Self-Timed Asynchronous Architecture of an
Advanced General Purpose Microprocessor

Rakefet Kol



Self-Timed Asynchronous Architecture of an
Advanced General Purpose Microprocessor

RESEARCH THESIS

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Science

Rakefet Kol

Submitted to the Senate of the Technion - Israel Institute of Technology
Elul, 5757 Haifa September 1997



To my mother, with endless love.



The research was done under the supervision of Dr. Ran Ginosar from the Department of
Electrical Engineering, and Prof. Michael Yoeli from the Department of Computer Science.

My deepest gratitude to Dr. Ran Ginosar and Prof. Michael Yoeli for their
devoted guidance and invaluable help and comments. Their encouragement to
explore new and exciting areas has taught me a lot and is greatly appreciated.



Table of Contents

ADSITaCt . . 1
Chapter 1 :  Introduction . ............... .ttt e 4
1.1 Future Technological Constraints and Asynchronous Design ............... 5

1.2 Timing DiSCIplINes . . ... ...ttt e e 7

1.3 Previous Asynchronous Processors ..................iiiiiiinrnn.... 9

1.4 ThesisOutline . .. ...... ... e 10
Chapter 2:  Kin Architecture . .. ... ...t e e 12
2.1 Microarchitecture . ......... .. ... .o 12

2.1.1 General Description . .............iutitin .. 12

2.1.2 Processor Modules and Instruction Pruning .................... 14

2.2 Race and Deadlock Problems ........... ... ... ... ... ... .. ... . ... .... 17

2.3 Multi-Execution on Kin . ... ..ot 21

24 KinModel ... ..o 22

2.5 Implementation Methodologies ........... .. .. .. .. . . ... 23
Chapter 3:  Avid Execution and Instruction Pruning . ........................... 24
3.1 Introduction and Previous Work . ...... .. .. ... .. . . i 24

3.1.1 Execution Model ......... ... . . . . 24

3.1.2 Previous Work . ... ... 29

3.2 AVId EXECULION . . . ..ot 32

3.2.1 Avid Execution Concept . ...........uririniiirnia.. 32

3.2.2 Performance Analysis of Avid Execution ...................... 33

3.3 Pathmarks, Pruning Management, and Beheading Mechanism ............. 36

3.4 Asynchronous Architecture for Avid Execution ........................ 39

3.5 Simulation Results . .......... . . . 40

3.6 Concluding Remarks . ....... ... . . . . . . 45
Chapter4:  An Asynchronous Instruction Length Decoder ....................... 47
4.1 Introduction . . ... ...t 47

4.1.1 Author’s Contribution ............. .. ... 49

4.2 AILD Architecture .. ...........iutin it 50

4.2.1 General DescCription .. ...........cuuuiitienirennnnn.. 50

4.2.2 Handling Branch Instructions .............. ... ... ... ...... 52

4.2.3 Handling Long Instructions ........... .. .. .. ... oo .. 53



43
4.4

Chapter 5 :
5.1
52
53
5.4
5.5
5.6
5.7

5.8

Chapter 6 :

6.1

6.2
6.3
6.4
6.5
6.6

Chapter 7 :

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Table of Contents (cont.)

4.2.4 Handling Prefixes .......... ... .. i, 54
4.2.5 The Length Decoder Operation ...................ccoovuin... 55
AILD Implementation . . ...ttt eeaann 57
Concluding Remarks . .. ... .. . 58
A Doubly-Latched Asynchronous Pipeline .......................... 59
Introduction . . ... ... 59
The Doubly-Latched Asynchronous Pipeline .. ......................... 60
Edge-Triggered DLAP .. ... .. . 62
Latched DLAP . ... . 63
Comparative Analysis .. ......cotitin e 64
Non-Linear DLAPS . .. .. oo 68
Synchronous to Asynchronous Conversion .......................c..... 69
5.7.1 Motivation ... ... 69
5.7.2 Post-Synthesis Conversion Algorithm .. ....................... 71
Concluding Remarks . .. ... ... . . 73

Adaptive Synchronization for

Multi-Synchronous Systems . ...............iiiiniiinn... 75
Introduction . . . ... ... e 75
6.1.1 Previouswork . ...... ... ... 76
6.1.2 Multi-Synchronous Systems . ...............oiiitiinnen... 78
Data Adaptive Synchronization ............... .. ... i, 79
Data Adaptive Synchronization Circuit ........... .. .. .. ... .. .. ....... 81
Training SESSIONS . . ..o vttt et e 83
Probability of Synchronization Failure . ............................... 84
Concluding Remarks . .. ... .. . i 87

Adapting Statecharts Methodology

for Asynchronous Design . ............ ... ... ... ... ... ... 89
Introduction . . ... .. ... 89
The Statechart-based Statemate MAGNUM CAD System ................ 90
The DI FSM .o 91
Specifying the qDI FSM with Statecharts ............................. 91
Validation ... ... 93
SIMUlation . . ... ... 95

Concluding Remarks . ...... ... . 96



Table of Contents (cont.)

Chapter 8 :  Summary and Further Research .. ........ ... ... .. ... ... ... ... 97

Appendix A : Clock Coordination for Synchronization

of Multi-Synchronous Systems ... .......................... 99

ALl Introduction . ...... ... .. . 99

A.2 Clock Coordination Circuit . ......... ... uiuinininennnan... 100

A.3 Performance Analysis of Clock Coordination ......................... 102

A.4 Limits of Clock Coordinated Synchronization ........................ 104

A4l Metastability .......... . 104

A42 Oscillation . ... ... 106

A4.3 NOCONVEIZENCE . .t vi ettt ettt 107

A.5 Concluding Remarks ........ ... .. .. ... . . . . . ., 108
References ... ... 109

Extended Abstract in HEDrew . ... .. 1



Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:

Figure 6-1:
Figure 6-2:

List of Figures

Kin asynchronous processor architecture ........................... 14
Dynamic Instance Tag structure ............ ... ... ..., 15
Inter-module communication ... ................ .. 19
FIFO control statechart . ......... ... ... ... ... ... ... i, 19
Fair arbiter statechart ... ....... ... ... .. . ... . ... . ... 19
Instruction executionrate . . ............ .t 26
Number of executed instructions till misprediction . ................... 26
Studies of ILP as a function of window size ......................... 27
Cumulated executed inStructions .. ................couiininriune.n.. 27

Hardware parallelism and misprediction penalty effect on execution rate .. 28

Tree of possible executionpaths ............ ... ... .. ... ... ...... 28
Misprediction effects on performance .............. ... ... .. .. ..... 30
Examples of Avid Executiondepth ........ ... ... ... ... ... ...... 33
Misprediction penalties in Avid Execution .......................... 34
Pathmarks based on prefixnotation . .. ............................. 37
Synthetic traces simulation results (for w=20) ....................... 41
SpecInt95 simulation results (forw=40) ....... ... ... ... ... .. .. ... 43
Block diagram of the Asynchronous Instruction Length Decoder ........ 50
Length decoder interconnections and handshake signals ............... 51
Marking unit interconnections and handshake signals ................. 52
A simplified statechart of length decoder behavior .................... 56
A Doubly-Latched Asynchronous Pipeline (DLAP) ................... 61
A DLAP stagestructure . ............. it 61
The DLAP test CIrCUIt . ... ..ottt e 61
STG for a Master-Slave Edge Triggered stage controller ............... 62
A Master-Slave Edge Triggered stage controller circuit implementation . .. 62
STG for a Master-Slave Latch stage controller ....................... 64
A Master-Slave Latch stage controller circuit implementation .. ......... 64
Waveforms of Master-Slave Edge Triggered DLAP test circuit .. ........ 64
Waveforms of Master-Slave Latch DLAP testcircuit . ................. 64
Scheduling comparison of alternative pipelines ...................... 67
A Fork stage implementation . . ............ .. .. .. .. . i 69
A Join stage implementation ............. .. . i 69
Aring DLAP ... . e 69
Synchronous-to-asynchronous conversion .......................... 72
Arrival time distribution of inputs . ....... .. ... .. . 79
A multi-synchronous system . ............ ... ... . i 79



Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:

Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:

Figure 7-10:
Figure 7-11:

Figure A-1:
Figure A-2:
Figure A-3:
Figure A-4:
Figure A-5:
Figure A-6:
Figure A-7:
Figure A-8:
Figure A-9:

Figure A-10:
Figure A-11:
Figure A-12:
Figure A-13:
Figure A-14:
Figure A-15:

List of Figures (cont.)

Data delay adjusting for Adaptive Synchronization ................... 80
Adaptive Synchronization for single sender, multiple receivers buses . . . .. 81
Adaptive Synchronization circuit ................ .. ... ... 81
Adjustable delay circuit . .......... ... 81
Phase detection waveforms ............. ... ... ... . ... 82
Typical phase detection counter outputs . .................ccovuenn... 82
Model for analyzing synchronization failure . ........................ 85
Gate delay vs. clock frequency .......... ... ... ... ... 85
Probability of synchronization failure .............................. 87
QDI FSM 91
FSM handshake ....... ... . . 91
CLhandshake . . ... 91
REGhandshake ......... ... .. ... ... . . ., 91
Activity chart, FSM with validation ............................... 92
CL Bounded Delay statechart ................ .. ... .. .. voo.... 92
CLgDIstatechart . ........ ... . 92
Validation statechart ............ ... .. ... . . . . . . 94
Dual-rail validation statechart .. .......... ... .. ... ... .. ... . ..... 94
Monotonic validation statechart . . ........... .. ... ... ... . ... 95
Protocol validation statechart . .. .......... ... ... ... .. ... ... ... ... 95
A clock/data coordination circuit .............. ... ... ... 100
Alternative coordination methods . .......... ... .. ... ... ... .. ... 100
Coordination circuit block diagram .. ............................. 100
Clock/data edge Conflict Detection .. ............ .. ... ... ........ 100
Positive inertial delay . .. ... . 101
Clock Regeneration with a negative inertial delay ................... 101
Clock Disable . .. ... 102
Waveforms of Clock-Disable method ............................. 102
Clock Toggle . ... .o e e 102
Waveforms of Clock-Toggle method ............................. 102
Clock Shift .. ... . 102
Waveforms of Clock-Shift method ............................ ... 102
Clock coordination slow-down ................ ... ..., 104
Conflict detectionpulsewidth . .................................. 105
Communicating modulescycle ............ ... ... ... .. ... 106



Table 3-1:
Table 3-2:
Table 5-1:
Table 5-2:
Table 5-3:

List of Tables

Average execution rates achieved by various Aviddepths .............. 36
M88ksim trace simulations performance results ...................... 45
DLAP SPICE simulationresults .......... . ... ... ... ... . ..., 65
Processing times .. ....... ...ttt e 67

Cycle time and overhead SPICE simulation results ................... 68



Abstract

Future semiconductor technology (such as 1 billion transistors per chip and over 1 GHz clocks
planned for the year 2010) places severe new constraints on the design of high performance
microprocessors. In particular, the chip is too large and the clock is too fast for single clock
synchronous operation. Rather, new forms of distributed architectures and asynchronous
interconnects are called for.

This research describes the architecture of the asynchronous microprocessor Kin, which supports
out-of-order and deep speculative Avid execution. Kin contains unique architectural features,
targeted to achieve high performance by utilizing generous hardware resources that will become
available by future technology. The research concludes that technological constraints necessarily
lead to asynchronous solutions. The development of Kin included addressing and solving
problems at the architecture level, as well as developing architectural concepts and design
methodologies for the required building-blocks. The highest level of Kin‘s architecture is
asynchronous, while the various units of Kin may be implemented internally as either
asynchronous or synchronous.

A new branching lookahead strategy, Avid execution, is shown to offer reduced misprediction
penalty and increased performance. Avid execution prefetches and executes the predicted path
as well as some of the non-predicted paths. Unneeded paths are dynamically pruned. The depth
of the alternative paths is dynamically adjusted according to the branch prediction accuracy and
confidence. Pathmarks are added dynamically to instructions for identification and efficient
pruning. Analytical study shows that Avid execution can significantly increase performance over
a single path speculative execution with similar resources. Simulation of SpecInt95 benchmark
confirms the analysis results. 4vid execution is most suitable for asynchronous processors like
Kin, since it incurs dynamically changing computation loads at the various processor modules.

Decoding a variable length instruction set is a bottleneck in a high performance microprocessor.
The architecture and design of an optimized asynchronous instruction length decoder (AILD)
is presented as an example of a fully asynchronous module.

A novel doubly-latched asynchronous pipeline (DLAP) architecture is introduced. DLAP offers
improved performance over previous asynchronous pipelines in important special cases. DLAP
is also suitable as the target for an automatic synchronous-to-asynchronous conversion, and the
proper algorithm is described.
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As a transition from fully synchronous to fully asynchronous implementations, Kin can be
implemented as a multi-synchronous system, wherein a common clock is distributed over thin
wires, avoiding the massive power investment in clock distribution trees and circuits for phase
matching and skew minimization. Adaptive synchronization reduces the probability of
synchronization failures. In contrast with methods like clock stretching, adaptive
synchronization adjusts data delays. We show that it is more widely applicable to high
performance microprocessors than other synchronization methods. Training sessions are devised
to minimize adaptation overhead.

Finally, statechart CAD methodology is adapted for the formal specification of asynchronous
systems. It is also useful for generating simulation models, validations, and direct synthesis.
Statecharts have been employed intensively in this thesis for the design and simulation of Kin,
Avid execution, AILD, and DLAP.
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Chapter 1: Introduction

Microprocessor performance has risen over the past 20 years from 500 KIPS (thousand
instructions per second), to 300 M1PS (millioninstructions per second) today. Theindustry plans
to achieve 100 BIPS (billion instructions per second) by the year 2010, through the integration
of amost onebilliontransistorson achip operating at over 1GHz [SIA94, Wei96]. Thisexplosive
growth in performance has been made possible thanksto the rapid devel opment of semiconductor
technology [Yu96], and improvements in architecture. Technological progress has contributed
both to higher clocking frequencies and to growing levels of integration. Asmoretransistorsare
integrated, more architectural features (pipeline, superscalar processing, out-of-order execution,
caches, etc.) are introduced into microprocessors, contributing to their growing utility.

While this impressive growth is expected to continue in the future [SIA94], we are facing a
turning point in computer architecture. The methodology that has brought us from the early
microprocessor daysto the present isabout to change. All microprocessors, past and present, are
designed as synchronous, single clock machines. Inthe future, thiswill no longer be feasible: The
basic axioms of synchronous design areintended for limited equipotential domains (where signa
propagation times over dl wiresare negligible). Synchronous methodol ogy has been stretched a
bit further by able designers and power-hungry skew minimization techniques. But future large
chips will extend well beyond the synchronous domain simply because it will take any signal
(clock or data) many clock cycles to propagate from one part of the chip to another. In smple
electrical engineering terms, the processorsof the futurewill transcend from lumped systemsinto
distributed ones.

Thischangehasalready started. M odern processorshaveintroduced some elementsof distributed
computing, such asdecoupling moduleswith FIFO buffersand executing out-of-order. However,
at the circuit level, present day processors till insgst on asingle clock with minimal skew. Inthis
thesis we show that this aging paradigm is best exchanged for asynchronous architecture, which
is much more suitable for distributed systems. And in contrast with all previous research on
asynchronousarchitecture, weemphasizethe high-level architecture, rather thantheasynchronous
design of each and every circuit. In fact, while the physical constraints dictate asynchrony at the
high level, the individual modules may still be synchronous, and we investigate this in the thesis.
Unlikeadl other research projectson asynchronous processors, we do not promotearevol utionary
shift indl aspectsof designand CAD tools. Rather, we consider how contemporary synchronous
designs can smoothly evolve into asynchronous ones. With this in mind, we search for the path
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that the industry will be willing to adopt, namely one that will not enforce any change until it has
become absolutely necessary.

This thesis investigates a processor architecture for the asynchronous future, including a novel
aggressive specul ative execution method (necessary for high speed and suitable for asynchronous
processors). Thethesis also delvesinto anumber of associated issues. Fully asynchronous design
of one module, algorithmic conversion of synchronous pipelinesinto asynchronous ones, mixed
timed globally asynchronous locally synchronous systems, and the design methodology suitable
for high level asynchronous design.

1.1 Future Technological Constraints and Asynchronous Design

In this section we summarize the relevant constraintsthat may be posed by 2010 technology and
which directly affect this thesis [KG97].

While the electromagnetic field travelsin vacuum at the speed of light (¢ = 30 mm/ 100 pSec, in
VLSl terms), the electric signals inside chips progress about 10-100x slower, depending on the
drive strength (how much power and area are invested) and on the capacitive load of the bus.
Let’s assume ¢/20 signal (clock and data) propagation speeds; given a chip size of 25-35mm in
2010 technology [SIA94], typical signalswill require 2.5-3.5 nSec to cross the chip end-to-end.
If the chip is clocked at 2GHz, about 5-7 clock cycles may be required for signal propagation
alone. As aresult, it will no longer be feasible to separate the logical and physical design of the
pipdines, asis done today; rather, today's wire buses will be transformed into explicit pipeline
stages, whose only task is to move data around, and the number of stages per bus will depend
strongly on where the various modules are placed on the VLSI chip. To make the situation even
worse, the signal may arrive at the various receivers on multi-drop buses at different cycles.

Other effects of technological progress on processor speed relate to clock distribution. Several
cycles may be required for the propagation of a single clock transition over the entire chip,
compared to lessthan acycletoday. A worse aspect of thisisthat many transitions will be present
smultaneously on the clock distribution wires. While this wavefront superpipelining is not
impossible, it is highly undesirable. Optical clock distribution (e.g., a strobe light flashing at the
chip from above, and multiple detectors and amplifiers spread over the chip) might provide a
solution. Clock skew is also expected to be a very difficult issue. If the clock is not distributed
optically, jitter of clock drivers and distribution lines will result in a skew much wider than the
clock cycle. This skew can be balanced only at the very high areaand power cost of phase lock
circuits and powerful drivers. The power dissipated by complex VLS| chips increases as clock
frequency rises [Hor93, Int94, Stro4]. An increasing portion (currently over 40% [Bow95]) of
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the power budget in achip isrequired by the clock distribution network in order to contain clock
skew problems. This ratio is expected to grow even higher, when processors are predicted to
dissipate amost 200W [SIA94].

Astechnology progresses and operating frequency rises, only asmall number (3-4) of logical gate
delaysfit into the shorter clock cycle time per pipeline stage. Thisimplies deeper pipelineswhich
are relatively difficult to design, and substantial effort must be devoted to balancing them. In
addition, severe performance penalty is incurred for stalling such pipelines.

Evenif clock distribution problems (skew and power dissipation) are solved, signal propagation
delays will make it impossible to design a synchronous processor that operates with a common
sangle clock. This thesis applies asynchronous microprocessor architecture to answer future
technological and architectural constraints, forecast for the year 2010 and beyond, when feature
sizeislessthan 0.1, over one hilliontransistors are integrated on asingle chip, and the clock (if
used) operates at over 1GHz.

Asynchronous design has been studied for the past 40 years, and has attracted new interest in
recent years [Async, Hau95]. Asynchronous systems eliminate or restrict the use of clocks, thus
avoiding some of the problems of clock distribution and accommodating excessive data
propagationdelays. Instead of aglobal clock controlling when data can be safely moved fromone
unit to another, asynchronous unitsemploy local handshake over asynchronous channels[Hau95,
Sei80]. Asynchronouslogictradestimefor discreteevents. Actual delaysare hidden (abstracted),
and only sequences of events (as depicted by transitions) matter. Thus, the correctness of
computation is made independent of delays. Another advantage is that events can be treated
hierarchically and local details can be abstracted, smilar to hierarchical logic design, whereasthe
design of continuous timing is global and 'flat'.

Clocks typically switch over the entire chip, feeding into every flip-flop, and thus dissipate
substantial power. Asynchronous handshake, on the other hand, islocal, and happens only when
needed, thus minimizing power dissipation and spreading it more evenly over time. The local
handshake lines spread over shorter distances than the global clock distribution network. Thus,
less area and less power are required. Some of the handshakes can be completed concurrently
with computations, and they automatically accommodate for process variations and jitters.

Asynchronous circuits can be designed to operate according to the average case delay instead of
the worst case, thus achieving typicaly a factor of two in performance [GM90]. For instance,
while no carry is generated when adding 1+0, maximal carry propagation is needed for 1-1.
Synchronous adders must always allocate ample time for the worst case. Asynchronous adders
are self-timed, namely they detect and announce compl etion as soon as the computation is over.
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In the case of 1+0, the asynchronous operation completes much earlier, saving time and power.
Moreover, if there is no addition to perform (i.e. the adder receives no valid inputs), the
asynchronous adder smply idles, whereas typical synchronous circuits compute every cycle,
unless specia enabling control logic is employed. As another example, assume the modulesin a
synchronous pipdline taket time unitseach to complete, but in 1% of the cases one module needs
2t time unitsto finishitstask. If the clock cycleisset to t, that rare case will cause the circuit to
fal. If the clock cycle is set to 2t, the performance is reduced by 50%. In an asynchronous
implementation, the same scenario will only cause a 1% performance degradation. Indeed, some
synchronous pipelines go into great complexity to achieve the same flexibility.

Asynchronous circuits are expected to achieve low power operation, resulting from eliminating
the clock, and taking advantage of varying computational load of the application. Some 80%
power saving has been reported by [vBB+94], by power supply voltage scaling of an
asynchronous DSP chip designed for a battery-operated consumer product, and dowing down
the operation of the circuit when appropriate. Other expected benefitsfromasynchronousdesigns
[Hau95] include a modular (easily scalable) design, correct by design, and testability [DGY 95].

Applying asynchronous methodol ogy to a synchronous microarchitectureis not smply removing
the clock. Rather, two issues should be addressed: The high level architecture, and the circuit
implementation (inside modules and at their interfaces). In the former, any implicit timing
assumptions made by system architects should be carefully reconsidered, to accommodate
arbitrary inter-module delays. We claim that this process leads to distributed architectures, with
data-flow flavor, and in the thesis we show how dl relative timing assumptions arerelieved. This
is demonstrated on Kinl, an asynchronous high performance processor. We also attend to the
circuit level, where both locally-synchronous and fully asynchronous implementations of Kin are
examined.

1.2 Timing Disciplines

Existing definitions of timing disciplines, as prevalent in the asynchronous literature, are
insufficient for the purpose of this thesis. Some more precise definitions are needed:

Def. 1.1: A self-timed system is one which generates a completion signal.

lKi n was the God of Time of the Maya.
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Def. 1.2: A uni-synchronous (unisync) system is one operated by a single global clock,
where all modules receive the same frequency and phase of the clock.

Def. 1.3: An asynchronous system is one which is not uni-synchronous.

Def. 1.4 A multi-synchronous (multisync) system is an asynchronous system operated by
a single global clock, where all modules receive the same frequency, but the
relative phases are considered arbitrary and unknown.

Def. 1.5: A multi-clocked system is an asynchronous system in which each moduleis
clocked independently of the others, and itslocal clock isnot synchronized with
the other local clocks.

Def. 1.6: A mixed-timed system combines various timing disciplines in the same system.

Kin architecture (Chapter 2) comprises multiple fast self-timed units, interconnected over
asynchronous channels, using handshake communication protocols. The asynchronous
microarchitecture is a high level description and it alows flexible and robust implementation.
Although Kin is designed as asynchronous at its top level, its modules can be implemented
according to the varioustiming disciplines defined above. In thisthesisweinvestigatethe various
timing alternatives.

Multi-clocked and multisync systems both present two fundamental synchronization challenges:
At the low leve, data lines coming into any module must be synchronized with the local clock.
At the higher levd, inter-module datadelays arelong and in particul ar they are layout-dependent;
unlike contemporary practices, the architect of processors for future technology will not be free
to assume that data emanating during a particular cycle will arrive at their destination during the
same cycle (or any other specific cycle). Thus, it is safer at the high level to make the data self-
identifying and to introduce handshaking mechanisms. As aresult, large integrated systems may
evolve as Globaly Asynchronous, Locally Synchronous systems (GALS) [Cha84]. Such systems
consist of multiple synchronous modules (e.g., 100 modules, each having 10 milliontransistors),
each driven by itsown clock driver. The modules intercommuni cate asynchronoudly, asthey are
ignorant of each other's clock. The multiple clocks may be completely independent, or they may
be driven by asingle clock source, where each module receives an arbitrary phase but al operate
at the same frequency (multi-sync system). In afully synchronous processor, substantial areaand
power are invested to keep the multiple clocks in full synchrony, with minimal relative skew,
striving to ascertain the exact same phase in al parts of the chip. In GALS, this increasingly
difficult goal is abandoned. Instead, each module is left to deal with asynchronous inputs on its
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own. If the clocks of the various locally synchronous modules need to run at exactly the same
frequency, aminimal area, minimal power network will be used to distribute asingle source sine
wave clock, and each module will derive itslocal clock fromthat sine wave. While such derived
clocks are subject to arbitrary relative phase delays and jitter, the main advantage is that
substantially less power and area are needed because sine waves incur less harmonics and
reflections than square wave clocks.

1.3 Previous Asynchronous Processors

Most of the previously published asynchronous microprocessor designs have rather smple and
straightforward architectures. Neither of those processors supports out-of-order execution nor
considers performance enhancement by branch prediction. The architecture is either based on
micropipelines or built from small building blocks (bottom-up design).

The first asynchronous microprocessor was built at Caltech [MBL+89]. It is based on four
common busses connecting the various unitsin the data path. The architecture is a pipeline with
only two stages (Fetch and Execute).

The AMULET [FDG+93, Pav94] is an asynchronous implementation of the commercia ARM
processor. Its architecture is based on micropipeline [Sut89]. It does not support out-of-order
execution, except for out of order completion of load instructions relative to normal ALU
instructions. All instructions are conditional, but the AMULET does not contain a prediction
mechanism. It suffers from along penaty when a branch is taken.

The NSR RISC processor [ Bru93] isbased on afour stage pipeline (Fetch, Decode, Execute, and
WriteBack). The processor unitsare eachimplemented asamicropipeline, and they communicate
through FIFO buffers (similar to what is designed in Kin). The processor supports a variable
delayed branch, but has no branch prediction or out-of-order execution. Its successor Fred
[RB96] hasmultiple functional units, but instructions areissued (in order) only one at atime, thus
limiting the level of paraldism.

The ST-RISC [DGY 93] processor is built of FSM and combinational logic basic blocks, and
basi cally consi stsof Fetch-Execute stages. M odul escommunicatethrough FIFO buffers. A branch
processor and an AL U operate concurrently and communicate only when a conditional branchis
encountered. Neither out of order execution, nor parallel issue, nor branch prediction are
supported.

TITAC [NUK+94] was developed as a processing element in aparallel computer system. It was
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optimized for delay insengitivity, rather than performance. Its smple architecture is based on a
single accumulator.

