
Copyright (c) 2018 IEEE. Personal use of this material is permitted. However, permission to use this material for any other other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.



Abstract—Machine learning algorithms have become a major

tool in various applications. The high performance requirements

on large-scale datasets pose a challenge for traditional von

Neumann architectures.

We present two machine learning implementations and

evaluations on PRINS, a novel processing-in-storage system based

on Resistive Content Addressable Memory (ReCAM). PRINS

functions simultaneously as a storage and a massively parallel

associative processor. PRINS processing-in-storage resolves the

bandwidth wall faced by near-data von Neumann architectures,

such as 3D DRAM and CPU stack or SSD with embedded CPU,

by keeping the computing inside the storage arrays, thus

implementing in-data, rather than near-data, processing. We show

that PRINS based processing-in-storage architecture may

outperform existing in-storage designs and accelerator based

designs. Multiple performance comparisons for the ReCAM

processing-in-storage implementations of K-means and K-nearest

neighbors are performed. Compared platforms include CPU,

GPU, FPGA and Automata Processor. We show that PRINS may

achieve an order-of-magnitude speedup and improved power

efficiency relative to all compared platforms.

Index Terms— Near-data Processing; Associative Processing;

Processing-in-storage; Processing-in-Memory; RRAM; CAM;

Memristors.

I. INTRODUCTION

achine learning algorithms have become a ubiquitous tool

in wide range of large-scale applications, from data

analytics to pharmaceutical research. The scale and

performance requirements of these applications makes machine

learning algorithms a prime candidate for accelerator research.

Most accelerators are von Neumann machines, which

performance is severely limited by memory bandwidth. This

limitation is especially acute in machine learning algorithms

which are typically data intensive. One approach to mitigate the

bandwidth constraint is to bring the processing units closer to

the data. That approach is known as near-data processing

(NDP) [1].

The premise of NDP is reducing memory transfer time by

cutting the physical distance and increasing the bandwidth

between the processing units and memory. However, NDP

architectures such as 3D DRAM and CPU stacks, or SSD with

embedded CPU, are still inherently limited because they are

based on replicating the von Neumann architecture in memory

Manuscript received July 31, 2017; revised December 8, 2017; accepted

January 20, 2018.

or storage. Since its inception, NDP has mainly meant

processing-in-memory (PiM). More recent approach is to

exploit processing elements closer to storage, i.e., near-storage

processing. However, both PiM and near-storage processing

still suffer from the von Neumann bandwidth bottleneck. PiM

has a bottleneck between storage and main memory. Near-

storage processing suffers from the bottleneck between the

storage chips and processing units. Both approaches are

inherently limited because they are largely based on the von

Neumann architecture model.

This work presents PRINS, a novel Processing IN Storage

architecture that employs a Resistive CAM (ReCAM, [2][3]),

and applies it to acceleration of machine learning tasks. PRINS

simultaneously functions as a data storage and a massively

parallel SIMD accelerator that performs the computations in-

situ, resulting in increased performance through more complete

utilization of the internal storage bandwidth, and reduced

energy consumption. The scalability of the system makes it

suitable for storing and in-situ processing of high volume data

intensive applications such as machine learning. The entire

dataset fits in PRINS storage. Furthermore, there is no other

storage and PRINS storage is large enough to contain it.

This paper makes the following contributions:

 We present the PRINS architecture and show how it can

function as a scalable storage with in-data processing

capabilities.

 We develop and evaluate a PRINS based

implementation for two machine learning algorithms: K-

means and KNN.

 We show that PRINS implementations can outperform

near-data or other implementations in both performance

and power efficiency. Compared platforms include

CPU, GPU, FPGA and an extended Automata Processor

[4], [5].

The rest of this paper is organized as follows. Section II

reviews the background and previous work. Section III presents

the PRINS architecture. Sections IV and V describe the

ReCAM implementations of K-means and KNN, respectively,

including performance and power efficiency comparisons.

Section VI offers conclusions.

The authors are with the Electrical Engineering Department, Technion,
Israel Institute of Technology (email: sromanka@campus.technion.ac.il;

leonid.yavits@nububbles.com; ran@ee.technion.ac.il).

PRINS: Processing-in-Storage

Acceleration of Machine Learning

Roman Kaplan, Leonid Yavits and Ran Ginosar

M

mailto:pubs-permissions@ieee.org
mailto:sromanka@campus.technion.ac.il
mailto:leonid.yavits@nububbles.com
mailto:ran@ee.technion.ac.il

 2

II. BACKGROUND AND PREVIOUS WORK

The following review considers previous work in the areas of

processing in memory (PiM) addressing the memory bandwidth

and latency limitations, processing near storage and

implementations of PiM using resistive logic.

A. Processing in Memory

Memory access latency in conventional computer

architectures is often orders of magnitudes longer than

processing time, and memory bandwidth is similarly limited.

One approach to bridging this gap is processing-in-memory

(PiM) [6]–[9], which places memory and processing on the

same integrated circuit. Although PiM improves memory

latency and bandwidth, the approach is limited by the size of

memory and logic that can be integrated on a single chip.

Monolithic 3D integrated circuits [10], together with recent

advances in 3D memory (e.g., Hybrid Memory Cube [11]) may

help to improve the memory and logic density and to relax the

memory latency and bandwidth obstacles. However, separate

memory and logic 3D stacks yield near-memory processing

rather than PiM.

B. Processing Near Storage

More recently, with the introduction of Flash SSD, near-data

processing-in-storage, or near-storage-processing (NSP),

research has begun to emerge. In general, this approach either

exploits existing processing elements within the storage device

(i.e., controller) [12]–[15] or places additional processing

elements. The additional processing elements can vary from a

multi-core CPU [14], to GPU [16] and FPGA [17], [18]. All of

the above works attempt to exploit the higher inner bandwidth

of the SSD. However, the bandwidth wall still exists, because

the bandwidth of flash arrays is limited, ranging from a few

hundred MB/s to a few GB/s, depending on the number of

parallel flash channels [19].

