It generates RTL VHDL that is commonly
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Figure 7-1:  qDI FSM. Figure 7-2:  FSM
handshake.

Figure 7-3:  CL
handshake.

Figure 7-4:  REG
handshake.

synthesized according to the <register-and-cloud’ model [Per94] where clouds of combinational
logic are interconnected through synchronous registers. Magnum employs a unit delay model, and
simulates the design by advancing a clock. To bypass these difficulties, we have defined a design
and simulation discipline, as described in Sects. 7.4 and 7.6. We also investigated post-synthesis
robust conversion algorithms that convert the generated synchronous circuit into a legal
asynchronous circuit, as discussed in Sect. 5.7.

7.3  The qDI FSM

The qDI FSM [DGY92b] consists of a combinational logic block (CL, Fig. 7-1) and a register
(REG). It is based on the dual rail, four phase design methodology. The inputs and outputs are
either defined, or undefined, or in transition between those states. The ACK line is a single rail
control line. The system/environment protocol is shown in Fig. 7-2. The corresponding protocols
for the CL [DGY92a] and the REG components are shown in Figs. 7-3 and 7-4, respectively
(note their duality). This FSM is the asynchronous version of the synchronous Mealy machine (the
outputs are defined only when the inputs are).

7.4  Specifying the qDI FSM with Statecharts

To demonstrate the use of Magnum consider a two inputs, two outputs  FSM. Figure 7-5 shows
a simplified activity chart of the qDI FSM (the validation parts are explained in Sect. 7.5 below).
Activities are drawn as boxes, with CL and REG nested inside the qDI_FSM activity (they are
hierarchically described in separate activity charts, as indicated by ‘@’). The environment ENV,
being an external activity, is drawn as dotted boxes, and can appear multiple times for clarity.
Besides providing inputs and outputs, ENV also supplies circuit delays for simulation (which can
validate delay insensitivity).
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Figure 7-5:  Activity chart, FSM with validation.

Figure 7-6:  CL Bounded Delay statechart. Figure 7-7:  CL qDI statechart.

The detailed hierarchical description of the CL and REG activity charts can be found in [KGS96].
Two alternative CL statecharts are shown in Figs. 7-6 and 7-7 (note that states are drawn with
round corners). The former is designed for implementation and simulation with bounded delays,
and the latter assumes (quasi-) delay insensitive operation.

Statechart transitions are labeled trigger/action, where trigger is either an event and/or a
[condition]. All parts are optional in the synchronous Magnum. Unlabeled transitions are
triggered by the next clock in synchronous systems, so they are ruled out in our case. Magnum
events, unlike the common concept of events in asynchronous design, are dangerous, as they can
go unnoticed and disappear unless some receiver is ready and waiting for them. Since Magnum



93

has no inherent countermeasure for this problem, we require that regular statechart transitions are
labeled with conditions instead (we do allow the use of some special events in Sect. 7.5 below).
Asynchronous signal transition events (such as ‘X8’) are replaced by conditions (such as
‘[X=1]’).

Initial state is marked with the default entry arrow. The CL starts with inputs and outputs
undefined. When all CL inputs (i.e., the inputs to the FSM, and the present state (PS) from the
registers) become defined, the statechart moves to the next state wherein the Boolean functions
are evaluated. The actual Boolean expressions are hidden in the data dictionary (as indicated by
‘>’). In Fig. 7-6, exit from that state occurs when the computation delay expires. Alternatively,
in qDI implementation (Fig. 7-7), exit from the same state depends on CL outputs becoming
defined, rather than on the delay, as appropriate for a delay insensitive circuit. A similar sequence
occurs on the <return-to-zero’ part. The statechart of the registers is presented in [KGS96].

This FSM design is generic by nature, and only a small part of it is affected by the details of the
specific FSM being designed.

7.5  Validation

As with any asynchronous methodology, the design of qDI circuits depends on assumptions about
correct operation by both the circuit and its environment. Those assumptions can be proven
correct through a formal verification framework. However, in many cases this is an elusive goal,
so we resort to on-line validation, namely continuous checking that all assumed properties are
never violated. Validation may be limited to the design, simulation, and debugging phases, after
which all validation sub-systems are removed from the design. Alternatively, all or part of the
validation sub-system may be retained during synthesis, so that they continue to function through
the lifetime of the hardware. This latter safety measure may be valuable especially for the
interfaces between the circuit and the external world.

In the qDI FSM, we wish to validate the following properties: (a) The inputs and outputs must
carry only legal dual-rail  values {0,1,undefined}/{01,10,00}; (b) Changes of inputs and outputs
must be monotonic (from all-undefined to all-defined, without some lines becoming defined and
then returning to undefined, etc.); (c)  The handshake protocols of Figs. 7-2 - 7-4 are adhered to.

The activity chart of the qDI FSM with validators is shown in Fig. 7-5. The validation statechart
(Fig. 7-8) demonstrates hierarchy and concurrency — all enclosed statecharts, separated by the
dotted lines,  are active concurrently. They continuously monitor the relevant signals of the FSM.
The four instances of the generic DR_STATUS (Fig. 7-9) perform two tasks: First, while in



94

Figure 7-8:  Validation statechart. Figure 7-9:  Dual-rail validation statechart.

super-state DR_NORMAL_OP, if both wires are ‘1,’ the chart exits immediately to the
DR_MALFUNCTION terminal state and issues the ERROR event. Incidentally, this is one of the
few cases wherein we do use Magnum events, since another statechart is continuously watching
for that event (see below). ERROR event can be designed to ring some bells. Note that the
transition into DR_MALFUNCTION exits from the external boundary of DR_NORMAL_OP,
meaning that this transition takes place regardless of which internal state has been active at the
time of error. The second task is to detect the direction of the transitions on the lines (‘up’ or
‘down’), for use by the monotonic validator.