The Counterflow Pipeline Processor (CFPP) developed by Sun [SSM94], has an interesting
architecture based on two pipelines, one for instructions (flowing in one direction) and the other
for results (flowing in the opposite direction). Neither branch prediction nor out-of-order are
supported, and performance may suffer from the many comparisons and arbitration required at
each stage.

STRiP [Dea92] isa pipdined RISC, implementing a predicted prefetch for both instructions and
data. Its implementation is based on a dynamic clock, where local clocks are generated in the
circuit and their speed changes according to the instruction being executed.

The A3000 [Wo0l92] is an asynchronous version of the MIPS-R3000 processor, and has five
pipeline stages. It is based on an extension of the micropipeline approach, by applying severa
processing elements between the FIFO units, and constructed of parallel micropipelines.

SCALP[ENnd95] design goal waslow power operation. Asreported, this goal was not achieved,
and the processor was 3-4 times slower than comparable processors. No branch prediction was
employed (all branches are treated as not taken), which severely limited the performance, dueto
high latency when branch istaken (i.e., a high misprediction penalty).

All the previoudy designed asynchronous microprocessor architectures are targeted at current
technology, and are not extendable to take advantage of growing amount of resourcesto become
available by future technology. Kin architecture is aimed at exploiting future technology, and
taking advantage of the asynchronous architecture, as discussed in the rest of thisthesis.

1.4 ThesisOutline

The thesis starts at the high conceptual level, descends into the more particular issues, and ends
by contributions in the area of Computer Aided Design (CAD).

Kin, a high performance processor architecture suitable for future technology (one billion-
transistors per chip) is presented in Chapter 2. Kin takes advantage of asynchrony to allow
aggressive Avid speculation, to overcome the limitation of branch predictions and dependencies,
and to support multi-execution. The novel Avid execution concept is defined and analyzed in
Chapter 3.
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As an example of fully asynchronous design of a critical component of Kin, an asynchronous
instruction length decoder is presented in Chapter 4.

Automatic conversionof synchronous pipelinesinto asynchronous onesis discussed in Chapter 5.
A new pipeline scheme (adoubly-latched asynchronous pipeline) isintroduced, which addresses
some of the limitations of existing proposals.

Chapter 6 presentsanovel methodology for multi-synchronousimplementationof Kin, inwhich
the individual modules are dl synchronous. That methodol ogy eliminates most of the drawbacks
of existing clocking methods.

The design methodology of Kin is introduced in Chapter 7. Statecharts are employed for
specification, and specia design rules are defined to adapt them for asynchronous design. A
complete model of Kin has been developed with the statechart tool, and has been used for
simulation and performance evaluation. Validation statecharts are a so introduced.
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Chapter 2:  Kin Architecture

Kin isan asynchronous microprocessor that supports out-of-order and deep speculative (Avid)
execution. Kin architecture comprises multiple fast self-timed units, interconnected over
asynchronous channels, using handshake communication protocols. The architecture of Kin
supports the Avid execution model (introduced in Ch. 3), where multiple alternative paths,
including the targets of some taken and not-taken branches, are prefetched and speculatively
executed in order to reduce misprediction stalls. A dynamic instance tag isassociated with every
instruction, to enable management of the multiple paths. Instructions of different paths are
executed together in the out-of-order zone. Paths descending from the branch direction that was
not chosen are pruned without preempting useful execution.

Kin has been designed at the conceptual level. A complete specification has been modeled, and
full smulation of standard performance benchmark (Specint95) on the microarchitecture of Kin
has been carried out. Kin is designed with future technologies in mind (such as 1B transistor
chips); thus, we suspect that full physical implementation will not be feasible for some time.

The novel architecture of Kin is presented in this chapter. The microarchitecture details and
instruction pruning are described in Sect. 2.1. Race and deadl ock problems and possible solutions
arediscussed in Sect. 2.2. Kin support of multi-executionis presented in Sect. 2.3, and Sect. 2.4
describesthe model constructed for smulating Kin. Section 2.5 discussespossibleimplementation
methodologies for Kin, which are further described in other chaptersin thisthesis.

2.1 Microarchitecture

2.1.1 General Description

Kinisagenera purpose microprocessor that supports out-of-order and deep speculative (Avid)
execution. The instruction set supported is not restricted and can be that of either a CISC or a
RISC processor [HP96a, Joh91]. Each machine language instruction fetched from the memory
isdecoded inthe processor and tranglated into (one or several) internal micro-operations (LOps);
i.e., the processor uses a‘RISC’ instruction format internally. Note that the only module of the
processor that needs to be changed when a different instruction set is required is the instruction
decoder; the rest of the processor remains unchanged. As an example, we simulated the support
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of three generic instruction types (ALU, Load-Store, and Branch).

Kin'sarchitectureis based on a distributed network of asynchronoudly interconnected modules,
withno central control. Thearchitectureisdesigned asasynchronousat the top level, but modules
can be implemented according to various timing disciplines, as described in Sect. 2.5. Each
module operates at itsown speed, and communicates with other modules only when needed. The
communication is done through asynchronous channels (which may contain FIFO buffers), by
using handshake protocols[Hau95, Sei80]. Thedataisencoded (e.g., asdual-rail, or bundled data
[Hau95]) to signd its vaidity, and is acknowledged. The use of FIFO buffers decouples the
processor. ldedly, al modules are balanced (i.e., on average they have smilar delays). However,
if one of the modulesistemporarily slow, it will not affect the other modules. Only when a FIFO
is full will the sending module be stalled.

In contemporary synchronous processors, the coll ective knowl edge about an executedinstruction
is distributed among the pipeline stages, the controller, the channels into and out of the register
file, etc. Thislocation-dependent distribution of dataand control information isunmanageablein
largedistributed systemslike Kin. Rather, instructions flow through the system carrying their own
identity tags. Each instruction is a self-sustained packet, containing all the information needed
for its execution. It may leave some indications, e.g., an instruction entry in the reorder buffer,
but these eventually reunite with the instruction, e.g., whenit commitsor is pruned. Each module
receivesinstruction packetsfromitsinput queues, executesthem at itsown local rate, and sends
them towards their next stop over one or more of itsoutput channels. This model resembles the
data flow architecture concept.

The Kin architecture is described in Fig. 2-1. It combines many known features, like multiple
execution units, out-of-order execution, register renaming, etc. [HP96a, Joh91, Tom67], and
some new ones (e.g., Avid Execution, Dynamic Instance Tagging, unified Multi-Execution, and
Pruning). Multiple instructions are executed concurrently by employing multiple execution units,
and instruction level parallelism is exploited by out-of-order execution, whereby independent
instructions are executed before preceding ones which are waiting for dataand/or resources. To
preserve the seria nature of the code, instructions are committed (completed) in their original
serial order, typically more than one at a time. Speculative execution is employed to avoid
processor stalls; branches are predicted and code is prefetched from the more likely paths of the
program.
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Figure 2-1: Kin asynchronous processor architecture.

2.1.2 Processor Modules and Instruction Pruning

The Prefetch Unit (Fig. 2-1) selects the address from where instructions should be brought and
handled. The proper instructions are then either prefetched fromthe Decoded I nstruction Cache,
or (if not found there) are fetched from the Instruction Cache and are decoded before being
further processed. After the decoded instruction registers are renamed (in a Register Renaming
Unit), theinstructionentersthe ReOrder Unit (ROU), which managesthe out-of-order execution.
Theinstruction is sent to a Reservation Station to wait for itsoperands beforeit is executed and
returns to the ROU to be committed (in-order). Aninstruction may be pruned before completing
the whole path through the processor units. The operation of each unit is explained below.

Kin architecture supportsthe Avid executiondescribed in Ch. 3. InAvid execution, the predicted
path is prefetched and executed. In addition, a small portion of the non-predicted path is also
prefetched and executed. Eventually, one of the two commitsand the other ispruned. Pathmarks
distinguish betweenthealternative paths. Kin generatesdynamic instancetagsand employsbranch
pruning (instruction purging) to discard unneeded instructions. The branching decision is made
by the Branch Unit (BU, in Fig. 2-1). The BU notifies the Prune Management Unit (PMU), and
the latter immediately issues abroadcast message prune() of the not-followed path. The message
is sent over special channels spanning the entire processor. Each unit, as it receives the prune()
message, scansitsinternal data structures and discards al redundant instructionsidentified by the
prune() message, and also updates the pruning table it has at its input. Subsequently, any
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instruction arriving at aunit isexamined, and if it belongsto apruned path, it isdisposed of. This
process needs not be exhaustive: An instruction which escapes pruning in one unit will be pruned
eventually in another. At the latest, the instruction will be erased (without committing) when it
comes back to the reorder unit. This process seems slow, but the cumulative rate of disposal
meets the requirements. A beheading mechanism (explained in Ch. 3) is applied to control
pathmark growth. The PMU generates and distributes (at proper times) abehead() message over
the pruning channels. Every instruction arriving at a unit is checked to seeif it should either be
discarded or beheaded, before it is processed. Not all the modules in Kin receive prune() and
behead() messages. Deciding which units should handle these messages and manage the proper
prune and behead tables is a tradeoff between the module execution time, the overhead of
handling prune/behead messages at that module, and the predicted performance gain by
preventing redundant instructions from leaving the module. For example, computing an integer
‘add’ in an execution unit takes about the same time as doing the compare operation required to
detect if the instruction should be discarded or executed. In Kin, we decided to handle
prune/behead messages in the Prefetch Unit (PU), Decoded Instruction Cache (DIC), Register
Renaming Unit (RRU), ReOrder Unit (ROU) and Reservation Station (RS). The PU must handle
prune/behead messages since it generates the dynamic instance tags. The DIC should prevent
unneeded instructions from entering the processor, to decrease the load. The RRU must keep
track of the paths for maintaining coherent renaming tables. Every instruction handled by the
processor passes through the ROU, and must be pruned there if necessary. Pruning is aso
important in the RS so that irrelevant instructions will not wait there forever for results of other
pruned messages.

Prefetch Unit and Dynamic Instance Tagging

The pathmarks, which fully identify the path (see Ch. 3), are generated by the Prefetch Unit and
are attached to each instruction at prefetch, as part of a unique dynamic instance tag (DIT),
shown in Fig. 2-2. The Prefetch Unit determines which paths to follow according to the branch
prediction [LS84, YP92] and Avid execution depth. It issues requests for fetching from the
required instruction addresses, along with a proper DIT. The PU, having received a behead()
message, henceforth modifies the generated DITs accordingly (as explained in Ch. 3).

Instruction Dynamic Instance Tag (DIT)
opcode | operands | root | path | context | pc

Figure 2-2: Dynamic Instance Tag structure.

The same basic block of code (or part thereof) may be fetched simultaneoudly multiple times.
Consider asmpleloop which endswith aconditional branch. Each time we reach that branch, we
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should most likely prefetch the same loop again. Each time, the loop is prefetched (and tagged)
asanew instance, and must be treated separately by the rest of the machine (e.g., proper register
renaming), regardless of the fact that it is the same origina code. Another example are
instructions after an ‘if’ clause. They might have different dependencies and require different
register renaming depending if the code in the *if’ clause was executed or not. This can only be
decided at run time. Since we wish to prefetch multiple levels of the branching tree
simultaneoudly, the instruction cache is multiported to provide al the required bandwidth,
including multiple separate accessesfromthe sameline. Of course, accessoptimizationtechniques
are employed to replace brute force multiple reads of the same line by a single access and
intelligent duplication, but this should be transparent to the PU. Since many instructions should
be fetched and decoded more than once, and repeated decoding is inefficient, predecoded
instructions aremaintained inaDecoded | nstructions Cache (DIC). Therelevant uOpsarefetched
from the DIC, and are sent with their DIT to the register renaming unit. Requested instructions
not found inthe DIC arefetched fromthe I nstruction Cache and are decoded by the decode unit.

Register Renaming Unit

A Register Renaming Unit (RRU) keeps and handles the renaming tables for the many possible
execution paths avidly prefetched, to alow them to be speculatively executed out of order. The
renaming process replaces architectural register names with virtual ones, thus filtering out false
dependencies [HP96a]. The condition codes are treated as one of the registers and are being
renamed accordingly. A new physical entry in the ReOrder Buffer (ROB) is allocated for each
pnOp destination (architectural) register. This entry number serves as the virtual name of the
destination register. The pOp source registers are renamed according to the last name allocated
to them on the same path or their ancestor path.

ReOrder Unit

The ReOrder Unit (ROU) manages the out-of-order execution in a processor, and enforces an
in-order committing of instructions. A ReOrder Buffer (ROB) isused inthe ReOrder Unit to keep
track of the instructions from many possible execution paths, generated by avid execution.
Instructions may be executed out of order, but they are committed (i.e., their resultsare written
to the ‘real’ registers and to memory) in the same order they appear in the code. Since Kin
supports Avid execution, the ROU needs to keep track of abinary tree of paths rather than just
alinear sequence of instructions. The reorder unit also keeps a copy of what is usually referred
toasthe‘red’ register file, containing the architectural registers. WhenapuOp arrivesat the ROU,
not al of its operands are necessarily valid, so the committed register values and speculative
values from the ROB are searched in order to fill unresolved operands, before the pOp is
forwardedto thereservationstations. After commit, ROB instructionentriesand RRU allocations
are released.
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Reservation Station and Execution Unit

Severa Reservation Stations (RS) are used by the instructions as waiting posts until their
operandsareavailable. Theseawaited operand valuesmay arrive asaresult of another instruction,
or fetched from memory. Ready instructions (i.e., ones which have al their operands ready) are
routed to one of several Execution Units(EU) inthe processor. A scheduler (not shown explicitly
inFig. 2-1) isused to determine whichinstructions go to which executionunit. This scheduler can
either beimplemented asasmplerouter or asasophisticated allocator. After execution, the result
of theinstructionisdistributed to the ReOrder Buffer and to all the Reservation Stations, wherein
other instructions might be waiting for it.

L oad/Store Unit

The Load/Store Unit (LSU) handles memory access and bypass. It is used to take advantage of
locality of referencesin data access. It issmilar to another cache leve, but isimplemented as an
independent smart associative table that tracks load and store operations. Ordering is enforced
only when true dependencies are encountered, to guarantee correctness: For instance, Store(X)
instructions can bypass Load instructions, but the LSU keeps a record of the previous value of
X until Store(X) commits, in caseit isneeded by an earlier Load(X). Smilarly, Load instructions
can bypass Store instructions, except for Store to the same address, in which case the argument
is forwarded from the Store instruction. Thus, the LSU can return values even before they are
physically written to memory. Giving higher priority to Loads over Stores can increase the issue
rate of instructions, because L oads resultswith values/operandsfor successiveinstructions, while
Stores can wait without stalling any other instructions. Loads can be executed speculatively
without affecting correct operation. However, Stores can only be done at commit, at whichtime
it is known that the Store is on the actual true path of the program.

Branch Unit

The Branch Unit (BU) resolves a branch instruction and returns the result to the ReOrder Unit,
the Prune Management Unit and the Prefetch Unit. Upon receiving branch results, the Prefetch
Unit updates the prediction algorithm accordingly, and prefetches new instructions.

2.2 Race and Deadlock Problems

When designing a processor like Kin, one islikdly to face the usual difficulties associated with
distributed systems and algorithms, such as races and deadlocks. We have encountered severa
of them during the design and analysis of Kin. Knowledge and experience in the areas of
distributed computing, operating systems, and communication networks already exist, and many
solutions are applicable to distributed asynchronous processors.
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Races

Races are a characteristic of an asynchronous microarchitecture. They might happen when two
items(e.g., instruction and operand) must meet and merge, but oneisin transitionaong achannel
and the other chasesthefirst. For instance, ap Op result might arrive at aunit beforeit isrequired
by another pOp: Suppose that some number «, computed by an execution unit, isto be stored
into architectural register R, and is also needed as operand for some instruction |. Assume that
| has just passed through the ROU, and is travelling through some FIFO channel from ROU to
one of thereservation stations. Just then, « issent to all Reservation Stations and to ROU, where
itisstored in R. The various reservation stations realize that none has any instruction in waiting
for a, so they al discard it. When | finaly enters one of the RSs, it istoo late: « will not arrive
again. This misfortune happens due to the fact that | could have met « in any one of multiple
places (e.g., at the ROU before being sent to the reservation stations, or at the RS while waiting
in a reservation table), an otherwise desirable feature. We resolve this non-determinism by
maintaining multiple stored copies of «: each RS holds a Most Recent Results (MRR) table,
wherein (even unclaimed) results are kept for a while. Thus, the RS can keep track of results
arriving while the uOps needing them are on their way (e.g., waiting in the FIFO to be processed,
or waiting to be written to the reservationtable). If the architectureisto be delay insensitive, then
the MRR might need to be as large as the ROB (because it might have to store the results of al
executed pOps not yet updated in the ROB), and should be updated at commit and pruning time.
However, it isenough if it isas big as the sum of the FIFO sizes dong the path that might cause
the race (e.g., the FIFOs on the channels from ROU to RS, from EU to ROU, etc.), with some
safety margins depending on the delay of the modules in the path. The MRR can be cleared
completely at certain safe points, e.g., when the affected FIFO channels are empty. Another
solution to this kind of race could also be having the reorder unit send the resultsiit receives to
the reservation station. However, this will unjustifiably increase the communication bandwidth
between the reorder unit and the reservation stations that already receive the sameresultsthrough
the bypass mechanism for performance reasons. |mplementing the ROU and the RS as a unified
module, resultsin acomplex and large module, without eiminating the potential for smilar race
occurring when updating the shared table.

Mutual Exclusion

Mutual exclusion[Ray86] isrequired when executing some critical calculations such as updating
FIFO pointers, or table entries. Arbitersare used to impose mutual exclusion. Although they may
take along time to resolve some conflicts, they never fail, and the asynchronousKin isinsensitive
to arbitrary delays (they may affect performance, but not correctness).

A mutual exclusion mechanism for accessing shared tables is demonstrated by the passive FIFO
shownin Fig. 2-3. While other types of FIFO channels are a so implemented in Kin which do not
require arbitration, the arbitrated FIFO is desirable when the FIFO is expected to contain alarge
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amount of data on average. Non arbitrated FIFOs consume substantial power when heavily
loaded, due to the need to move al the data along shift registers. The arbitrated FIFO is
implemented as a shared memory with pointers to its head and tail. The behavior of the FIFO
control ispresented by the statechart ([Har87] and Ch. 7) inFig. 2-4. It definesthree concurrently
executing processes (separated by dotted lines): writing to and reading from the FIFO, and the
arbiter that imposes mutua exclusion access. The operation of the fair arbiter is defined by the
statechart in Fig. 2-5. The arbiter isimplemented in hardware [Sei80, Mar85].

Module A Module B
Valid N _ Ready
Data FIFO Data
- - >
Ack - Ack

Figure 2-3: Inter-module communication.
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Deadlocks

Deadlocksin Kin might happen when cyclic buffersare clogged. Thisisthe only kind of deadlock
that is possible in the architecture of Kin, since the processor unitsare self contained, and do not
depend on each other for resources or operation. The only correlation between the modulesis by
messages sent between them. A module receives a message, processes it and forwards it to its
successor. The deadlock we have encountered in Kin was caused by a cycle of modules unable
to complete sending a message because the FIFO at the input of their successor in the cycle was
full. Each moduleisreleased only after ishas successfully sent the message. When amodule waits
to complete communication, it cannot read amessage fromitsinput FIFO and freean entry iniit.
An abundance of distributed agorithms have been developed for prevention and avoidance of
such deadlocks, as well as for detection thereof and recovery in case they do happen.
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The simplest solution is to prevent, or avoid, deadlocks by making the FIFOs large enough. If
unlimited FIFOswere available, therewould be no chancefor adeadl ock to happen. The question
is how to determine the practical size needed to prevent the deadlock. A heuristic algorithm can
be applied to calculate the size of the FIFOs, as a function of the ROB size, RS size, modules
execution time, instruction types and mixes, possible paths an instruction might take among the
modules in the processor, etc. The ROB module servesasa‘sink’ to the pOps in a sense that
every uOp arriving to it will be consumed eventually, without arisk of deadlock (Sincetriggering
the committing processisdone by signaling, e.g., updating amutually exclusive flag, rather than
sending a message to it, there is no danger of having a closed cycle of FIFOs). The size of the
ROB is an upper bound on the number of pOps being processed in the various modules. Thus,
by making the FIFOs as large as that number, we can obvioudy prevent the communication
deadlock from occurring. However, this bound can be tightened by noticing the way apOp is
being handled and processed by the modules in the processor: if a (LOp) message iswaiting in
one FIFO to be read and processed, it (or its result) cannot, at the same time, either be waiting
in another FIFO, or be sent out. |.e., the sum of the sizes of the FIFOs along each possible cycle
in the processor architecture should be equal to this bound. This method of choosing the size of
the FIFOsis delay independent, and might be improved by considering the module delays (which
change when using another implementation process), and statistical analysis of the instructions
being executed by the asynchronous processor.

Another option to prevent a deadlock is to have a ‘deadlock warning'. Since deadlocks aways
contain a cycle of full FIFOs, detecting a cycle which is close to this situation can be treated as
awarning of apotential deadlock. This warning can trigger a mechanism to slow down (or even
temporarily stop) new messages from entering the modules cycle (smilar to a ‘leaky-bucket’
mechanism [BG92]). This can be done in the asynchronous architecture without affecting the
correct operation of the system. The warning should be given early enough to enable some entries
to free before letting new messages propagate into the suspected cycle, but not too early so that
the processor will not have to slow down unnecessarily.

Algorithms to detect deadlocks and recover from them can either be centralized or distributively
controlled. The messages needed to be transferred for detection and recovery, must use separate
communication channels so they will not be stopped by the deadlock. An interesting idea might
be adapted from the algorithm described in [JS89] for uni-cast communication networks. An
‘emergency buffer’ can be allocated in each module to be used only in case adeadl ock is detected.
Since al modulesin the cycle are waiting for a free entry in their successor buffer, moving one
message from the FIFO to the emergency buffer will temporarily release the deadlock, and might
solvethe problemif it enables some messagesto be sent outside the cycle. However, for ardiable
solution, this algorithm should be further developed and defined. Since a deadlock in the
processor might be caused by a module outside the cycle (Smilar to multi-cast communication
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networks), the suggested algorithm does not guarantee a recovery from the deadl ock.

We should consider the effect on performancewhen sel ecting the proper solutionfor the deadl ock
problem. The processor modules are designed to be as balanced as possible to avoid creating
bottlenecks which limit the performance. Variances of module delays and instructions flow rate
can be used to simulate and analyze the architecture to select the proper FIFO sizes. Simulations
of Kin showed that the FIFOs are most of the time either empty or have only a single message
waiting in them. Thus, smal FIFO sizes can be used and in some cases the FIFOs are redundant
and a DLAP structure (introduced in Ch. 5) is quite adequate.

2.3 Multi-Execution on Kin

The high processing bandwidth of advanced processors is not fully exploited, because of true
dependencies in the code and mispredicted branches. Three separate efforts, all amed at
increasing instruction processing rates by concurrent execution of multiple instructions are
typically employed: Out-of-order superscalar execution (multiple instructions of the same serial
code), multi-threading (multiple threads of the same program), and multi-processing (of different
programs). All three (and more) can be unified under a single multi-execution model, and are
handled aimost identicaly by Kin. In addition, Avid execution (defined below in Ch. 3) is
employed to execute speculatively multiple alternative paths of the same context.

In Kin's unified multi-execution model, instructions from different contexts co-exist
simultaneously within the processor. Each instruction is fully identified by itstag (Fig. 2-2): the
specific path it belongs to and the program counter along that path, its specific thread, and its
specific process. The prefetch, register renaming, and the reorder units take care of organizing
al this. Others, such as reservation stations, schedulers, and the various functional units (all
residing inside the Out-Of-Order zone), largely ignore the identification tag and ssmply process
instructions as they come.

Instructions are fetched under control of the Prefetch Unit (PU). The PU maintains multiple
contexts, one for each of the active processes and each of the active threadsinside each process.
To support Avid Execution, the PU initiates parallel prefetches of multiple basic blocks per thread
and process, and a'so computes and assigns a unique pathmark per path. The PU prepares, for
each instruction, a unique dynamic instance tag (DIT). The DIT identifies the context (process
and thread), the pathmark (root and path), and the program counter (Fig. 2-2). The DIT and the
instructionarehenceforth packaged together. The non-preemptive pruning mechanismismanaged
by the PMU.
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Like the PU, the in-order instruction management units RRU and ROU are multiplied in Kin to
support multiple contexts. Each instructionischanneled, based on the context portionof itsDIT,
to the appropriate RRU and ROU. Furthermore, the RRU and ROU internal data structures are
implemented as associative tables, and their algorithms are enhanced to support the multiple
simultaneous paths of the same context. All three units (drawn astrianglesin Fig. 2-1) maintain
binary trees of paths, rather than linear instruction sequences.

As described, Kin realizes minimal data dependencies (both register and memory), and exploits
Instruction Level Paralelism (ILP) of aprogram dynamically during its execution. Since Kin is
asynchronous, and operates asadistributed system, it isnot limited by asingle clock cycle period,
so itsresource allocation can be dynamically adjusted according to the ILP characteristics of the
multi-execution paths it follows.

2.4 Kin Model

A model of Kin is specified based on statecharts [Har87] and C code. The architecture of Kin
(i.e., the modules, the channels between them (including fork and merge of channels), FIFOs on
the channels, etc.) is defined by using the Statemate MAGNUM tool [iL096], which is based on
statecharts. Asynchronous communication handshake protocols, as well as mutual exclusion
mechanisms, are also implemented as statecharts. Internal algorithms completely specifying
module behavior (e.g., branch prediction algorithm, internal tables handling, etc.) are described
as program fragments in C code. The statechart model controls the operation of the model, and
activates the C code parts by interfacing and triggering the required computations. This formal
and operational specification of Kin enables usto execute event driven smulations, required for
asynchronous design. Modules react to messages arriving at their inputs, process the data and
generate proper outputs. Handshake protocol s and mutual exclusionsare controlled and executed
by statecharts. The interface between the statechart model and the external C programs uses
handshaking protocol sfor communicationsand regardsthe programs as self-timed modul es. Each
program may be assigned a (variable) delay as its operation duration (Ch. 7).

Kin's model has a (partly) synthesizable specification: The parts defined by statecharts can
automatically be synthesized into VHDL or Verilog description, and be converted to
asynchronous implementation afterwards (as explained in Ch. 5). The partswrittenin C can aso
be defined by statecharts and treated in the same way.