C. PiM Using Resistive Logic

Emerging resistive memory technologies have become a

focus of PiM research. A 3D monolithic device [20], including

a storage layer that consists of more than one million resistive

RAM cells, allows for in-situ processing as the logic cells are

placed in proximity of the storage cells. Another work [21] has

demonstrated a test chip of 32Gb device in 24nm technology

with two ReRAM-based memory layers and a CMOS logic

layer underneath, showing design techniques to achieve a high

density functional chip.

Other works aim to exploit the resistive devices as logic. The

stateful IMPLY logic [22] employs one resistor and two

memristors can be used as input and the state of one of the

memristor stores the output. The Memristor Aided Logic

(MAGIC) method [23][24] offers additional basic logic

functions, implemented without the resistor and with a third

memristor to store the output. Li at al. [25] experimentally

demonstrated a similar approach by implementing 16 Boolean

logic functions with memristor NAND logic.

Complete PiM architectures based on resistive materials

were also proposed. Somnath et al. [26] developed MBARC, a

memory-based architecture for reconfigurable computing,

combining a resistive crossbar architecture with memory

partitions serving as lookup tables with CMOS logic for pre-

evaluation. Chi et al. [27] introduced PRIME, a PIM accelerator

of neural network applications in RRAM based main memory.

Shafiee et al. [28] developed an in-situ processing architecture,

where memristor crossbar arrays are used to perform dot-

product operations in an analog manner. Guo et al. [29]–[31]

suggested using resistive and STT-MRAM ternary CAM for

data intensive computing. Their works used the associative

capabilities of CAM and ternary CAM mainly for search

operations, while computing is largely done in a CPU. Their

work targeted a different architecture, replacing RAM by

resistive CAM or ternary CAM in NVDIMM rather than in

mass storage.

D. Our Contribution

In this paper, we demonstrate K-means and KNN high

performance and power-efficient execution on PRINS, a

massively parallel non-von Neumann processing-in-storage

architecture. This architecture is different from previous

suggestions mainly by its use of associative, rather than logic-

based, processing. The inherent parallel performance of the

resistive memory array can be utilized to the full extent,

enabling very high computation throughput while reducing

energy consumption (mainly due to reduced data movement

within the device).

III. PRINS ARCHITECTURE

Resistive memories store information by modulating the

resistance of nanoscale storage elements. The metal-oxide

resistive random access memory (ReRAM) is considered a

potential technology to replace next-generation nonvolatile

memories [32]. Recent advances in the technology have

demonstrated fast (about 0.3ns) and low energy (about 0.1pJ)

[33] switching. While most ReRAM-based designs employ one

transistor and one memristor (1T1R) cells, ReCAM uses 2T2R

[37] or 2R [38] cells and appropriate peripheral circuits [38] to

support associative storage and processing.

A. ReCAM Crossbar Array

The ReCAM module (Figure 1) comprises a ReCAM array,

where each memory row is also a baseline processing unit (PU),

and a peripheral circuitry. The basic cell contains two

memristors, holding complementary values 𝑅 and �̅�, and two

selector transistors T1 and T2 (Figure 1a). The peripheral

circuitry includes key and mask registers, TAG logic (Figure

1b), a reduction tree (Figure 1c) and a daisy-chain interconnect

of the TAG line.

ReCAM is a scalable alternative to CMOS CAM.

Memristors are two-terminal devices, where the resistance of

the device is changed by the electrical current or voltage. The

resistance of the memristor is bounded by a minimum resistance

𝑅𝑂𝑁 (low resistive state, logic ‘0’) and a maximum resistance

𝑅𝑂𝐹𝐹 (high resistive state, logic ‘1’).

The KEY register (Figure 1) contains a key data word to be

written or compared against. The MASK register defines the

 3

active fields for write, compare and read operations, enabling

bit selectivity. The TAG marks the rows that are matched by the

compare operation and are to be affected by the successive

parallel write. A daisy-chain like bitwise interconnect allows

PUs to intercommunicate through their TAGs, all PUs in

parallel. The reduction tree enables counting of active tag bits

by logarithmic summation. This operation is useful whenever a

vector needs to be reduced to a scalar.

The ReCAM compare operation is implemented as follows.

The Match/Word lines are pre-charged and the key is asserted

to the Bitlines and the inverse key is asserted to the Bit-not

lines. In the columns that are ignored during comparison, the

Bit and Bit-not lines are kept at ‘0’. If all unmasked bits in a

row match the key (i.e., when Bit line ‘1’ is applied to an 𝑅𝑂𝐹𝐹

memristor and Bit-not line ‘0’ is applied to an 𝑅𝑂𝑁 memristor,

or vice versa), the Match/Word line remains high and ‘1’ is

sampled into the corresponding TAG bit. If at least one

unmasked bit is mismatched, the Match/Word line discharges

through an 𝑅𝑂𝑁 memristor and an open selector transistor. A

logic ‘0’ is then sampled into the TAG.

The write operation is performed in two phases. First, the

𝑉 ≥ 𝑉𝑂𝑁 voltage (where 𝑉𝑂𝑁 is a threshold voltage required to

switch memristors to the "on" state) is applied to all tagged

Match/Word lines, and applicable Bit lines (for writing ‘0’s)

and Bit-not lines (for complementing ‘1’s) are set at '1'. Second,

the 𝑉 ≤ 𝑉𝑂𝐹𝐹 voltage (where 𝑉𝑂𝐹𝐹 is a threshold voltage to

switch memristors to the "off" state) is applied to all tagged

Match/Word lines, and applicable Bit-not lines (for

complementing the ‘0’s) and Bit lines (for writing ‘1’s) are set

at '1'.