Monotonicity is validated by the regular expression  [Undef [up]+ Def [down]+ ]*, as described
in Fig. 7-10. The MONOTONIC_CHECK statechart monitors the DR_STATUS statecharts,
watching for non-monotonic transitions. For an N-bit dual rail line, two N-bit vectors are defined,
VUP and VDOWN, consisting of the corresponding UP and DOWN flags that are set by the dual
rail validators. When at least one of them marks its UP flag, the MONOTONIC_CHECK
validator moves to the UP_GOING state. It stays there as long as not all DR_STATUS validators
have set their UP flags. If any of the lines returns to undefined value, its DOWN flag is set and
the monotonic validator immediately escapes to the NON_MONOTONIC terminal state, and
generates an ERROR event. Upon normal transition to VALUE_DEFINED (after all N bits are
set) the VUP vector is reset. A similar process takes place on the way down. Note that while input
validation checks the environment, output validation checks our own system.
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Figure 7-10:  Monotonic validation statechart.

Figure 7-11:  Protocol validation statechart.

The PROTOCOL_VALIDATION statechart (Fig. 7-11) checks adherence to the four phase
protocol, of both the environment and the system.  Any deviation is considered an error, which
results in immediate escape to the terminal state ERROR_OCCURRED. Note how the chart
contains all the intermediate transitional states, as well as the stable ones {1-4}. The protocol
validator also watches for ERROR events generated elsewhere. Upon such an event, the validator
jumps to the error state, and can alert the user. For clarity reasons, the statechart in Fig. 7-11 is
somewhat simplified, and does not contain all the state transition details. A full description (with
all the conditions for each transition) can be found in [KGS96].

While validation relates to dynamic checking of properties, and the checks are limited to the cases
that are actually simulated, verification usually involves exhaustive checks or proofs that
guarantee that certain properties are always true. Verification aspects of statecharts have been
discussed by [Day92].

7.6  Simulation

The simulation facilities of Magnum include features such as graphic feedback in color, animation,
links to external code, and multiple manners of affecting the simulation and observing the results,
either interactively or in batch mode. However, the interesting question is how to perform
asynchronous simulations with a synchronous simulator.

The most practical solution we have found is to simulate the design with an extremely fast clock
(relative to the circuit delays). Even when all conditions are set for a transition to take place in
a statechart, the (synchronous) simulator would not make the transition unless the clock has
ticked. Having that clock toggle very fast results in transitions happening almost immediately after
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they are enabled. Again, this approach relies heavily on a strict discipline assuring no hidden
synchronous transitions in the design, and avoiding all functional dependencies on the clock.

Another issue is the generation and simulation of delays. For bounded delay and timed disciplines
it is useful to simulate the design having delays varying within the (lower and upper) bounds set
for them. For qDI disciplines, it is useful to simulate with arbitrary delays. Most important, the
circuit should be simulated at many different ‘timing corners,’ namely different combinations
wherein some parts of the circuit are very fast and other parts are very slow, in order to detect
illegal behavior. The solution to all these requirements lies in on-line delays.

On-line delays are specified neither in the design nor in the simulator. Rather, they are supplied
to the simulator, on demand in real-time, as the simulator executes. Every time a delay is needed,
it is re-read from an external, concurrently executing procedure, the delay generator. The
generator can be programmed to either use fixed delays, draw them from a table, draw them from
a predefined statistical distribution, or execute special functions to create data-dependent delays.
Each of those delay models is important for some aspects of asynchronous design.

7.7  Concluding Remarks

We have presented the applicability of a complete CAD system, which was originally developed
for the design of synchronous circuits, to asynchronous logic design. Magnum is based on
statecharts, a suitable methodology for the design of asynchronous architectures. Specific design
rules have been developed for the specification (no dependence on clock transitions, use of
conditions rather than events), and for simulating asynchronous circuits on the synchronous
simulator (use extremely fast clock, apply on-line delays). Other aspects of Magnum, such as
static and dynamic verification, animation, and compilation are discussed in [KGS96] and [iLo96].
Validation statecharts have been added to monitor the simulations, and they can also be
synthesized into validating hardware. They provide an important complement of formal
verification for large and complex systems.

Simulations were used for debugging while developing the models and also for performance
evaluation (using online delays generation). As explained in Chs. 2 and 3, a model for Kin was
built based on statecharts and external C-code. Statechart models of various asynchronous
pipelines (cf. DLAP in Ch. 5) were also built to analyze their operation before implemented at
transistors level. The asynchronous instruction length decoder from Ch. 4 was fully described by
statecharts, for complete architecture specification and module interface.
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Chapter 8 : Summary and Further Research

Analysis of future semiconductor technology (such as 1 billion transistors per chip and over 1GHz
clocks planned for the year 2010) shows that it places severe constraints on the design of high
performance microprocessors. In particular, the chip is too large and the clock is too fast for
single clock synchronous operation. Rather, new forms of distributed architectures and
asynchronous interconnects are called for. In this thesis it is argued that the technological
constraints necessarily lead to asynchronous solutions.

This research describes the architecture of the asynchronous microprocessor Kin, which supports
a novel aggressive speculative Avid execution method (necessary for high speed and suitable for
asynchronous processors). The development of Kin included addressing and solving problems at
the architecture level, as well as developing architectural concepts and design methodologies for
the required building-blocks. Using some of these basic blocks is not restricted to the design of
a microprocessor, and they can be applied to other systems as well.