Kin's model was used for debugging and performance evaluations of the architecture and
gpecificaly for smulating the avid execution concept with various depths. Animation of the model
helped us identify deadlocks, races and bottlenecks in earlier versions of the architecture. As
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explained in Ch. 3, we used SpecInt95 traces for the ssimulations, and gathered information on
average and worst case FIFO and table sizes, committing and pruning rates, and program
execution times. The author developed and constructed the model of Kin, and defined the
algorithms of al its modules. Some of the C programs were written by [Sha97], and used for
smulating Avid execution in Kin, as described in Ch. 3.

2.5 Implementation M ethodologies

As explained above in Ch. 1, a uni-synchronous implementation is not feasible for Kin.
Technological constraintsand sheer compl exity dictateadistributed system, asopposed to single-
clocked fully synchronized contemporary processors. Kin is designed as an asynchronous system
at the architecture level and it is not based on a synchronous pipeline, i.e., there are no
synchronized stages operating at the same rate, where one can say exactly what happens at each
stage at specific pointsin time. Increasing performance by applying and managing avid execution
in such an asynchronous architecture is described in Ch. 3. Each of the units in Kin can be
internally implemented as an asynchronous circuit. As an example of a complete asynchronous
design, from architectural level to circuit implementation, Chapter 4 presentsthe architecture of
anasynchronousinstructionlengthdecoder. The processor architecture consi sting of the modules
and channels (with or without FIFOs) can be considered as having acomplex, non-linear, pipeline
structure. To increase performance, each module can be internally implemented asa pipeline. An
asynchronous pipeline implementation is presented in Ch. 5. If the processor is implemented as
amulti-synchronous circuit, the adaptive synchronization method, presented in Ch. 6, should be

applied.
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Chapter 3: Avid Execution and Instruction Pruning

Performance of present processors is limited by a number of factors, including true and false
dependencies, limitsto inherent instruction level paralelismin serial code, and pipeline stals due
to misprediction of branches. Processors must concurrently execute and complete many more
instructions than provided by the average serial code. Although many execution units may be
avalable, data and control dependencies limit the instruction level paralelism. To exploit
instruction-level paralelisminfull, it isnot enoughto ook just at the instructionsinasingle basic
block (i.e., the instructions between consecutive branches). A wider window is required. On
average, every fifth instruction is a branch. To enable the prefetch of sufficiently many
instructions, processors have to ook beyond the next branch even before it has executed. This
can be done by using various branch |lookahead strategies.

As explained above (Ch. 1), technology advances will provide many more transistors to be
available for use in the design of complex processors. It will also dictate an asynchronous
architecture. We propose to take advantage of the available hardware resources, and the
asynchronousarchitecture, to gain higher performance, by applying adynamically adjustablesmart
speculative Avid Execution, defined in this chapter. The asynchronous architecture of Kinismost
suitable for handling the resulting variations of computational load, because it isnot limited to a
worst case operation.

In the following sections, we examine the limitations to the execution rate of a program, and
analyze the effects of branch mispredictions and misprediction penalties. Previous work on
specul ative execution methodsis reviewed, and the novel Avid Execution concept (supported by
the asynchronous processor Kin, Ch. 2) is presented. Instruction pruning and beheading
mechanisms, used as part of the implementation of Avid execution in Kin, are defined.
Performance analysis, as well as smulation results, are given.

3.1 Introduction and Previous Work

3.1.1 Execution Mode€

Statistical analysis of program traces shows [HP96a] that 20% of al instructions are branches,
i.e., on average, every fifth instruction is a branch. Processor architecture is generally based on
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pipelinesto increase parallelism and performance [HP96a] . Conditional branchinstructionsfound
in programs cause the processor pipelineto stall, sincethe next instruction to be fetched after the
branch instruction is unknown until the branch is executed and resolved. To prevent this kind of
stall in the processor, various branching lookahead strategies are applied. The branch result is
predicted and instructions are fetched and handled from the predicted address. If the prediction
iscorrect, the processor operation continueswithout any stall, astheright instructions areal ready
in the pipeline. On a misprediction (when the prediction is incorrect), the pipeline is flushed to
clear it of al the wrongly fetched instructions. Instructions are then fetched from the proper
address and handled by the processor pipeline. Misprediction Penalty is defined as the time
required for the pipeline to fill up after aflush, until instructions start to commit again. Thistime
depends linearly on the pipdine depth, and the number of stages between the fetch and branch
resolution stages.

Out-of-order execution takes advantage of the Instruction Level Paralelism (ILP) found in
programs and reduces program execution time by executing independent instructions
concurrently. Vaue prediction methods [LS96, LWS96, GM97a, GM97b] are suggested for
speculatively reducing data dependencies in order to increase the available ILP. The higher the
parallelismutilized by hardwareresources, the higher the instruction executionrate. It also means
that more branchinstructions are executed at higher rate, and mispredictionrateincreasesaswell.
This adverse effect is compounded by another setback: The deeper the processor and the higher
the paralelism, the higher the penalty paid for misprediction. Most of the processor units are
stalled while flushing the wrongly fetched instructions and waiting for the correct onesto arrive.

Instruction execution rate (defined as the number of instructions executed per time unit) is thus
limited by severa factors (mispredictions, available ILP, hardware resources parallelism, and
misprediction penalty). Figure 3-1 defines the following execution model. If there were no
mispredictions, the executionrate (presented by the dashed line) would be limited by the available
instructionlevel paralelism and the hardwareresources available. However, since mispredictions
do happen, the processor is able to execute instructions only during n time units before a
mispredictionis encountered. During that time, E instructions (the shaded areain the graph) are
committed. Following a misprediction, no instructions are committed for the next m time units
(the misprediction penalty time). After that, instructions start to commit again. As described in
the graph, misprediction might happen even before the maximum executionrateisachieved. This
phenomenon repeatsitself and the average execution rate is thus as presented by the dotted line
inFig. 3-1, and is given by

(31 E
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The number of instructions that are executed before a misprediction occurs is a function of the
prediction accuracy of the branch prediction algorithm used, as can be seen from Fig. 3-2. Given
that about every fifth instruction is a branch, and a prediction accuracy of p, misprediction
occurs once every E i <= 5/(1-p) instructions. E.g., for a prediction accuracy of p=0.9, one out
of ten predictions is probably wrong and a misprediction is thus expected about once every 50
instructions. For a prediction accuracy of p=0.95, misprediction is expected once every 100

instructions, etc.
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Figure 3-2: Number of executed instructions till
misprediction.

Executed instructions

From studies (cf. [HP96a]) of instruction level parallelism (ILP) found in programs (when there
are no mispredictions), the ILP can be shown as a function of the instruction window size (Fig.
3-3). The ‘window isthe set of instructions examined as candidates for potential execution. The
maximumwindow sizeislimited by the hardware resources available (e.g., the size of the reorder
buffer). ILP is defined as the number of independent instructions in the window that can be
executed concurrently. Figure 3-3 presents the ILP of four benchmark programs [HP96a], and
their average ILP. When a program executes, the window size gradually increases, and the
number of instructions candidates for execution depends on the number of new instructions
entering the window every time unit. Therate of new instructionsisaparameter of the processor
width and paralelism (i.e., on the number of instructions that can be fetched, decoded, and
renamed concurrently, inthe processor pipdine stages at each time unit). Thewindow sizeisaso
afunction of the number of instructions leaving the window every time unit when issued to be
executed. This number depends on the available ILP which, as explained above, depends on the
instructions inside the window and the window size at that time.

In order to make the explanation and analysisclearer and easier to understand, we shal define the
average time period required to complete handling instructions at a processor stage asa‘ cycle'.
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Note that we use the term ‘cycle’ for convenience, and it does not necessarily imply that the
processor design has either a synchronous or an asynchronous implementation. ‘ Cycles should
be thought of astime periods, which might be all equal, e.g., (one or several) clock cyclesin case
of a synchronous processor, or having an average length and variance in an asynchronous
processor. The analyzed behavior, however, remainsthe samefor synchronousand asynchronous
cases, since both are designed to be as balanced as possible to prevent execution bottlenecks.

We define the possible parallelism available by the hardware as w (processor width), and say that
at every cycle w more instructions enter the window. Also, every cycle some instructions
(according to the ILP) leave the window and are executed. By analyzing the behavior of the
average ILP as afunction of the window size, we can conclude how many instructions can be
issued for execution. Resultsof executed instructions enable other instructions from the window
to be executed in the following cycles. The number of instructions executed every cycle is a
function of the hardware parallelismand the IL P. Asexplained above, theILPisin turn afunction
of the variable window size, which depends on the number of instructions entering and leaving
the window every cycle. The result of this dynamic processis shownin Fig. 3-4, which plotsthe
total executed instructions as a function of the number of cycles since the start of execution. The
processor width (hardware parallelism) is a parameter.
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The dashed linein Fig. 3-4 marks E; <= 100 instructions executed (which, as explained above,
isthe number of instructions expected to be executed before amisprediction occursat prediction

accuracy of 95%). As can be observed from Fig. 3-4, the higher the hardware parallelism (the
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more resources available), the lesstime (fewer cycles) required to complete E,,; i instructions,
but obvioudy there are diminishing returns. Further, it is clear that the higher the processor
width (w), the more frequently amisprediction occurs. Thelinesin Fig. 3-4 areclearly linear, and
regression anayss yields the following empirical trends for E (the number of executed
instructions) as afunction of the number of cycles n and the hardware parallelism w.

(3-2 Emw) = aw)xn+pw); aw) =41xlnw-15; Pw) = -4.7xlnw +5
Assigning E=E 5 and Eq. (3-2) into Eq. (3-1) yields:

(3-3) R — Emiss — me'ss - (X(W)

e B PO Pt <m - pon]

a(w)

This expression is plotted in Fig. 3-5. Again, it can be seen in Fig. 3-5 that a high hardware
parallelism w does not contribute to increase performance, since the limit is the ILP of the
program. Increasing the maximum window size available in hardware does not help either, since
the misprediction occurslong beforethe window fills up. As the misprediction penalty increases,
the effect of a higher widthw becomes negligible, since most of the time is spent while paying the
misprediction penalty rather than doing computation. Thus, if the misprediction penalty is high,
investing in higher parallelism of the processor does not improve the average execution rate and
processor performance. The higher the hardware parallelismis, the higher the misprediction rate
is, and the deeper the pipeline - the higher the penalty paid for misprediction.
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The motivation for Avid execution is reducing the misprediction penalty, by utilizing ‘ spare’
hardware resources not used due to limited IL P. Before defining and explaining Avid execution
principles, we briefly survey and discuss previousworks on applying specul ative execution. These
methods include single path specul ative execution, eager execution, multiple path exploration,
and digoint eager execution.

3.1.2 PreviousWork

The tree of possible execution paths is shown in Fig. 3-6. The vertices of the tree are the branch
instructions. Each edge isabasic block, i.e., a sequence of nonbranch instructions terminated by
a branch instruction.

Single Path Speculative Execution

Contemporary processors employ Single Path Speculative Execution, whereby each branch is
predicted as either taken or not-taken, based on its past history [Cra92, HP96a, L S84, Y P92].
The branch prediction can either be static (e.g., based on trace profiling, or aways predicted as
not taken) or dynamic (based on its behavior history at run time). For taken branches, the target
address is also predicted. Only instructions from the predicted path are prefetched. On
misprediction, the processor is flushed and the correct path isfetched. Current branch prediction
algorithms are p=85%-95% accurate [HP96g]. For p=90%, E, =50 (Fig. 3-2). For example,
if the misprediction penalty is 5 cycles, and on average 1.5 instructions are executed per cycle,
then the slowdown due to misprediction is 15%:

(3-4) SlowDown__ . = Num. cycles v-vith mis?redicfio-n _ 50115 +5 _ 115
? Num. cycles without misprediction 50/1.5

Figure 3-7 presents the misprediction effect on performance as a function of parallelism and
misprediction penalty (with prediction accuracy as a parameter).

As explained above, single path speculative execution is highly sensitive to the quality of branch
prediction and to pipeline depth. An execution tree of depth n contains n edges for single path
speculative execution, so the cost is linear in the overall depth of prediction. However, the
probability of correct prefetch over n levelsfalls off exponentially as p”.
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Eager Execution

In Eager Execution al paths are prefetched and (speculatively) executed. When a branch is
encountered, execution proceeds down both paths of the branch. Multiple resourcesarerequired
to support the parallel prefetch and execution of multiple paths. Once a branch is executed, its
‘losing’ sub-tree may be aborted and disposed of, and the corresponding resources can be
released. As explained below, Eager execution is not practical and has not been implemented in
any processor. Thus, no mechanism was developed for discarding irrelevant instructions. Since
Avid execution (as explained below) requires efficient instruction discarding, a special non-
preemptive pruning mechanism (Sect. 3.3) was developed for Kin (Ch. 2), and it is performed
continuously and simultaneoudly with regular execution, without flushing the processor. The
principal benefit of eager execution is that misprediction stalls are eliminated. However, eager
execution is exponentially wasteful: Of the 2"-1 edges of an-level execution tree, only n edges
are on the true path and eventually commit, while the remaining 2"-1-n edges should be
discarded. Since about 20% of all instructions are branches, the average basic block length is 5
instructions. If we consider an execution tree of depth n=3, then only 20 (out of 75) instructions
are to be committed, while 55 should be purged. Asthe tree depth grows, the ratio between the
required instructions and the irrelevant ones grows exponentialy. Due to the enormous amount
of resources required to implement eager execution, and the relative high accuracy of prediction
algorithms available, eager execution isimpractical.

Multiple Path Exploration

Multiple Path Exploration was suggested in [Mag80, MTM81]. The ideais to limit the eager
execution to a tree depth of m levels. Thus, 2™ paths are explored simultaneously. After
processing aset of 2M paths, only one path remainsvalid, while al others are discarded. Another
set of 2™ paths, generated from the valid path are explored next. A path code is used to identify
each path, smilar to the pathmarks (Sect. 3.3) used for Avid execution. However, these path
codes have a constant length, and no pruning is applied. Only after al 2™ paths are completed,
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theinvalid ones arecleared. The systemimplementation presented in[Mag80, MTM81] contains
2M processors (one per each possible path), and a central processor which generates the
instructions of each branch path from the original program and issues them to the proper
machines. While the instructions of m branch levels are being executed, the controller generates
22m paths of the next m branch levels. Only 2™ of these paths are used, and the rest are
discarded, when the valid path from the previous mlevels block is determined. The resultsfrom
the data cache of the selected processor are copied into the shared memory, and the processors
are then assigned to the next 2™ paths. Multiple Path Exploration requires approximately
exponential hardwareresources. The sameinstructionmight beexecuted many timesconcurrently
in different processors (since it belongs to many paths), even if eventually al of its copies are
invalidated. This implementation requires a very high power dissipation.

Digoint Eager Execution

Digoint Eager Execution [US95] isbased on cal culating cumul ative predi ction probabilities, and
assigning resources to the most likely code to be executed over all unexecuted code. The basic
blocks which have the highest cumulative probabilities are fetched and executed. On a
misprediction the processor is flushed. When the prediction accuracy p—1, digoint eager
execution practically convergesinto single path speculative execution, since the first aternative
path will be selected only after taking n levels deep down in the execution tree, when (1-p)>p".
For valuesof p closeto 1, the number of levelsin the tree that will be followed before considering
any aternative pathisvery high. E.g., for p=0.9, the condition holds for n=22. But since p=0.9,
mispredictionisexpected about onceevery 10 branch predictions. For p=0.95, the conditionholds
for n=59, while mispredictionis most likely to happen about once every 20 branches. Thus, this
model isinconsistent for typical levels of p.

Implementing digoint eager execution requires a dynamic computation of cumulative prediction
accuracies, every timethe root of the executiontree changes(i.e., every time abranch instruction
is committed). Because of difficulties with dynamic computation of those probabilities, static
profile-based probabilities are proposed instead. The architecture presented in [US95] is based
onastatic instructionwindow, whichisreplicated a ong with bookkeeping hardware matrices per
each execution unit. Unit latencies are assumed for the model, and low misprediction penalty is
expected if the misprediction does not change the contents of the static instruction queue. It is
stated that the effect on performance of using non-unit latencies in the model is not clear.
Dependency lists are computed and maintained, so that if a branch mispredicts, its dependent
instructions are sguashed. A result is written to memory only when al of an instruction’s
depending branches have been resolved.

Avid Execution, defined in the following section, is designed to avoid the pitfals of dl these
methods.
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3.2 Avid Execution

3.2.1 Avid Execution Concept

Avid Execution resultsfrom combining the single path specul ative and eager execution methods,
such that the probability of misprediction is kept very low, while the exponential cost of eager
executionisreplaced by an approximately linear cost. The Avid execution method isbasically an
eager execution whose eagerness is limited, based on prediction. As in single path speculative
execution, the predicted pathisprefetched and executed. In addition, for each branchencountered
and predicted, partsof some k levels subtree whichis predicted as not-taken are also fetched into
the processor, and are speculatively executed.

The number k of prefetched levelsin the non-predicted subtree is adjustable. Figure 3-8 shows
two examples of Avid execution depth, for k=2 and k=5. The main predicted path is marked by
solid thick lines, and the extra (avidly handled) paths are drawn as dashed lines. Note that if k=0,
Avid execution is reduced to single path speculative execution. For k=1, about 50% of dl
instructionsfetched will be pruned, sincefor every predicted basic block another basic block from
the not-predicted path is also fetched. The price of exponential demand for resources is avoided
in case of Avid execution, and is replaced by an approximately linear one: For Avid execution
withdepthk, the number of edgesinthe executiontreeis(k+ 1)x n-1. Avid execution can produce
instructions at a sufficient rate to reduce or even eliminate the stall on misprediction, asanalyzed
below in Sect. 3.2.2. The unneeded instructions are pruned asynchronously, without preempting
continuous operation of the processor, as described in Sect. 3.3.

Selecting the Avid depth can be done elther statically (e.g., all conditional branches have the same
alternative path depth), or dynamically. Dynamic adjusting of Avid depth can be done per each
branch instruction, and can be based on statistics collected at run time. If confidenceis applied
to prediction [JRS96, Smi81], the Avid depth can be adapted accordingly. For example, when a
saturating up-down counter isused for making prediction[L S84, Y P92], predictions made at the
counter extremes are more accurate (about 85%-95% of them are correct) than predictions made
away from the counter extremes (when only about 60%-70% are correct) [Smi81]. When the
prediction confidence level islow, a deeper Avid depth should be used, and for high confidence
prediction a small Avid depth (or non at al) might be better. Obvioudy, k=0 for unconditional
branches.

Observe that the first edge of each alternative path described in Fig. 3-8, originating from each
branch instruction (a tree vertex), is the branch direction predicted as not being followed. The
following edges of the alternative paths are selected by branch prediction. Another option for
selecting the dternative paths in Avid execution (instead of following ‘single path’ alternatives),
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isto span a (limited depth) sub-tree from the path predicted as not taken. Avid execution can be
recursively applied to the alternative paths aswell. Obvioudy, if the alternative sub-treeisas deep
asthe predicted one, and followsall possible paths, then Avid execution becomes eager execution.

The more alternative paths followed by Avid execution, the more resources required. Our
simulations verify that following single path aternatives is quite adequate when prediction
accuracies are high. Spanning more aternative paths results in diminishing returns.

k=2 k=m (m=5)
EX
B »
2
) » »
e

PF

Figure 3-8: Examples of Avid Execution depth (k). misthe number of processor pipeline stages
between prefetch (PF) and branch resolution (EX) stages.

Some related methods have been previously proposed. IBM RS/6000 [Cra92, HP96a] predicts
every branch as not taken, but fetches instructions from the other path in case the prediction is
wrong. Instructions from the alternative path are not issued for speculative execution. Smilarly,
IBM 360/91 [Cra92, HP96a] could prefetch instructions from both branch directions, but
specul ative execution of instructions from both paths was not possible. The IBM 370 [Flo74] had
a smdl auxiliary instruction buffer for speculative prefetched instructions. Branches were
predicted astaken or not taken based on their type (i.e., opcode). Once abranch was resolved as
mispredicted, the content of the auxiliary instruction buffer was copied into the main instruction
buffer.

3.2.2 Performance Analysis of Avid Execution

Assume there are m stages in the processor between the prefetch stage (marked as ‘PF in
Fig. 3-8), inwhich instructions are fetched into the processor, and the execution stage (marked
as 'EX’), where the branches are resolved. These stages include operations such as decoding,
renaming, operand fetching, scheduling, etc., of theinstructions, asdescribedin Ch. 2. If the Avid
depth isk=2 (Fig. 3-8 on the | ft), then each processor stage must be able to handle instructions
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from three basic blocks. For k=m, each processor stage handles instructions from nt+1 basic
blocks. After the instructions of abasic block commit in-order, the entire subtree is shifted and
progresses in the processor stages, while new paths are predicted and prefetched. For every
branch on the predicted path, aternative paths (emerging fromit) of length k are also predicted.
When a branch is resolved at the execution stage (possibly out-of-order), the redundant path is
pruned. Execution continues along the resolved path uninterrupted, regardless of whether it was
predicted or not. The misprediction penalty of stalling all processor stages while waiting for the
correct instructions to be fetched and handled is avoided, or reduced, as follows. Two cases of
misprediction penalty for Avid execution are presented in Fig. 3-9.

(8 Casel: No penalty. (b) Casell: Reduced penalty.
Figure 3-9: Misprediction penaltiesin Avid Execution.

In this example, the Avid depth k=m. In Case | (Fig. 3-9(a)), execution is following the path
marked A. Assuming there is no misprediction of several previous branches, the Avid subtree
(including the alternative paths marked B to H) has been fetched and is handled in the various
stages of the processor. The first two predictions are proved correct (checkmarked ‘v’),
execution continues along path A, and paths B and C are pruned. The next predictionisincorrect
(marked ‘' X’), and the rest of path A is pruned aong with al the alternative paths emerging from
it (E through H). After the misprediction, execution starts following path D. Since path D has
already been predicted, fetched, and partialy handled for depth m, none of the processor stages
is stalled.

Note that none of the alternative paths of the new main speculative path D has been prefetched,
so they must now be predicted and fetched. These‘holes inthe Avid tree are presented by dotted
lines. If there is no subsequent misprediction for at least m branches, then the Avid tree is
completed again. If a misprediction happens at alater time, e.g., at the ‘X’ mark leading to path
O, then again no misprediction penalty isincurred, since path O aready has m basic blocksin the
processor.

Figure 3-9(b) shows Case I1. After switching to path D, a second misprediction occurs as early
asafter only 6 correctly predicted branches. Execution should now follow path M, which has not
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yet reached the execution stage. Some of the processor stages are stalled while waiting for the M
path to proceed through them. While path M moves forward towards the execution stage, its
alternative Avid paths are predicted and prefetched to restore the proper Avid tree. Since part of
the alternative path M does exist in the processor at the time of the misprediction, only areduced
penalty is incurred. This is in contrast to what happens after misprediction on a single path
speculative execution processor, wherein the whole processor is flushed and stalled.

Average execution rate (as defined in Sect. 3.1.1) is used to measure the performance
improvement that can be achieved by Avid execution (this measure is Smilar to the ‘instructions
per cycle parameter used for synchronous processors performance). We identify the possible
cases of mispredictions, and weigh the different misprediction penalties according to the
probability of their occurrence. We concentrate on cases of having two mispredictions, separated
by some correctly predicted branches. For prediction accuracies as high as can be achieved today
(i.e., p>0.9), the probability of three successive mispredictionsis (1—p)3, which is negligible.

If i is the number of consecutive basic blocks executed without a misprediction between two
successive mispredictions, then i-1 consecutive branches were correctly predicted. The
misprediction penalty depends on the number of stages between the prefetch and execution
stages (m), on the Avid depth (k), and on the number of basic blocks executed without a
misprediction (i). The last two parameters affect the size of the *bubble’ in the processor. Thus,
the misprediction pendty (in ‘cycles’) is given by

(3-5) M, = m - min(i, k)
and the average rate R; is defined as

(3-6) .R - Ei
" on+ M.
where n is the time (number of ‘cycles’) required to execute E; instructions between the two

mispredictions.

Mispredictions which occur once every m branches or more (i.e.,, i>m) have the same reduced
penalty, which depends on k (if k=m, then there is no pendty, as explained above). The total
average execution rate is defined as the weighted sum of execution rates and probabilities of all
possible cases, and is calculated as:

m=-1 m=-1

@7 Ry = Y (1-pPp™'xR + 1= X (1-pPp'™!| <R,

i=1 i=1

where p is the prediction accuracy.
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As an example of performance improvement achievable by Avid execution, consider a case of
m=5, p=0.95, and enough hardware resources available (for the aternative paths as well) so
execution is limited only by ILP and mispredictions. As can be seen from Tab. 3-1, up to 50%
increase in performance can be achieved by Avid execution, depending on the avid depth applied.

k Average Rate % Performance
[#instr/time]
0 6.62 100
1 7.09 107
2 7.64 115
3 8.28 125
4 9.03 136
5 9.93 150

Table 3-1: Average execution rates achieved by various Avid depths (k),
for m=5, p=0.95, and high bandwidth (execution limited by ILP).

Obvioudly, Avid execution can contribute more to performance gain when misprediction penalty
(m) is higher, since reducing that penalty has alarger effect on overall performance. The lower
the prediction accuracy (p), the higher the increase in performance that is achievable by Avid
execution, because mispredictions happen more often and Avid reduces the penalty paid.

On the other hand, even though Avid execution can optimally use any ‘spare’ processing
bandwidth which is not utilized due to limited parallelism in code, it might aso hamper
performanceif thereareinsufficient resources. The deeper the avid depth, the moreresourcesare
required. Most of the instructions are pruned at early stages of the processor, but if the
bandwidth (w) is not wide enough the extrainstructions might slow the execution down. Still, if
the reduction of mispredictionpenalty increasesperformance morethan the decrease in execution,
the overall performance is increased. Some examples are presented and further explained by
simulation resultsin Sect. 3.5.

3.3 Pathmarks, Pruning Management, and Beheading M echanism

Avid execution prefetchesand executes both directions of each branch. Eventually, one of thetwo
commitsand the other ispruned. Many of the instructions flowing through the processor should
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be discarded. Asexplained in Ch. 2, Kin performs clean-up tasks (‘ pruning’) on the fly, without
preempting execution, and without stalling the processor for acentralized flush. Pruning removes
the unneeded instructions, while the others (the relevant ones and the ones that are till
speculative) remain untouched. Pruning does not stall the processor: Rather, it is executed
concurrently whilethe processor continuesto fetch, issue, execute, and commit instructions. Since
Kin is an asynchronous processor, it cannot rely on a central clock or control to be used for
simultaneoudly flushing unneeded instructions. Non-preemptive pruning employs pathmarksand
adistributed algorithm to discard useless instructions.