Memristor sub-nanosecond switching time [33] allows GHz

ReCAM processing-in-storage operation. The energy

consumption during compare may be less than 1fJ per bit [38].

The write energy is in the range of tens of fJ [33], which may

be prohibitively high for simultaneous parallel writing of multi-

bit words in the entire ReCAM storage. Another factor which

potentially limits ReCAM processing-in-storage system is

endurance (the number of program/write cycles that can be

applied to a memristor before it becomes unreliable). Recent

endurance figures vary between 1010 [34] and 1012 cycles [35],

[36], which may suffice for only about one month. However,

the area is still actively researched. Moreover, with some

advanced wear-leveling techniques similar to those presented in

[39][40], we believe ReCAM processing-in-storage system

life-time can be extended to a number of years.

B. Associative Processing with the ReCAM Crossbar Array

In a conventional CAM, compare operation is typically

followed by a read of the matched data word. In associative

processing a compare is usually followed by a parallel write of

the result value into the unmasked bits of all tagged rows.

Additional capabilities, such as read and reduction operations,

are included [38][2].

Any computational expression can be efficiently

implemented in ReCAM storage using line-by-line execution of

the truth table of the expression [38]. Arithmetic operations are

typically performed bit-serially. Table 1 lists several operations

supported by a ReCAM crossbar array for 32-bit operands and

the number of cycles required per each operation. Shifting

down a consecutive block of rows by one row position requires

six cycles per bit: First, compare-to-‘1’ copies the source bit-

column of all rows into the TAG. Second, shift moves the TAG

vector down by setting the shift-select line (Figure 1b). Third,

write-‘1’ copies the shifted TAG to the same bit-column. The

fourth-to-sixth cycles repeat the process for ‘0’ values. Shifting

32-bit numbers thus requires 192 cycles. Addition (in-place or

not) is performed in a bit-serial manner using a truth table

approach [38] (32 bits times 8 truth-table rows times 2 for

compare and write amount to 512 cycles). Row-wise maximum

compares in parallel two 32-bit numbers in each row. Max

Scalar tags all rows that contain the maximal value in the

selected element. Additional operations, such as parallel and

reduction arithmetic, may be required for other algorithms.

Floating point arithmetic operations are also supported. Single

precision floating point multiplication requires 4,400 cycles

[38].

C. System Architecture

Conceptually, ReCAM may comprise hundreds of millions

of rows, each serving as a processing unit (PU). The entire array

may be divided into multiple smaller ICs (due to power per die

restrictions, Figure 2a). A row is fully contained within a single

IC.

The PRINS processing-in-storage system uses a

(a)

Match /

Word Line

Match /

Word Line

Match /

Word Line

T1 T2

R R

...

...

...

... ...

...

KEY

MASK

Bit Bit Bit Bit Bit Bit

TAG

TAG

MUX

I1

I0

Write

TAG from prev. chip

Sel
O

To next
TAG

TAG
Latch

Shift
select

PrechML

TAG to next chip

SA

(b)

...

R
e
d
u

c
ti
o
n

 T
re

e

To
RT

(c)

Figure 1: ReCAM module. (a) 2T2R ReCAM bitcell. (b) TAG

logic. (c) Reduction tree

Table 1: 32-bit arithmetic operations on PRINS

Instruction Cycles

Shift down one row 192

B  A + B 256

C  A + B 512

Row-wise Max (A, B) 64

Max Scalar (A) 64

 4

microcontroller (Figure 2b). It issues instructions, sets the key

and mask registers, handles control sequences and executes

read requests. The microcontroller may also perform some

baseline processing, such as normalization of the reduction tree

results. PRINS software, including both associative operations

and sequential instructions executed on the microcontroller, is

manually encoded at assembly language level.

The scaling of conventional near-data processing

architectures may be limited, similarly to high-performance

parallel von Neumann architectures. When growing internal

bandwidth of the storage arrays is met by increasing number of

in-storage processing cores, the storage array-to-in-storage

processor communication bottleneck becomes worse. As a

result, the performance of processing-in-storage system may

saturate or even diminish.

ReCAM processing-in-storage provides better scalability. Its

inherent parallelism allows increasing the performance of many

workloads almost linearly as the datasets grow along with

storage size. Since the bulk of the data is never transferred

outside the storage arrays through a bandwidth-limited

communication interface, the performance limit is pushed

further away.

D. Programming and Evaluation Parameters

ReCAM relies on the host to transfer the code, execution

parameters (e.g., dataset addresses) and invoke execution. The

code intended to run on ReCAM is translated into associative

primitives. Presently, ReCAM code is manually encoded at

assembly language level.

There is no hardware support for data coherence between the

host CPU and ReCAM storage. ReCAM has no access to the

host main memory or on-chip cache. Therefore, the datasets on

which ReCAM operates must reside in the ReCAM and should

not be left in the host memory. To avoid inconsistencies

between PRINS and the host CPU memory, PRINS storage is

inaccessible to the host CPU during PRINS operation.

The following two sections present two algorithm

implementations and evaluations on ReCAM for performance

and power efficiency. Memristor latency and energy figures are

obtained using intensive SPICE simulations based on the

TEAM model [41]. ReCAM energy and timing figures were

obtained using full SPICE simulations of [38] for a single cell

and a row, an incorporating the above results for the memristor.

ReCAM parameters used for the algorithms performance and

energy evaluations are listed in Table 2. Full PRINS array

performance and power simulations were conducted using our

own cycle-accurate simulator (similar to the one introduced

in[38]) for each dataset in the paper.

