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 

Abstract—Machine learning algorithms have become a major 

tool in various applications. The high performance requirements 

on large-scale datasets pose a challenge for traditional von 

Neumann architectures.  

We present two machine learning implementations and 

evaluations on PRINS, a novel processing-in-storage system based 

on Resistive Content Addressable Memory (ReCAM). PRINS 

functions simultaneously as a storage and a massively parallel 

associative processor. PRINS processing-in-storage resolves the 

bandwidth wall faced by near-data von Neumann architectures, 

such as 3D DRAM and CPU stack or SSD with embedded CPU, 

by keeping the computing inside the storage arrays, thus 

implementing in-data, rather than near-data, processing. We show 

that PRINS based processing-in-storage architecture may 

outperform existing in-storage designs and accelerator based 

designs. Multiple performance comparisons for the ReCAM 

processing-in-storage implementations of K-means and K-nearest 

neighbors are performed. Compared platforms include CPU, 

GPU, FPGA and Automata Processor. We show that PRINS may 

achieve an order-of-magnitude speedup and improved power 

efficiency relative to all compared platforms. 

 
Index Terms— Near-data Processing; Associative Processing; 

Processing-in-storage; Processing-in-Memory; RRAM; CAM; 

Memristors. 

I. INTRODUCTION 

achine learning algorithms have become a ubiquitous tool 

in wide range of large-scale applications, from data 

analytics to pharmaceutical research. The scale and 

performance requirements of these applications makes machine 

learning algorithms a prime candidate for accelerator research. 

Most accelerators are von Neumann machines, which 

performance is severely limited by memory bandwidth. This 

limitation is especially acute in machine learning algorithms 

which are typically data intensive. One approach to mitigate the 

bandwidth constraint is to bring the processing units closer to 

the data. That approach is known as near-data processing 

(NDP) [1]. 

The premise of NDP is reducing memory transfer time by 

cutting the physical distance and increasing the bandwidth 

between the processing units and memory. However, NDP 

architectures such as 3D DRAM and CPU stacks, or SSD with 

embedded CPU, are still inherently limited because they are 

based on replicating the von Neumann architecture in memory 
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or storage. Since its inception, NDP has mainly meant 

processing-in-memory (PiM). More recent approach is to 

exploit processing elements closer to storage, i.e., near-storage 

processing. However, both PiM and near-storage processing 

still suffer from the von Neumann bandwidth bottleneck. PiM 

has a bottleneck between storage and main memory. Near-

storage processing suffers from the bottleneck between the 

storage chips and processing units. Both approaches are 

inherently limited because they are largely based on the von 

Neumann architecture model. 

This work presents PRINS, a novel Processing IN Storage 

architecture that employs a Resistive CAM (ReCAM, [2][3]), 

and applies it to acceleration of machine learning tasks. PRINS 

simultaneously functions as a data storage and a massively 

parallel SIMD accelerator that performs the computations in-

situ, resulting in increased performance through more complete 

utilization of the internal storage bandwidth, and reduced 

energy consumption. The scalability of the system makes it 

suitable for storing and in-situ processing of high volume data 

intensive applications such as machine learning. The entire 

dataset fits in PRINS storage. Furthermore, there is no other 

storage and PRINS storage is large enough to contain it.  

This paper makes the following contributions: 

 We present the PRINS architecture and show how it can 

function as a scalable storage with in-data processing 

capabilities. 

 We develop and evaluate a PRINS based 

implementation for two machine learning algorithms: K-

means and KNN. 

 We show that PRINS implementations can outperform 

near-data or other implementations in both performance 

and power efficiency. Compared platforms include 

CPU, GPU, FPGA and an extended Automata Processor 

[4], [5]. 

The rest of this paper is organized as follows. Section II  

reviews the background and previous work. Section III presents 

the PRINS architecture. Sections IV and V describe the 

ReCAM implementations of K-means and KNN, respectively, 

including performance and power efficiency comparisons. 

Section VI offers conclusions. 
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II. BACKGROUND AND PREVIOUS WORK 

The following review considers previous work in the areas of 

processing in memory (PiM) addressing the memory bandwidth 

and latency limitations, processing near storage and 

implementations of PiM using resistive logic. 