Pathmarks distinguish alternative paths. Each edge of the execution tree is assigned a unique
pathmark, based on prefix notation of binary trees. If an edge (a basic block, terminated by a
branch instruction) is marked by m, then the sequentially following edge and the branch target
edge aremarked m0 and m1, respectively (Fig. 3-10). Theroot ismarked by the empty string. The
pathmark is described by accumulating these bitsas aroad map to follow from the root until the
edge the instruction is on. Note that the marks of al edgesin the (dashed) subtree of node n are
prefixed by n. The pathmarks, which fully identify the path, are generated dynamically during
program execution and are affixed to eachinstructionat prefetch, aspart of the Dynamic I nstance
Tag (DIT), asexplained in Ch. 2.

ml0.  mll
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Figure 3-10: Pathmarks based on prefix notation.

When abranchisresolved (i.e., executed), one of the directions (according to the branch result)
ismade obsol ete, and al the sub tree emerging fromit should be pruned. All instructions fromthe
obsol ete subtree that have already been fetched and issued into the processor (none of them has
been committed of course) can be* marked for deletion’ by broadcasting asingle prune() message
to dl the units. This message contains the prefix that definesthe sub tree to be expunged. Pruning
isperformed by comparing pathmark prefixes. All instructions having amatching pathmark prefix
arediscarded. Once the branch marked mis executed, the subtree that must be pruned isknown:
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ml if the branch was not taken, m0O otherwise. Respectively, amessage prune(ml) or prune(mo)
is distributed to the entire processor over the pruning channels, as described in Ch. 2.
Out-of-order is supported: Assume that a branch mk (which isthe k-descendant of m, wherek is
some binary word) isencountered beforem. An appropriate prune(mki) message (ie{0,1}) issent.
When, at a later time, the prune(m) message is sent, it overrides the former one, which is
contained in the latter.

The pathmark length grows very fast, as one more bit is attached on every branch. On the other
hand, much of the information of the pathmark becomes irrelevant when processing progresses
downthetree. Consider amark m, L-bitslong. Once abranch instruction marked m commits, the
pathmarks of al useful subsequent instructions in the processor will be prefixed by m. Since the
m prefix is now redundant, it should be beheaded. A distributed beheading algorithm is used to
contain pathmarks growth.

To behead prefixes, aroot mark R is added to the DIT (Fig. 2-2). Occasiondly (e.g., every L
committed branches), a behead(R,m) message (R=path root, m=path prefix) isgenerated (by the
PMU) and distributed over the pruning channels. Following the receipt of such amessage, each
unit modifies each instruction it handles as follows: If the instruction’s DIT contains root mark
R and pathmark prefix m (of L bits), then the root mark is updated to R+ 1 and the pathmark is
left-shifted by L bits. In effect, linear pathmark growth is thus replaced by logarithmic growth of
the root mark.

A similar prefix notation of binary trees is used in the multiple path exploration scheme [Mag80,
MTM81], to distinguish between the 2™ paths that are executed. However, inthat application all
paths have the same length, and there is no need to use beheading since the next new 2™ paths
are introduced into the processor only after one of the previous paths has committed, and the
entire processor is cleared of old instructions.

FIFOs can be used for the implementation of the pruning and beheading tables. Thus, alimited
number of messages are kept at al times. New messages arriving will *push’ older onesout. This
way the old and redundant messages are automatically discarded.

Since Kin processor is an asynchronous and distributed processor, races such as a new prune
message being tested against an instruction which has not been beheaded yet should be resolved.
This can be handled by either having the beheading process update the pruning tables, or
rechecking for pruning after beheading an instruction. Cumulative beheading is also handled.

The number of the execution tree levels which exist ssmultaneously in the processor, although
changing dynamicdly, is limited by the available hardware capacity. The number of bitsin the
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pathmarksreflectsthislimit. It need not necessarily accommodatetheworst case; uponsaturation,
execution may be delayed until the beheading mechanism frees some bits in the pathmarks. The
number of different root valuesthat might exist in the processor isalso limited, and the root mark
may be allowed to ‘wrap around’ . A beheading message can be sent whenever abranch commits.
But, to reduce the overhead of behead messages, the beheading information is accumulated by
the PMU (see Ch. 2), and broadcasted only after L branches commit. The value of L isafunction
of the commit rate in the processor and the number of bitsin a pathmark.

Kin's Prefetch Unit generated the DITS, but it has no knowledge that an instruction is a branch,
until it is decoded and recognized as a branch in the decode unit. Since no predictionis available
for brancheswhen they are encountered for the first time, some extrabitsare used (as part of the
DIT) toindicateabasic block id. The basic block id is changed whenever the decoding unit sees
a branch instruction for the first time (it means, of course, that this branch has been treated as
predicted not-taken, but the other edge of the branch has not been prefetched). This way the
pruning (if needed) can be done to a part of an edge, starting after the mispredicted branch.

3.4 Asynchronous Architecturefor Avid Execution

Avid execution is more suitable to asynchronous architectures than to synchronous ones. Since
alot of hardware resources are utilized and the architecture is complex, alarge chip isrequired
(or even amulti chip) to implement the processor design. As explained in Ch. 1, due to signal
propagation delays and clock distribution problems, the processor will have an architecture of a
distributed system, most suitable for asynchronous design.

The workload that the processor needs to handleislargely varied. Since an adaptive Avid depth
is applied, the amount of instructions handled varies a lot over time. Handling the register
renaming for instructions from variable paths on the execution tree requires flexible comparisons
and updating. Even the ‘in-order’ commit process is not the same as currently done in
contemporary synchronous processors, since the instructions to be committed are not necessarily
saved continuously in the ReOrder Buffer; rather, the ROB contains ‘holes’ and should be
searched associatively. A variable number of instructions can beready to be committed at different
times. To increase performance, it is better to be able to operate at speeds close to the average
case and slow down occasionally, than to always work as slow as the worst case of the variable
load. Thisis easily achieved by a self timed asynchronous architecture.

Broadcasting prune and behead messages (required as part of Avid execution) to various
processor unitsmay slow down asynchronous processor because of long signal transmissiontime,
affecting the clock cycle time. A dynamic and distributed algorithm is applied for instructions
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pruning, and it ismost suitable for an asynchronous architecture. Thereisno central control, and
each unit handles the pruning at its own speed. Thereis no stall of the whole processor while
pruning is done, since there is no need to wait until all the units acknowledge that they have
completed the pruning. The rate in which prune and behead messages are generated and handled
is not constant, and it can vary significantly as a function of some properties of the executed
program (e.g., the length of the basic blocks), and even during the execution of a code (e.g., as
prediction accuracies change). An asynchronous architecture istolerant to such variances, while
a synchronous design will either have to work much slower al the time, or will fail when
occasionally along computation occurs.

Avid Execution requires a wide memory bandwidth to prefetch and decode many instructions
concurrently. Increasing code density, thus reducing the number of bytes fetched from memory,
is achieved by using a variable length instruction set. Chapter 4 describes the design of an
asynchronous instruction length decoder that speeds up the decoding of such instructions.

Avid execution was developed for asynchronous processorslike Kin. Although it can be adapted
for use in a synchronous processor (if such a complex and large processor is ever feasible as a
sgngle synchronous processor), its performance potential will not be fully exploited by a
synchronous processor, for the reasons explained above.

3.5 Simulation Results

A model of Kin with Avid execution was developed by the author, as described in Ch. 2. The
author defined the Avid execution and pruning handling a gorithms that were implemented, and
specified the tests to be made, as well as analyzed their results. Simulations of synthetic traces,
and SpeclInt95 benchmark programs, were carried out on the Kin model by [ Sha97], withvarious
parameters, as explained below. This section summarizes and analyzes the simulation results.

A branch prediction algorithm, based on[Y P92] wasimplemented. V arious predi ction accuracies
were obtained by changing the size of the branch target buffer (implemented as a 1-way set
associative). The pathmarks were limited to 32 bits, and 16 bits (of which at most 5 were used
during simulationrun) were allocated for the root mark. Beheading was issued every two branch
commits.

Avid execution was simulated for three possible (fixed) Avid depths: k=0, 1, or 2. The processor
hardware width (i.e., the number of instructions that can be handled concurrently in each
processor unit) wasvaried aseither 20, 40 or 80 instructions. Avid execution spanning an ‘ eager’
subtree for k=2 was also smulated, and demonstrated a diminishing return, as expected. The
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resultswereat best the same asthose obtained by Avid execution spanning a‘ single path’ for k=2,
and at times worse, due to high prediction accuracies and lack of resources.

Two synthetic traces were generated and simulated on a processor model of width w=20,
assuming several predictionaccuracies (p=85%-100%). Each of the traces contained basic blocks
of length 5. The first trace had no dependencies between instructions, thus the performance was
limited only by branch mispredictions. The second trace was built withfull dependency (i.e., every
instruction depends on its predecessor), hence execution was limited by data dependencies and
branch mispredictions.

The simulation results are summarized in Fig. 3-11. The vaues in the tables are the average
execution rate (i.e., the number of instructions committed per time period), and the performance
percentage of Avid execution (for k=1,2) relativeto the case of asingle path specul ative execution
(k=0). Whenthereareno dependencies(Fig. 3-11(a)) and no mispredictions (i.e., p=100%), Avid
execution reduces the execution rate (from 19.69, which is ailmost equal to the processor width
w=20), to 50% and 33%, for k=1 and 2, respectively, as expected, sSinceit usesresourcesthat can
be used for the ‘true’ path. Since there are no dependencies, the execution along the ‘true’ path
can proceed with no stall, except when a branch is mispredicted. When the prediction accuracy
is reduced to p=80%, Avid execution does not decrease the performance any more. With even
lower predictionaccuracies, the overall performance can beincreased by applying Avid execution
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(b) Trace with Full Dependencies.
Figure 3-11 : Synthetic traces smulation results (for w=20).
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When there are many dependencies between the instructions (Fig. 3-11(b)), the available
resources in the processor are not fully utilized, and execution is mainly stalled due to the data
dependencies. When the branch predictionisnot perfect (i.e., p<100%), Avid execution can use
the*spare’ idleresourcesto work concurrently onsome of theinstructionsfrom alternative paths.
For p=95%, Avid of depth k=1 is 6% better, and Avid of depth k=2 is 10% better than the single
path speculative case. The performance improvements grow to 21% and 37% (for k=1,2,
respectively), when p=80%. Similar behavior was observed for other tested synthetic traces,
which had smaller and larger basic block sizes.

Obvioudy, non-synthetic programs have amixture of dependencies between the instructionsthey
contain. All SpecInt95 programs were smulated with several Avid execution depths (k=0, 1, 2)
and various processor widths (w=20, 40, 80) [Sha97]. The simulation results for w=40 are
presented in Fig. 3-12, and analyzed below. Not al simulations yielded a prediction accuracies
higher than 90%, thus they do not reflect the diminishing return point, expected at higher
prediction accuracies, where Avid execution utilizes resources that might be better used in the
‘main’ predicted path. The highest predictionaccuracy achieved was 97%, for the |jpeg program.

The simulation of Compress95 (Fig. 3-12(a)) shows that for k=2, performance is best up to
p=86% (except for the case of p=84%, where k=1 performs better). Above p=88%, k=0 is best.
For Gece (Fig. 3-12(b)), k=2 is better than k=1, up to p=83%, where they become equal. At that
point, they both give 11% higher performance than k=0. For Go program (Fig. 3-12(c)), k=2
shows better performance than either k=1, or k=0, up to p=85%. Simulation of ljpeg
(Fig. 3-12(d)) resulted in highest performance for k=2 up to p=77%, then k=1 gives better
performance up to p=97%. They are aways better than k=0. A smilar behavior was seen for the
Li program (Fig. 3-12(e)), where k=2 performs better than k=1, up to p=92%. At p=93% they
switch, but are till both better than k=0. M88ksim program (Fig. 3-12(f)) also behavesthe same,
but the switch in performance gain between k=2 and k=1 occurs at p=76%. For Perl
(Fig. 3-12(g)), k=2 isbest up to p=86%, and then k=1 is better but k=0 becomesthe best. VV ortex
(Fig. 3-12(h)) always resulted in best performance for k=2 (up to p=95%y), while even k=1 was
better than k=0.

Asexplainedin Sect. 3.1, the average executionrateis affected by several parameters, namely the
instruction level parallelism, the prediction accuracy, the processor width and the misprediction
penalty (pipeline depth). The effects of prediction accuracies and different instruction level
parallelism are shown in Fig. 3-12. To demonstrate the effects of the other parameters on the
execution rate and the performance gain by applying Avid execution, the same program
(M88ksim) was simulated on the Kin model, with different parameter values. The results are
summarized in Tab. 3-2.
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Figure3-12: Speclnt95 simulation results (for w=40). The graphs describethe average execution rate (R)
as afunction of prediction accuracy (p), with Avid execution depth (k) as the parameter.

Table 3-2 contains both the absolute values of the execution rates measured for every case, as
well asthe performance percentagerel ative to what was achieved by k=0 in each comparable case.
As can be seen, when the processor width is doubled fromw=20 to w=40, the executionrate (for
k=0) increases by lessthan 8% in the best case. Thisisdueto executionrate limited by instruction
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level paralelism (data dependencies) and misprediction pendty. However, Avid execution has
more free resources to utilize and for p=88% increases the performance by 6% in case of w=20,
and by 12% in case of w=40. For p=71%, performanceisbetter by 20-30% when Avid execution
isapplied. Further increasing the processor width to w=80, resultsin adiminishing return, dueto
the limited parallelismfound in the program. It isworth noting that the simulation model suffered
from a limited number of pathmark bits (which causes the processing of Kin to stall when
pathmark bits are exhausted, until some are beheaded). This can be avoided if more bits are
allocated for the pathmarks, but it is not expected to change the results very much.

The wider the processor, the more instructions are handled concurrently. Thus, more branch
instructions are executed, more mispredictions happen per time period, and more often the
misprediction penalty has to be paid. As can be seen from Tab. 3-2, k=2 is better than k=1 only
up to p=76% for w=20, and w=40, but it remains better for p=88% for w=80. Similar behavior
was observed for the other traces smulated, where the *switch’ between the performance gains
of k=0,1,2 occurs at different prediction accuracies, depending on the processor width.

Kin does not have a pure pipdline structure, but the unitsin it can be viewed abstractly as pipeine
stages. By changing relative timing of the unitswe could change the pipeline effective ‘ depth’, and
affect the misprediction penalty. Setting the processor width to w=20, and changing the pipeline
depth (the misprediction penalty) is also described in Tab. 3-2. Although the execution rates
increase because of the lesser stall on each misprediction, the performance increase gained by
Avid execution remains relatively the same (comparing by percentage of improvements).

Dueto the limited number of pathmark bits implemented in the simulated model, we tested the
effect of deeper Avid depth by using a very short pipeline (equal to 2-3 stages deep, compared
to maximum Avid depth of k=2). As can be noticed from the results in Table 3-2, the execution
rates increased due to the even smaller misprediction penaty, and Avid execution resulted in an
average performance improvement of 25% for the case p=88%, and much more (up to 80%
better) for lower prediction accuracies.

Another interesting effect of Avid execution found in the smulations was regarding the total
number of instructions (and bytes) fetched from the memory. In severa cases k=1 actually
resulted inlessinstructions being fetched, since k=0 had to flush many of the instructions brought
from memory. Hence, Avid execution not always resulted in an increased memory bandwidth.

We only implemented and ssimulated a fixed Avid depth scheme. It indicates however that better
performance can be achieved when an adaptive Avid depthisused, based on prediction accuracy
(or prediction confidence) of each branch, as defined in Sect. 3.2.
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p 50% 56% 61% 71% 76% 83% 88%

w=20

k=01 229 | 100 | 265 | 100 | 279 | 100 | 3.87 | 100 | 410 | 100 | 478 | 100 | 532 | 100

k=1]1335 | 146 | 343 | 129 | 3.88 | 139 | 454 | 117 | 491 | 120 | 555 | 116 | 565 | 106

k=2 | 373 | 163 | 392 | 148 | 424 | 152 | 500 | 129 | 514 | 125 | 551 | 115 | 562 | 106

w=40

k=0 | 227 | 100 | 263 | 100 | 283 | 100 | 403 | 100 | 442 | 100 | 507 | 100 | 548 | 100

k=1 351 | 155 | 355 | 135 | 408 | 144 | 484 | 120 | 534 | 121 | 6.14 | 121 | 6.14 | 112

k=2 1394 | 174 | 431 | 164 | 450 | 159 | 522 | 130 | 569 | 129 | 6.09 | 120 | 6.09 | 111

w=80

k=0 | 239 | 100 | 270 | 100 | 296 | 100 | 401 | 100 | 439 | 100 | 470 | 100 | 548 | 100

k=1]363 | 152 | 366 | 136 | 423 | 143 | 496 | 124 | 522 | 119 | 568 | 121 | 6.00 | 109

k=2 | 413 | 173 | 447 | 166 | 464 | 157 | 527 | 131 | 547 | 125 | 594 | 126 | 6.05 110

w=20, Shorter pipeline

k=0 | 346 | 100 | 391 | 100 | 412 | 100 | 544 | 100 | 565 | 100 | 6.74 | 100 | 7.51 | 100

k=1 504 | 146 | 512 | 131 | 565 | 137 | 664 | 122 | 693 | 123 | 7.81 | 116 | 7.83 104

k=2 | 549 | 159 | 574 | 147 | 614 | 149 | 712 | 131 | 738 | 131 | 7.86 | 117 | 7.95 106

w=20, Very short pipeline

k=0 | 351 | 100 | 404 | 100 | 421 | 100 | 538 | 100 | 6.06 | 100 | 6.93 | 100 | 838 | 100

k=1 | 551 | 157 | 553 | 137 | 6.26 | 149 | 719 | 134 | 7.83 | 129 | 913 | 132 [10.34 | 123

k=2 635 | 181 | 677 | 168 | 698 | 166 | 7.99 | 149 | 862 | 142 | 957 | 138 |[10.63 | 127

Table 3-2: M88ksim trace simulations performance results.

3.6 Concluding Remarks

Greater investments in hardware resources might result in diminishing returns, when no
meaningful performanceincreaseisachieved and performance might even suffer because of larger
chipsand deeper pipelines. Avid executionisaimed at better utilization of the available resources.

We have developed, analyzed, and simulated the Avid execution concept, along with proper
pruning and behead mechanisms. The Avid parameters (e.g., depth) can be adjusted dynamically
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according to prediction confidence. We introduced the Dynamic Instance Tag (DIT) to uniquely
define a path, and defined a set of operations on the DIT to insure that useful computation is
executed and useless computationis discarded. Avid execution applies pathmarks and pruning to
executeinstructions frommany paths as soon astheir operands are ready, but stop executing the
remaining instructions on a path as soon asit is known that it will not be taken.

We have smulated a fixed Avid scheme, but other alternatives (e.g., dynamically adjusted, and
various spanning trees) weredefined, and should befurther smulated and analyzed regarding their
effect on performance. The structure of the spanned tree (the Avid depth and width) can be
dynamicaly adjusted, depending, for example, on the prediction accuracy, the prediction
confidence, and the distance (in tree levels) from the main predicted path (without computing
cumulative probabilities). We expect higher performance improvementswhen adynamic Avid is

applied.

Asynchronous architectures (such as Kin) are best suitable for Avid execution, because of the
design complexity (large chips) and great variance of computationload. Asexplained in Sect. 3.5,
Avid execution does not necessarily result in excessive memory bandwidth requirements.

As any speculative algorithm, Avid execution islimited by brancheswhose target address varies
and isnot predictable becauseit is calculated at run-time (e.g., ajump through aregister). These
branches can either be handled by the compiler (e.g., by replacing a multiple target branch with
a sequence of compare and jump instructions), or by better predictorsimplemented in hardware.
When Avid execution detects a mispredicted branch target, al instructions in the processor are
pruned, and execution continues from the correct address with a new root number, so no
centralized flushing is required.

Avid execution can use ‘hints,” which may be provided to it by the compiler, regarding what to
do with the branch the first or each time it is encountered. The help provided by a compiler can
include initial information about the target address, the branch prediction, the branching
probability, and the recommended depth of Avid execution, per each branch instruction.
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Chapter 4:  AnAsynchronousinstruction Length Decoder

Kinarchitectureisasynchronousat itshighest level, while the implementation of each module can
follow amost any timing discipline. To complete this investigation at al levels of the design, a
fully asynchronous implementation of a non-trivial module in Kin has also been attempted. This
author has been fortunate to take part in such a study performed at Intel Corporation. While the
Intel team focused on *hacking’ an asynchronous instruction length decoder (AILD) for best
performance, theauthor investigated astrictly formal specification of the same module, employing
the statechart tool (Ch. 7). Thus, the architecture of the AILD presented in this chapter isnot the
same as the circuit designed at Intel. A secondary purpose of this effort was to provide a
verification frame for the Intel project. The third goa was to investigate the applicability of the
statechart tool and of our methodol ogy to the compl etedesign cycle. At the same time, the author
also contributed to the Intel design, as described below.

Avid Execution (Ch. 3) requires a wide memory bandwidth to prefetch and decode many
instructions concurrently. While avariable lengthinstruction set reducesthe number of bytesthat
need to be fetched from memory, its decoding is difficult and may pose a bottleneck in a high
performance microprocessor. The AILD architecture employs extensive parallelismto accelerate
this operation as much as possible.

4.1 Introduction

The Intel x86 processor family implements a variable length instruction architecture wherein
instructions can vary in length from one byte to eleven bytes or more [Int94]. However, memory
systems, and in particular the cache memory used to storeinstructions prior to execution, typicaly
store datain fixed size blocks, such as 16 bytes. Instructions are fetched in 16 byte lines aligned
on 16 byte boundaries. Accordingly, inavariable lengthinstruction architecture, each fixed sized
linefetched frommemory contains instructions of variouslengths that may start anywherewithin
the line and may even cross line boundaries.

The decoding of avariable lengthinstruction s, by nature, a seria operation, since the beginning
of aparticular instruction can be determined with certainty only after the beginning and length of
aprevious instruction have been determined. To decode several instructions concurrently, afast
length decoding mechanism is needed to mark the beginning of each instruction, before the
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relevant bytes can be sent to be decoded. Decoding variable length instructions is rather simple
if the length is explicitly stated at the beginning of each instruction, or a ‘control field’ is
associated with each group of instructions, indicating the layout of the instructions within the
group, asin [End95]. Neither of these cases appliesto thex86 instruction set, and cannot be used
for existing programscode. Inthe AMD-K5 [Chr96], whichisanx86-compatible microprocessor,
the decoder partially decodesinstructionsinaserial manner whenthey enter theinstructioncache.
Five bits of information are stored along with each byte to indicate instruction boundaries,
distinguish between key bytes such as prefix versus opcode, etc. This adds a large amount of
overhead in the cache size, and does not avoid the serial decoding of instruction length. In this
chapter we describe the architecture of ahighly parallel asynchronousinstruction length decoder.
Lengths are speculatively calculated in parallel, and afast marking mechanism is used to detect
the first byte of each instruction.

Current implementations of the variable length instruction decoding circuits are synchronous
(clocked). Each unit inasynchronous system must compl eteitscal culationwithin the given clock
cycle, and the clock cycle is determined according to the worst case delay of dl units. Hence, the
design should be optimized for the worst case, even though only a small subset of al the
instructions in the instruction set are encountered most of the time. Unlike synchronous circuits,
the asynchronous instruction length decoder can be optimized for the most frequently used
instructions, by handling the common cases very fast, while rare cases are handled more dowly.

The self-timed design of the instruction length decoder is optimized for the common (most
frequent) instructions, and itsspeed isnot limited by the slowest path. Thus, average case (instead
of worst case) performance can be achieved. Thereisno need to optimizethe rarely used circuits
and computations, and data dependency is exploited for faster operation. The design takes
advantage of the fact that a small subset of the instructions are executed most frequently, and the
length decoding is optimized for this subset. Statistical analysis [BGK+97] of instruction traces
of SpecInt92 benchmark programs showsthat only 30% of al possible opcodes are used for 90%
of thetime. The statistical andysisasoindicates|[BGK+97, HP96a] that 99.8% of theinstructions
are seven bytes long or less, and 92% are no longer than 5 bytes. Only 1% of the instructions
include a prefix.

Theformat of aninstructionfromthe x86 instruction set [Int94] consistsof an opcode, ModR/M
and SIB bytes, and displacement and immediate fields. All the parts except the opcode are
optional. The opcodeiseither one- or two- byteslong. The existence of aModR/M byte depends
on the opcode, with no easy-to-decode rule. When present, the ModR/M byte indicates the
existence of the SIB byte and the existence and length of the displacement and immediate fields
(up to four bytes each). Some instructions have a displacement field even though there is no
ModR/M byte. Aninstruction may be preceded by prefix byteswhich affect the instruction. Only
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two prefixes affect the instruction length. The maximum valid instruction length is 11 bytes
(excluding prefixes). Thelength of aninstructionisdefined by up to four bytes (1-2 bytesopcode,
and more optional bytes), however, in many cases a single byte suffices.

The AILD design is optimized for the common cases (common instructions and lengths), while
rare cases are handled more dowly. The goal wasto decode 3-4 instructions in one nanosecond,
which isfive times faster than a 200MHz PentiumPro processor.

4.1.1 Author’sContribution

The design and implementation of an asynchronous x86 instruction length decoder were
undertaken at Intel Corporation by agroup of researchers[ BGK +97]. Thissection seeksto clarify
the contribution of the author to the work described in this chapter.

The author participated in the design of the AILD, and contributed to the architecture definition,
design methodol ogy, and logic design. Considering alternative designs, making design decisions,
and choosing animplementation for the AILD were done by the whole group but with substantial
input from the author.

The entire AILD architecture and interfaces between the modules were specified and codified by
the author using statechart models (some examples are shown in Sects. 4.2.1 and 4.2.5). It
contributed to the completeness and correctness of the architecture and better understanding of
the control protocol s needed to be implemented. It defined the module behaviorsat variouslevels
of details.

Section 4.2.1 contains the description of the AILD architecture. The author contributed to the
design by defining aregular structure of the columns, including the routing of the many marking
lines that flow between columns and rows. The author also defined the logic for decoding the
marking and priority encoded switchesfor the steering circuit, based on the one-hot encoding of
the lengths.

The author contributed to the definition and characterization of handling special cases, such as
prefixes, long instructions, and branches, which are described in Sects. 4.2.2-4.2.4.

The author did not directly contribute to the implementation synthesis, described in Sect. 4.3; it
isbrought for completeness of the description. However, the statechart model built by the author
was used to help understanding the architecture and changes made during the implementation
phase.
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4.2 AILD Architecture

4.2.1 General Description

A block diagram of the asynchronousinstructionlength decoder architectureisshowninFig. 4-1.
It consists of multiple identical units arranged in ‘columns’, corresponding to each byte in the
input instruction line. Thus, for a 16-bytes instruction line, there are 16 columns. Each column
includes a byte latch (which stores the byte from the instruction line), length decoding logic,
marking units, and cross-bar switches.