IV. K-MEANS PRINS IMPLEMENTATION

K-means is an unsupervised machine learning algorithm for

clustering unclassified samples. It aims to partition 𝑁 samples

into K clusters, where each observation belongs to the cluster

with the nearest center (mean). Every sample usually consists

of multiple attributes (dimensions). The algorithm performs

several iterations until reaching convergence, modifying the

cluster center coordinates and sample cluster assignments in

each iteration.

A. In-Storage K-Means Algorithm

The K-means algorithm pseudocode, as implemented in

storage, is presented in Figure 3. The algorithm minimizes the

Euclidean distances between the samples and the cluster means.

Prior to execution, the means are initialized by randomly

choosing 𝐾 samples and the minimum Euclidean distance of all

samples is initialized to the highest possible value. During

execution, the algorithm consists of two K-iteration loops,

assignment and update.

The assignment assigns each sample with a cluster. It does so

by assigning each sample to the cluster whose mean yields the

minimal Euclidean distance. In each iteration of lines 3-6 of

Figure 3, the distance over a single attribute is associatively

calculated in parallel for all dataset samples. Next, in lines 7-9,

after all attribute distances were summed, the minimal

Euclidean distance and the cluster assignment are updated in

Algorithm 1 K-Means Implementation in PRINS

// 𝑋: the group of samples. K: number of means

// Every 𝑥 ∈ 𝑋 is stored in a separate RCAM row

//Assignment: assign each sample with a cluster

// Each of the k means is a tuple: (𝑖𝑚𝑒𝑎𝑛, 𝑀𝑒𝑎𝑛)

1: For each 𝑖𝑚𝑒𝑎𝑛 ∈ [1, 𝐾]:

 Do-all 𝑥 ∈ 𝑋: //all samples in parallel

2: Write 𝑚𝑒𝑎𝑛 coordinates to 𝑡𝑒𝑚𝑝 columns

3: For each 𝑎𝑡𝑡𝑟 ∈ {𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}:

4: 𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← 𝑥𝑎𝑡𝑡𝑟 − 𝑚𝑒𝑎𝑛𝑎𝑡𝑡𝑟

5: 𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← (𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟)2

6: 𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛 ← 𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛 + 𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟

7: Tag rows with 𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛 < 𝑚𝑖𝑛_𝑠𝑞𝐷𝑖𝑠𝑡

8: Write 𝑚𝑖𝑛_𝑠𝑞𝐷𝑖𝑠𝑡 ← 𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛

9: Write 𝑖𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑚𝑒𝑎𝑛 ← 𝑖𝑚𝑒𝑎𝑛

// Update: calculate new mean coordinates

10: For each 𝑖𝑚𝑒𝑎𝑛 ∈ [1, 𝐾]:

11: Tag rows with 𝑖𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑚𝑒𝑎𝑛 == 𝑖𝑚𝑒𝑎𝑛

12: For each 𝑎𝑡𝑡𝑟 ∈ {𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}:

13: 𝑆𝑢𝑚𝑎𝑡𝑡𝑟 ← 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑎𝑡𝑡𝑟)

14: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 ← 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚𝑎𝑡𝑐ℎ_𝑙𝑖𝑛𝑒𝑠)

15: 𝑚𝑒𝑎𝑛𝑎𝑡𝑡𝑟 ← 𝑆𝑢𝑚𝑎𝑡𝑡𝑟/𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒

Figure 3: K-Means Pseudocode for a single iteration of the

algorithm

(a)

Register File

8x2 Add
Look-up

Table

4x1 AND
Look-up

Table

Operation Truth-Tables Buffer

8x2 Sub
Look-up

Table

4x2 Max
Look-up

Table

2x1 NOT
Look-up

Table

4x1
NAND

Look-up
Table

4x1 XOR
Look-up

Table

4x1 NOR
Look-up

Table

ALU

(b)

Instruction Memory

Figure 2: A PRINS system, composed of (a) separate multiple

ReCAM modules and (b) a microcontroller.

Table 2: Simulated PRINS parameters used for performance

and power efficiency evaluations.

ReCAM Parameter Value

Technology 28nm

Frequency 500MHz

Single row compare energy 1fJ

Single bit write energy 100jJ

Bits per row 256

Single module memory size 256MB

 5

parallel for all dataset samples. Note that lines 2-9 are always

executed in parallel on the entire storage, in a SIMD-like style.

The update loop recalculates the new mean coordinates.

First, for each mean index, 𝑖𝑚𝑒𝑎𝑛, all samples assigned to this

mean are tagged (line 11). Then, for each attribute and for all

tagged rows, the sum of coordinates is calculated in parallel

(line 13), followed by counting the number of samples assigned

to the mean (line 14), both using the reduction tree. Finally, the

new mean coordinates are calculated by the microcontroller

(line 15).

The assignment and update loops may be repeated until the

mean coordinates convergence. Note that the key

computational steps are parallelized, and in the update loop

parallelism (over all samples of the same cluster) is made

possible by associativity. Convergence is checked at the

microcontroller by comparing the mean coordinates of each two

consecutive assignment iterations, then checking if the

difference exceeds the predefined threshold. If all mean

coordinates change within the threshold, the execution ends.

B. K-Means Performance Evaluations

Several evaluations are performed. We compare our PRINS

implementation with a multicore CPU [42], FPGA [43], [44],

single- [45] and 10-GPU cluster [46] K-means

implementations. Table 4 lists all compared datasets from each

work. Table 3 presents the average runtime per iteration of each

architecture, PRINS simulated runtime, relative speedup and

power efficiency ratio of PRINS relative to the other

architectures (based on specified power figures for each

architecture).

