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Abstract – The Plural many-core architecture combines 

hundreds of simple cores, lock-free shared memory, hardware 

scheduler and a task-based programming model. The 

hardware scheduler enables fast scheduling and allocation of 

fine grain tasks to all cores. Scheduler performance is 

evaluated based on an architectural simulator and on multiple 

benchmarks representing a wide variety of inherent 

parallelism. Several architectural alternatives and scheduler 

configurations are simulated. It is shown that a scheduler with 

capacity to schedule and terminate 10 task-instances per cycle, 

along with a task queue of as little as two slots near each core, 

is sufficient to utilize 256 cores.  
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1 INTRODUCTION 

Many-core architectures come in different flavors: a 

two-dimensional array of cores arranged around a mesh 

NoC, GPUs with clusters of cores, and rings. This paper 

discusses the Plural architecture [1][14][15][16][17], in 

which many cores are interconnected to a many-port shared 

memory rather than to each other.  

Many cores also differ on their programming models, 

including PRAM-like shared memory and CSP-like 

message-passing. Memory access and message passing also 

relate to data dependencies and synchronization—locks, 

bulk-synchronous patterns and rendezvous. The Plural 

architecture employs a strict shared memory programming 

model. 

The last defining issue relates to task scheduling—

allocating tasks to cores and handling task dependencies. 

Scheduling methods include static (compile time) 

scheduling, dynamic software scheduling, architecture-

specific scheduling (e.g., for NoC), and hardware 

schedulers, as in the Plural architecture, in which data 

dependencies are replaced by task dependencies in order to 

achieve better performance, better efficiency and easier 

programming. 

This paper addresses the performance of hardware 

scheduling on the Plural architecture and investigates 

potential scheduling acceleration techniques, including task 

queues at the cores, reducing scheduling latency, increasing 

scheduler capacity (issue and commit width) and using 

expected execution-time to affect scheduling [18]. The 

study is based on cycle-accurate simulation of the entire 

many-core system executing complete applications. 

The rest of this paper is organized as follows: Section 2 

discusses related work. In Section 3 we present the Plural 

architecture. Proposed scheduling acceleration techniques 

are given in Section 4. In Section 5 we describe our 

simulation environment and benchmarks. Analysis of 

simulation results is presented in Section 6, and we 

conclude in Section 7. 

2 RELATED WORK 

Tilera [2] employed static compile time scheduling [3], 

or a dynamic scheduler [4]. A more general treatment is 

given in [5]. Static scheduling in a many-core during 

compile time [3] cannot adapt to varying run-time 

circumstances. Software scheduling (work-stealing [6] or 

lazy-scheduling [7]) may not scale well because of very 

high rates of task allocations and terminations (commits) . 

Hardware schedulers should enable dynamic, flexible, 

adaptive execution of fine-grain tasks on many-

cores [8][9][10][11][12]. Hardware scheduling by prefix-

sum logic was employed in XMT [13], which was limited to 

executing multiple instances of only one task at a time.  

3 PLURAL ARCHITECTURE 

This section presents the Plural architecture (Figure 1), 

the programming model, and the hardware scheduler. 

3.1 Architecture 

 

Figure 1: Plural many-core architecture 

The Plural architecture is a shared-memory single-chip 

many-core system [1][14][15][18]. Emerging 

implementations include the MacSpace EC-FP7 project [16] 

and RC64 [17]. The Plural many-core consists of a 

hardware synchronization and scheduling unit, tens to 

hundreds of simple cores, and a shared on-chip memory 

accessible through a high-performance logarithmic 
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interconnection network. The cores may contain instruction 

and data caches; the latter is flushed and invalidated by the 

end of each task execution, guaranteeing consistency of the 

shared memory. In addition, the cores may contain private 

‘scratchpad’ or ‘tightly coupled’ memories. The cores are 

designed for low power operation using ‘slow clock’ 

(typically slower than 500 MHz). Performance is achieved 

by high level of parallelism rather than by sheer speed, and 

access to the on-chip shared memory across the chip takes 

only a small number of cycles. 

The on-chip shared memory is organized in a large 

number of banks, to enable many ports that can be accessed 

in parallel by the many cores, via the network. To reduce 

collisions, addresses are interleaved over the banks. The 

cores are connected to the memory banks by a multi-stage 

many-to-many interconnection network. The network 

detects access conflicts contending on the same memory 

bank, proceeds serving one of the requests and notifies the 

other cores to retry their access. The cores immediately retry 

a failed access. Two or more concurrent read requests from 

the same address are served by a single read operation and a 

multicast of the same value to all requesting cores.  