Onceanew instructionlineisfetched fromthefixed line-sizememory, each byte of theinstruction
lineis separately input to a corresponding byte latch, and processed in the length decoder of that
column. Once al bytes are latched, a new instruction line can be made available. Each length
decoder processes the respective byte, together with any additional bytes as may be required by
the length decoding algorithm. The length decoders compute the length of the instruction,
assuming that the byte being processed isthefirst byte of aninstruction. Sincedl length decoders
perform the calculations in parallel, al speculative lengths are available, and once a column is
marked as being the first byte of an instruction, the proper bytes can be steered to the instruction
decoder unit.
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Byte Byte Byte Byte e e @
Latch | | | Latch Latch| | Latch

Length| | |Length |Length| |Length Length|
Decodd | Decodg  Decodg  |Decodg ¢ o o Decodd
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Unit Unit Unit Unit Unit Handld
B Unit
Buffer BRI Row Xbar |
Mark n Branch
Unit , Handlg
= Unit
Buller| Row Xbar
Mark 2 Branch
Unit Ilandle
; Unit
Buffer ’ Row Xbar |
Mark Mark Branc
Unit Unit Handlg
Unit
Buffer| Row Xbar |

Figure4-1: Block diagram of the Asynchronous Instruction Length
Decoder architecture.
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The AILD design is optimized for common cases, and the handling of rare cases involves
communication between length decoders, as explained below. The handshake signals and
interconnections between length decoders, and between length decoders and marking units are
describedinFig. 4-2. Thinlinesindicatesingle lines, and thick linesdenote groups of several lines.
The use of each signal is described in the following sections.

The length decoder outputsthe speculative length to the marking unitsin its column. The length
is used to mark the first byte of the next instruction, if the current column isfound to be the first
byte of an instruction. The marking lines are directly coupled to the proper marking units of
subsequent instruction bytes. The marking outputs of the marking units in columns close to the
end of the line, arewrapped around to the marking unitsat the beginning of theline, and therefore
mark the first byte of thefirst instructionin the next fetched line. The generation and transmission
of the marking information flow through the marking units in a self-timed manner. Since the
marking scheme is very fast, a possible bottleneck might occur at the steering circuit which
transfersthe instruction bytesto abuffer at the instruction decoder unit. The marking propagates
and wraps around beforethe bytes are steered forward and replaced by new bytes from next line.
To avoid suchadtal, several ‘rows of marking unitsand steering circuitsare used. The marking
sgnals from row k are hardwired to the marking unit of row k+1, modulo the number of rows
(seeFigs. 4-1, 4-3). The number of rows is defined by the timing of the marking process. Dashed
lined in Fig. 4-1 demonstrate examples of marking between columns and rows.

Bytes [i....i+3] Bytes Valid [i,...,i+3]

Long In l l Long Out

r——-— 7" | r——-— 7" |
! L — —_—— o
' LDi-4 1 Long In Ack . Long Out Ack! LDit4
I | LD | I
S ‘ D
F-——-—- | Pref_In Pref_Out F-——-—- |
| L — —_— o
- LDi-t 1 pref I Ack Length Decoder Pref Out Ack | LDi+1 |
Lo I I (column ) I —
(ib;;i | Select In Select Out }r];]s;:{ 1}

sk yerds
{LDi-1 | \LDit6 |
| |

Inst_ Pref_
Rdy Long
g |Ack  [bensth Ack
nst_ Pref
Pr ng , /Length Rdy Long

r-—-=——>—>"">""">"7"""7"7] re-- - - - - - - - -~ |
| | | |
| Row Xbars | 1 Mark Units :
| | | |

Figure 4-2: Length decoder interconnections and handshake signals.



52

A marking unit waitsfor an indication that its column contains the first byte of an instruction, as
provided by the marking signal received over the marking lines from previous marking units
(Fig. 4-3). A marking unit also waitsfor anindication that the bytesthat comprisetheinstruction
have been loaded into their respective bytelatchesand areready for transmission. Thisindication
isgivenby theInst_Rdy signal, provided by the length decoder over the handshake lines(see Figs.
4-2, 4-3). The Buf_Avail signa, produced by the instruction steering circuit, indicates to a
marking unit that the instruction steering circuit isavailable to receive aninstructionfor decoding
and execution. These signals can arrive in any order. The instruction bytes are transferred to the
output buffer of the same row asthe marking unit that has processed those instruction bytes, and
thus are incrementally spread across each output buffer, and can be fetched in order by the
instruction decoder unit. The length of the instruction, aswell as some other indications (such as
Long and Pref, as explained below), are also transferred to the buffer along with the instruction
bytes.

Length Decoder
()

Unit

P

| MUik | !

| |
l Mark 0wt [MUi+Lk+1,

b > Mark Unit — ..., !

MUi-1k-1| (column i, row k) MU +7k+11
| |

L ) L )

S

Buf Buf Token_Out I i

Req Avail } Branch|

i Handle|

" Row Xbar | - Unit |

| (k) | G

| T T

Figure4-3: Marking unit interconnections and handshake signals.

4.2.2 Handling Branch Instructions

Branch instructions can change the control flow in a program. As explained in Ch. 3, branch
prediction is applied to prevent stall in the processor operation, by predicting whether a branch
instruction will be taken, and what itstarget address will be. The proper information is added to
the bytes fetched from the cache line. A branch instruction can appear at any byte locationin a
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cache line, and the bytes following a taken branch are not used. Similarly, bytes preceding a
branchtarget inaline areirrelevant. Each bytein the line can have at most one of three mutually
exclusive indication bits set: taken_branch (the byte is the first byte of a branch instruction
predicted astaken), branch_target (the byteisthefirst byte of aninstruction whichisatarget of
a branch), unused (the byte is not part of any instruction and should be ignored, e.g., bytes
between the branch instruction and the target instruction).

When aninstructionindicated as ataken branch is marked, the next marked instruction should be
the instruction at the branch target, rather than the next instruction in sequential order. Branch
handling units (Fig. 4-1) are used to control the marking of branch instructionsin the rows of the
instruction marking circuit. When a taken_branch indication is set, normal marking of the next
instruction is aborted and the branch handling logic is activated. Instead of sending a marking
signa to a marking unit on the next row, a token_out signa (Fig. 4-3) is sent to the branch
handling unit of the next row, indicating that a target instruction should be marked as the next
instruction. The branch handling circuit for the next row signas all marking units of that row (by
the inject line, Fig. 4-3) that the first byte of the target instruction is identified by a set
branch_target bit. The column containing the byte having its branch_target bit set will thus be
marked by the branch marking process. The normal self-timed marking process then continues
with subsequent columns, asexplainedin Sect. 4.2.1. A branchtarget FIFO buffer isused to avoid
conflicts caused when multiple instruction bytes have their branch_target bits set in a single
instruction line [BGK+97].

4.2.3 Handling Long Instructions

The marking and steering mechanisms described above can handle instructions of any
pre-determined instruction length. However, the x86 instructions are typicaly short (i.e., length
1-7), while the maximuminstructionlengthis 11. If the marking and steering are implemented for
length n+ 1 instead of lengthn, then n+ 1 additional wiresare needed and cross each column, each
row. Having dedicated marking lines for lengths 8 to 11 will require about 40 more lines per
marking unit row, which implies more area, wires, power, and latency, and will complicate the
design of the marking circuit. Thus, the AILD is optimized for the most frequent instruction
lengths, and long instructions are handled by a special mechanism (without using dedicated
marking lines) as described in this section.

Since the most frequent instruction lengths are short, the AILD accordingly implements the
self-timed marking and steering for up to length 7. Longer instructions are handled by being
separated into two parts, head and tail, each at most 7 bytes long. There are two possible
solutions to handle the two parts of along instruction. The first one handleslong instructions by
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having an instruction head of afixed length (equal to 4), with avariable length of the instruction
tail (4-7 byteslong). The second solution handles long instructions by having an instruction tail
of afixed length (equal to 7), with a variable length of the instruction head (1-4). As described
inFig. 4-2, thefirst solution was preferred for the AILD architecture, sinceit requires the length
decoder to communicate with only one other length decoder (rather than four), and thus less
handshake lines are needed.

The agorithm of handling along instruction according to the first solution (fixed head, variable
tail) isasfollows. Thelengthdecoder at columni (LD;) decodesthe actual length (say 10). When
column i is marked as containing the first byte of an instruction, LD; sendsto the length decoder
of column i+4 (modulo the number of bytesin the memory line) along instruction indication,
withthetail length (say 10-4=6). Thisisdoneviathe Long_Out lines, whicharetheLong_Inlines
for the receiving column (Fig. 4-2). The four possible tail lengths are encoded as one-hot lines,
for the reasons explained below. LD, , 4, acknowledges the message, viathe Long_Out_Ack line
(Fig. 4-2). LD; setsitslength output to 4, while LD; , 4 setsitslength output to the tail length, as
indicated by its Long_In lines (say 6). The marking and steering of the head and tail operate as
described above in Section 4.2.1. The head is placed in output buffer k (where k is the row
number of the marking unit that was indicated as the first byte of the instruction). The tail is
placed in output buffer k+ 1 (modulo the number of rows). A Long indication bit is also sent to
the output buffer k, so that the instruction decoder unit would know the bytesin that buffer are
only the head of the instruction.

4.2.4 Handling Prefixes

The opcode of an instruction may be prefixed by (up to four) prefix bytes[Int94]. The prefixes
are one bytelong each, and are uniquely defined by that one byte. Prefixes have neither value nor
operands, and typically the instruction decoder setsasingle bit flag when a prefix isencountered.
There are only two prefix values, operand size (66H) and address size (67H), which affect the
length of an instruction. Each of these prefixes affects the instruction length in a different way.

Since each length decoder speculatively calculates the instruction length assuming that an
instruction startsat the byte of itscolumn, prefixescauseaproblemwiththis paradigm. However,
prefixes are hardly used at dl (statistical analysis shows only 1% of the instructions to have a
prefix). The solution (for the AILD) is to consider a prefix as an instruction of length one. A
prefix is decoded as a separate instruction, and information about it is forwarded to the affected
instruction.

The length decoder in column i detects whether the byte in its column is a prefix. Each prefix



55

(length affecting or not) is decoded as an instruction of length one. The information about length
affecting prefixes is accumulated and passed on until the first byte of the instruction is reached,
and these indications are then used to recal cul ate the instruction length. The indication passed on
by length decoder i (LD;) to the next length decoder (LD;.,.1) isbased on the indication received
fromthe previouslengthdecoder (L D; 1) about prefixesdetected, and the current byte (in column
i). Handshake lines, as described below, are used for communication in case of alength affecting
prefix.

The algorithm of prefix handling is asfollows. Thelength decoder at columni (LD;) detectsbyte
i (Bj) as a prefix. LD; uses any previous prefix indication and current byte information to
determine which information (if any) to send to LD; 1. When column i is marked, LD; sendsthe
prefix information to the length decoder in the next column (L D; ,.1) on the prefix lines (encoded
asone-hot linesfor the three possible cases: 66, 67, or both). The prefix indicationisdone viathe
Pref_Out lines. Pref_Out linesof columni arethe Pref_In linesof columni+1 (Fig. 4-2). LD; 1
acknowledges the prefix lines (via the Pref_Out_Ack line, see Fig. 4-2) and latches that
information. LD; setsitslength output to one. If the bytein column i isnot a prefix, namely it is
the first byte of an instruction, then LD, , ;1 redoes its length calculation according to the prefix
indications it has received. The marking and steering in both columns i and i+1 proceed as
described in Sect. 4.2.1.

4.2.5 The Length Decoder Operation

The entire AILD architecture was specified by using statecharts, to guarantee completeness and
correctness of the architecture and interconnections between the modules. The statechart of the
length decoder (Fig. 4-4) is presented in this section as an (abstract) example. Thisis only a
partialy detailed statechart (as some details are eliminated to make it more clear), but it
summarizesthe various options the length decoder handles. For the syntax and use of statecharts,
refer to Ch. 7. The following operational description depends on the detailed discussions of the
previous sections.

When a new byteislatched in the bytelatch, the length decoder startsto decode it. If it receives
an indication over the Select_In lines (case marked by ‘@’ in Fig. 4-4), it knows the byte is one
of the bytes of an instruction which started at some previous column. When the current byte is
steered to one of the output buffers (i.e., when valid_ack becomes false, marked by ‘@@’ in
Fig. 4-4), the length decoder operation is restarted to prepare to handle the next byte.

A Long_In indication (‘@' in Fig. 4-4) means that the byte is the first byte of the tail of an
instruction, and the length is forced to the value received. An input at the Pref_Inlines ('®’ in
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Fig. 4-4) indicates that alength affecting prefix has been detected, and the length is recal cul ated
accordingly.

If none of the above three cases occur, further handling depends on the column being marked.
If the byte is recognized as a prefix (refer to ‘@’ in Fig. 4-4), the length is forced to 1 (as
explained above), and for alength affecting prefix, the information is sent to the length decoder
at the next column by aproper handshake protocol. Otherwise, the byteishandled asthefirst byte
of aninstruction (provided, of course, it isnot an unused byte). If the length calculated islonger
than7 ('®’ inFig. 4-4), the handshake over the Long_Out lineisinitiated, and the lengthisforced
to 4 (the fixed head length), as explained above. When either the local lengthis short, or forced
to ashort value, (‘®’ in Fig. 4-4) the marking process continues by the marking units, as detailed
above.

In summary, the eventsdetailed above (and described in Fig. 4-4) are mutualy exclusive: Either
a byte is selected as part of an instruction (if one of the Select_In lines is activated), or it is
marked. If it ismarked, it iseither signaled to respond to a previous detected prefix (if one of the
Pref_Inlinesis set), or signaled (by Long_In lines) to be thetail of along instruction, or (when
Inst_Rdy Ack arrives) to use the result of itslocal computation regarding prefix, long and short
instructions.
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Figure4-4: A smplified statechart of length decoder behavior.
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4.3 AILD Implementation

Four phase handshake protocols are used for the communication between length decoders, and
between length decoders and marking units, as can be observed from the different signals and
acknowledge linesin Figs. 4-2, and 4-3. All unitsin the AILD are designed as self-timed circuits.
Compl etion detectionand datatransferred could beimplemented using the bundled-dataapproach
[Hau95]. However, it would require design effort to guarantee fulfillment of the bundling
condition between the units, and prevent taking advantage of variable data dependent delays.
When the possible data values to be communicated are few, it is better to encode them using a
delay insengitive code [V er88]. We have chosen to use one-hot encoded linesfor the lengths sent
from the length decoders to the marking units, and for the long and prefix indications sent
between length decoders. When one of the input lines is set, the receiving unit is signaled to
handle the input, according to the value uniquely defined by the set line. Using the one-hot
encoding for the instruction length, for example, makes the marking and selecting (for steering)
logic implementation smpler [BGK+97].

For higher performance, the delay-insensitive operation of some of the signalswas compromised,
and they were implemented as self-resetting signals. These signals are pulsed, based on timing
assumptions, to accelerate operation by diminating the use of handshake protocols (e.g., there
is no acknowledge of a mark being received) [BGK+97].

The length decoding logic was designed as a self-timed circuit, optimized for the common
instructions, thus achieving better average case performance [BGK+97]. Statistical information
was used to implement the length decoding logic as an unbaanced tree of gates (skewed
monotonic logic), wherefrequently occurring instructions aredecoded using shorter paths of logic
and rareinstructions are decoded using longer paths. Dual-rail and sef-timing approach are used
for amonotonic and hazard free domino logic implementation. Completion detection is done by
having the output length encoded as one-hot lines. The contributionto thelength cal culationfrom
following bytes (other than the bytefromthe length decoder column) is calcul ated separately, and
combined only at the last stage, so that if they are not needed and not ready they do not stall the
local calculation.

The controllers of the various AILD unitswere specified as either burst-mode or timed circuits,
and were synthesized by the appropriate tools [Yun96, Mye95]. Several levels in the design
hierarchy were formally verified [Ste94].
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4.4 Concluding Remarks

Decoding variable length instruction setsis a major bottleneck in high performance processors.
The design of an asynchronous instruction length decoder was described as an example of
applying self-timed techniques and using asynchronous design for high performancecircuits. The
designisoptimized for the common cases, thus achieving abetter average case performance. The
complex designof the AIL D wasachieved by integrating various conceptsof asynchronousdesign
methodol ogies. The architecture design of the AILD isindependent of the implementation style
of its modules.

The AILD architecture is based on speculative parallel length computation with a fast marking
system. It isoptimized to handle the common cases (instruction lengths and types) very fast, and
provides proper mechanisms to handle specia cases (i.e., rare instructions, prefixes, long
instructions, and branches). Asynchronous control, based on one-hot encoding and handshake
communication are applied, and the circuit operation is event driven, reacting to computation
completion.

Currently, the AILD designisbeing implementedin Siliconand sent for fabrication. It isexpected
to be tested and analyzed within afew months.
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Chapter 5: A Doubly-Latched Asynchronous Pipeline

Synchronous and asynchronous systems use pipelines as their basic architecture. The faster the
pipeline, the better the performance. The pipeline structureiswidely used asthe basis of computer
architecture, and other processing modules, in order to increase performance [HP96a, WH9Q].
Kin architecture (described in Ch. 2) can be considered a complex, non-linear, pipeline. Each of
the modules in the processor can be implemented internally as a pipeline, for higher paralelism
and performance.

Inthischapter we present the Doubly-L atched AsynchronousPipeline (DLAP), developed aspart
of our research. The DLAP isan asynchronous pipeline with master-slave (dual) registers, which
offersimproved performance. DLAP is capable of truly decoupled operation: All pipdine stages
can shift datasimultaneoudly, and executionisfaster than previous asynchronous pipeline designs
whenvariable delaysareencountered. |mplementationsbased on bothedgetriggered registersand
transparent latches are shown, fully analyzed, and compared to previous designs.

Converting synchronously designed circuits into asynchronous ones has the advantage of using
existing synchronous synthesis tools, and achieving data dependent and low power operation,
without redesigning the circuit. DLAP was found suitable for automatic synchronous-to-
asynchronous conversion.

5.1 Introduction

Asynchronous micropipelines were first introduced in [Sut89]. They were based on a 2-phase
communication protocol. Four-phase handshake protocol pipelines are presented in [MBM89,
MBMO91], where edge triggered registers are employed. Various smilar control structures were
proposed inorder to enhancethe performance of the asynchronous pipeline[ DW95, FD96, FL 96,
YBA96], based on either edge triggered registers or transparent (level sensitive) latches.
However, dl those asynchronous pipeline designs suffer from one of the following drawbacks:
They either achieve only 50% utilization of the pipeline stages (only every other stage is active
at any one time, while idle stages contain bubbles), or (in some cases) incur a long backwards
propagation of the acknowledge signals. The backwards|atching scheme cannot be avoided when
only asingleregister is used in each stage, since a storage element cannot release its value until
the following stage has signaled that it is ready for another value. This might result in a major
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performance problem for deeply pipelined circuits, e.g., ringsor linear pipeswith data dependent
stagedelays. In[ SS93] it was shown that pipeline performance depends onthe number of bubbles,
namely registers ready to accept new values. When only a single bubble exists in the above
mentioned designs, their performanceislimited by the lack of bubbles. Synchronous pipelines, on
the other hand, are not limited: If each register is master-dave, then abubble isaways available,
and all values can propagate simultaneoudly.

Asynchronous circuits are expected to achieve lower power consumption and/or higher
performance, by eliminating the driving clock. In addition, computational delays can be data
dependent. While synchronous designsaretimed according to theworst casedelay over al stages,
asynchronous circuits can be designed to determine and signal itsown completiontime, typicaly
saving time and power. On average, self-timed operation with completion detection resultsin
about 2x speedup of the individual units; power saving depends on the particul ar application, but
canreachashighas80% [vBB+94]. We have devel oped an algorithm for converting synchronous
circuitsinto asynchronous ones, thus exploiting some advantages of asynchronous circuitswhile
retaining investments in synchronous designs and tools.

A general description of the DLAP structure and operation is presented in Sect. 5.2. The design
of edge-triggered registers and transparent latches based DLAP and implementation details are
described in Sects. 5.3 and 5.4, respectively. Simulation results and comparative analysis are
reported in Sect. 5.5. Section 5.6 extendsthe DL AP concept to non-linear pipelines, and Sect. 5.7
defines the synchronous-to-asynchronous conversion algorithm.

5.2 The Doubly-L atched Asynchronous Pipeline

DLAP (Doubly-Latched Asynchronous Pipdine) isshown in Fig. 5-1. It isdesigned for asingle
rail, 4-phase communication protocol between the stages. DLAP imitates the operation of a
synchronous master-dave pipeline, by decoupling the pipeline stages. If the pipeline is balanced,
DLAP operates the same as a synchronous pipdine: since al pipeline stages finish their
computation at the same time, they can dl latch the values concurrently into the master part of
theregisters, while the dave partsretain the previous vaues. Subsequently, al valueslatched into
the mastersaresimultaneously transferred to the daves. DL APtakesadvantage of variable delays,
as other asynchronous pipelines do. However, unlike other implementations, DLAP is truly
decoupled: Thanksto double latching, a stage that has completed early can start processing the
next data even if the following stage is still occupied. Thisis demonstrated in Sect. 5.5 below.
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Figure5-1: A Doubly-Latched Asynchronous Pipeline (DLAP).

A sngle stage controller for DLAP is shown in Fig. 5-2. The controller communicates with
neighbor stages by Ready (Ri, Ro) and Acknowledge (Ai, Ao) lines. The latching of datainto the
master and dave registersiscontrolled by appropriate signas(Lm, Ls). The Donelines(Dm, Ds)
signa when latching has occurred. If the Done signals cannot be generated by the registers, they
can be created by routing back the Latch signas after passing through all the registers in the
column, ensuring that al have been triggered [Pav94].

An example DLAP test circuit is shown in Fig. 5-3. The ReadyOut signal emerging from stage
i is delayed before entering stage i+1. That delay matches the computation delay of the
combinational logic between the two stages. We employ an asymmetrical delay [Sei80] in order
to make the reset phase as short as possible. If the logic generates a completion signa (e.g.,
DCVSL [MBM89] or dynamic logic [FL96]), thereisno need to add a specia matched delay in
the control circuit: ReadyOut feeds the combinational |ogic and the completion signal serves as
Readyin for the following controller.
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Figure5-2: A DLAP stage structure.
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DLAP canbeimplemented witheither edge-triggered registersor trangparent latches, asdiscussed
in the following two sections. In the former case the control is simpler, while in the latter case
simpler registers may be employed.

5.3 Edge-Triggered DLAP

The behavior of acontroller for an edge triggered register based DLAP stage is defined by the
Signa Transition Graph (STG) [Chu87] of Fig. 5-4. STG nodes represent signd transitions
(underlined signdls are inputs), directed edges are precedence relations, and the black dots are
tokens, shown at the initid marking. The graph is ‘executed’ by moving tokens around. A
transition is enabled by the presence of tokens on all edges leading to it. The transition removes
those tokens and places new oneson al edges emanating fromit (thus, the number of tokens may
change). Asdescribed in Fig. 5-4, the master register is activated by the risng edge of Lmwhen
anew vaueisready (Ri is set), and the previous value has been moved to the dave (as marked
by the internal signal B, for ‘bubble’). Similarly, the dave register is activated by the rising edge
of Ls, when anew valueisready at the master, and the previous value has been consumed by the
following pipdine stage. Petrify [CKK+96] has been employed to ensure that the STG is safe,
persistent, and has a complete state coding so it can be implemented as a speed independent
circuit with no hazards. The control circuit implementation synthesized by Petrify isdepicted in
Fig. 5-5.
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Figure5-5: A Master-Slave Edge Triggered
stage controller circuit implementation.

Figure5-4: STG for aMaster-Slave Edge
Triggered stage controller.

Some waveforms obtained from the simulation of a DLAP test circuit (Fig. 5-3) based on edge
triggered registers are presented in Fig. 5-8. We have designed the two types of DLAP (edge
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triggered and latched), and have smulated them with SPICE for a 0.8u, 5V, typical CMOS
process. Transistor Szing are optimized for speed and symmetric transitions. We haveloaded the
latch control signals (Lm, Ls) to smulate the drive of 32 bit registers. The simulated register
driving delay timeis0.9nS. Notethat thisdelay isincludedin the cycle time (to ensurethe correct
operation of the control circuit). The relative timings are summarized in Sect. 5.5. Observe that
since the pipdine is balanced, al Ri lines are set simultaneously. Consequently, al masters are
triggered ssmultaneoudly (Lm lines). After completing the handshake on the Ai/Ao lines, dl the
davesaretriggered (Lslines), and Ro signas are set. Following the computational delays, the Ris
are set again. The cycle time (from Ri+ to the following Ri+) is 10.9nS, which includes a
combinational logic delay of 5.03nS, alogic reset delay of 1nS, and four times 0.9nS for driving
thetwo registers. Inother words, the control overhead isonly 1.27nS. The responsetime (passing
the datathrough the double registers, i.e., Ri+ to Ro+) is2.9nS (which also includes twice 0.9nS
register driving delay).

5.4 Latched DLAP

Transparent latchesare smpler than edgetriggered registers. To save power, the latiches are used
according to the ‘blocking latch’ scheme [YBA96], i.e., they are kept closed at all times except
when data must be latched. Power is saved because hazards are blocked. Note that since the
latchesaretransparent, master and dave cannot be both open at the same time. Consequently, the
controller is abit more complex than for edge triggered DLAP. An extrainternal signa (G, for
‘gate’) is needed to mark which of the two latches has been opened last, and to ensure that the
STG has a complete state coding. The proper STG is presented in Fig. 5-6, and the
implementation (synthesized by Petrify [CKK+96]) is presented in Fig. 5-7.

The waveforms obtained from the ssimulation of a DLAP test circuit (Fig. 5-3) based on
transparent latches are presented in Fig. 5-9, and the relative timings are summarized in Sect. 5.5
below. Comparing this to the waveforms of the edge triggered DLAP, one can see that the
pipdineis balanced and al the masters are enabled at the same time (Lm signals), followed by a
simultaneous transfer of the data through the daves (by activating the Lssignals). Note a so that
the Lm and Ls signals are mutually exclusive. The cycle time (from Ri+ to the following Ri+) is
12.06nS (including the combinational logic delay of 5.03nS, the logic reset delay of 1nS, and
3.6nSfor driving thetwo registers; thus, the control overhead isonly 2.43nS). The responsetime
(Ri+ to Ro+t) is6.9nS, including four times the 0.9nS for driving the registers.
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Figure5-6: STG for aMaster-Slave Latch stage controller circuit implementation.

controller.

5.5 Comparative Analysis

As explained above, we have designed the two types of DLAP (edge triggered and latched), and
have simulated them with SPICE. The basic test circuit with several stages and the resulting
waveforms are presented in Figs. 5-3, 5-8, and 5-9, respectively. The measured times are
summarized in Tab. 5-1. Note that the register driving delays are included in the cycle time.
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Figure5-8: Waveforms of Master-Slave Edge
Triggered DLAP test circuit.