Ding et al. [42] used a high-end eight-core Intel i7-3770K

CPU. We used two of their largest evaluated datasets for

comparison, the first containing 2.5M samples (US Census

Data in Table 4) and 68 attributes. The second contains 1M

samples and 384 attributes. The attributes were extracted from

"tiny" images (30×30 pixels each), hence the name Tiny. Li et

al. [43] showed a simplified MapReduce implementation on

Xilinx ZC706 FPGA and about 2 million samples and 4

attributes. Ramanathan et al. [44] presented an implementation

with work-stealing method of run-time load balancing on an

Altera Stratix V FPGA. Bhimani et al. [45] presented GPU

implementation of K-means, using NVIDIA K20M and

executing on a 1164×1200 pixel RGB image. Each pixel has

five attributes, three for color and two for coordinates.

Rossbach et al. [46] used a ten-node cluster. Every node with a

NVIDIA Tesla K20M GPU and two Intel Xeon E5-2620 CPU,

which dissipate total of 225W+2×95W=415W. Evaluations

were performed on a very large data set of 1 billion samples and

40 dimensions, occupying roughly 150GB. Their average

iteration time is 49.4 seconds, compared with simulated 0.16

seconds on PRINS, yielding a speedup of 302. The large

speedup over the big dataset is attributed to the insensitivity of

PRINS to dataset size, unlike the GPU cluster, which is limited

by the communication bandwidth of each GPU.

V. K-NEAREST NEIGHBORS PRINS IMPLEMENTATION

K-nearest neighbors (KNN) is another common machine

learning algorithm frequently used for classification. The

algorithm computes the distances between an (unclassified)

input query sample and a dataset of classified samples. Each

sample consists of multiple attributes and also stores its class.

The query vector classification is usually determined by the

majority vote of 𝐾-nearest database samples, hence the name

𝐾-nearest neighbors. Distance is most commonly Euclidean,

although Manhattan or Hamming distance might occasionally

be used, as the two latter options are less computationally

Table 4: K-Means datasets used for performance comparisons.

Work

Ref.

Dataset
Clusters

(K) Name Samples
Attributes

(Dimensions)
Size on

disk

[42]

US Census
Data [52]

2.5M 68 318.8MB 10000

Tiny 1M 384 384MB 10000

[43]
Electric

Power [52]
2M 4 31.6MB 4

[44]
N/A

(synthetic)
~1M 1 4MB 128

[45]
N/A (1.4MP
RGB Image)

1.4M 5 21.3MB 240

[46]
N/A

(synthetic)
1B 40 157.2GB 120

Table 3: K-Means compared performance to different architectures.

Platform
Work

Ref.
Device/s TDP (W) Dataset Name

Avg. Time per
Iteration (sec)

PRINS Time
per Iteration

(sec)

PRINS
Average

Power (W)

PRINS
Speedup

PRINS Power
Efficiency Ratio

CPU [42]
Intel

i7-3770K
77

US Census Data 76 6 63.7 12.6× 15.2×

Tiny 48.5 9.3 81.3 5.2× 5×

FPGA
[43] Xilinx ZC706 25 Electric Power 8.5 msec 0.55 msec 7.3 15.5× 52.6×

[44]
Altera

Stratix V
25 N/A (synthetic) 22 msec 4.5 msec 4 4.9× 30.4×

GPU
[45] NVIDIA K20M 225

1.4MP RGB
Image

1.77 43 msec 5 86.2× 1900×

[46]
Cluster of ten

nodes
4150 N/A (synthetic) 49.4 0.16 27.7kW 302× 45×

 6

demanding. For example, the Automata Processor (compared to

PRINS in subsection VB) does not have an arithmetic logic unit

and is therefore using a variation of Hamming distance for

efficient implementation of KNN.

In a von Neumann machine, the required computational

effort is proportional to dataset size and is the main cause for

limited performance on large datasets. In contrast, in-data

implementation of KNN is not limited by dataset size and can

therefore provide high performance on very large datasets.

A. In-Storage K-Nearest Neighbors Algorithm

KNN algorithm pseudocode on PRINS is presented in Figure

4. This implementation calculates the Euclidean distance

between the query vector and the dataset samples, followed by

serially selecting the K closest samples. The algorithm

comprises two steps. The first step computes the Euclidean

distance (squared) between the query vector and each dataset

sample. In each iteration of the first step (lines 1-4 in Figure 4),

deltas of one attribute are calculated in parallel for all samples

(line 2), squared (line 3) and added to the final distance 𝑠𝑞𝐷𝑖𝑠𝑡

(line 4). The number of iterations in the first loop equals the

number of attributes. Adapting the implementation for a

different distance calculation (e.g. Hamming) can be done by

changing the computation in lines 2-4 appropriately.

The second step (lines 5-9) iteratively finds the K dataset

samples that are closest to the query vector (the nearest

neighbors), one by one. Every iteration tags the minimal

unmarked Euclidean distance (lines 6-7), reads the tagged

sample class (line 8) and increments a histogram counter for

that class (line 9, performed by the microcontroller). Overall the

loop is iterated K times.

B. K-Nearest Neighbors Performance Evaluations

We compare our PRINS implementation with FPGA [43][5],

GPU [48][5], multicore CPU [5], and an Automata Processor

[5] KNN implementations. Table 5 lists the compared datasets

from each work. Table 6 shows the runtime results and of each

compared platform, the simulated runtime results of PRINS,

and the relative speedup and power efficiency of PRINS

relative to the other architectures. In [47], Pu et al. presented a

FPGA implementation of KNN using Stratix IV 4SGX530 and

the KDD-CUP 2004 quantum physics dataset, with 20,480

samples and 64 attributes. For K=20, runtime was 69ms. On

PRINS, the runtime for the same dataset, regardless of the

number of samples, is 1.1ms, resulting in speedup of 62.8.

Gutierez et al. [48] analyzed a GPU-based KNN on NVIDIA

K20M. They applied it to KDD-CUP 1999 dataset of 4.9

million samples and 42 attributes, and achieved runtime of

2msec for K=1000. On PRINS, the same task completes in

0.21ms, showing speedup of almost 10. Energy efficiency

figures for [47] and [48] were calculated based on the device

power and reported execution time.