The thesis also discusses a number of associated issues: Fully asynchronous design of one module
(an asynchronous instruction length decoder), algorithmic conversion of synchronous pipelines
into (doubly-latched) asynchronous ones (DLAP), mixed timed globally asynchronous locally
synchronous systems (with adaptive synchronization), and the design methodology (based on
statecharts) suitable for high level asynchronous design.

Some future research directions can be identified. They relate either to the near-term evolutionary
path from present day CAD and architecture towards asynchronous systems, or to the longer term
issues of what’s beyond Kin. 

Regarding the near term, substantial research must be devoted to transitional methodologies
described in the thesis:
C Automatic conversion of synchronous circuits into asynchronous ones should be further

investigated. 
C Adaptive synchronization for multi-sync systems may be studied, together with clocking

methodologies. 
C Synthesis tools must be adopted to produce and verify GALS systems. 
C Seamless interfaces of various low level synchronous synthesis tools to high level

specification tool like Statecharts should be developed.
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Further, the architectural aspects need additional study:
C Kin architecture can be refined. For instance, alternative organizations of the reservation

stations and instruction schedulers can be simulated and compared. 
C More Avid execution simulations should be performed and analyzed. We have only

simulated a constant Avid scheme, but Avid performs best when used as an adaptive
mechanism, where the Avid depth is adjusted according to the quality of the prediction
of each branch.

C We have presented the fully asynchronous design of an instruction length decoder for Kin.
Other modules can be implemented according to various asynchronous methodologies.

C DLAP design can be refined, and two-phase DLAP schemes may be researched.

On the longer term:
C The technological and architectural constraints that may be posed by technologies beyond

the 2010 SIA prediction should be investigated. 
C More aggressive deviations from contemporary architectures should be considered. In

particular, both the instruction sets and the computing paradigms most suitable for
asynchronous processing must be identified.

Last but not least, Kin could be implemented in silicon!
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Appendix A : Clock Coordination for Synchronization
of Multi-Synchronous Systems

This appendix describes the adaptive coordinated synchronization for effective communications
among non-synchronized synchronous blocks, based on adapting the clock. When a collision
between the incoming data and clock is detected, the phase of the clock is changed and adjusted
to avoid the conflict. Unlike stretchable clocks which use local clock generators, the schemes
presented here are designed for multi-synchronous systems operated by an external crystal clock,
thus guaranteeing a nominal frequency. We propose three alternative clock coordination methods
(clock-disable, clock-toggle, and clock-shift), and analyze their effect on system performance and
their limitations.

A.1  Introduction

In clock coordination schemes, we take advantage of the non-uniform arrival time distribution
(explained in Ch. 6) and adapt the clock of the receiver to switch when incoming data is stable.
Incoming data and clock are processed by a clock/data coordinator prior to their entry into the
synchronous module, as in Fig. A-1. The purpose of the coordination circuit is to avoid clock/data
collision, by modifying the clock. Unlike symmetric arbitration, the coordination circuit gives
higher priority to the data input and is designed to delay the clock in cases of conflict. A proper
delay, matching the delay of the coordination circuit, is added on the data lines, to preserve the
relative timing of Data and DataRdy.

We consider three alternative methods of coordination (Fig. A-2). The clock-disable method
disables the local clock for a complete cycle. The clock-toggle method toggles the clock, delaying
the rising edge for a one half cycle. The clock-shift method adds a small delay to the clock, i.e.,
it shifts the phase of the local clock for all future cycles.
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Figure A-1:  A clock/data coordination circuit
for each synchronous module.

Figure A-2:  Alternative coordination methods.

Figure A-3:  Coordination circuit block diagram.

Figure A-4:  Clock/data edge Conflict Detection.

A.2  Clock Coordination Circuit

For all three methods, the coordination circuit comprises three components (Fig. A-3): The
Conflict Detection (CD) block detects when data and clock edges have occurred simultaneously.
The Clock Phase Delay (CPD) block delays the clock by a selectable amount of time. Its actual
function varies from one method to another (full cycle, half cycle, or a variable delay). The Clock
Regeneration (CR) block recovers the duty cycle of the input clock. Upon an edge conflict, CD
generates  and SelectNext, to keep CoordClock in its low phase, and to change the delay,

respectively.

Inertial delay line d1 matches the delay of CD (as explained below). Thus, upon edge conflict, CR
is disabled sufficiently early to block the faulty clock transition. Delay d2 matches d1+delay(CR),
to preserve the relative timing of the clock and data.
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Figure A-5:  Positive inertial delay d1. Figure A-6: Clock Regeneration with a negative
inertial delay.

When SelectNext is on, CPD clk output is first reset (also signaling CD to reset and release ),

the clock ‘off’ phase is stretched as much as necessary, and clk is set again to signal the beginning
of the next valid ‘on’ phase.

In this discussion we assume that DataRdy rises to ‘1’ after the new data are available and ready
to be sampled. A simplified CD implementation is proposed in Fig. A-4. When both inputs to CD
rise simultaneously, a pulse is generated at x, setting the D-FF (used as a SR latch with an edge-
triggered ‘set’ input), and generating  and SelectNext. The latch is cleared when the clk input

turns low. Possible metastability of the latch is discussed in Sect. A.4.1 below.

In addition to matching CD delay, the positive inertial delay d1 (implemented by the circuit in
Fig. A-5) also filters short positive clk pulses. Such pulses are created on clock/data conflicts,
when clk is reset shortly after it has risen (Figs. A-10, A-12). Delay d1 is asymmetric [Sei80]: the
positive delay is longer (by )) than the negative delay. To preserve the duty cycle of the input
clock, a matching negative inertial delay is appended to CR (as described in Fig. A-6).