Figure5-9: Waveforms of Master-Slave Latch
DLAP test circuit.
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Edge Triggered DLAP | Latch DLAP Comments
[nS] [nS]
1 Ri+ — Ai+ 1.10 2.06
2 Ai+ — Ri- 2.24 1.62 Including logic reset delay
of 1nS
Ri- — Ai- 1.13 0.60
Ai- — Ri+ 6.43 7.78 Including computational
delay of 5.03nS
5 Cycletime 10.90 12.06 Sum of lines 1-4 (include
(Ri+ — Ri+) the delay set and reset
times)
6 Response Time 2.90 6.90 Measured on asingle
(Ri+ — Ro+) empty pipe stage (i.e., the
time to pass data through
the master and slave)

Table5-1: DLAP SPICE simulation results.

Thelatched DLAP (relative to the edge triggered DLAP) incursdightly longer cycle time (about
1nS longer), due to the need to precisely sequence more transitions. The total overhead is till
negligible compared to typica computational logic delays.

Relative to synchronous pipelines, DLAP requires about twice as many registers and a small
control circuit per stage. However, when replacing each edge-triggered FF with double latches,
the areaoverhead iskept to aminimum. Thetiming overhead required (for edge-triggered DLAP)
isone moreregister loading delay. The return to zero phase of the handshake protocol is kept to
aminimum. These times are typically negligible compared to the logic computational time.

Four phase handshake protocol pipelineswith edgetriggered registersare also used in [MBM 89,
MBMO91], wheretwo types of control circuitsare presented: ‘ Half handshake' utilizes only 50%
of the pipe, as only every other stage operates at atime. ‘Full handshake’ is more efficient, and
acknowledgesigna spropagating backwards sequentially, can sometimesoverlap stage operation.
Four phase pipelines with transparent latches are presented in [DW95, FD96, FL96] (the latter
employs dynamic logic). The latches are |eft open most of the time, resulting in possibly higher
power dissipationdueto datahazards. Their * semi-decoupled’ and ‘ fully-decoupled’ schemesare
amilar to the ‘haf-handshake’ and ‘full-handshake’ of [MBM89], respectively. A 2-phase
protocol micropipeline using double edge triggered registersis presented in[YBA96], aswell as
a 4-phase protocol micropipeline using latches and ‘blocking latch’ scheme. The design is
reportedly faster than [DW95], but it is still a semi-decoupled circuit, limited to 50% pipeline
utilization.
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The cycle time of a semi-decoupled pipdine includes approximately twice the processing delay
of the combinational logic because of its50% duty-cycle operation (i.e., astage must wait for the
following stage to clear before initiating itsown next calculation). In afully decoupled pipdine,
even if all stagesfinish evaluation at almost the same time, a stage cannot latch the result inits
output register until the following stage has. When the pipeisfull, operationislimited by asingle
‘bubble’ flowing backwards, and the latency overhead is relative to the length of the pipe. The
master/dave action of the storage in a DLAP serves the purpose of interleaved bubbles in the
pipeline, and relaxes the coupling between the stages. Thus, DLAP ismoretolerable to changes
in the output rate from the pipe than the other asynchronous pipelines.

Weemploy ascheduling notation (Fig. 5-10) to comparethe latency incurred by four kindsof two
stage pipdines, namely a synchronous pipeline, a ‘semi-decoupled’ (‘half handshake’)
asynchronous pipeline, a*fully-decoupled’ (*full handshake') asynchronous pipeline, and DLAP.
Three tasks (i, j, K) are to be processed, and the computational delays of each task per each
pipeline stage are listed in Tab. 5-2. A synchronous design requires the clock cycle time to
accommodate the worst case of dl calculations over al stages, namely two time units, thus
requiring eight time unitsto compl etethe computation (Fig. 5-10(a)). The semi-decoupled (or half
handshake) pipeline [DW95, FD96, MBM89] achieves only 50% utilization. Since the pipeline
contains only two stages, and they must operate alternatively, the computation takes eight time
units (Fig. 5-10(b)). In a fully-decoupled (‘full handshake') asynchronous pipeline [FD96,
MBM89] task k cannot start execution at stage A, sincetask j is stalled there until task i frees
stage B. Thus, the computation requires six time units to complete (Fig. 5-10(c)). The DLAP
completes the computation in only five time units (Fig. 5-10(d)), since stages A and B are
decoupled by the double latches between them, and task k is not stalled.

We designed a three stage fully-decoupled pipdine [FD96] and a full-handshake pipeline
[MBM89, MBM91] in MOSIS 0.8u CMOS process, and ran detailed SPICE simulations to
compare the performance with DLAP. The results are summarized in Tab. 5-3. Values in the
overhead columns are calculated as the difference between the measured cycle time and the
dowest (stage or output) delay. The pipelines were implemented as balanced, i.e., all stages of
the pipeline had the same delay. The processing delay of the combinational logic (the data path
in each pipeline stage) was measured as 11.2nS, and its resetting time as 1.8nS. Thus, its total
contribution to the cycle time was 13nS. The cycletime (i.e., Ri+ — Ri+) was measured for both
an empty pipeline case, and afull one.



67

Task i | Task j | Task k —>@->H—>—>H—>
Stage A 1 1 2

Stage B 2 1 1 A
A i i k
G)B i j k
Table5-2: Processing times (in relative time | T T T >
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Figure 5-10:  Scheduling comparison of alternative
pipelines: (a) synchronous; (b) semi-decoupled
asynchronous; (c) fully-decoupled asynchronous; and (d)
DLAP.

The tested empty pipeline had an output rate lower than the processing rate, so the pipe never
filled up, and operation was not limited by lack of bubbles. The cycle time was determined by the
stage logic delay and the pipeline control circuit (including the latching time). The results show
that DLAP cycle time is dightly slower than other asynchronous pipelines. However, it is only
1.5-2nS dlower, mainly because of the extra register load required. Since DLAP is best for
data-dependent delays, this extra overhead is tolerable.

When the pipe starts from an empty state, the acknowledge propagates backwards concurrently
to data forwarding, and thus it does not depend on the number of stages in the pipe. Since the
pipeline is balanced (i.e., al stages in the pipe take the same time to complete), stage i starts
processing before stagei-1 does, and it also finishesitswork earlier. Therefore the acknowledge
from stage i isready when stagei-1 needsit. When a DLAP startsworking from an empty pipe
state it has a smilar behavior, and although it has many bubbles - they do not help, since the
bubbles are not a limiting factor. Since DLAP has one more latch to load in each stage over
fully-decoupled, and itslatches are normally kept closed and not normally open, then obvioudy
the overhead of the cycle time includes the time of opening and closing of that latch, even if the
control circuit takesthe sametime. Driving the latchesusually takeslonger than the control. Thus,
DLAPisnot faster than other asynchronous pipelineswhen the pipelineisempty most of the time.
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The tested full pipeline had an output rate higher than a stage processing rate, which caused the
pipe to fill up. The measured delays of the slow output processing and resetting times were
t(Ro+— Ao+) = 16.8nS and t(Ro-— Ao-) = 2.7nS respectively. Whenthe delay of the pipeline
snk stage islonger than each pipe stage, the pipeline becomes full, and itsthroughput and cycle
time are limited by the output rate. All the pipe stages and pipeline source are stalled until the
bubble propagates from the last stage to the first one. The longer the pipeline, the longer the
backwards acknowledge delay. Sincethe DLAP startswith n bubbles, it takes alonger time until
the number of bubblesis gradually reducing and all the 2n registers are filled, before the pipeis
stalled. Because is has more bubbles, DLAP is more tolerable to temporarily slow outputs than
the other asynchronous pipelines. However, when the pipeline sink is slow for long enough, the
DLAP will eventually be stalled just the same.

DLAP is best for cases of variable (data-dependent) delay stages, as showed by the scheduling
anaysis. It is also suitable for automatic conversion from (balanced) synchronous pipelines, to
asynchronous ones, without redesign, as described in Sect. 5.7.

Edge Triggered Registers Transparent Latches

Full-Handshake DLAP Fully-Decoupled DLAP

Cycle | Overhead || Cycle |Overhead || Cycle | Overhead | Cycle [ Overhead

Empty Pipe || 17.0 4.0 18.7 5.7 17.0 4.0 19.2 6.2

Full Pipe 20.2 0.7 22.0 25 20.8 13 22.3 2.8

Table5-3: Cycletime and overhead SPICE simulation results (measured in nS).

5.6 Non-Linear DLAPs

Evidently, alinear DLAP is not enough to implement complex data-path structures, which are
needed in aprocessor design. Non-linear DL AP data paths can be created by using Fork and Join
interconnection circuits. A Fork isbasically atwo output pipeline stage. Figure 5-11 showsthe
implementation of an edge triggered Fork DLAP. Note that both following stages share the same
Ro line, while their Ao lines are combined by the C-Element. Similarly, the Join is a two input
pipeline stage, as presented in Fig. 5-12. The Ri signals are combined by the C-element.

Many synthesized circuits have complex structures that contain loops (akarings). A DLAP ring
can be constructed by employing Join and Fork circuits as shown in Fig. 5-13.
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A ring structure based on fully-decoupled pipeline scheme must contain an extraregister (i.e., an
empty stage) to prevent a deadlock [MBM91]. The single bubble going backwards around the
loop might limit and slow down thering operation. DLAPTring isfaster than afully-decoupled one
when stage delay isshorter than the acknowledge round trip delay. Using semi-decoupled pipeline
to construct afeedback loop yieldsaring with only haf stagesfull, sinceonly alternate blocks can
store valid vaues[MBM91]. DLAP rings have enough many bubbles and can operate the same
way as Synchronous rings.

MSETDFF-CTRL-FORK MSETDFF-CTRL-JOIN

Ri ] Ro1 Ri1 Ly Ro
i Aot Ai1
Lm B Ls Lm B Ls
> Roz Ri2
Ai / Ao2 Ai2 Ao
| | | |
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Figure5-11: A Fork stage implementation, two Figure5-12: A Join stage implementation, two
output pipeline interconnection circuit. input pipeline interconnection circuit.
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Figure5-13: A ring DLAP.

5.7 Synchronousto Asynchronous Conversion
5.7.1 Motivation

Severa advantages can be achieved by converting synchronous circuits to asynchronous ones.
The clock signal in synchronous circuits always switches (i.e., it has 100% activity) and it must
arrive to al parts of the chip with the same phase. The power dissipated by complex VLSI chips
increases as clock frequency rises [Hor93, Int94, Stro4]. Growing portion (currently over 40%
[Bow95]) of the power budget in a chip isrequired by the clock distribution network in order to
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reduce clock skew problems. Asynchronous logic does not use a clock. Logic elements can be
self-timed: they can detect and announce when the computation is compl ete and the outputs are
ready [Hau95, Sei80]. They aso wait for inputsto be announced before starting the computation.
Registers load their inputs under local control, rather than on a global clock edge. Thus,
eliminating the clock and replacing it with local handshakes can save power.

Since power is asguare function of the operating voltage, much power can be saved, even with
the same circuit design, by applying ascalable power supply [NNS+94]. If thecircuit issalf timed,
reducing the power will only causeit to work slower, but will not affect itscorrect operation. This
can be exploited in portable devices, e.g., a standby mode or while processing data requiring
variable computation loads [VBB+94].

Asynchronous pipelines can potentially have higher performance than synchronous pipelines
because they are not restricted to operate according to the worst case delay. Using self-timed
logic enables the circuit to operate according to actual data-dependent delays, i.e., the average
case delay. Theworst case delay might be very rareand the average case delay is usually about
half of the worst case delay [GM90].

When self-timed logic is not available, a delay (matching the worst case delay of the pipeline
stage) can be used to signal the end of the combinational logic evaluation time. The worst case
delay ismatched per each pipeline stage and does not affect the delay of other stages. Eveninthis
case complex asynchronous pipdlines can be faster than synchronous pipelines. In a complex
pipeline (e.g., amicroprocessor) data can go through short or long aternative paths, depending
ontheinstruction: A pipeline stage containing an ALU with an adder and amultiplier can have
avariable matched delay, since only one of the unitsisactive at atime. Thus, each possible path
operates at arate affected only by the slowest unit in its path, and not affected by other paths.

Synchronous synthesizers are widely used as CAD tools for designing VLSI circuits. They are
proven reliable and able to handle large and complex designs. Currently available asynchronous
gynthesistools [Async] typically generate only rather small asynchronous controllers, and do not
handle data path elements. Using apost-synthesis conversion, enables usto take advantage of the
design structure and combinational logic of the data path synthesized by the synchronous tool,
while achieving the benefits of asynchronous circuits.

Synchronous to asynchronous circuit conversions can also be used in mixed-timed designs.
Converting the synchronous modules to asynchronous ones eliminates the synchronizers needed
at the synchronous module inputs, and preventssynchronizationfailures(cf. Ch. 6). Changing one
or some of the modules requires no changes in other parts of the design.
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We consider synchronous logic synthesized into netlists according to the common architecture
of ‘register-and-cloud’ pipelines[Per94], where*clouds of combinational logic are separated by
clocked registers. We would like to take advantage of the general pipeline structure and of the
combinational logic clouds, but we need to get rid of the clocked registers, thus converting a
synchronous circuit into an asynchronous one. To that end, we must identify the best target
asynchronous pipeline. The DLAP architecture was found to be most suitable to such a
synchronous-to-asynchronous conversion, sinceit canimitatethe synchronous operation, and can
also benefit fromvariable computation |oad. The master-dave architecture of the DLAP operates
the same as synchronous pipeline does. DLAP isaso ‘ synchronous compatible’ when values are
loaded in parallel before the pipeline operation starts.

This section describesthe methodol ogy to convert asynchronous designto an asynchronousone,
at the gateleve, based on aDLAP architecture. Our previouswork on post synthesisconversion,
targeted at different implementation styles is described in [KGS96, KGS97].

5.7.2 Post-Synthesis Conversion Algorithm

The conversion algorithm appliesto synchronous netlistswhicharetypicaly synthesized by atool
like Synopsys. The agorithm retains the (possibly complex) pipeline structure asgenerated by the
synthesizer. The combinational logic (the ‘ cloud’) between the registersis not altered. However,
if the combinational logic of the design is not self timed (i.e., it does not generate a completion
signal), matching delays are generated by the conversion algorithm and are used to generate
proper completion signals, as explained in Sect. 5.2.

The same algorithm is suitable for either edge-triggered registers or transparent latches based
DLAP asthe conversiontarget architecture. The only difference is replacing each original edge-
triggered flip-flop with either double edge-triggered flip-flops, or double transparent latches, and
adding the proper DLAP stage controller. Asexplained above, the doublelatchesarchitecturehas
less area overhead, and is only dlightly slower than the edge-triggered version.

The input to the conversion algorithm is a synchronous netlist, containing edge-triggered D
flip-flops, and combinational logic blocks. The netlist includesthe definitionsof thedesignprimary
inputs, primary outputs, and list of registers. The algorithm also requires asinput the delays of the
combinational logic blocks between pipeline stages. These delays are obtained from a timing
anaysis tool that analyzes the worst case delay of each data path between all pairs of points
connected by logic. Such a data path begins at either a primary input or an output of aflip-flop,
and ends at either a primary output or an input to a flip-flop.
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Every flip-flop (FF) bit of every original register is replaced with two latches (or FFs), the first
one feeding the second. The clock signal isreplaced by either of the two latch signals (Lm, Ls, as
explained in Sect. 5.2) connecting to the clock input of the first (master) FF and second (slave)
FF, respectively. The required Done signals are generated by returning the latch signals (driven
by the DLAP controller), which are delayed by the register driving delay (Fig. 5-2).

A DLAP stage controller circuit isadded for every pair of latches (or agroup of pairs, treated as
a bus, as explained below). The DLAP stage controllers are interconnected as follows: If stage
X produces data for stage Y (cf. Fig. 5-14(a)), then the ReadyOut signal of the stage controller
Xisconnected to the Readyln input of stage Y (cf. Fig. 5-14(b)) viaa proper matched delay unit.
The Acknowledgeln output of stage Y is connected to AcknowledgeOut input of stage X (refer
alsoto Figs. 5-1 and 5-2).

AckOut AckIn
MS-CTRI MS-CTRI|

> D
RdyOut RdyIn

M S M S

LA 3 RS 3 X Y

(@ Origind circuit. (b) Post conversion circuit.

Figure5-14: Synchronous-to-asynchronous conversion.

Hence, each flip-flop in the original netlist is replaced by a DLAP stage, containing either two
edge-triggered D-FF, or two transparent latches, withaproper DLAPstagecontroller. Eachstage
controller generates the local ‘clock’ signals, to latch data into the stage. The control lines are
connected (through properly matched delays) to reflect the data flow. The architecture of the
netlist, and interconnections between the DLAP controllers determines the dependencies among
them. Splitting computation paths (from a single source to severa destinations) is done by Fork
controllers, and merging multiple computation paths requires Join controllers, as described in
Sect. 5.6.

Designs usudly contain many busses, i.e., several bits emerging from a set of flip-flops, and
passing through a combinational logic block before entering a set of flip-flops (e.g., a 32-hit
number). All signals that are buses are aggregated and treated as one, using the worst delay for
the bus delay. This peep-hole local optimization significantly reduces the number of paths (and
therefore controllers and delay units) that have to be handled. For example, two 32-bit busses
feeding an adder require only two DLAP controllers rather than 64. In case some bits are
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extracted from the bus towards different destinations, the relevant delays are calculated and
Separate delay units are used.

The post synthesis conversion al gorithm has been implemented and tested on a coll ection of small
circuits, e.g., asmple finite input response (FIR) filter design. The converted design was tested
by simulation, after modifying the testbench program (dropping the dependenceonasingle clock
signal and adopting a single rail, 4-phase communication protocol). The design was verified by
using test vectors, and comparing the results to those generated by the original synchronous
design. The modified testbench controls the response of the environment to eventsand responses
of the design under test, and can be used to test various environment behaviors. Work is
underway to complete the programming and perform large scale tests.

5.8 Concluding Remarks

The DLAP scheme is not limited to the implementation of an asynchronous microprocessor. It
applies to any asynchronous circuit structured as a simple or complex pipeline. In our quest for
high performance asynchronous implementations for Kin, as well as for efficient conversion of
synchronous circuits into asynchronous ones, we have examined various asynchronous pipeline
schemes [MBM89, MBM91, DW95, FD96, FL96, YBA96, SS93], and have found that none
operates as efficiently as abalanced synchronous pipeline. Consequently, we have devel oped the
doubly-latched asynchronous pipeline (DLAP) which employs master-dave registers. DLAP is
capable of truly decoupled operation: All pipeline stages can shift data smultaneoudly, and
executionisfaster evenif variable delays are encountered. We have shown implementations based
on either edge-triggered registers or transparent latches. Both designs have been defined with
STGs, verified, and fully simulated and compared with previous architectures.

DLAP isbest for variable (and data-dependent) delays, both of the internal stages and the output
process, and it is best for rings which suffer from lack of bubbles. It is suitable for balanced
pipdines. However, if the computational load per stage is smal (relative to the overhead), it is
dightly slower than afully-decoupled pipeline due to the extra registers.

DLAP is suitable for automatic synchronous to asynchronous conversion from (balanced)
synchronous pipelines, in order to eliminate clocks (for power saving, or for easier interface to
other asynchronous units), without redesign.

The DLAP controllers described in this chapter operate according to the four-phase
communication protocol. However, DLAP controllers can aso be implemented for two-phase
protocol operation, which might be faster (due to the fact that only half the number of handshake
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transitions are required [AML97]). The DLAP pipe control logic is fully contained, hence the
handshake overhead can be reduced without affecting anything else.

A variance of DLAP can be constructed by employing a semi-decoupled pipelinewithlogic units
only at every other stage. However, it appears that this would require more hardware, and
consume more power, than the DLAP scheme presented in this paper, because of the redundant
internal handshake transitions.

Newer versions of Petrify and other synthesistools may be applied to the STGs presented in this
paper, to synthesize smpler DLAP control circuits. The circuits generated can be implemented
with Set-Reset FFs instead of C-elements for standard cell implementation. Faster DLAP
controllers might be implemented based on generalized C-elements, or designed to operate
according to non-blocking schemes, as in [FD96], or semi-blocking, where the first latch is
normally open, while the second one is normally close. The control circuits we used were
designed to be delay insensitive. However, smple engineering optimization techniques can be
applied for lower latency overhead, e.g., overlap control circuit timing with latch operation.
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Chapter 6: Adaptive Synchronization for
Multi-Synchronous Systems

While the highest architectural level of Kin is asynchronous, as described above in Ch. 2, the
various unitsin it may be implemented according to different timing disciplines. Chapters 4 and
5 presented asynchronous design methodol ogies, wherethe circuitsare either originaly designed
as asynchronous, or converted from synchronous designs. In this chapter we present another
possible implementation for Kin, as a multi-synchronous system. This proposed implementation
can be used as an aternative migration path from a complete synchronous design to a complete
asynchronous design.

Multi-synchronous clocking discipline is based on a common clock distributed over thin wires,
avoiding the massive power investment in clock distribution trees and circuitsfor phase matching
and skew minimization. Hence, al the processor units operate at the same clock frequency, but
have an arbitrary clock phase. Adaptive synchronization is used to substantialy reduce the
probability of synchronization failure (when data are sent between the units), and reduce
performance degradation caused by synchronizers. In contrast with clock-manipulating
techniques, such as clock stretching, adaptive synchronization adjustsdatadelays. Thus, adaptive
synchronization can be used to handle synchronization problemsthat are harder to solve by clock
phase adjusting methods, e.g., when data are received from more than one source.

6.1 Introduction

With the advance of technology, the integration levels of VLS chips grow from millions of
transistors per chip towards the hundreds of millions. VLSI chips, e.g., microprocessors, grow
larger and run faster. Over half abillion transistors on a die and clock rates in excess of 1 GHz
are predicted for year 2010 [KG97, SIA94]. Distributing a single 1 GHz clock to al parts of a
0.5B transistors chip becomes very expensive: To assure minimal skew and short rise and fall
times, agrowing portion of total power is dissipated by the clock distribution network, including
the phaselock loops, buffers, and tuning circuits[Fri95]. For instance, currently over 40% of the
power budget in an Alpha chip are consumed by a clock distribution network for reducing clock
skew problems [Bow95].



76

Asynchronous design, as discussed and presented in previous chapters, is often proposed as a
viable solution, removing the clock altogether [DGY 93, Hau95, Pav94, SSM94]. In this chapter,
however, we propose a new clocking method which both saves power and facilitates
synchronization.

A possible solution to the clock distribution problem liesin non-synchronized operation, wherein
the various modules on the chip do not maintain aknown relative clock phase to each other, and
intercommunicate asynchronoudy. However, the design of non-single clocked synchronous
systems should be closaly woven with the concern for synchronization. In addition, it seems
useless to synchronize far-apart clocks, since data lines spanning large portions of the chip may
be subject to substantial propagation delay (closeto, or in excess of, the clock cycle) and be out
of sync in any case. On the other hand, since the relative skew of the clock as it arrives at the
variousmodulesisimmaterial for non-synchronized operation, the clock signal can be distributed
over networks that are designed to dissipate minimal power and occupy minimal area.

This chapter discusses some previous work done on synchronization issues, and defines
multi-synchronous systems. Then, in contrast with clock-manipulating techniques, an adaptive
synchronization is presented, to adjust data delays, and substantially reduce the probability of
synchronization falure. It is further proposed that the adaptive synchronization be performed
semi-statically, adapting various data delays from time to time. The suggested adaptive
synchronization approach is compared with synchronizers and stoppable clock schemes.

6.1.1 Previouswork

Themost tightly coupled, highest performance systemstoday (such as high end microprocessors)
operate on asingle common clock with minimal skew (dissipating alot of power to achievethat),
avoiding synchronization issues atogether. Variations include multiple synchronized clocks
operating at several frequencies and phase locking. For low bandwidth communications among
systems with uncorrelated clocks, synchronizers are employed successfully [CM73, CW75,
Mar81, Pec76, RMC+88, Sei80, Sei94, Sto82, Vee80]. Alternative methods that have been
proposed include stretchable clocks and clock tuning [Cha84, Cha37, Keh93, Pec76, PN95,
RMC+88, Sei80, Y D96]. Self-clocked data(such asManchester coding on Ethernet [MB76], and
start/stop bits on RS232 serial communications) are exchanged when even lower bandwidth is
needed.

The synchronization problem has received a lot of attention [Cha87, CM73, CW75, Gred5,
Keh93, Mar81, Pec76, PN95, RMC+88, Sei80, Sei94, Sto82, Vee80, YD96]. Solutions have
been developed for a wide range of applications, from intra-chip communications to wide area
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networks. As technology progresses, integration levels and computational speeds increase, and
systemswhich used to require multi-board implementations are expected to fit insidesingle chips.
Likewise, the synchronization methods that were once applicable to backplanes and multiple
boards should now be considered for the inner circles of chips.

Low level clock/data synchronization is typicaly handled by synchronizers. However, they are
principaly suitable for low bandwidth communications, and a number of issues render them less
effectivein high performance chips. First, synchronizersmay occasionally fail dueto metastability
[CM73, CW75, Mar81, Pec76, Sto82, Vee80]: A synchronizer might enter a metastable state, or
take abnormally long time to settle. While the probability of failure has been kept very low, this
is exponentialy more difficult to achieve when the cycle time becomes aggressively shorter (as
described below in Sect. 6.5). Second, in high performance systems, modules may receive many
datainputsconcurrently frommany other modulesand at high rates; consequently, the probability
of at least one input switching at the same time as the clock is growing beyond negligible levels.
Third, synchronizers incur at least one clock cycle delay; this may lead to unacceptable long
latencies accumulating over multi-module paths, and be especially limiting on cyclic paths such
as between areservation station and the execution units of a high performance processor.

Stretchable (or stoppable) clocks [Cha84, Cha87, Pec76, RMC+88, Sei80, Y D96] have been
proposed as an alternative to synchronizers. A ring-oscillator based clock generator is attached
to each synchronous module. An arbiter detects clock/data conflictsand stretchesthe *off’ phase
of the clock (thus trading failure for a long delay). Stretchable clocks are subject to two
drawbacks. First, the multiple clock generators typically develop frequency variations, due to
temperature and supply voltage in-die variations. As aresult, relative inter-module phase shifts
drift continuoudly, causing frequent recurrences of conflicts. Second, aswith synchronizers, high
bandwidth communications received over many channels increase the probability of clock/data
conflicts. Thisfact leadsto ahighrate of clock stretching events, severely impeding performance.