3.2 Programming Model 

The Plural PRAM-like programming model is based on 

non-preemptive execution of multiple sequential tasks. The 

programmer defines the tasks, as well as their dependencies 

and priorities which are specified by a (directed) task graph. 

Tasks are executed by cores and the task graph is ‘executed’ 

by the scheduler.  

Concurrent tasks (namely, tasks independent of each 

other that may execute together or at any order) may be 

prioritized by the programmer. Expected task durations may 

optionally be indicated in the task graph. 

Some tasks (typically amenable to data parallelism) may 

be duplicable, accompanied by a quota that determines the 

number of instances that should be executed (declared 

parallelism [7]). All instances of the same duplicable task 

are mutually independent and concurrent, and hence they 

may be executed in parallel or in any arbitrary order. These 

instances are distinguishable from each other merely by 

their instance number. Concurrent instances do not write-

share data. Ideally, their execution time is short (fine 

granularity). Concurrent instances can be scheduled for 

execution at any (arbitrary) order, and no priority is 

associated with instances. 

Each task progresses through at most four states. Tasks 

that depend on predecessor tasks start in the pending state. 

Once all predecessors to a task have completed, the task 

becomes ready and the scheduler may schedule its instances 

for execution and allocate (dispatch) the instances to cores. 

Tasks without predecessors (enabled at the beginning of 

program execution) start in the ready state. Once all 

instances of a task have been allocated, the task is 

completely allocated. And once all its instances have 

terminated, the task moves into the finished state (possibly 

enabling successor tasks to become ready). 

The task graph may include iterations, repeating certain 

portions of the graph until some conditions are met. No 

DAG assumption is made. Figure 2 shows the task graphs 

that are studied in this paper. Squares represent tasks 

(named A,B,C,…) and show the number of required 

duplications and the (average or assumed) number of cycles 

it takes one instance to complete. Arrows represent task 

dependencies and rhombi represent conditions. In the 

“Shared Variable” benchmark (a), for example, the 

condition controls looping: The scheduler goes back to task 

A (for another invocation) four times, and then proceeds to 

task F.  

Data dependencies are expressed (by the programmer) as 

task dependencies. For instance, if a variable is written by 

task tw and must later be read, then reading must occur in 

tasks {tr} and tw{tr}. The synchronization action of 

completion of tw prior to any execution of tasks {tr} 

provides the needed barrier. 
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Figure 2 : Benchmark task graphs  

(a) Shared Variable, (b) Parallel, (c) Mandelbrot, (d) JPEG 

3.3 Scheduler 

The hardware scheduler assigns tasks to cores for 

execution. A core which completes its task sends a 

termination message to the scheduler. The scheduler then 

allocates a new task to the core according to the task graph. 

Thus, the two possible states of each core, as managed by 

the hardware scheduler, are Idle and Busy. The scheduler 

communicates with the cores over the Scheduler-to-Cores 

Network (Figure 1). 

The scheduler capacity, namely the number of 

simultaneous tasks which the scheduler is able to allocate or 

terminate during each cycle, is limited. Any additional task 

allocations and task termination messages beyond scheduler 

capacity await the following cycles in order to be processed. 

A core remains idle from the time it issues a termination 

message until the next task allocation arrives. That idle time 

comprises not only the delay at the scheduler (wait and 
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processing times) but also any transmission latency of the 

termination and allocation messages over the scheduler-to-

cores network.  

4 SCHEDULER MODIFICATIONS 

We investigate by simulations the following 

modifications: 

1. Enhancing scheduler capacity: A variable specifies 

capacity for terminations (commit width) and allocations 

(issue width). 

2. Reducing scheduling latency: Overall latency between 

core termination and next allocation. 

3. Adding task queues to each core: A task queue near each 

core may eliminate idle waiting between termination and 

next allocation.  

4. Execution time aware scheduling: A binary normal/long 

hint of task length in the task graph enables the scheduler 

to prioritize long tasks. 

The scheduler can allocate and receive termination 

messages of a configurable number of tasks instances. The 

allocation and termination algorithms are shown in Figure 3. 

 

 

Figure 3 : Allocation (top) and termination (bottom) algorithms 

5 SIMULATION ENVIRONMENT 

We used an in-house cycle-accurate architectural 

simulator of 256 cores and 256 memory banks. Four 

benchmark programs were simulated on 24 different 

configurations of the architecture: task queue depth of 

0,1,2,10, scheduler capacity of 5,10,, and latency of 0,20 

cycles from scheduler to cores. Other values of these 

parameters turned out insignificant. In individual benchmark 

analysis below, only cycle latency of 20 is considered. 