Lee et al. [5] presented KNN simulation on the Micron

Automata Processor (AP) [4]. AP is a non-von Neumann near-

data processing architecture for high speed automata

evaluation. Automata processors do not have an arithmetic

logic unit (ALU), therefore the authors could not use Euclidean

distance. Instead, a variation of Hamming distance on quantized

binary code [49] of the input was used. The authors compared

AP performance with several existing platforms. We use the

authors’ projected performance of the AP with their proposed

automata optimizations and architectural extensions, which

show the best performance and energy figures.

In addition, we select the three best-performing compared

platforms from [5] to be included in our comparisons: an Intel

Xeon multicore CPU, a Xilinx Kintex-7 FPGA and an NVIDIA

GTX Titan X GPU. Several datasets were used, each of 220≈1M

samples, binary coded to 64-256 bit. For CPU, the authors used

the FLANN implementation [50] of Hamming distance. For

GPU, a CUDA implementation of KNN [51] was modified to

use XOR and population count, instead of Euclidean distance.

Energy efficiency figures for all comparisons with [5] are

reported in [5] and are used as-is in this work. For the other two

comparisons, device published TDP were used (25W for the

Stratix IV and 225W for the NVIDIA K20M). On PRINS, the

Table 5: KNN compared datasets and platforms with PRINS.

Work
Ref.

Dataset

Name Samples Attributes
Size on

Disk
K

[47] KDD-Cup 2004 20.5k 64 5.2MB 20

[48] KDD-Cup 99 4.9M 42 800MB 1000

[5]

WordEmbed [53] 64 8MB 2

SIFT [54] ~1M 128 16MB 4

TagSpace [55] 256 32MB 16

Algorithm 2 KNN Implementation in PRINS

//K denotes the number of nearest neighbors.

//Every sample 𝑥 ∈ 𝑋 may be stored in several consecutive

RCAM rows; the code assumes one row per sample for

simplicity.

//Each sample is characterized by M attributes

//Calculate distance of each dataset sample from query

1: For each 𝑎𝑡𝑡𝑟 ∈ {𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}:

 Do-all 𝑥 ∈ 𝑋: //all samples in parallel

2: 𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← 𝑄𝑢𝑒𝑟𝑦𝑎𝑡𝑡𝑟 − 𝑥𝑎𝑡𝑡𝑟

3: 𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← (𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟)2

4: 𝑠𝑞𝐷𝑖𝑠𝑡 ← 𝑠𝑞𝐷𝑖𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟

//Find 𝐾 closest samples

//Histogram of all classes maintained by microcontroller

//Start with all samples unmarked

5: Loop K times

6: Tag all unmarked samples

7: Tag and mark first row with min value of 𝑠𝑞𝐷𝑖𝑠𝑡

8: Retrieve 𝑐𝑙𝑎𝑠𝑠 of tagged row to microcontroller

9: On microcontroller: Histogram[𝑐𝑙𝑎𝑠𝑠]++

//Classification: Class with highest histogram

Figure 4: KNN Pseudocode.

 7

lack of hardened arithmetic units allows for flexibility of the

compute operations. The binary Hamming distance calculation

can be performed efficiently with a series of 1-bit compare and

8-bit counter increment operations on the entire dataset in

parallel, resulting in considerable speedups and equal or better

power efficiency compared with all platforms.

VI. CONCLUSIONS

This paper presents an evaluation of K-means and KNN

compute intensive machine learning algorithms on PRINS, a

non-von Neumann processing-in-storage system based on

resistive content addressable memory (ReCAM). PRINS is a

massively parallel and scalable SIMD architecture with in-situ

processing capabilities. It uses associative processing instead of

Boolean logic which allows executing any logic or arithmetic

operation in a fixed number of cycles. Every ReCAM integrated

circuit can contain hundreds of millions of data rows, each row

serving as an associative processing unit.

PRINS performance and power-efficiency while executing

these two algorithms have been compared to several other

works. The evaluation shows that PRINS improves

performance by up to three orders of magnitude and achieves

better power efficiency for both algorithms, when compared to

host based and near-data processing architectures.

REFERENCES

[1] R. Balasubramonian, J. Chang, and T. Manning, “Near-data

processing: Insights from a MICRO-46 workshop,” IEEE Micro,
2014.

[2] R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser, “A Resistive CAM

Processing-in-Storage Architecture for DNA Sequence Alignment,”
IEEE Micro, vol. 37, no. 4, pp. 20–28, 2017.

[3] R. Kaplan et al., “Deduplication in Resistive Content Addressable

Memory Based Solid State Drive,” pp. 100–106, 2016.

[4] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H.
Noyes, “An efficient and scalable semiconductor architecture for

parallel automata processing,” IEEE Trans. Parallel Distrib. Syst.,

vol. 25, no. 12, pp. 3088–3098, 2014.
[5] V. T. Lee, J. Kotalik, C. C. del Mundo, A. Alaghi, L. Ceze, and M.

Oskin, “Similarity Search on Automata Processors,” in 2017 IEEE

International Parallel and Distributed Processing Symposium
(IPDPS), 2017, pp. 523–534.

[6] J. L. Potter and W. C. Meilander, “Array processor

supercomputers,” Proc. IEEE, vol. 77, no. 12, pp. 1896–1914, 1989.
[7] M. Hall, P. Kogge, J. Koller, P. Diniz, and J. Chame, “Mapping

irregular applications to DIVA, a PIM-based data-intensive

architecture,” Proc., 1999.
[8] T. L. Sterling and H. P. Zima, “Gilgamesh: A Multithreaded

Processor-In-Memory Architecture for Petaflops Computing,” in

ACM/IEEE SC 2002 Conference (SC’02), 2002, pp. 48–48.
[9] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the

terasys massively parallel PIM array,” Computer (Long. Beach.

