
1

Hardware Scheduler Performance on the Plural Many-Core Architecture

Itai Avron and Ran Ginosar

Electrical Engineering Dept., Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract – The Plural many-core architecture combines

hundreds of simple cores, lock-free shared memory, hardware

scheduler and a task-based programming model. The

hardware scheduler enables fast scheduling and allocation of

fine grain tasks to all cores. Scheduler performance is

evaluated based on an architectural simulator and on multiple

benchmarks representing a wide variety of inherent

parallelism. Several architectural alternatives and scheduler

configurations are simulated. It is shown that a scheduler with

capacity to schedule and terminate 10 task-instances per cycle,

along with a task queue of as little as two slots near each core,

is sufficient to utilize 256 cores.

Keywords – hardware scheduler; many-core; performance;

task queues; task graph

1 INTRODUCTION

Many-core architectures come in different flavors: a

two-dimensional array of cores arranged around a mesh

NoC, GPUs with clusters of cores, and rings. This paper

discusses the Plural architecture [1][14][15][16][17], in

which many cores are interconnected to a many-port shared

memory rather than to each other.

Many cores also differ on their programming models,

including PRAM-like shared memory and CSP-like

message-passing. Memory access and message passing also

relate to data dependencies and synchronization—locks,

bulk-synchronous patterns and rendezvous. The Plural

architecture employs a strict shared memory programming

model.

The last defining issue relates to task scheduling—

allocating tasks to cores and handling task dependencies.

Scheduling methods include static (compile time)

scheduling, dynamic software scheduling, architecture-

specific scheduling (e.g., for NoC), and hardware

schedulers, as in the Plural architecture, in which data

dependencies are replaced by task dependencies in order to

achieve better performance, better efficiency and easier

programming.

This paper addresses the performance of hardware

scheduling on the Plural architecture and investigates

potential scheduling acceleration techniques, including task

queues at the cores, reducing scheduling latency, increasing

scheduler capacity (issue and commit width) and using

expected execution-time to affect scheduling [18]. The

study is based on cycle-accurate simulation of the entire

many-core system executing complete applications.

The rest of this paper is organized as follows: Section 2

discusses related work. In Section 3 we present the Plural

architecture. Proposed scheduling acceleration techniques

are given in Section 4. In Section 5 we describe our

simulation environment and benchmarks. Analysis of

simulation results is presented in Section 6, and we

conclude in Section 7.

2 RELATED WORK

Tilera [2] employed static compile time scheduling [3],

or a dynamic scheduler [4]. A more general treatment is

given in [5]. Static scheduling in a many-core during

compile time [3] cannot adapt to varying run-time

circumstances. Software scheduling (work-stealing [6] or

lazy-scheduling [7]) may not scale well because of very

high rates of task allocations and terminations (commits) .

Hardware schedulers should enable dynamic, flexible,

adaptive execution of fine-grain tasks on many-

cores [8][9][10][11][12]. Hardware scheduling by prefix-

sum logic was employed in XMT [13], which was limited to

executing multiple instances of only one task at a time.

3 PLURAL ARCHITECTURE

This section presents the Plural architecture (Figure 1),

the programming model, and the hardware scheduler.

3.1 Architecture

Figure 1: Plural many-core architecture

The Plural architecture is a shared-memory single-chip

many-core system [1][14][15][18]. Emerging

implementations include the MacSpace EC-FP7 project [16]

and RC64 [17]. The Plural many-core consists of a

hardware synchronization and scheduling unit, tens to

hundreds of simple cores, and a shared on-chip memory

accessible through a high-performance logarithmic

Scheduler

Cores

Memory
banks

Cores-to-Memory Network

Scheduler-to-Cores Network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

MES '15, June 13 - 14, 2015, Portland, OR, USA

© 2015 ACM. ISBN 978-1-4503-3408-2/15/06…$15.00
DOI: http://dx.doi.org/10.1145/2768177.2768184

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2768177.2768184

2

interconnection network. The cores may contain instruction

and data caches; the latter is flushed and invalidated by the

end of each task execution, guaranteeing consistency of the

shared memory. In addition, the cores may contain private

‘scratchpad’ or ‘tightly coupled’ memories. The cores are

designed for low power operation using ‘slow clock’

(typically slower than 500 MHz). Performance is achieved

by high level of parallelism rather than by sheer speed, and

access to the on-chip shared memory across the chip takes

only a small number of cycles.

The on-chip shared memory is organized in a large

number of banks, to enable many ports that can be accessed

in parallel by the many cores, via the network. To reduce

collisions, addresses are interleaved over the banks. The

cores are connected to the memory banks by a multi-stage

many-to-many interconnection network. The network

detects access conflicts contending on the same memory

bank, proceeds serving one of the requests and notifies the

other cores to retry their access. The cores immediately retry

a failed access. Two or more concurrent read requests from

the same address are served by a single read operation and a

multicast of the same value to all requesting cores.

3.2 Programming Model

The Plural PRAM-like programming model is based on

non-preemptive execution of multiple sequential tasks. The

programmer defines the tasks, as well as their dependencies

and priorities which are specified by a (directed) task graph.