The content of the CPD block depends on the coordination method implemented (see Figs. A-7,
A-9, A-11). In the clock-disable case CPD is a wire. For clock-toggle it selects either ClockIn or
its inverse. A multiplicity of delayed clock signals for the clock-shift method are generated by a
tapped delay line, and the proper phase is selected by a sequential selector, which switches inputs
on every rising edge of its control input. Typical waveforms of the three coordination circuits are
shown in Figs. A-8, A-10, A-12, wherein conflicts are marked by dotted lines.

Note that, for very high clock frequencies, the total latency of the coordination circuit (d2) may
approach, or even exceed, a whole clock cycle. While resembling the latency incurred by a
synchronizer, coordination is still preferred to the latter. Since sender and receiver clocks are
correlated in multi-synchronous systems, clock/data conflicts are highly likely to recur (and cause
recurring metastability situations) if the relative clock phase remains fixed. Coordination circuits
are designed to adapt local clocks and thus counter this problem.
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Figure A-7:  Clock Disable.
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DataRdy
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CoordDataRdy
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Figure A-8:  Waveforms of Clock-Disable method.

Figure A-9:  Clock Toggle.
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Figure A-10:  Waveforms of Clock-Toggle method.

Figure A-11:  Clock Shift.
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Figure A-12:  Waveforms of Clock-Shift method.

A.3  Performance Analysis of Clock Coordination

The Clock-Disable method is the simplest one to implement, but its obvious limitation is that it
may cause a substantial performance degradation, and the module is doomed to suffer from the
same problem repeatedly. When a clock/data edge conflict is detected, the local clock is disabled
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(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

for one cycle. We assume that the data arrival time is uniformly distributed over the clock cycle.
Although we have claimed above that this distribution is non-uniform, it is valid to assume
uniformity when the expected relative arrival time is yet unknown, or when it has changed, e.g.,
due to temperature or supply voltage drifts. Thus, the probability of conflict is

where tsu and  th are  the setup and hold times, respectively, and C is the clock cycle. If data
arrive every R cycles, then a computation which takes R cycles if there were no conflicts would
need an extra cycle with probability p due to conflicts. Thus, the slow-down SR is

If the incoming data arrive from N different sources, and all the bits arriving over the same bus
are synchronized, then the probability of conflict is

The slow down in such a case is

According to the Clock-Toggle method, the clock is delayed one half cycle upon a conflict.
Hence:

For the Clock-Shift method, we estimate the shift resolution to be 3 gate delays. If *=(shift
resolution delay)/C, then
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Figure A-13:  Clock coordination slow-down.

Figure A-13 shows the slow-down (SN) of the three coordination methods relative to R (assuming
p=0.05, N=10, and if C.15 gate delays, then *=0.2). While SN(Clock-Disable)ÿ1.04 for large
R, it grows to 1.2-1.4 for the higher bandwidth case (R=2 or R=1, respectively). The slow-down
in case of clock-toggle is only 1.2 for R=1, and diminishes to 1.08 in the clock-shift case. The
clock-shift method causes the least performance degradation: Only 8% slow-down for high rate
data transfer (i.e., every cycle), and as low as 0.8% for low rate. This performance analysis
underestimates the performance of the clock adjusting approach, since after the clock phase is
adjusted, it is likely to guarantee the successful synchronization of subsequent data transmissions.
After adaptation, the probability is not uniform any longer and hence p is substantially smaller.

A.4  Limits of Clock Coordinated Synchronization

Clock coordination  suffers from three difficulties, namely metastability, oscillation, and lack of
convergence. In this section we explain the problems and show how some of them can be avoided
in practice.

A.4.1  Metastability

When a clock/data conflict is detected, a pulse is generated in CD (x, Fig. A-4) to set the latch,
disable the clock, and shift the phase. The width T of the pulse depends on the time difference )t
between the rising edges of clk and DataRdy (Fig. A-14). Maximal T is achieved when clk and
DataRdy rise simultaneously; the longer |)t| is, the shorter the pulse. For certain high values of
)t (In the J regions of Fig. A-14(b)), T is dangerously short and the pulse might cause the latch
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Figure A-14:  Conflict detection pulse width T as a function of clk/DataRdy concurrency )t.

to either enter a metastable state, or to take abnormally long time to settle [Mar81, Sto82]. Note
that CD is designed such that if )t0J, data and clock are safely separated, non-conflict operation
is desired, and CD should not declare a conflict. Long propagation delays do not affect the circuit.
If the latch enters a metastable state but does not exit it before clk goes low, the latch will be
forced out of metastability by clk (Fig. A-4). However, if the latch exits metastability while clk
is still high, and (erroneously) declares a conflict, the clock is aborted in mid-cycle and may cause
the module to fail. Normally, the CD has enough time to resolve the metastable state since the
DataRdy will not change until an acknowledge is returned. This most likely will take more than
one cycle, depending on the handshake protocol and the processing time.

The adaptive synchronization brings the system, after a convergence period, to a stationary state.
As explained above, the final state is stationary because the delays and phase differences among
the modules in the system are functions of the implementation, of physical parameters, and of
temperature and supply voltages, and they typically change very slowly during the operation.
After adjusting the clock phase in all modules to avoid conflicts, there is no need to make any
more changes and the system is expected to operate without synchronization problems for a long
time. Thus, adaptive synchronization is best used during special training sessions.