Calif)., vol. 28, no. 4, pp. 23–31, 1995.
[10] S. Wong, a. El-Gamal, P. Griffin, Y. Nishi, F. Pease, and J.

Plummer, “Monolithic 3D Integrated Circuits,” 2007 Int. Symp.

VLSI Technol. Syst. Appl., no. c, pp. 5–8, 2007.
[11] Hybrid Memory Cube Consortium, Hybrid Memory Cube

Specification 1.0. 2013.

[12] D.-H. Bae et al., “Intelligent SSD,” in Proceedings of the 22nd
ACM international conference on Conference on information &

knowledge management - CIKM ’13, 2013, pp. 1573–1576.

[13] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and G. M.
Shipman, “Active Flash: Out-of-core data analytics on flash

storage,” in 012 IEEE 28th Symposium on Mass Storage Systems

and Technologies (MSST), 2012, pp. 1–12.
[14] Y.-Y. Jo, S. Cho, S.-W. Kim, and H. Oh, “Collaborative processing

of data-intensive algorithms with CPU, intelligent SSD, and GPU,”

in Proceedings of the 31st Annual ACM Symposium on Applied
Computing - SAC ’16, 2016, pp. 1865–1870.

[15] Y. Kang, Y. Kee, E. L. Miller, and C. Park, “Enabling cost-effective

data processing with smart SSD,” in 2013 IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST), 2013, pp. 1–12.

[16] B. Y. Cho, S. Jeong, D. Oh, and W. W. Ro, “XSD: Accelerating

Table 6: KNN compared platforms with PRINS.

Architecture Device
Work

Ref.
Dataset

Avg. Time per
Query (ms)

Energy Eff.
(query/Joule)

PRINS Time
per Query

(ms)

PRINS

Energy eff.
(query/Joule)

PRINS
Speedup

PRINS Power
Efficiency Ratio

FPGA

Stratix IV
FPGA

[47] KDD-Cup 2004 69.1 0.6 2.2 473 31.4× 817×

Xilinx

Kintex-7
[5]

WordEmbed 0.45 593.9 3.7 µsec 11841 122× 19.9×

SIFT 0.9 296.9 9 µsec 4829 100.7× 16.3×

TagSpace 1.8 148.4 21.5 µsec 1018 83.7× 6.9×

GPU

NVIDIA
K20M GPU

[48] KDD-Cup 99 2 2.1 0.42 4.2 5× 2×

NVIDIA GTX
Titan X

[5]

WordEmbed 0.24 83.8 3.7 µsec 11841 65.3× 141×

SIFT 0.25 81.9 9 µsec 4829 27.8× 59×

TagSpace 0.25 81 21.5 µsec 1018 11.7× 12.6×

CPU
Intel Xeon
E5-2620

[5]

WordEmbed 4.8 3.9 3.7 µsec 11841 1312× 3036×

SIFT 8.1 2.3 9 µsec 4829 905× 2054×

TagSpace 16.7 1.3 21.5 µsec 1018 682× 782.9×

Automata
Micron

Automata
Processor

[5]

WordEmbed 9 µsec 1738 3.7 µsec 11841 2.6× 6.8×

SIFT 15 µsec 1092 9 µsec 4829 1.7× 4.4×

TagSpace 56 µsec 236.3 21.5 µsec 1018 2.6× 4.3×

 8

MapReduce by Harnessing the GPU inside an SSD.”
[17] A. De, M. Gokhale, R. Gupta, and S. Swanson, “Minerva:

Accelerating Data Analysis in Next-Generation SSDs,” in 2013

IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines, 2013, pp. 9–16.

[18] S.-W. Jun et al., “BlueDBM,” in Proceedings of the 42nd Annual

International Symposium on Computer Architecture - ISCA ’15,
2015, pp. 1–13.

[19] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt,

“Query processing on smart SSDs: opportunities and challenges,” in
Proceedings of the 2013 international conference on Management

of data - SIGMOD ’13, 2013, pp. 1221–1230.

[20] M. M. Shulaker et al., “Three-dimensional integration of
nanotechnologies for computing and data storage on a single chip,”

Nat. Publ. Gr., vol. 547, no. 7661, pp. 74–78, 2017.

[21] T. Liu et al., “A 130.7-mm^2 2-Layer 32-Gb ReRAM Memory
Device in 24-nm Technology,” IEEE J. Solid-State Circuits, vol. 49,

no. 1, pp. 140–153, 2014.

[22] K. C. Rahman, D. Hammerstrom, Y. Li, H. Castagnaro, and M. A.
Perkowski, “Methodology and Design of a Massively Parallel

Memristive Stateful IMPLY Logic based Reconfigurable

Architecture,” IEEE Trans. Nanotechnol., vol. 15, no. 4, pp. 675–

686, Jul. 2016.

[23] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE

Trans. Circuits Syst. II Express Briefs, vol. 61, no. 11, pp. 895–899,
2014.

[24] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design
within memristive memories using memristor-aided loGIC

(MAGIC),” IEEE Trans. Nanotechnol., vol. 15, no. 4, pp. 635–650,

2016.
[25] Y. Li et al., “Realization of Functional Complete Stateful Boolean

Logic in Memristive Crossbar,” ACS Appl. Mater. Interfaces, vol. 8,

no. 50, pp. 34559–34567, 2016.
[26] S. Paul and S. Bhunia, “A Scalable Memory-Based Reconfigurable

Computing Framework for Nanoscale Crossbar,” IEEE Trans.

Nanotechnol., vol. 11, no. 3, pp. 451–462, May 2012.
[27] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture

for Neural Network Computation in ReRAM-Based Main

Memory,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), 2016, vol. 44, no. 3,

pp. 27–39.