Four programs were tested (Figure 2). The first two 

share the same task graph. In Shared variable, all instances 

of one duplicable task write into the same memory bank, 

causing many collisions, whereas in Parallel there is no 

write sharing. The remaining benchmarks are a Mandelbrot 

set and JPEG image compression (160×160 image). 

Benchmarks were designed specifically for this study, to 

take full advantage of the parallelism offered by the Plural 

architecture and to expose scheduling issues. 

6 ANALYSIS OF SIMULATION RESULTS 

Figure 5 shows activity per core for the parallel 

benchmark, for queue size of 0,1 and capacity 5,10. Latency 

is incurred by both allocation and termination messages. 

Total run time drops as we add a one slot queue (left). 

Clearly, the queue helps hiding scheduling latency. The 

capacity 5 scheduler is unable to utilize all cores, not taking 

advantage of declared parallelism. Increasing capacity to 10 

(bottom) results in lower idle time (yellow). 

Notice the imbalanced work distribution in the top right 

chart. Lower index cores, which receive the first tasks, also 

receive a second task into their queues before they finish 

their jobs. In higher index cores, the second task arrives 

only after they already finished their work. Thus, queues 

help hide latency only if scheduler capacity is sufficiently 

high. 

In the shared variable benchmark, all cores write to the 

same memory bank, resulting in many collisions. 

Interestingly, higher scheduler capacity (bottom, Figure 6) 

actually degrades performance (red, collisions). The low 

capacity scheduler spreads access times to shared bank, so 

collision rate is reduced. The high capacity scheduler 

enables more simultaneous accesses, increasing collisions. 

In the JPEG benchmark, employing a task queue for the 

cores significantly degrades system performance (Figure 7). 

The scheduler capacity itself has no effect, due to task long 

run times, which enable the scheduler to reach the high 

index cores before any low index core finishes its work. 

1. Find all Ready tasks. 
2. Choose one of the Ready tasks (according to priority or by task 

index). 
3. While there is still enough scheduler capacity 

a. Find core queue with fewest instances (choose lowest index 
queue) 

b. Allocate an instance to that queue  
c. Increase counter of instances in that queue 
d. Increase counter of allocated task instances  
e. If a task is Completely Allocated, continue to next task 

1. Choose lowest index core which has sent a termination message 
2. While there is still enough scheduler capacity 

a. Process termination message 
b. Decrease counter of instances in queue  
c. Increase counter of finished task instances  
d. If task Finished, find new tasks eligible to run, change them to 

Ready  
e. Continue to next core  

 

Figure 4 : Activity per cycle, Mandelbrot. Queue=0,1,2,10. Zoom-in on task D execution, infinite capacity 
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Figure 5 : Activity per core in Parallel benchmark 

 

Figure 6 : Activity per cycle in Shared variable benchmark 

 

Figure 7 : Activity per cycle in JPEG benchmark 

 

Figure 8 : Activity per cycle, JPEG, E & C flagged long 

When the scheduler is aware of expected length of 

execution of each task, it avoids queueing tasks to a core 

where a long task is allocated. In Figure 8, task E is flagged 

long and total execution is shorter even with a queue. 

In Mandelbrot benchmark (Figure 4), while task D (4096 

instances of a 7 cycles task) executes, there are pauses. With 

no queue the pauses are incurred by task allocation latency. 

But even a two slots queue does not help to hide that 

latency, and only the 10 slots queue does. While fine 

granularity is nice to have, it requires deep queues and a 

powerful scheduler of very high capacity to assign instances 

fast enough to hide latencies. 

7 CONCLUSIONS AND FUTURE WORK 

We have analyzed how the hardware scheduler affects 

performance of the Plural many-core architecture. We 

introduced task queues at the cores and considered varying 

scheduler capacity. A cycle-accurate simulator enabled 

analyzing different benchmarks and architectural 

modifications. We have shown that task assignment latency 

can degrade performance. To hide that latency, we added 

task queues at the cores. At times, these queues may 

degrade performance. Execution-time aware scheduling was 

shown effective in such cases. Additional studies are 

discussed in [18]. Future research may address a blocking 

cores-to-memories network, other scheduler distribution 

networks such as tree and mesh, implications of scheduling 

on power and profiling for scheduling optimization. 
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