A training session is dedicated to adaptation of clock delays, and does not perform real
computations. All the modules intercommunicate heavily in order to entice the coordination
circuits to shift phases as needed. Synchronization failures during training sessions are ignored (no
real data is lost). After a training session, clock/data conflicts are less likely. The system should
be trained upon reset and periodically (but infrequently) during operation. Training is expected
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Figure A-15:  Communicating modules cycle.

to affect system utilization by less than 1% (as explained in Ch. 6). Each module should send
messages on all its output channels during training, so that all potential conflicts are exercised.

A.4.2  Oscillation

When many modules communicate by clock-shift coordinated synchronization, an oscillation may
develop. Each module shifts its own clock phase every time a clock/data conflict is detected, and
subsequently sends its data to other modules using the newly shifted clock. This change of clock
phase might cause another module to develop a conflict, and its own local clock is consequently
shifted. The propagating clock shifts may settle down after a few adjustments, or they may cycle
and affect the first module again. Thus, the clock phases may continuously be updated and shifted
forever. In the following we show that the oscillations of the adaptation process problem may be
predicted and avoided at design time.

The system can be described as a graph, wherein modules are modeled by vertices, and
communication channels are modeled by directed edges. The danger of oscillating clock shifts can
only occur due to cycles in the graph, and only in a very special case. In Fig. A-15,  a cycle of
three communicating modules is shown.

Let dA be the delay in module A from its local (coordinated) clock edge till the data are ready at
its output. Let dAB be the delay along the communication channel from module A to module B.
When Module A sends data to module B, they would arrive at module B after dA+dAB time
(relative to some transition of the coordinated clock at module A). If a clock/data conflict occurs
now in module B, it will update its local clock phase by the shift resolution delay *, and will send
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(A-9)

data to module C using this new clock. The data will arrive at module C (dB+dBC ) after the new
clock edge of module B. Those data may cause module C to shift its local clock by *. The data
sent from module C to module A will take (dC+dCA) to arrive. The total time required for data
to be transferred from module A, to B, to C, and back to A (including clock shifts at B and C),
is (dA+dAB+*+dB+dBC+*+dC+dCA ). To cause a conflict and clock shift in module A (i.e., an
oscillation), this sum of delays along the cycle has to be equal to an integral multiple of the clock
cycle (i.e., mC). In the general case, when there are k modules along the cycle, the danger of
oscillation exists when:

where module j follows module i along the directed k cycle.

To avoid the oscillation problem, the graph model of the system architecture should be searched
(at the design time) for cycles with this property. A small delay is added to each such cycle to
avoid the situation. This approach is limited, however, by the accuracy of delay modeling.
Alternatively, the coordination circuits may be redesigned to add varying delays to the clocks, so
as to break cycles.

The same oscillation problem is also expected to occur when stoppable clocks are applied. Since
each module changes its own clock phase, it might cause others to adjust accordingly and vice
versa. Data adaptive synchronization (Sect. 6.2) breaks the dependency cycle and avoids
oscillation problems.

A.4.3  No Convergence

When a module is interconnected to many other modules, and each of the other modules has a
different relative clock phase shift, it is possible that they will not be able to communicate without
failure, since the local clock will be shifted constantly. This might happen when there is no
common phase they all agree on, and the combined distribution of data arrival times on the many
inputs is uniform (Fig. 6-1). Stretchable or pausable clocks solutions cannot be used in this case
since the clock will be kept in its ‘off’ phase for arbitrarily long periods of time. This can be
avoided by adaptively coordinate delays on the data lines (as described in Section 6.2) rather than
change the local clock.
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A.5  Concluding Remarks

Alternative methods and circuits for clock coordination are described and performance is
analyzed. An external common clock is used, and based on the stationary nature of clock and data
delays, a proper phase of the clock is dynamically selected to avoid synchronization failures.
Metastability, oscillation, and convergence problems are discussed. As done for the data
coordination, the clock adaptation can be limited to special training sessions.
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רוב השיטות . תכנון אסינכרוני מצריך שיטות הגדרה וכלים השונים מהקיים עבור תכנון סינכרוני
במסגרת . והכלים שפותחו במיוחד לתכנון אסינכרוני מתאימים בעיקר למערכות קטנות יחסית

המתאימה לרמות שונות של הגדרת , המחקר נזקקנו למערכת תכנון ופיתוח שלמה

השתמשנו במתודולוגיה המבוססת על , לשם כך.  ושל היחידות שבוKinהארכיטקטורה של 

ולשם ,  להגדרה הפורמלית והתיאור של הארכיטקטורה והתכנון(statecharts)מיצוב -תרשימי
לשם התאמת ) כגון חוסר תלות מוחלט בשעון(הוגדרו כללים מיוחדים . ביצוע סימולציות

בעזרת תרשימי המיצוב . המיצוב לתכנון אסינכרוני וביצוע סימולציות-מתודולוגיית תרשימי

המפענח , מימוש הביצוע הלהוט במעבד האסינכרוני, Kinהוגדרו ונבדקו הארכיטקטורה של 
הוגדרו מעגלי בדיקה , בנוסף. האסינכרוני של אורך פקודה והסוגים השונים של צינור אסינכרוני

 .לאימות תוקף ונכונות פרוטוקולי תקשורת והתנהגות מערכת
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DLAP וכן , כאשר ההשהיות תלויות בנתונים) סינכרוני או אסינכרוני( מהיר יותר מכל צינור אחר
השימוש . מכיון שהוא מכיל יותר בועות, רגיש פחות להאטה זמנית בקצב ההוצאה מהצינור