Tasks are executed by cores and the task graph is ‘executed’

by the scheduler.

Concurrent tasks (namely, tasks independent of each

other that may execute together or at any order) may be

prioritized by the programmer. Expected task durations may

optionally be indicated in the task graph.

Some tasks (typically amenable to data parallelism) may

be duplicable, accompanied by a quota that determines the

number of instances that should be executed (declared

parallelism [7]). All instances of the same duplicable task

are mutually independent and concurrent, and hence they

may be executed in parallel or in any arbitrary order. These

instances are distinguishable from each other merely by

their instance number. Concurrent instances do not write-

share data. Ideally, their execution time is short (fine

granularity). Concurrent instances can be scheduled for

execution at any (arbitrary) order, and no priority is

associated with instances.

Each task progresses through at most four states. Tasks

that depend on predecessor tasks start in the pending state.

Once all predecessors to a task have completed, the task

becomes ready and the scheduler may schedule its instances

for execution and allocate (dispatch) the instances to cores.

Tasks without predecessors (enabled at the beginning of

program execution) start in the ready state. Once all

instances of a task have been allocated, the task is

completely allocated. And once all its instances have

terminated, the task moves into the finished state (possibly

enabling successor tasks to become ready).

The task graph may include iterations, repeating certain

portions of the graph until some conditions are met. No

DAG assumption is made. Figure 2 shows the task graphs

that are studied in this paper. Squares represent tasks

(named A,B,C,…) and show the number of required

duplications and the (average or assumed) number of cycles

it takes one instance to complete. Arrows represent task

dependencies and rhombi represent conditions. In the

“Shared Variable” benchmark (a), for example, the

condition controls looping: The scheduler goes back to task

A (for another invocation) four times, and then proceeds to

task F.

Data dependencies are expressed (by the programmer) as

task dependencies. For instance, if a variable is written by

task tw and must later be read, then reading must occur in

tasks {tr} and tw{tr}. The synchronization action of

completion of tw prior to any execution of tasks {tr}

provides the needed barrier.

Shared Variable Parallel

A
1

23

B
100

15

C
500

35

D
600

20

E
130

18

F
1

27

A
1

23

B
2000

25

C
2500

35

D
2600

26

E
2300

18

F
1

19

A
1

540

B
1

225

C
4096

80

D
4096

7

A
1

10

B
1

10

G
300

2418

E
1

12810

L
1

460

N
1

207

D
300

181

K
100

1659

C
1

5715

I
100

1952

J
200

1490

F
300

705

H
300

2927

M
1

2548

Mandelbrot JPEG

Task Name
Number of instances

Length in time units

(a) (b) (c) (d)

Figure 2 : Benchmark task graphs

(a) Shared Variable, (b) Parallel, (c) Mandelbrot, (d) JPEG

3.3 Scheduler

The hardware scheduler assigns tasks to cores for

execution. A core which completes its task sends a

termination message to the scheduler. The scheduler then

allocates a new task to the core according to the task graph.

Thus, the two possible states of each core, as managed by

the hardware scheduler, are Idle and Busy. The scheduler

communicates with the cores over the Scheduler-to-Cores

Network (Figure 1).

The scheduler capacity, namely the number of

simultaneous tasks which the scheduler is able to allocate or

terminate during each cycle, is limited. Any additional task

allocations and task termination messages beyond scheduler

capacity await the following cycles in order to be processed.

A core remains idle from the time it issues a termination

message until the next task allocation arrives. That idle time

comprises not only the delay at the scheduler (wait and

3

processing times) but also any transmission latency of the

termination and allocation messages over the scheduler-to-

cores network.

4 SCHEDULER MODIFICATIONS

We investigate by simulations the following

modifications:

1. Enhancing scheduler capacity: A variable specifies

capacity for terminations (commit width) and allocations

(issue width).

2. Reducing scheduling latency: Overall latency between

core termination and next allocation.

3. Adding task queues to each core: A task queue near each

core may eliminate idle waiting between termination and

next allocation.

4. Execution time aware scheduling: A binary normal/long

hint of task length in the task graph enables the scheduler

to prioritize long tasks.

The scheduler can allocate and receive termination

messages of a configurable number of tasks instances. The

allocation and termination algorithms are shown in Figure 3.

Figure 3 : Allocation (top) and termination (bottom) algorithms

5 SIMULATION ENVIRONMENT

We used an in-house cycle-accurate architectural

simulator of 256 cores and 256 memory banks. Four

benchmark programs were simulated on 24 different

configurations of the architecture: task queue depth of

0,1,2,10, scheduler capacity of 5,10,, and latency of 0,20

cycles from scheduler to cores. Other values of these

parameters turned out insignificant. In individual benchmark

analysis below, only cycle latency of 20 is considered.

Four programs were tested (Figure 2). The first two

share the same task graph. In Shared variable, all instances

of one duplicable task write into the same memory bank,

causing many collisions, whereas in Parallel there is no

write sharing. The remaining benchmarks are a Mandelbrot

set and JPEG image compression (160×160 image).