Many other variations have also been proposed. [Keh93] suggests clock (phase and frequency)
tuning for performance enhancement. [ Sei 94] hidessome synchronizationlatency by inter-module
FIFO buffers. In the STARI protocol [Gre95], asynchronous FIFOs are employed;
synchronization is achieved on the first data transfer, and is automatically maintained thereafter.
The FIFO must be kept about haf full, and each insertion and removal operation must complete
within one cycle. If these requirements are violated (e.g., on FIFO underflow), synchronization
islost. [PN95] employs analog adjustable clock generators, achieving local sdf-alignment of all
clocks.

We have devel oped a clock synchronization method that applies an external crystal clock, rather
than a self generated one. That method and its limitations are presented in Appendix A. It was
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found less desirable than data adaptive synchronization, which is the subject of this chapter.

6.1.2 Multi-Synchronous Systems

Consider a 0.5B transistor chip comprising 100 synchronous modules of 5M transistors each.
Various clocking schemes may be employed. A single clock isfeasible, but as mentioned above
the cost in power and area may be prohibitive for some applications. In multi-clocked systems
each module is clocked independently of the others, and as explained above, using synchronizers
severdy limits performance. Instead, we propose a multi-synchronous (multisync) scheme (as
defined above in Sect. 1.1), whereby all modules feed off the same external crystal clock, while
arbitrary relative clock phases are permitted.

Most synchronization methods assume that the arrival (switching) time of data at any module is
uniformly distributed over the clock cycle, asin Fig. 6-1(a). However, in multisync systems, the
arrival time of certain data channels incident upon a certain module may be distributed unevenly,
e.g., asin Fig. 6-1(b). When one synchronous module outputs data to another, data output is
synchronized with the local clock of the sender. Since the phase difference between the receiver
and sender clocks, as well as the data interconnect delay, are stationary, data arrival time at the
receiver iscorrelated with the receiver clock. Stationarity can be assumed because the delays and
phase differences among the modules in the system are functions of the implementation, of
physica parameters, and of temperature and supply voltages, and they typically change very
dowly during operation. However, in systems with a high degree of connectivity the combined
distribution of al channels incident upon a specific module looks more like Fig. 6-1(c), and the
danger of clock/data conflicts cannot be ignored.

A multi-synchronous system is presented in Fig. 6-2. The common clock is distributed over thin
wires (saving area and power, compared to minimal skew clock distribution nets). While clock
frequency isthe same for all modules, the actual phase shiftsare considered unknown (asimilar
clocking isdescribed in [Gre95], but there the system hasto be reset upon synchronization 10ss).
Whilethe clock phasedifferencesamong modul esare affected by supply voltage and temperature,
these variations appear like very slow drifts, and take a huge number of cycles to be noticed.
Thus, we may safely assume that the phases do not shift for relatively long time, and the phase
differences can be considered stationary.

Consider modules A and B in Fig. 6-2, which aretightly coupled over an asynchronous channel
without a FIFO, for high bandwidth communication. Similar to clock delays, the datadelay 6 5 g
isalso stationary and is considered unknown. Module A generates output transitionson Dy at a
fixed phase difference relative to its own clock Cp. The data propagate to module B, which
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samples DataRdy on the rising edge of itsown clock Cg. New data are sent over fromAto B at
ahighrate, e.g., on amost every clock cycle. Since the relative clock phase difference Ap-Ag
of modules A and B ispresumed unknown, the datamay arrive at B simultaneoudly with therising
edge of clock Cp, creating aclock/data conflict and possibly resulting in ametastable state at the
input of B, and in loss of data. If the relative clock phases and data delays remain fixed
(stationary), and since both modules operate at the same clock frequency, this unfortunate
situationismost likely to recur. The use of synchronizer in this case does not solve the problem,
because the synchronizer may enter ametastable state onevery conflict, increasing the probability
of failure.
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Figure 6-1: Arrival time distribution of inputs
(over a clock cycle T): (&) uniform distribution Ci An As ’CB
(asynchronous input); (b) clustered distribution : :

when the sender and receiver clocks are correlated

(sngle synchronous input); (c) combined clk
distribution of many independently correlated _ _
inputs is similar to uniform distribution (multiple Figure 6-2: A multi-synchronous system.

synchronous inputs).

The novel method we propose suggests adjusting data timing rather than the clock, thus
converting dataarrival time distributionsinto formslike Fig. 6-1(b) and substantially reducing the
synchronization problem. [Sei94] has employed pipeline synchronizers in order to convert the
uniform distribution of asynchronous inputs into a non-uniform distribution, useful for a
synchronous receiver. The latency of the pipeline synchronizer isrendered unnecessary when the
sender is aso synchronous, as discussed above.

In the following we assume the system architecture to be asynchronous (as is the case for Kin),

thusaltering various delays do not affect system correctness. We describe systems operating with
a four-phase handshake protocol, but the results may also be applied to two-phase handshake.

6.2 Data Adaptive Synchronization

Data adaptive synchronization adjusts the delays on the data lines instead of adjusting the local
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clock phase. Since the communication channels are connected point to point, the delaysonthem
can be changed so that they do not conflict with the local clock, without affecting the other
channels (this approach aso applies to bus taps). We add a data coordination circuit for each
communication channel, asin Fig. 6-3(a). When a conflict is detected, the data delay is adjusted
to prevent conflicts in future communications.

Note that three different phases are assumed stationary in the multisync model (Fig. 6-2): The
clock phase difference Ap-Apg, the sender data phase Dpo-Cp, and the data delay dpp.
Consequently, the phase of the arriving DataRdy at module B relative to Cg is also stationary.
In other words, the arrival time distribution is represented in this model by Fig. 6-1(b), and is
highly non-uniform. In the following, we take advantage of this fact and control data delays so
asto assurethat the center of this distributionis safely remote fromthe clock transitionfor every
dataline in the system. Thisis achieved by tuning the data delay d 5 g-

The adaptive mechanism architecture for a specific module is shown in Fig. 6-3(a). Data input
channels DI; are subject each to given data delays d; (ref. dppg in Fig. 6-2). Adaptive
synchronization circuits A;, clocked by the local clock CK;,, monitor the DataRdy; lines, and
control adjustable datadelays 6;, whose valueisintherange 0 < §; < T (T istheclock cycle). The
function of the A; is to separate the clock and data transitions. The multiple input delays can be
adjusted independently of each other, so the combined data arrival time distribution at the entry
to the module looks like Fig. 6-3(b). Adaptive synchronization applies equally well to single

sender, multiple receivers buses (Fig. 6-4).
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Figure6-3: (a) Adaptive Synchronization; (b) Combined data arrival time distri butioh — data delays
are adjusted to avoid conflicts.
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Ri1

Figure 6-4: Adaptive Synchronization for single
sender, multiple receivers buses; each receiver adjusts

its own data inpuit.

6.3 Data Adaptive Synchronization Circuit

The principles of adaptive synchronization resemble self-clocking communication mechanisms,
such as in UARTs. The challenge is to obtain proper operation even at the presence of
metastability. Consider the adaptive synchronization circuit in Fig. 6-5, with an adjustable delay
(Fig. 6-6). A four-phase data signaling discipline is assumed, wherein DataRdy risesto ‘1" after
the new data are available (the circuit may be readily extended to two-phase operation as well).
The receiving module (cf. Fig. 6-2) latches the inputs upon the positive edge of itslocal clock,
and only if DataRdy is‘1". Thus, the purpose of the adaptive synchronization circuit isto detect
the phase of DataRdy relative to the local clock, and to adapt the §; delay if that phase is

dangeroudly closeto O or T (2m).

Figure 6-5: Adaptive Synchronization circuit.

Data
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Figure 6-6: Adjustable delay circuit, consisting

of multiple delay lines and a selector.
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First, the datais fed into a phase detector. Let’s assume that the DataRdy lines switch (up or
down) on every cycle. In [Keh93], several delayed phases of the clock are used to detect data
transition time. In Fig. 6-5, several delayed versions of the data are employed instead. The xor
gates generate a sequence of pulses, asin Fig. 6-7. The delays marked ‘d’ assure a smal pulse
overlap. The outputsof the xor gates are the enable signals of counterswhich aretriggered by the
local clock edge. On the rising edge of the clock, one or two of the counters increment their
count. Thisisrepeated for alarge number of cycles, e.g., 1000 times. At the end of that time, the
counters are expected to show adistribution smilar to either Fig. 6-8(a) or Fig. 6-8(b). In either
case, two or three counters show large counts, and the remaining ones are close to zero. The
spread is caused by pulse overlap, by clock and delay jitter, and by pulse/clock conflicts which
may result in metastable states, in long settling times, and in indeterminate counting. In spite of
such physica difficulties, the phase detector is robust thanks to many repeat counts, and it
produces avery clear indication of the relative phase of the DataRdy line. The circuit in Fig. 6-5
issimilar to delay lock loop (DLL) circuits, except that the proposed circuit isdigital rather than
analog, and its operation is algorithmically controlled.

Next, the MaxFinder circuit determines, according to which counter has won, if the §; delay of
the data lines should be changed, and by how much. For example, the count depicted in
Fig. 6-8(a) indicates no change, while that of Fig. 6-8(b) calsfor adding adelay of at least T/5.
The adjustable delay consists of multiple parallel delay linesand a selector (Fig. 6-6). Notice that
athough the phase detector examines only the DataRdy line, §; is applied to al datalines of the
i’th channdl.
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Figure 6-8: Typica phase detection counter
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Figure6-7: Phase detection waveforms. cycle (b) data delay should be increased to avoid
clock/data conflicts.
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Although the examples present circuits for the case wherein the clock cycleis divided into five
periods, at high frequenciesit might be smpler to implement using only three such periods (since
the clock cycle time may be only a few gate delays long). The circuit complexity of a proper
adaptive synchronization circuit, for a 32-bits data path, is approximately 5,000 transistors
(comprising the delays, xor gate, counters, comparators and switches in the max finder circuit,
and the adjustable delay circuits). Thus, the total overhead per a 5M transistor module with 10
input channels is about 50,000 / 5M = 1% (recall that it replaces a massive clock distribution
network). The extra power consumption is similarly marginal.

Adaptive synchronizationis suitable for awide range of applications. Typica datadelay rangeis
0.1T <§;j < 1.5T for a0.5B transistors, 1GHz chip, but the delay may be muchlarger than T for
multi-chip and MCM configurations. In such cases, new asynchronous data signaling methods
could be used, such as multiple message windows (wherein multiple messages are sent before an
acknowledge is expected). As long as relative delays are stationary, adaptive synchronization
remains applicable.

6.4 Training Sessions

Adaptive synchronization may be performed continuously, in parallel with normal circuit
operation. However, modifying the datadelays may cause timing problems at the time of change,
so thisis best carried out while the system is not performing any real task. In addition, during
normal operation it cannot be guaranteed that all DataRdy lines switch frequently enough. And
continuous adaptation may be unnecessary if al delays are highly stationary and stable.

Consequently, specia training sessions are proposed for adaptive synchronization. During a
training session the system stops performing al real computations. Instead, all DataRdy linesare
toggled every cycle, and al adaptive synchronizationcircuitsoperateand adjust the d; delays. Any
synchronization failures during a training session can obvioudy be ignored. The training session
requires arelatively smal number of counting cycles. Since al adaptive synchronization circuits
operate in paralel, 100,000 clock cycles (0.1mS at 1GHz) seems a safe bound on the required
session duration.

A training session is always employed after reset, for initial adjustment of all delays. Thereafter,
training sessions can be invoked either periodically or asrequired. Periodical training frequency
depends on process parameters (especialy delay stability) and operational parameters (such as
clock frequency and dynamic temperature and voltage variations), but it isestimated that at 2010
technology much less than one training per second will be required. The expected performance
overhead in thus much less than 10° cycles/ 109 Hz = 0.01%.
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Training sessions are aso proposed in [SCI92], wherein a point-to-point communication ring
architectureisdefined. Training sessions are utilized to send sync packetsat ringlet initialization,
and once every time interval appropriate for normal operation of the particular implementation.
Clock skew in[SCI92] ishandled (using Phase L ock Loop circuits) by observing incoming clock
and local clock phases.

Significant temperature and voltage variations may be sensed on-chip by special sensorsin order
to invoke a training sesson when a problem seems imminent. Alternatively, the adaptive
synchronization circuits themselves may be modified to act as the sensors. If any such circuit
detects that any switching phase approaches 0 (or 271t) closer than some safety threshold, a
hardware interrupt isinvoked to start atraining session. In addition, atraining session can aso
be triggered when a higher level logic (or software) detects a synchronization or communication
fallure. A smilar tuning ideaiis used in [Keh93].

6.5 Probability of Synchronization Failure

In this section we analyze the failure probability of the adaptive synchronization (A/S), and
compare it to synchronizers.

Synchronizationfailuremight happenat atraining session, failing the delay adaptation processand
causing the systemto fail, or during regular operation, after asuccessful training. Failures during
training sessions do not affect system operation, and might only cause the training itself to fail.
These synchronization failures can happen in the phase detection circuit (Fig. 6-5), when one of
the counters enters a metastable state while incrementing its count, due to marginal triggering.
Since atraining sessiontakes many cycles, the countersare allowed sufficient time to resolve any
metastability before their outputs are read. Thus, the probability of failure of the training session
ispractically zero. After asuccessful training session, al delays are adapted properly so that data
is expected to arrive at a module around the middle of the local clock cycle, and avoid
synchronization failures. However, due to possible jittersin clock phase and line delays, the data
arriva time might randomally change from cycle to cycle, and become dangerously close to a
clock edge. The system model for the failure analysisis described in Fig. 6-9. The phase of the
clock at module B is affected by the delay aong the clock distribution network from the clock
source to module B. Data sent from module A will arrive at module B with a phase affected by
the delay of the clock signal to module A, the internal logic delay from clock edge to dataoutput,
and datapropagationdelay to theinput of B (Fig. 6-9(a)). We assume normally distributed jitters,
and definetwo randomvariableswithnormal (Gaussian) distribution, X and X4, representing the
phases of the clock and data at module B, respectively. X. = N(u,0.) is normaly distributed
with mean . (equal to the clock cycle time T) and standard deviation o, (caused by jitter
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effects). Without limit of generality, we take the phase of the clock to be O (i.e., p=T), sincewe
are only interested in the relative phase of data to clock, and cyclicaly the phase is 2rk (k an
integer). Xq = N(pg.04), Where p is the expected arrival time within a clock cycle. After a
training session, . is expected to be at the middle of the clock cycle, i.e., pg=T/2, assuming X,
is centered on O+2mk (see Fig. 6-9(b)). Note that X is actually a sum of three normally
distributed variables, so itsvariance (ozd) iscalculated as the sum of three variances. Assume €
is the time window within a clock cycle (Fig. 6-9(c)) in which data must be stable (generally
considered to be the setup-and-hold period) to avoid metastability.
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Figure 6-10: Gate delay vs. clock frequency.

When using asynchronizer, thereisno knowledge of the dataarrival time, so uniformarrival time
distributionisassumed. Once a synchronizer has entered the metastable state, the probability that
it will still be metastable some time later has been shown to be an exponentially decreasing
function [Cha83, RC82]. The probability of synchronization failure of a synchronizer isgiven by

)
T

(6-1)

Pfaﬂure( Synchronizer) = P[meta|t=0]x P[metalt=(u -€)] = X e

€
B
It equals to the probability that a synchronizer which enters a metastable state (at time t=0), il
remains in the metastable state at the time its output should be stable for sampling in the next

clock cycle. The parameter t isthe exponential time constant of the decay rate of the metastability
(discussed below).

The probability of failure of the adaptive synchronization is the probability that the values of the
two randomvariables X, and X4 aretoo close (within €) to each other, i.e., the data switchestoo
close to the clock edge. This probability can be calculates as the probability that a random
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variable, equal to the difference of the two random variables, has avalue in the forbidden range:

(6-2) P IS) = Pl-e<(X,-X)<e] + Pl-e< (X, X)<e]

Note that the normal distribution of the difference random variable spans beyond [0,T], and
because of the 27 cycling, X, should be considered at both 0 and T. Since we assumed normal
distributions, each of the probabilitiesin Eq. 6-2, can be calcul ated by the Gaussian function, with
the proper parameters [Pap91], e.g.,

(6-3) Pl-e<(X-X)<e] = G

e-(uc-ud)] i G[ -e-(uc-ud)]

2 2 2+ 2
oc+0d oc od

The value of the Gaussian function is determined by the error function, erf(x), whose value can
be obtained by the ERF(x) function with parameter transformation:

(6-4) G() = — + erf(x);  erf(x) = — ERF(x/y2)

N | —
N | —

Technology is defined by the gate delay, which also limitsthe highest clock frequency that can be
used. However, the clock frequency increases faster than the gate delay decreases, as can be
observed from Fig. 6-10 (based on datafrom[KG97, SIA94, Wei96]). Since gate delay does not
scalelinearly with frequency, lessgates are available in aclock cycle time, asfrequency rises. The
probability of failure goes up because the clock cycle time T(=u ) shrinks faster than € (the
settling window). To compare the failure probabilities, we assume the following mode: The
metastability window e width is assumed to be equal to a gate delay, the parameter t to be 1/3
of agate delay, and the jitter (which equals 6o) to be half a gate delay (and no more than 15% of
the clock cycle). Figure 6-11 presentsalogarithmic graph comparing the synchronization failure
probabilities of asynchronizer relative to the A/S scheme. The graphs of the probability of failure
for the synchronizer and A/S were calculated according to the assumed model for various gate
delays, and the lines show the trend, as explained below.

For high communication bandwidth (e.g., amost every cycle), the mean time between failures
(MTBF) isgiven by

1
(6-5) MTBF =
Pfailure * f;‘
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The failure probabilities required to achieve an MTBF of once a year and once a minute at the
various technologies are al so presented in the graph. As can be observed from the graph, using
a synchronizer can be practical for lower frequencies, but as clock frequency increases, the
synchronizer haslesstime to resolve and the probability of failurerises rapidly. Using asequence
of synchronizers decreases the failure probability, but increases the latency and affects
performance. Note also that the failure probability presented is of asingle synchronizer, and since
many synchronizers are required (for every bit in every bus between modules), the failure
probability is worse than drawn on the graph. When synchronizers fail to deliver a flawless
operationat higher frequencies, A/Still applies. The zero values of A/Sfailureprobability cannot
be plotted on the logarithmic graph. The inter-module clock jitter will be the limiting factor on
maximum clock frequency in A/S scheme. At even higher frequencies, when A/Sfails, it can be
used together with a synchronizer, to decrease the probability of the synchronizer entering a
metastable state. Beyond a certain technology (e.g., when the jitter ismore than 15% of the clock
cycle), dl synchronization methodsfail, and the only solution is to use a complete asynchronous
design, with asynchronous communication, as described in other chapters of thisthesis.
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Figure6-11: Probability of synchronization failure.
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6.6 Concluding Remarks

The architecture of Kin (described in Ch. 2) and itssupport of Avid execution (detailed in Ch. 3)
impliesalarge and complex microprocessor. A single clock iseither impractical or impossiblefor
such very high performance chips, e.g., as predicted by the SIA technology roadmap for the year
2010 (over 0.5B transistors operating at over 1GHz clock) [SIA94]. We have presented an
adaptive synchronization sol utionfor multi-synchronoussystems. Multi-synchronousarchitectures
(localy synchronous, globally asynchronous) could beaviable aternative to afully asynchronous
design. We focus on common clock multi-synchronous systems, where a single crystal clock is
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distributed over minima area, minima power networks, so that al modules operate on the same
clock frequency (or its frequency divided versions) but at unknown phase differences.

We take advantage of the stationary nature of clock and data delays, and of the consequential
non-uniformarrival timedistribution of asynchronoussignals. Datatimingisdynamically adjusted
to avoid clock/data conflicts.

We have presented a novel adaptive method addressing the synchronization problem. While most
previously proposed methods mani pul atethe clocks, adaptive synchronizationadjustsdatadel ays.
The method expl oitsthe high stability of delays and the stationarity of most relative phases. The
probability of synchronization failuresisreduced substantialy. Timing adaptation can be limited
to special training sessions (as commonly practiced in datacommunication networks). Thus, the
synchronization monitoring circuits are kept off the critical paths. The adaptation circuits incur
only marginal overhead in area, power and performance. A study of aternative methods (such as
synchronizers and stretchable clocks) shows that they may not be as usable as adaptive
synchronization.

The solution presented in this chapter was devel oped as a possible implementation methodol ogy
for Kin, but it can also stand by itself and be used in any other systems.
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Chapter 7. Adapting Statecharts M ethodology
for Asynchronous Design

This chapter describes how to apply anovel methodology, based on statecharts, to the design of
large scale asynchronous systems. The designis specified at multiple levels, smulated, animated,
and compiled into synthesizable VHDL code by using the Statemate Magnum CAD tool . We add
avalidationsub-systemto check correct operation. Statemate Magnumisoriginally synchronous,
but we employ it for asynchronous design by avoiding any design dependence on the clock, and
smulating with fast clock and on-line delays. We have used statecharts to specify and smulate
severa systems, largeand smal, including the asynchronousinstructionlengthdecoder (described
in Ch. 4), the doubly-latched asynchronous pipelines from Ch. 5, and Kin model (as explainedin
Ch. 2). The methodology is demonstrated here through a simple FSM design example.

7.1 Introduction

Numerous applicable methodol ogies have been devel oped for the design of asynchronous logic
[Hau95]. Most of those methodol ogiesand tools were devel oped for the design of small systems.
Only afew tools and methodol ogies have addressed large scal e system level design. They include
the CHP[Mar90] and Tangram[vBK R+91] compilers, the combinationof commercial and special
tools for the PostOffice [CDS93] and AMULET [Pav94]. However, no single and complete
methodology and tool set have been demonstrated as yet for the design of large scale
asynchronous systems.

The research described in this thesis focuses on the architecture and design methodology of a
microprocessor, which is alarge scale asynchronous system. We were looking for one compl ete
CAD system, based on awell-understood methodology, suitable for al levels of the system, for
al timing disciplines, and for al designtasksincluding specification, design, smulation, animation,
validation, verification, debugging and synthesis. Naturaly, since the CAD system is the tool
rather than the research, and since such a grand CAD system requires immense resources to
develop and maintain, we have turned to the domain of commercial CAD productsin our quest.
Unfortunately, no large scale commercial CAD systems are available for asynchronous design.

Thus, we employed a commercia synchronous CAD system and adapted it for the design of
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asynchronous circuits. A design discipline is developed by which any explicit dependence on the
clock iscarefully avoided. The circuit is synthesized by the tool into a synchronous structure, but
it is subsequently converted into an asynchronous one, as described in Sect. 5.7.

This chapter describes the adaption of the novel commercia high-level CAD system Statemate
MAGNUM ™ [iL096] to the design of large scale asynchronous systems. Statemate MAGNUM
(Magnum for short) is based on statecharts [Har87], and is introduced succinctly in Sect. 7.2.
Magnum provides an environment for ahierarchical graphical specificationof thedesign, and also
facilities for simulation, animation, verification, and compilation into either a software program
(in C or Ada) or a hardware description (in VHDL or Verilog, at either the behaviora or RTL
levels).

Theapplicationof Magnumisdescribed through the design of asmall quasi-delay insensitivefinite
state machine (qDI FSM) [DGY 92b]. Section 7.3 defines the FSM and Sect. 7.4 explains its
design with Magnum. In Sect. 7.5 we describe specia validation statecharts for asynchronous
logic. Simulation is discussed in Sect. 7.6.

7.2 The Statechart-based Statemate MAGNUM CAD System

Satecharts[Har87] constitute a specificationformalism [HP96b, HPS+87] for reactive systems,
and can be used to design complex discrete-event systems and communication protocols.
Asynchronous systems can be considered asreactive systems, since dataaretransferred by using
handshake protocols and each module reactsto changesin itsinputs, does some processing, and
signds to other modules when done. Statecharts extend conventional state-transition diagrams
of finite state machines by adding hierarchy, concurrency and communications. While statecharts
describe system behavior, structural, functional and data-flow aspectsof the system are specified
with the related activity charts. The nature of these charts is demonstrated in Sect. 7.4 wherein
they are applied to the design of gDI FSM.

Historically, statecharts were applied to the design of real-time, reactive software systems.
Recently the same methodology has also been applied to hardware specification. Magnum
presently compiles the specification into either VHDL or Verilog. It can compile into either
behavioral or RTL styles, and it can target the code for various commercial synthesizers and
simulators. We have successfully employed the Compass RTL synthesizer on the Synopsys-
targeted VHDL.

The applicability of tools like Magnum to asynchronous design is far from obvious. Magnum is
inherently a tool for designing synchronous logic. It generates RTL VHDL that is commonly



91

synthesized according to the <register-and-cloud” model [Per94] where clouds of combinational
logic areinterconnected through synchronousregisters. Magnumemploysaunit delay model, and
simulates the design by advancing a clock. To bypass these difficulties, we have defined adesign
and simulation discipline, as described in Sects. 7.4 and 7.6. We also investigated post-synthesis
robust conversion agorithms that convert the generated synchronous circuit into a legal
asynchronous circuit, as discussed in Sect. 5.7.

7.3 ThegDIl FSM

The gDI FSM [DGY 92b] consists of a combinational logic block (CL, Fig. 7-1) and aregister
(REQG). It is based on the dual rail, four phase design methodology. The inputs and outputs are
either defined, or undefined, or in transition between those states. The ACK lineisasinglerail
control line. The system/environment protocol isshownin Fig. 7-2. The corresponding protocols
for the CL [DGY92a] and the REG components are shown in Figs. 7-3 and 7-4, respectively
(notetheir duality). ThisFSM isthe asynchronousversion of the synchronous Meay machine (the
outputs are defined only when the inputs are).

IN —> oL OUTPUTS
UNDEFINED,

CK=1 UNDEFINED
PRESENT]
STATE INPUTS N, N, NEXT STATE
DEFINED  pRr STATE PR.STATE  UNDEFINED
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ouT,
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ACK=1

NEXT STATE

NEXT STATE
DEFINED

OouT,
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OUTPUTS
ACK <— DEFINED,

PR. STATE

UNDEFINED,
ACK=0

ACK=0

Figure7-1: gDl FSM. Figure7-2: FSM Figure7-3: CL Figure 7-4: REG
handshake. handshake. handshake.

7.4 Specifying the qDI FSM with Statecharts

To demonstrate the use of Magnum consider atwo inputs, two outputs FSM. Figure 7-5 shows
agmplified activity chart of the gDl FSM (the validation partsare explained in Sect. 7.5 below).
Activities are drawn as boxes, with CL and REG nested inside the gDI_FSM activity (they are
hierarchically described in separate activity charts, asindicated by * @’). The environment ENV,
being an external activity, is drawn as dotted boxes, and can appear multiple times for clarity.
Besides providing inputsand outputs, ENV also suppliescircuit delays for smulation (which can
validate delay insensitivity).