A. Processing in Memory 

Memory access latency in conventional computer 

architectures is often orders of magnitudes longer than 

processing time, and memory bandwidth is similarly limited. 

One approach to bridging this gap is processing-in-memory 

(PiM) [6]–[9], which places memory and processing on the 

same integrated circuit. Although PiM improves memory 

latency and bandwidth, the approach is limited by the size of 

memory and logic that can be integrated on a single chip. 

Monolithic 3D integrated circuits [10], together with  recent 

advances in 3D memory (e.g., Hybrid Memory Cube [11]) may 

help to improve the memory and logic density and to relax the 

memory latency and bandwidth obstacles. However, separate 

memory and logic 3D stacks yield near-memory processing 

rather than PiM.  

B. Processing Near Storage 

More recently, with the introduction of Flash SSD, near-data 

processing-in-storage, or near-storage-processing (NSP), 

research has begun to emerge. In general, this approach either 

exploits existing processing elements within the storage device 

(i.e., controller) [12]–[15] or places additional processing 

elements. The additional processing elements can vary from  a 

multi-core CPU [14], to GPU [16] and FPGA [17], [18]. All of 

the above works attempt to exploit the higher inner bandwidth 

of the SSD. However, the bandwidth wall still exists, because 

the bandwidth of flash arrays is limited, ranging from a few 

hundred MB/s to a few GB/s, depending on the number of 

parallel flash channels [19]. 

C. PiM Using Resistive Logic  

Emerging resistive memory technologies have become a 

focus of PiM research. A 3D monolithic device [20], including 

a storage layer that consists of more than one million resistive 

RAM  cells, allows for in-situ processing as the logic cells are 

placed in proximity of the storage cells. Another work [21] has 

demonstrated a test chip of 32Gb device in 24nm technology 

with two ReRAM-based memory layers and a CMOS logic 

layer underneath, showing design techniques to achieve a high 

density functional chip. 

Other works aim to exploit the resistive devices as logic. The 

stateful IMPLY logic [22] employs one resistor and two 

memristors can be used as input and the state of one of the 

memristor stores the output. The Memristor Aided Logic 

(MAGIC) method [23][24] offers additional basic logic 

functions, implemented without the resistor and with a third 

memristor to store the output. Li at al. [25] experimentally 

demonstrated a similar approach by implementing 16 Boolean 

logic functions with memristor NAND logic.  

Complete PiM architectures based on resistive materials 

were also proposed. Somnath et al. [26] developed MBARC, a 

memory-based architecture for reconfigurable computing, 

combining a resistive crossbar architecture with memory 

partitions serving as lookup tables with CMOS logic for pre-

evaluation. Chi et al. [27] introduced PRIME, a PIM accelerator 

of neural network applications in RRAM based main memory. 

Shafiee et al. [28] developed an in-situ processing architecture, 

where memristor crossbar arrays are used to perform dot-

product operations in an analog manner. Guo et al. [29]–[31] 

suggested using resistive and STT-MRAM ternary CAM for 

data intensive computing. Their works used the associative 

capabilities of CAM and ternary CAM mainly for search 

operations, while computing is largely done in a CPU. Their 

work targeted a different architecture, replacing RAM by 

resistive CAM or ternary CAM in NVDIMM rather than in 

mass storage.  

D. Our Contribution 

In this paper, we demonstrate K-means and KNN high 

performance and power-efficient execution on PRINS, a 

massively parallel non-von Neumann processing-in-storage 

architecture. This architecture is different from previous 

suggestions mainly by its use of associative, rather than logic-

based, processing. The inherent parallel performance of the 

resistive memory array can be utilized to the full extent, 

enabling very high computation throughput while reducing 

energy consumption (mainly due to reduced data movement 

within the device). 

III. PRINS ARCHITECTURE 

Resistive memories store information by modulating the 

resistance of nanoscale storage elements. The metal-oxide 

resistive random access memory (ReRAM) is considered a 

potential technology to replace next-generation nonvolatile 

memories [32]. Recent advances in the technology have 

demonstrated fast (about 0.3ns) and low energy (about 0.1pJ) 

[33] switching. While most ReRAM-based designs employ one 

transistor and one memristor (1T1R) cells, ReCAM uses 2T2R 

[37] or 2R [38] cells and appropriate peripheral circuits [38] to 

support associative storage and processing.  