. אך הוא ישים גם בהרבה מערכות אחרות הבנויות כצינור, Kin פותח עבור המחשב DLAP-ב

י "יים להיות בעלי צריכת הספק מופחתת וביצועים גבוהים יותר עמעגלים אסינכרוניים צפו
במסגרת המחקר פותח אלגוריתם להמרה . הורדת השעון ושימוש בהשהיות תלויות נתונים
בכך ניתן לנצל חלק מהיתרונות של מעגלים . אוטומטית של מעגלים סינכרוניים לאסינכרוניים

ההמרה נעשית על מעגל . תוך שמירה על ההשקעות בתכנונים וכלים סינכרוניים, אסינכרוניים

 נמצא מתאים לשמש כארכיטקטורת היעד של המרה DLAP-והמבנה של ה, שנוצר לאחר סינתזה
 .שכזו

 

היחידות השונות של המעבד ,  היא אסינכרוניתKinבעוד הרמה העליונה של הארכיטקטורה של 
ח האסינכרוני של אורך פקודה וכן המפענ. יכולות להיות ממומשות בהתאם למשטרי תזמון שונים

כאשר המעגלים תוכננו במקור ,  הינם דוגמאות למתודולוגית תכנון אסינכרוניתDLAP-ה

 בתור Kinבעבודה מוצג גם מימוש אפשרי נוסף של . או הומרו מתכנון סינכרוני, כאסינכרוניים
מתודולוגיה זו יכולה לשמש גם כשלב ביניים במעבר מתכנון שכולו . סינכרונית-מערכת רב

סינכרוניות הן מערכות המבוססות על שעון -מערכות רב. סינכרוני לתכנון שכולו אסינכרוני
ובכך נחסך ההספק הרב המושקע בעצי הפצת , משותף המופץ ליחידות השונות דרך חוטים דקים

 אך בפאזה לא, כל היחידות במערכת פועלות על פי אותו תדר שעון. שעון ומעגלי תיאום פאזה
. המערכת איננה סינכרונית ברמת הארכיטקטורה העליונה של החיבור בין היחידות, לפיכך. ידועה

הטיפול . נתונים הנשלחים בין יחידות עלולים לגרום לכשל סינכרון, מכיון שאין תיאום פאזות
המסנכרן , אולם. המקובל כיום בתופעות כאלו במערכות סינכרוניות הוא שימוש במסנכרנים

אלא רק מקטין את הסיכוי , אינו פותר את הבעיה) הממומש כרגיסטר נוסף בכל כניסה(
ולא , מסנכרן עלול להיכנס למצב מטהסטבילי. וגורם לעיכוב בקליטת הנתונים ועיבודם, שתתרחש

פתרון אחר המוצע בספרות הוא . לצאת ממנו במשך מחזור שעון שלם בזמן עבודה בתדר גבוה
כאשר עליית השעון נמנעת ומעוכבת במקרה של , תנים לעצירהשימוש בשעונים מקומיים הני

, כאשר הנתונים מגיעים ממספר מקורות. התנגשות בין זמן הגעת הנתונים לזמן שינוי אות השעון
. ומספר רב של עצירות השעון פוגע בביצועים, ההסתברות להתנגשות בין השעון והנתונים עולה

כאשר מספר . עצירת כל שעון מקומי גורמת לשינוי הפאזה בה ישלחו הנתונים ליחידה המקבלת
עלול להיווצר מצב בו כל שינוי פאזת שעון , יחידות המתקשרות ביניהן מחוברות כמעגל סגור

המחקר מציג שיטת סינכרון . וחוזר חלילה, מקומי גורר שינוי השעון המקומי של היחידה העוקבת
. ה משמעותית את הסיכוי לכשל סינכרוןאשר מקטינ, סינכרוניות-מסתגלת עבור מערכות רב

הנתונים הנשלחים , כאשר יחידה סינכרונית אחת שולחת נתונים ליחידה סינכרונית אחרת
מכיון שהפרש הפאזה בין השעונים של השולח . מסונכרנים עם השעון המקומי של השולח

יש מיתאם בין זמן הגעת הנתונים לבין , הם נייחים, וכן ההשהיה על קווי הנתונים, והמקבל
הנחת הנייחות נובעת מהעובדה שההשהיות והפרשי הפאזה בין היחידות . השעון של המקבל

ובטמפרטורה ומתחי , בפרמטרים פיזיקליים של תהליך הייצור, במערכת משתנים בתלות במימוש
ואינם מורגשים במשך מספר , שינויים אלו מתרחשים לאט מאד בזמן עבודת המערכת. ההספקה
הסינכרון המסתגל משנה ומתאים את , בניגוד לשיטות המטפלות בשעון.  של מחזורי שעוןרב מאד

סינכרונית יכולה לכן להיות מופעלת -המערכת הרב. ואינו נוגע בשעון, ההשהיות על קווי הנתונים
שאינם גורמים לפגיעה משמעותית , קצרים(במהלך פרקי זמן . י שעון גביש חיצוני מדויק"ע

מזוהה הפרש הפאזה בין השעון של היחידה לזמני הגעת הנתונים בערוצים , של אימון) בביצועים
ההסתברות לכשל סינכרון מנותחת בעבודה . והשהיית כל ערוץ מכווננת למניעת התנגשות, השונים

המאפשרות (אנו מראים כי ישנן טכנולוגיות . ומושווית יחסית להסתברות לכישלון של מסנכרן
בעוד שיטת הסינכרון המסתגל עדיין , בהן השימוש במסנכרן אינו יעיל) םעבודה בתדרים גבוהי