CL_Delay REG Delay
TO_VALIDAT

, oDLFSM
| acL ]

TV e ™ =
X @REG

TO_VALIDATH

@VALIDATION

Figure 7-5: Activity chart, FSM with validation.

The detail ed hierarchical description of the CL and REG activity charts can befound in [K GS96].
Two alternative CL statecharts are shown in Figs. 7-6 and 7-7 (note that states are drawn with
round corners). The former is designed for implementation and simulation with bounded delays,
and the latter assumes (quasi-) delay insensitive operation.

/BD_CL_BHV “ \ /qDl_CL_BHv " \

— Wait } —] Wait }
[IN Defined] [IN Defined]
\ \
[Delay { Calc> } quT { Calc> }
Expired i
Xpired] v [Delay Expired] Undefined] v [OUT Defined]
| Wait } [ Wait }
[IN Undefined] [IN Undefined]
4[ Reset> } 4[ Reset> }
Figure7-6: CL Bounded Delay statechart. Figure7-7: CL gDI statechart.

Statechart transitions are labeled trigger/action, where trigger is either an event and/or a
[condition]. All parts are optional in the synchronous Magnum. Unlabeled transitions are
triggered by the next clock in synchronous systems, so they are ruled out in our case. Magnum
events, unlike the common concept of eventsin asynchronous design, are dangerous, asthey can
go unnoticed and disappear unless some receiver isready and waiting for them. Since Magnum
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has no inherent countermeasurefor this problem, werequirethat regular statechart transitionsare
labeled with conditions instead (we do alow the use of some specia eventsin Sect. 7.5 below).
Asynchronous signal transition events (such as ‘X1’) are replaced by conditions (such as
‘[X=1]").

Initial state is marked with the default entry arrow. The CL starts with inputs and outputs
undefined. When al CL inpuits (i.e., the inputs to the FSM, and the present state (PS) from the
registers) become defined, the statechart moves to the next state wherein the Boolean functions
are evaluated. The actual Boolean expressions are hidden in the data dictionary (as indicated by
‘>"). In Fig. 7-6, exit from that state occurs when the computation delay expires. Alternatively,
in gDI implementation (Fig. 7-7), exit from the same state depends on CL outputs becoming
defined, rather than on the delay, as appropriatefor adelay insengtive circuit. A smilar sequence
occurs on the <return-to-zero’ part. The statechart of the registersis presented in [KGS96].

This FSM design is generic by nature, and only a small part of it is affected by the details of the
specific FSM being designed.

7.5 Validation

Aswith any asynchronousmethodol ogy, the design of gDI circuitsdepends on assumptions about
correct operation by both the circuit and its environment. Those assumptions can be proven
correct through aformal verification framework. However, in many casesthisisan eusive goal,
so we resort to on-line validation, namely continuous checking that all assumed properties are
never violated. Validation may be limited to the design, smulation, and debugging phases, after
which dl validation sub-systems are removed from the design. Alternatively, all or part of the
validation sub-system may be retained during synthesis, so that they continue to functionthrough
the lifetime of the hardware. This latter safety measure may be valuable especialy for the
interfaces between the circuit and the externa world.

In the gDI FSM, we wish to validate the following properties. (a) The inputs and outputs must
carry only legal dual-rail values{0,1,undefined} ={01,10,00}; (b) Changes of inputsand outputs
must be monotonic (from all-undefined to all-defined, without some lines becoming defined and
then returning to undefined, etc.); (¢) The handshake protocolsof Figs. 7-2 - 7-4 are adhered to.

The activity chart of the gDI FSM with validatorsis shown in Fig. 7-5. The validation statechart
(Fig. 7-8) demonstrates hierarchy and concurrency — dl enclosed statecharts, separated by the
dotted lines, areactive concurrently. They continuously monitor the relevant signals of the FSM.
The four instances of the generic DR_STATUS (Fig. 7-9) perform two tasks: First, while in
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super-state DR_NORMAL_OP, if both wires are ‘1, the chart exits immediately to the
DR_MALFUNCTION terminal state and issuesthe ERROR event. Incidentally, thisisone of the
few cases wherein we do use Magnum events, since another statechart is continuously watching
for that event (see below). ERROR event can be designed to ring some bells. Note that the
transition into DR_MALFUNCTION exits from the external boundary of DR_NORMAL_OP,
meaning that this transition takes place regardless of which internal state has been active at the
time of error. The second task is to detect the direction of the transitions on the lines (‘fup’ or
‘down’), for use by the monotonic validator.

| Validation BHV |

‘ Input Validation ‘ / .\ DR_STATUS \
‘ Check IN <MONOTONIC CHECK ‘ s '\‘ DR_NORMAL_OP N
\ INO < DR_STATUS IN1 <DR_STATUS \ { DR UNDEFINED }

_ 180 xor|BN)=1]  [Bor B1)=0]

‘ Output_Validation ‘ /UP:= /DOWN:=1
‘ Check OUT < MONOTONIC CHECK ‘ { DR DEEINED }
‘ OUT0 <DR_STATUS  OUTI1 < DRﬁSTATUS‘ \\ - /

[(BO ghd B1)=1]
@PROTOCOL VALIDATION - I ERROR
DR_MALFUNCTIO

Figure7-8: Validation statechart. Figure 7-9: Dual-rail validation statechart.

Monoatonicity is validated by the regular expression [Undef [up]* Def [down] 1", as described
in Fig. 7-10. The MONOTONIC_CHECK statechart monitors the DR_STATUS statecharts,
watching for non-monotonic transitions. For an N-bit dual rail line, two N-bit vectorsare defined,
VUP and VDOWN, consisting of the corresponding UP and DOWN flagsthat are set by the dual
rail validators. When at least one of them marks its UP flag, the MONOTONIC_CHECK
validator movesto the UP_GOING state. It staysthereaslongasnot dl DR_STATUSvalidators
have set their UP flags. If any of the lines returns to undefined value, its DOWN flag is set and
the monotonic validator immediately escapes to the NON_MONOTONIC termina state, and
generates an ERROR event. Upon normal transition to VALUE_DEFINED (after al N bitsare
set) the VUP vector isreset. A smilar processtakes place onthe way down. Notethat while input
validation checks the environment, output validation checks our own system.
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Figure 7-11: Protocol validation statechart.

Figure 7-10: Monotonic validation statechart.

The PROTOCOL_VALIDATION statechart (Fig. 7-11) checks adherence to the four phase
protocol, of both the environment and the system. Any deviation is considered an error, which
results in immediate escape to the terminal state ERROR_OCCURRED. Note how the chart
contains dl the intermediate transitional states, as well as the stable ones { 1-4}. The protocol
validator also watchesfor ERROR eventsgenerated el sewhere. Upon such an event, the validator
jumps to the error state, and can alert the user. For clarity reasons, the statechart in Fig. 7-11 is
somewhat smplified, and does not contain al the state transition details. A full description (with
all the conditions for each transition) can be found in [KGS96].

While validationrelatesto dynamic checking of properties, and the checksarelimited to the cases
that are actually smulated, verification usualy involves exhaustive checks or proofs that
guarantee that certain properties are dways true. Verification aspects of statecharts have been
discussed by [Day92].

7.6 Simulation

The simulationfacilitiesof Magnumincludefeatures such asgraphic feedback in col or, animation,
linksto external code, and multiple manners of affecting the simulation and observing the results,
either interactively or in batch mode. However, the interesting question is how to perform
asynchronous simulations with a synchronous simulator.

The most practical solutionwe have found isto simulate the design with an extremely fast clock
(relative to the circuit delays). Even when al conditions are set for atransition to take place in
a statechart, the (synchronous) ssimulator would not make the transition unless the clock has
ticked. Having that clock toggle very fast resultsin transitions happening amost immediately after
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they are enabled. Again, this approach relies heavily on a strict discipline assuring no hidden
synchronous transitions in the design, and avoiding all functional dependencies on the clock.

Another issueisthe generation and simulation of delays. For bounded delay and timed disciplines
it isuseful to simulate the design having delays varying within the (lower and upper) bounds set
for them. For gDI disciplines, it is useful to smulate with arbitrary delays. Most important, the
circuit should be simulated at many different ‘timing corners,” namely different combinations
wherein some parts of the circuit are very fast and other parts are very slow, in order to detect
illegal behavior. The solution to all these requirements lies in on-line delays.

On-line delays are specified neither in the design nor in the smulator. Rather, they are supplied
to the simulator, on demand in real-time, asthe simulator executes. Every time adelay is needed,
it is re-read from an external, concurrently executing procedure, the delay generator. The
generator can be programmed to either usefixed delays, draw them fromatable, draw them from
apredefined statistical distribution, or execute specia functionsto create data-dependent delays.
Each of those delay models is important for some aspects of asynchronous design.

7.7 Concluding Remarks

We have presented the applicability of acomplete CAD system, which was originaly developed
for the design of synchronous circuits, to asynchronous logic design. Magnum is based on
statecharts, a suitable methodol ogy for the design of asynchronous architectures. Specific design
rules have been developed for the specification (no dependence on clock transitions, use of
conditions rather than events), and for simulating asynchronous circuits on the synchronous
simulator (use extremely fast clock, apply on-line delays). Other aspects of Magnum, such as
static and dynamic verification, animation, and compilationarediscussedin[KGS96] and [iL096].
Validation statecharts have been added to monitor the simulations, and they can aso be
synthesized into validating hardware. They provide an important complement of formal
verification for large and complex systems.

Simulations were used for debugging while developing the models and also for performance
evauation (using online delays generation). As explained in Chs. 2 and 3, amodel for Kin was
built based on statecharts and external C-code. Statechart models of various asynchronous
pipelines (cf. DLAP in Ch. 5) were aso built to analyze their operation before implemented at
transistorslevel. The asynchronous instruction length decoder from Ch. 4 was fully described by
statecharts, for complete architecture specification and module interface.
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Chapter 8: Summary and Further Research

Anaysisof future semiconductor technology (suchas 1 billiontransistorsper chip and over 1GHz
clocks planned for the year 2010) shows that it places severe constraints on the design of high
performance microprocessors. In particular, the chip is too large and the clock is too fast for
gngle clock synchronous operation. Rather, new forms of distributed architectures and
asynchronous interconnects are called for. In this thesis it is argued that the technological
constraints necessarily lead to asynchronous solutions.

Thisresearch describesthe architecture of the asynchronous microprocessor Kin, which supports
anovel aggressive speculative Avid execution method (necessary for high speed and suitable for
asynchronous processors). The development of Kin included addressing and solving problems at
the architecturelevel, aswell asdevel oping architectural conceptsand design methodol ogies for
the required building-blocks. Using some of these basic blocks is not restricted to the design of
amicroprocessor, and they can be applied to other systems as well.

Thethesisalso discussesanumber of associated issues. Fully asynchronous design of one module
(an asynchronous instruction length decoder), algorithmic conversion of synchronous pipelines
into (doubly-latched) asynchronous ones (DLAP), mixed timed globally asynchronous locally
synchronous systems (with adaptive synchronization), and the design methodology (based on
statecharts) suitable for high level asynchronous design.

Some futureresearch directions can beidentified. They relateeither to the near-term evolutionary
pathfrom present day CAD and architecturetowardsasynchronoussystems, or to thelonger term
issues of what’s beyond Kin.

Regarding the near term, substantial research must be devoted to transitional methodologies

described in the thesis:

. Automatic conversion of synchronous circuitsinto asynchronous ones should be further
investigated.

. Adaptive synchronization for multi-sync systems may be studied, together with clocking
methodol ogies.

. Synthesis tools must be adopted to produce and verify GALS systems.

. Seamless interfaces of various low level synchronous synthesis tools to high level
specification tool like Statecharts should be devel oped.
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Further, the architectural aspects need additional study:

Kin architecture can be refined. For instance, alternative organizations of the reservation
stations and instruction schedulers can be simulated and compared.

More Avid execution simulations should be performed and analyzed. We have only
smulated a constant Avid scheme, but Avid performs best when used as an adaptive
mechanism, where the Avid depth is adjusted according to the quality of the prediction
of each branch.

Wehave presented the fully asynchronousdesign of aninstructionlength decoder for Kin.
Other modules can be implemented according to various asynchronous methodologies.
DLAP design can be refined, and two-phase DLAP schemes may be researched.

On the longer term:

Thetechnological and architectural constraintsthat may be posed by technol ogies beyond
the 2010 SIA prediction should be investigated.

More aggressive deviations from contemporary architectures should be considered. In
particular, both the instruction sets and the computing paradigms most suitable for
asynchronous processing must be identified.

Last but not least, Kin could be implemented in silicon!
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Appendix A : Clock Coordination for Synchronization
of Multi-Synchronous Systems

This appendix describes the adaptive coordinated synchronization for effective communications
among non-synchronized synchronous blocks, based on adapting the clock. When a collision
between the incoming dataand clock is detected, the phase of the clock is changed and adjusted
to avoid the conflict. Unlike stretchable clocks which use local clock generators, the schemes
presented hereare designed for multi-synchronous systems operated by an external crystal clock,
thus guaranteeing anominal frequency. We propose three alternative clock coordination methods
(clock-disable, clock-toggle, and clock-shift), and analyzetheir effect on system performanceand
their limitations,

A.1 Introduction

In clock coordination schemes, we take advantage of the non-uniform arrival time distribution
(explained in Ch. 6) and adapt the clock of the receiver to switch when incoming datais stable.
Incoming data and clock are processed by a clock/data coordinator prior to their entry into the
synchronousmodule, asinFig. A-1. The purpose of the coordination circuit isto avoid clock/data
collision, by modifying the clock. Unlike symmetric arbitration, the coordination circuit gives
higher priority to the data input and is designed to delay the clock in cases of conflict. A proper
delay, matching the delay of the coordination circuit, is added on the data lines, to preserve the
relative timing of Data and DataRdy.

We consider three alternative methods of coordination (Fig. A-2). The clock-disable method
disablesthelocal clock for acompletecycle. The clock-toggle method togglesthe clock, delaying
the rising edge for a one half cycle. The clock-shift method adds a small delay to the clock, i.e.,
it shifts the phase of the local clock for all future cycles.
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Figure A-1: A clock/data coordination circuit Figure A-2: Alternative coordination methods.

for each synchronous module.

A.2 Clock Coordination Circuit

For dl three methods, the coordination circuit comprises three components (Fig. A-3): The
Conflict Detection (CD) block detectswhen dataand clock edges have occurred s multaneously.
The Clock Phase Delay (CPD) block delays the clock by a selectable amount of time. Its actual
function variesfrom one method to another (full cycle, half cycle, or avariable delay). The Clock
Regeneration (CR) block recoversthe duty cycle of the input clock. Upon an edge conflict, CD
generates hold and SelectNext, to keep CoordClock in itslow phase, and to change the delay,

respectively.
DataRdy CoordDataRdy g
> D>
= D Rdy
dz = dr +deR) ataRd) L SelectNext
. L( T — x L Q
Conflict cli —— DEE | hold
Detection —{ e— R
SelectNext (CD) hold %)
) y Figure A-4:. Clock/data edge Conflict Detection.
ClockinC|ock Phase dck| Clock |CoordClock
> Dela b Regeneration §
y d1 = idcp)
(CPD) (CR)

Figure A-3: Coordination circuit block diagram.

Inertial delay lined, matchesthe delay of CD (asexplained below). Thus, upon edge conflict, CR
isdisabled sufficiently early to block the faulty clock transition. Delay d, matches dq +delay(CR),
to preserve the relative timing of the clock and data.
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When SelectNext ison, CPD clk output isfirst reset (also signaling CD to reset and release aold),

the clock “off’ phaseis stretched asmuch as necessary, and clkis set again to signal the beginning
of the next valid ‘on’ phase.

In this discussion we assume that DataRdy risesto ‘1’ after the new data are available and ready
to be sampled. A smplified CD implementationis proposed in Fig. A-4. When bothinputsto CD
rise smultaneoudy, apulseisgenerated at X, setting the D-FF (used as a SR latch with an edge-
triggered ‘ set’ input), and generating ol4 and SelectNext. Thelatchiscleared when the clk input

turns low. Possible metastability of the latch is discussed in Sect. A.4.1 below.

In addition to matching CD delay, the positive inertial delay dq (implemented by the circuit in
Fig. A-5) also filters short positive clk pulses. Such pulses are created on clock/data conflicts,
whenclkisreset shortly after it hasrisen (Figs. A-10, A-12). Delay d, isasymmetric [Sei80]: the
positive delay is longer (by A) than the negative delay. To preserve the duty cycle of the input
clock, amatching negative inertial delay is appended to CR (as described in Fig. A-6).

" hold
p dek ek _ CoordClock
D
Figure A-5: Positiveinertial delay d4. Figure A-6: Clock Regeneration with a negative
inertial delay.

The content of the CPD block depends on the coordination method implemented (see Figs. A-7,
A-9, A-11). Inthe clock-disable case CPD isawire. For clock-toggle it selectseither Clockin or
itsinverse. A multiplicity of delayed clock signals for the clock-shift method are generated by a
tapped delay line, and the proper phaseis selected by asequential selector, which switchesinputs
onevery rising edge of itscontrol input. Typical waveforms of the three coordination circuitsare
shown in Figs. A-8, A-10, A-12, wherein conflicts are marked by dotted lines.

Note that, for very high clock frequencies, the total latency of the coordination circuit (d5) may
approach, or even exceed, a whole clock cycle. While resembling the latency incurred by a
synchronizer, coordination is still preferred to the latter. Since sender and receiver clocks are
correlated in multi-synchronous systems, clock/dataconflictsare highly likely to recur (and cause
recurring metastability situations) if the relative clock phase remains fixed. Coordination circuits
are designed to adapt local clocks and thus counter this problem.
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Figure A-10: Waveforms of Clock-Toggle method.
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Figure A-12: Waveforms of Clock-Shift method.

A.3 Performance Analysis of Clock Coordination

The Clock-Disable method is the simplest one to implement, but its obvious limitation is that it
may cause asubstantial performance degradation, and the module is doomed to suffer from the
same problem repeatedly. When aclock/dataedge conflict isdetected, the local clock isdisabled
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for one cycle. We assume that the data arrival time is uniformly distributed over the clock cycle.
Although we have claimed above that this distribution is non-uniform, it is valid to assume
uniformity when the expected relative arrival time isyet unknown, or when it has changed, e.g.,
due to temperature or supply voltage drifts. Thus, the probability of conflictis

= P ict) = tsu+th
(A-1) p = P(conflict) = C

wheretgy, and t}, are the setup and hold times, respectively, and C is the clock cycle. If data
arrive every R cycles, then a computation which takes R cyclesif there were no conflicts would
need an extra cycle with probability p due to conflicts. Thus, the slow-down Sy is

(A-2) S (Clock-Disable) = Num. cyclesduetoconflict _ R+p _ 1+P
Num. cycleswithoutconflict R R

If the incoming data arrive from N different sources, and dl the bits arriving over the same bus
are synchronized, then the probability of conflict is

(A-3) P, N) = 1-P(-¢N) = 1-P(—¢,1)’ = 1-[1-P(c, )}’ = 1-(1-p)"
Thedow downinsuchacaseis

(A-4) 8, (Clock-Disable) = 1+@ - 1+¥

According to the Clock-Toggle method, the clock is delayed one half cycle upon a conflict.
Hence:
1

) S, (Clock-Toggle) = =1+ 2
A6) . ggle) R 2R
) P(c,N) 1-(1-p)¥
S (Clock-Toggle) = 1+ _ 1. 1-d-p)"
M gle) 2R 2R

For the Clock-Shift method, we estimate the shift resolution to be 3 gate delays. If 6=(shift
resolution delay)/C, then

(A-7)

: R+8p op
S (Clock-Shift) = = 1+
2 iff) 2 ®

(A-9) S (Clock-Shifty = 1+2F (;JV) -1+ 3[1‘(;‘1’)N]
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FigureA-13 showsthe slow-down (S ) of thethree coordination methodsrelativeto R (assuming
p=0.05, N=10, and if C~ 15 gate delays, then $=0.2). While S\(Clock-Disable)—1.04 for large
R, it growsto 1.2-1.4 for the higher bandwidth case (R=2 or R=1, respectively). The slow-down
in case of clock-toggleisonly 1.2 for R=1, and diminishes to 1.08 in the clock-shift case. The
clock-shift method causes the least performance degradation: Only 8% slow-down for high rate
data transfer (i.e., every cycle), and as low as 0.8% for low rate. This performance anaysis
underestimates the performance of the clock adjusting approach, since after the clock phaseis
adjusted, it islikely to guarantee the successful synchronization of subsequent datatransmissions.
After adaptation, the probability is not uniform any longer and hence p is substantially smaller.

—e— Clock Disable
—a— Clock Toggle
—a- Clock Shift

Slow-down

Figure A-13: Clock coordination sow-down.

A.4 Limitsof Clock Coordinated Synchronization

Clock coordination suffers from three difficulties, namely metastability, oscillation, and lack of
convergence. Inthis sectionwe explain the problems and show how some of them can be avoided
in practice.

A.4.1 Metastability

When a clock/data conflict is detected, a pulseis generated in CD (X, Fig. A-4) to set the latch,
disable the clock, and shift the phase. The width w of the pul se depends on the time difference At
between the rising edges of clk and DataRdy (Fig. A-14). Maxima w is achieved when clk and
DataRdy rise simultaneously; the longer [At] is, the shorter the pulse. For certain high values of
At (In the T regions of Fig. A-14(b)), w isdangerously short and the pulse might cause the latch
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to either enter ametastable state, or to take abnormally long time to settle [Mar81, Sto82]. Note
that CD isdesigned such that if Atet, dataand clock are safely separated, non-conflict operation
isdesired, and CD should not declareaconflict. Long propagation delays do not affect the circuit.
If the latch enters a metastable state but does not exit it before clk goes low, the latch will be
forced out of metastability by clk (Fig. A-4). However, if the latch exits metastability while clk
isgtill high, and (erroneously) declaresaconflict, the clock isaborted in mid-cycle and may cause
the module to fal. Normaly, the CD has enough time to resolve the metastable state since the
DataRdy will not change until an acknowledge is returned. This most likely will take more than
one cycle, depending on the handshake protocol and the processing time.

A
>7< "
clk — A
DataRdy —
X : :
- — Rt
> < > < | > <
(a) (b)

Figure A-14: Conflict detection pulse width w as afunction of clk/DataRdy concurrency At.

The adaptive synchronization bringsthe system, after aconvergence period, to astationary state.
As explained above, the final state is stationary because the delays and phase differences among
the modules in the system are functions of the implementation, of physical parameters, and of
temperature and supply voltages, and they typically change very slowly during the operation.
After adjusting the clock phase in all modules to avoid conflicts, there is no need to make any
more changes and the systemis expected to operate without synchronization problemsfor along
time. Thus, adaptive synchronization is best used during special training sessions.

A training session is dedicated to adaptation of clock delays, and does not perform real
computations. All the modules intercommunicate heavily in order to entice the coordination
circuitsto shift phasesasneeded. Synchronizationfailuresduring training sessionsareignored (no
real dataislost). After atraining session, clock/data conflicts are less likely. The system should
be trained upon reset and periodically (but infrequently) during operation. Training is expected
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to affect system utilization by less than 1% (as explained in Ch. 6). Each module should send
messages on all its output channels during training, so that all potential conflicts are exercised.

A.4.2 Oscillation

When many modul escommunicate by clock-shift coordinated synchronization, an oscillation may
develop. Each module shiftsits own clock phase every time a clock/data conflict is detected, and
subsequently sendsitsdatato other modules using the newly shifted clock. This change of clock
phase might cause another module to develop a conflict, and itsown local clock is consequently
shifted. The propagating clock shiftsmay settle down after afew adjustments, or they may cycle
and affect the first module again. Thus, the clock phases may continuously be updated and shifted
forever. In the following we show that the oscillations of the adaptation process problem may be
predicted and avoided at design time.

The system can be described as a graph, wherein modules are modeled by vertices, and
communication channels are model ed by directed edges. The danger of oscillating clock shiftscan
only occur due to cyclesin the graph, and only in avery specia case. In Fig. A-15, acycle of
three communicating modules is shown.

Y N

Figure A-15: Communicating modules cycle.

Let da bethe delay in module A fromitsloca (coordinated) clock edgetill the data are ready at
itsoutput. Let dppg be the delay along the communication channel from module A to module B.
When Module A sends data to module B, they would arrive at module B after dy+dapg time
(relative to some transition of the coordinated clock at module A). If a clock/data conflict occurs
now in module B, it will updateitslocal clock phase by the shift resolution delay &, and will send
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datato module C using this new clock. The datawill arrive at module C (dg+dpg - ) after the new
clock edge of module B. Those data may cause module C to shift itslocal clock by 6. The data
sent frommodule C to module A will take (d+dip) to arive. Thetotal time required for data
to be transferred from module A, to B, to C, and back to A (including clock shiftsat B and C),
is(dptdpgto+dgtdgctd+dotdep ). To causeaconflict and clock shift inmodule A (i.e., an
oscillation), this sum of delays along the cycle hasto be equal to anintegral multiple of the clock
cycle (i.e.,, mC). In the genera case, when there are k modules along the cycle, the danger of
oscillation exists when:

(A-9) (Y (d +d)) + (k-1)8 = mC

k-cycle

where module j follows module i along the directed k cycle.

To avoid the oscillation problem, the graph model of the system architecture should be searched
(at the design time) for cycles with this property. A small delay is added to each such cycle to
avoid the situation. This approach is limited, however, by the accuracy of delay modeling.
Alternatively, the coordination circuitsmay be redesigned to add varying delays to the clocks, so
asto break cycles.

The same oscillation problemis a so expected to occur when stoppabl e clocks are applied. Since
each module changes its own clock phase, it might cause others to adjust accordingly and vice
versa. Data adaptive synchronization (Sect. 6.2) breaks the dependency cycle and avoids
oscillation problems.

A.4.3 No Convergence

When amodule is interconnected to many other modules, and each of the other modules has a
different relative clock phase shift, it is possible that they will not be able to communicate without
faillure, since the local clock will be shifted constantly. This might happen when there is no
common phase they al agree on, and the combined distribution of data arrival times on the many
inputsis uniform (Fig. 6-1). Stretchable or pausable clocks solutions cannot be used in this case
snce the clock will be kept in its ‘off’ phase for arbitrarily long periods of time. This can be
avoided by adaptively coordinate delays on the datalines (as described in Section 6.2) rather than
change the local clock.
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A.5 Concluding Remarks

Alternative methods and circuits for clock coordination are described and performance is
analyzed. An external common clock isused, and based on the stationary nature of clock and data
delays, a proper phase of the clock is dynamically selected to avoid synchronization failures.
Metastability, oscillation, and convergence problems are discussed. As done for the data
coordination, the clock adaptation can be limited to special training sessions.
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