A. ReCAM Crossbar Array 

The ReCAM module (Figure 1) comprises a ReCAM array, 

where each memory row is also a baseline processing unit (PU), 

and a peripheral circuitry. The basic cell contains two 

memristors, holding complementary values 𝑅 and �̅�, and two 

selector transistors T1 and T2 (Figure 1a). The peripheral 

circuitry includes key and mask registers, TAG logic (Figure 

1b), a reduction tree (Figure 1c) and a daisy-chain interconnect 

of the TAG line. 

ReCAM is a scalable alternative to CMOS CAM. 

Memristors are two-terminal devices, where the resistance of 

the device is changed by the electrical current or voltage. The 

resistance of the memristor is bounded by a minimum resistance 

𝑅𝑂𝑁 (low resistive state, logic ‘0’) and a maximum resistance 

𝑅𝑂𝐹𝐹  (high resistive state, logic ‘1’).  

The KEY register (Figure 1) contains a key data word to be 

written or compared against. The MASK register defines the 
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active fields for write, compare and read operations, enabling 

bit selectivity. The TAG marks the rows that are matched by the 

compare operation and are to be affected by the successive 

parallel write.  A daisy-chain like bitwise interconnect allows 

PUs to intercommunicate through their TAGs, all PUs in 

parallel. The reduction tree enables counting of active tag bits 

by logarithmic summation. This operation is useful whenever a 

vector needs to be reduced to a scalar.  

The ReCAM compare operation is implemented as follows. 

The Match/Word lines are pre-charged and the key is asserted 

to the Bitlines and the inverse key is asserted to the Bit-not 

lines. In the columns that are ignored during comparison, the 

Bit and Bit-not lines are kept at ‘0’. If all unmasked bits in a 

row match the key (i.e., when Bit line ‘1’ is applied to an 𝑅𝑂𝐹𝐹   

memristor and Bit-not line ‘0’ is applied to an 𝑅𝑂𝑁 memristor, 

or vice versa), the Match/Word line remains high and ‘1’ is 

sampled into the corresponding TAG bit. If at least one 

unmasked bit is mismatched, the Match/Word line discharges 

through an 𝑅𝑂𝑁 memristor and an open selector transistor. A 

logic ‘0’ is then sampled into the TAG.    

The write operation is performed in two phases. First, the 

𝑉 ≥ 𝑉𝑂𝑁 voltage (where 𝑉𝑂𝑁 is a threshold voltage required to 

switch memristors to the "on" state) is applied to all tagged 

Match/Word lines, and applicable Bit lines (for writing ‘0’s) 

and Bit-not lines (for complementing ‘1’s) are set at '1'. Second, 

the 𝑉 ≤ 𝑉𝑂𝐹𝐹  voltage (where 𝑉𝑂𝐹𝐹 is a threshold voltage to 

switch memristors to the "off" state) is applied to all tagged 

Match/Word lines, and applicable Bit-not lines (for 

complementing the ‘0’s) and Bit lines (for writing ‘1’s) are set 

at '1'.  

Memristor sub-nanosecond switching time [33] allows GHz 

ReCAM processing-in-storage operation. The energy 

consumption during compare may be less than 1fJ per bit [38]. 

The write energy is in the range of tens of fJ [33], which may 

be prohibitively high for simultaneous parallel writing of multi-

bit words in the entire ReCAM storage. Another factor which 

potentially limits ReCAM processing-in-storage system is 

endurance (the number of program/write cycles that can be 

applied to a memristor before it becomes unreliable). Recent 

endurance figures vary between 1010 [34] and 1012 cycles [35], 

[36], which may suffice for only about one month. However, 

the area is still actively researched. Moreover, with some 

advanced wear-leveling techniques similar to those presented in 

[39][40], we believe ReCAM processing-in-storage system 

life-time can be extended to a number of years. 