בהתאם , יש לעבור לתכנון אסינכרוני מלא, כאשר גם שיטת הסינכרון המסתגל נכשלת. פועלת
 .לשיטות האחרות המתוארות בעבודה

 



 ii 
 

רוב המסלולים המובאים ומטופלים נזרקים לבסוף בעזרת מנגנון . במעבד בשלבי טיפול שונים
קביעת עומק המסלולים האלטרנטיביים נעשית . לת המעבדשאינו מעכב את פעו, גיזום דינאמי

סמני . בהתאם להסתברות ביצוע הקפיצה וטיב דיוק החיזוי שלה, בצורה דינאמית ומסתגלת
ניתוח . מסלול מצורפים דינאמית לפקודות המטופלות במעבד לשם זיהוין וביצוע גיזום יעיל

ביצוע להוט יכול להקטין את , אנליטי מראה כי בעזרת ניצול יעיל של תוספת משאבים ליניארית

  50%- ובכך להביא לשיפור הביצועים ב, 1%- לפחות מ 30%-התשלום על טעות בחיזוי מלמעלה מ
סימולציות של תוכניות . יחסית למה שניתן להשיג בהליכה במסלול יחיד עם משאבים דומים

קרים ביצועים טובים יותר מראות שהביצוע הלהוט משיג ברוב המ (SpecInt95)בדיקה מקובלות 
ושהדרך האופטימלית ליישומו היא בבחירה דינאמית של עומק , מאשר שיטת המסלול היחיד

 .Kinהמסלולים האלטרנטיביים על גבי מחשב אסינכרוני כגון 
 

 היא אסינכרונית ובנויה ממספר יחידות בעלות תזמון Kinהרמה העליונה של הארכיטקטורה של 
המתקשרות דרך ערוצים אסינכרוניים תוך , )אשר מייצרות אותות לסימון סיום פעולתן(עצמי 

 יכולות להיות ממומשות פנימית או Kinהיחידות השונות של . שימוש בפרוטוקולי תקשורת
וניהול הביצוע הלהוט וגיזום פקודות , בעיות של מירוץ וקפאון. כאסינכרוניות או כסינכרוניות

 יכולות Kinהיחידות של . Kinקטורה האסינכרונית של מטופלים ברמה הגבוהה של הארכיט
עבודה לפי השהיות (לשם קבלת ביצועים טובים יותר , להיות ממומשות פנימית כאסינכרוניות

או , )עקב ביטול הצורך בשעון(וחיסכון בהספק ) ממוצעות ולא לפי המקרה הגרוע ביותר
אך בכל מימוש הרמה העליונה של ). תוך ניצול חלקי של תכנונים קיימים(כסינכרוניות 

 . היא אסינכרוניתKinהארכיטקטורה של 
 

מכיון , פענוח פקודות בעלות אורך משתנה מהווה צוואר בקבוק במחשבים בעלי ביצועים גבוהים
תחילת פקודה לא ניתנת לזיהוי לפני שזוהו תחילת הפקודה הקודמת (שזו פעולה סדרתית מטבעה 

לא של מערכת אסינכרונית מרמת הארכיטקטורה עד לרמת מימוש כדוגמא לתכנון מ). לה ואורכה
המפענח האסינכרוני תוכנן . פותח במסגרת המחקר מפענח אסינכרוני לאורך פקודה, המעגל

ומכיל מנגנונים יעילים , כאופטימלי לטיפול במקרים השכיחים ביותר של אורך פקודות וסוגן
 .במקרים הנדירים) איטי יותר(לטיפול 

 
שיטה מקובלת להגדלת מקביליות ושיפור ביצועים של מערכות סינכרוניות ואסינכרוניות היא 

כך הביצועים טובים , ככל שהצינור מהיר יותר.  כארכיטקטורה בסיסית(pipeline)שימוש בצינור 

וכל אחת מיחידות ,  יכולה להיחשב כצינור מורכב לא ליניאריKinהארכיטקטורה של . יותר
חלק מהצינורות האסינכרוניים המופיעים בספרות .  ממומשת פנימית כצינורהמעבד יכולה להיות

ודרגות שאינן , כאשר הדרגות מחשבות לסירוגין,  בלבד של שלבי הצינור50%פועלים בניצולת של 
במקרים (החלק האחר של הצינורות האסינכרוניים הידועים סובלים . מחשבות מכילות בועות

אלמנט זיכרון אינו יכול לשנות את . מזמן התפשטות אחורנית ארוך של אותות האישור) מסוימים
דבר זה עלול לגרום להגבלת . הערך השמור בו עד שהדרגה הבאה סימנה שהיא מוכנה לערך חדש

למשל בטבעות או צינורות ליניאריים עם השהיות דרגה , הביצועים במעגלים בעלי צינור עמוק
לך העבודה פותח מבנה של צינור אסינכרוני בעל במה. המשתנות בתלות בנתונים המטופלים

זהו צינור אסינכרוני עם . (DLAP=Doubly-Latched Asynchronous Pipeline)בריחים כפולים 
עבד אשר מאפשר ביצועים מהירים יותר מתכנונים קודמים של צינורות -רגיסטרי אדון

האחד מבוסס על , DLAPפותחו שני סוגים של . אסינכרוניים במקרים של השהיות משתנות

 של המימושים SPICEסימולצית . והאחר על בריחים מעוררי רמה, רגיסטרים מעוררי קצה

אך ,  המבוסס על עירור קצה מעט איטי יותר מזה המבוסס על עירור רמהDLAP-השונים מראה ש
, יחסית לצינור סינכרוני. בשני המעגלים התקורה בזמן זניחה יחסית לזמני חישוב טיפוסיים

DLAPאך שימוש בבריחים מקטין את התקורה בשטח למינימלית,  דורש מספר רגיסטרים כפול .