[28] A. Shafiee, A. Nag, and N. Muralimanohar, “ISAAC: A
convolutional neural network accelerator with in-situ analog

arithmetic in crossbars,” Proc. 43rd, 2016.

[29] Q. Guo, X. Guo, Y. Bai, and E. Ipek, “A resistive TCAM
accelerator for data-intensive computing,” Proc. 44th Annu.

IEEE/ACM, 2011.

[30] Q. Guo, X. Guo, R. Patel, and E. Ipek, “Ac-dimm: associative
computing with stt-mram,” ACM SIGARCH Comput., 2013.

[31] Q. Guo, X. Guo, Y. Bai, R. Patel, and E. Ipek, “Resistive ternary

content addressable memory systems for data-intensive computing,”
IEEE Micro, 2015.

[32] H. Akinaga and H. Shima, “Resistive Random Access Memory

(ReRAM) Based on Metal Oxides,” Proc. IEEE, vol. 98, no. 12, pp.
2237–2251, Dec. 2010.

[33] A. Torrezan, J. Strachan, and G. Medeiros-Ribeiro, “Sub-

nanosecond switching of a tantalum oxide memristor,” 2011.
[34] C. Nail et al., “Understanding RRAM endurance, retention and

window margin trade-off using experimental results and

simulations,” in 2016 IEEE International Electron Devices Meeting
(IEDM), 2016, p. 4.5.1-4.5.4.

[35] H.-S. P. Wong et al., “Metal–Oxide RRAM,” Proc. IEEE, vol. 100,

no. 6, pp. 1951–1970, Jun. 2012.
[36] J. Joshua Yang et al., “Memristive devices for computing.,” Nat.

Nanotechnol., vol. 8, no. 1, pp. 13–24, 2013.

[37] F. Alibart, T. Sherwood, and D. B. Strukov, “Hybrid
CMOS/nanodevice circuits for high throughput pattern matching

applications,” in 2011 NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), 2011, pp. 279–286.
[38] L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar, “Resistive

Associative Processor,” IEEE Comput. Archit. Lett., vol. 14, no. 2,

pp. 148–151, Jul. 2015.
[39] S. Schechter et al., “Use ECP, not ECC, for hard failures in resistive

memories,” ACM SIGARCH Comput. Archit. News, vol. 38, no. 3,

p. 141, Jun. 2010.

[40] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P.
Jouppi, and M. Erez, “FREE-p: Protecting non-volatile memory

against both hard and soft errors,” in 2011 IEEE 17th International

Symposium on High Performance Computer Architecture, 2011, pp.
466–477.

[41] S. Kvatinsky, E. Friedman, and A. Kolodny, “TEAM: Threshold

adaptive memristor model,” IEEE Trans., 2013.
[42] Y. Ding, Y. Zhao, N. Xipeng Shen, M. Musuvathi, and M. Todd

Mytkowicz, “Yinyang K-Means: A Drop-In Replacement of the

Classic K-Means with Consistent Speedup.”
[43] Z. Li, J. Jin, and L. Wang, “High-performance K-means

Implementation based on a Simplified Map-Reduce Architecture,”

Oct. 2016.
[44] N. Ramanathan, J. Wickerson, F. Winterstein, and G. A.

Constantinides, “A case for work-stealing on FPGAs with OpenCL

atomics,” Proc. 2016 ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays, pp. 48–53, 2016.

[45] J. Bhimani, M. Leeser, and N. Mi, “Accelerating K-Means

clustering with parallel implementations and GPU computing,”
High Perform. Extrem., 2015.

[46] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly,

“Dandelion: a Compiler and Runtime for Heterogeneous Systems,”

pp. 3–613, 2013.

[47] Y. Pu, J. Peng, L. Huang, and J. Chen, “An efficient knn algorithm

implemented on fpga based heterogeneous computing system using
opencl,” Field-Programmable Cust., 2015.

[48] P. Gutiérrez, M. Lastra, J. Bacardit, and J. Benítez, “GPU-SME-
kNN: Scalable and memory efficient kNN and lazy learning using

GPUs,” Information, 2016.

[49] Y. Gong, S. Lazebnik, C. Science, and U. N. C. C. Hill, “Iterative
Quantization : A Procrustean Approach to Learning Binary Codes,”

pp. 1–15.

[50] M. Muja, M. Muja, and D. G. Lowe, “Fast approximate nearest
neighbors with automatic algorithm configuration,” VISAPP Int.

Conf. Comput. Vis. THEORY Appl., pp. 331--340, 2009.

[51] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor
search using GPU,” in 2008 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, 2008, pp. 1–

6.
[52] “UCI Machine Learning Repository.” [Online]. Available:

https://archive.ics.uci.edu/ml/index.php. [Accessed: 19-Jul-2017].

[53] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “From
Word Embeddings To Document Distances,” Proc. 32nd Int. Conf.

Mach. Learn., vol. 37, pp. 957–966, 2015.

[54] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vis., 2004.

[55] J. Weston and K. Adams, “#TagSpace : Semantic Embeddings from

Hashtags,” pp. 1822–1827, 2014.

Roman Kaplan (M’17) is a PhD candidate in the

Viterbi faculty of Electrical Engineering,

Technion, under the supervision of Prof. Ran

Ginosar. Kaplan’s research interests are parallel

computer architectures, in-data accelerators for

machine learning and bioinformatics.

Leonid Yavits Leonid is a postdoc fellow in

Electrical Engineering in the Technion. He co-

authored a number of patents and research papers

on SoC and ASIC. His research interests include

non von Neumann computer architectures and

processing in memory.

Ran Ginosar is a Professor at the Department of

Electrical Engineering and serves as Head of the

VLSI Systems Research Center at the Technion.

His research interests include VLSI architecture,

manycore computers, asynchronous logic and

synchronization, networks on chip and biologic

implant chips.