Benchmarks were designed specifically for this study, to

take full advantage of the parallelism offered by the Plural

architecture and to expose scheduling issues.

6 ANALYSIS OF SIMULATION RESULTS

Figure 5 shows activity per core for the parallel

benchmark, for queue size of 0,1 and capacity 5,10. Latency

is incurred by both allocation and termination messages.

Total run time drops as we add a one slot queue (left).

Clearly, the queue helps hiding scheduling latency. The

capacity 5 scheduler is unable to utilize all cores, not taking

advantage of declared parallelism. Increasing capacity to 10

(bottom) results in lower idle time (yellow).

Notice the imbalanced work distribution in the top right

chart. Lower index cores, which receive the first tasks, also

receive a second task into their queues before they finish

their jobs. In higher index cores, the second task arrives

only after they already finished their work. Thus, queues

help hide latency only if scheduler capacity is sufficiently

high.

In the shared variable benchmark, all cores write to the

same memory bank, resulting in many collisions.

Interestingly, higher scheduler capacity (bottom, Figure 6)

actually degrades performance (red, collisions). The low

capacity scheduler spreads access times to shared bank, so

collision rate is reduced. The high capacity scheduler

enables more simultaneous accesses, increasing collisions.

In the JPEG benchmark, employing a task queue for the

cores significantly degrades system performance (Figure 7).

The scheduler capacity itself has no effect, due to task long

run times, which enable the scheduler to reach the high

index cores before any low index core finishes its work.

1. Find all Ready tasks.
2. Choose one of the Ready tasks (according to priority or by task

index).
3. While there is still enough scheduler capacity

a. Find core queue with fewest instances (choose lowest index
queue)

b. Allocate an instance to that queue
c. Increase counter of instances in that queue
d. Increase counter of allocated task instances
e. If a task is Completely Allocated, continue to next task

1. Choose lowest index core which has sent a termination message
2. While there is still enough scheduler capacity

a. Process termination message
b. Decrease counter of instances in queue
c. Increase counter of finished task instances
d. If task Finished, find new tasks eligible to run, change them to

Ready
e. Continue to next core

Figure 4 : Activity per cycle, Mandelbrot. Queue=0,1,2,10. Zoom-in on task D execution, infinite capacity

4

Figure 5 : Activity per core in Parallel benchmark

Figure 6 : Activity per cycle in Shared variable benchmark

Figure 7 : Activity per cycle in JPEG benchmark

Figure 8 : Activity per cycle, JPEG, E & C flagged long

When the scheduler is aware of expected length of

execution of each task, it avoids queueing tasks to a core

where a long task is allocated. In Figure 8, task E is flagged

long and total execution is shorter even with a queue.

In Mandelbrot benchmark (Figure 4), while task D (4096

instances of a 7 cycles task) executes, there are pauses. With

no queue the pauses are incurred by task allocation latency.

But even a two slots queue does not help to hide that

latency, and only the 10 slots queue does. While fine

granularity is nice to have, it requires deep queues and a

powerful scheduler of very high capacity to assign instances

fast enough to hide latencies.

7 CONCLUSIONS AND FUTURE WORK

We have analyzed how the hardware scheduler affects

performance of the Plural many-core architecture. We

introduced task queues at the cores and considered varying

scheduler capacity. A cycle-accurate simulator enabled

analyzing different benchmarks and architectural

modifications. We have shown that task assignment latency

can degrade performance. To hide that latency, we added

task queues at the cores. At times, these queues may

degrade performance. Execution-time aware scheduling was

shown effective in such cases. Additional studies are

discussed in [18]. Future research may address a blocking

cores-to-memories network, other scheduler distribution

networks such as tree and mesh, implications of scheduling

on power and profiling for scheduling optimization.

REFERENCES

[1] Bayer and Ginosar, US Patent 5,202,987, 1993.

[2] Wentzlaff et al., IEEE micro 5:15-31, 2007.

[3] Lee et al., ASPLOS-8, 1998.
[4] Waddington et al., SFMA 2011.

[5] Zydek and Selvaraj, ITNG 2009.

[6] Blumofe and Leiserson, J. ACM, 46.5:720-748, 1999.

[7] Tzannes et al., ACM TOPLAS 36(3), 2014.
[8] Crummey et al., CONTROL'94, 1098-1103, 1994.

[9] Kim and Smith, ISCA-29, 2002.

[10] Yu et al., SNPD 2009.
[11] Etsion et al., MICRO-43, 2010.

[12] Trancoso et al., Int. J. Parallel Programming, 34(3):213-235, 2006.

[13] Wen and Vishkin, 5th Conf. Computing Frontiers, 2008.
[14] Bayer and Ginosar, “Tightly Coupled Multiprocessing: The Super

Processor Architecture,” Springer Japan, 2002.

[15] Bayer and Aviely, US patent 8,099,561, 2012.
[16] http://www.macspace.eu/

[17] http://www.ramon-chips.com/RC64brief.Feb2015.pdf

[18] Avron and Ginosar, HPCC-ICESS 2012.

http://www.macspace.eu/
http://www.ramon-chips.com/RC64brief.Feb2015.pdf