 לבין זמן המחזור של הצינור האסינכרוני היעיל ביותר מתבטא DLAPההפרש בין זמן המחזור של 
, לעומת זאת. אשר זניח יחסית לזמן עיבוד הנתונים בשלבי הצינור, בזמן טעינת רגיסטר נוסף
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 תקציר מורחב
 
 

מיליארד טרנזיסטורים על פיסה ושעונים בתדר , כגון(הטכנולוגיה העתידית של מוליכים למחצה 

יוצרת אילוצים חמורים חדשים על התכנון של ) 2010כמתוכנן לשנת , 1GHz-גבוה מ
השבב גדול מדי והשעון מהיר מדי לפעולה סינכרונית , בפרט. מיקרומעבדים בעלי ביצועים גבוהים

 מבוזרות ותקשורות אסינכרוניות מתאימות יש צורך לפתח ארכיטקטורות, לפיכך. עם שעון יחיד
 . חדשות

 
וזמני התפשטות אותות הנתונים )  גבוהופיזור הספק, כגון אי הגעה בו זמנית(בעיות הפצת השעון 

 מההספק הנצרך 40% כיום מעל. מונעים תכנון של מעבד סינכרוני המופעל בשעון משותף יחיד
זמני התפשטות אותות הנתונים בתוך המעבד . י מעגל יצירת השעון והפצתו"במעבדים מפוזר ע

. לארוכים יחסית לזמן מחזור השעון המפעיל את המעבד, עם התקדמות הטכנולוגיה, הופכים
לא . נתונים הנשלחים מיחידה אחת יגיעו במחזורי שעון שונים ליחידות יעד שונות, כתוצאה מכך

מערכות . ניתן יותר להפריד בין השפעות המימוש הפיזי על פעולת המעבד ברמת הארכיטקטורה
י "הים יותר עוהן יכולות לספק ביצועים גבו, אסינכרוניות אינן סובלות מבעיות הפצת השעון
מערכות אסינכרוניות אינן מוגבלות לעבודה על . ניצול השהיות משתנות בתלות בחישוב ובנתונים

מערכות בתזמון עצמי . כפי שנעשה במערכות סינכרוניות, פי המקרה הגרוע ביותר של השהיות
 .מייצרות אותות לסימון סיום פעולתן

 

התומך בביצוע ספקולטיבי להוט , Kin1המחקר מתאר את הארכיטקטורה של המעבד האסינכרוני 

כוללת מאפיינים  Kinהארכיטקטורה של . ובביצוע פקודות מחוץ לסדר בו הן מופיעות בתוכנית
ארכיטקטוניים ייחודיים המיועדים להשיג ביצועים גבוהים תוך ניצול משאבי החומרה הנדיבים 

אילוצים הטכנולוגים מובילים מסקנת המחקר היא כי ה. י הטכנולוגיה העתידית"שיתאפשרו ע

 כללו איתור ופתרון בעיות ברמת Kinהתכנון והפיתוח של . בהכרח לפתרונות אסינכרוניים
פתרונות אלו . וגיבוש מתודולוגיות תכנון ואבני בנין לבניית מחשב אסינכרוני, הארכיטקטורה

חלק .  והם מתאימים גם למערכות אחרות הפועלות בצורה דומהKinנחוצים לתכנון של 
 . מהפתרונות שפותחו בעבודה זו ישימים אף בטכנולוגיה הנוכחית

 
מחשבים מתקדמים מפעילים כיום שיטות מתוחכמות לחיזוי תוצאות פקודות קפיצה כדי 

מספר יחידות (מחשבים בעלי מקביליות פנימית גבוהה . להקטין את השפעתן על ביצועי המעבד
ים לנצל ביעילות את המשאבים הקיימים בתוכם בגלל רמת אינם יכול) ומספר שלבי צינור, עיבוד

התשלום בעיכוב פעולת המעבד בכל פעם שיש . מקביליות מוגבלת בין פקודות בתוכניות נפוצות
במסגרת המחקר פותחה שיטת הביצוע . טעות בחיזוי של פקודת קפיצה מקטין את ביצועי המחשב

שיטה זו יעילה יותר משיטת ההליכה במסלול .  לטיפול בפקודות קפיצה(Avid Execution)הלהוט 
מסתבר שלשם . והיא מסוגלת לנצל ביתר יעילות משאבים פנויים במעבד, יחיד המקובלת כיום

יש לבנותו כמחשב בעל ארכיטקטורה , קבלת שיפור אופטימלי בביצועי מעבד המממש ביצוע להוט
 .אסינכרונית המאפשרת הסתגלות לעומסי חישוב משתנים

 
 הביצוע הלהוט מוצגת ומנותחת כאסטרטגיית חיזוי מעבר לפקודות קפיצה עבור המחשב שיטת

Kin .י הבאה מוקדמת וביצוע ספקולטיבי של מספר מסלולים "התשלום על טעות בחיזוי מוקטן ע
, המסלול החזוי מובא ומבוצע, על פי שיטת הביצוע הלהוט. אלטרנטיביים בתוכנית בצורה יעילה
גם חלקים מסוימים של מסלולים שנחזו שלא יבוצעו , בנוסף. כפי שנעשה בשיטת המסלול היחיד

לפחות חלק מהמסלול הנכון כבר נמצא , במקרה שמתגלית טעות בחיזוי. מובאים ומטופלים

                                                           
1 Kinהוא שמו של אל הזמן של המאיה . 
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