B. Associative Processing with the ReCAM Crossbar Array 

In a conventional CAM, compare operation is typically 

followed by a read of the matched data word. In associative 

processing a compare is usually followed by a parallel write of 

the result value into the unmasked bits of all tagged rows. 

Additional capabilities, such as read and reduction operations, 

are included [38][2].  

Any computational expression can be efficiently 

implemented in ReCAM storage using line-by-line execution of 

the truth table of the expression [38]. Arithmetic operations are 

typically performed bit-serially. Table 1 lists several operations 

supported by a ReCAM crossbar array for 32-bit operands and 

the number of cycles required per each operation. Shifting 

down a consecutive block of rows by one row position requires 

six cycles per bit: First, compare-to-‘1’ copies the source bit-

column of all rows into the TAG. Second, shift moves the TAG 

vector down by setting the shift-select line (Figure 1b). Third, 

write-‘1’ copies the shifted TAG to the same bit-column. The 

fourth-to-sixth cycles repeat the process for ‘0’ values. Shifting 

32-bit numbers thus requires 192 cycles. Addition (in-place or 

not) is performed in a bit-serial manner using a truth table 

approach [38] (32 bits times 8 truth-table rows times 2 for 

compare and write amount to 512 cycles). Row-wise maximum 

compares in parallel two 32-bit numbers in each row. Max 

Scalar tags all rows that contain the maximal value in the 

selected element. Additional operations, such as parallel and 

reduction arithmetic, may be required for other algorithms. 

Floating point arithmetic operations are also supported. Single 

precision floating point multiplication requires 4,400 cycles 

[38].   

C. System Architecture 

Conceptually, ReCAM may comprise hundreds of millions 

of rows, each serving as a processing unit (PU). The entire array 

may be divided into multiple smaller ICs (due to power per die 

restrictions, Figure 2a). A row is fully contained within a single 

IC.  

The PRINS processing-in-storage system uses a 
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Figure 1: ReCAM module. (a) 2T2R ReCAM bitcell. (b) TAG 

logic. (c) Reduction tree 

 

 

Table 1: 32-bit arithmetic operations on PRINS 

Instruction Cycles 

Shift down one row  192 

B  A + B 256 

C  A + B 512 

Row-wise Max (A, B) 64 

Max Scalar (A) 64 
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microcontroller (Figure 2b). It issues instructions, sets the key 

and mask registers, handles control sequences and executes 

read requests. The microcontroller may also perform some 

baseline processing, such as normalization of the reduction tree 

results. PRINS software, including both associative operations 

and sequential instructions executed on the microcontroller, is 

manually encoded at assembly language level.     

The scaling of conventional near-data processing 

architectures may be limited, similarly to high-performance 

parallel von Neumann architectures. When growing internal 

bandwidth of the storage arrays is met by increasing number of 

in-storage processing cores, the storage array-to-in-storage 

processor communication bottleneck becomes worse. As a 

result, the performance of processing-in-storage system may 

saturate or even diminish.  

ReCAM processing-in-storage provides better scalability. Its 

inherent parallelism allows increasing the performance of many 

workloads almost linearly as the datasets grow along with 

storage size. Since the bulk of the data is never transferred 

outside the storage arrays through a bandwidth-limited 

communication interface, the performance limit is pushed 

further away. 

D. Programming and Evaluation Parameters 

ReCAM relies on the host to transfer the code, execution 

parameters (e.g., dataset addresses) and invoke execution. The 

code intended to run on ReCAM is translated into associative 

primitives. Presently, ReCAM code is manually encoded at 

assembly language level. 

There is no hardware support for data coherence between the 

host CPU and ReCAM storage. ReCAM has no access to the 

host main memory or on-chip cache. Therefore, the datasets on 

which ReCAM operates must reside in the ReCAM and should 

not be left in the host memory. To avoid inconsistencies 

between PRINS and the host CPU memory, PRINS storage is 

inaccessible to the host CPU during PRINS operation. 

The following two sections present two algorithm 

implementations and evaluations on ReCAM for performance 

and power efficiency. Memristor latency and energy figures are 

obtained using intensive SPICE simulations based on the 

TEAM model [41]. ReCAM energy and timing figures were 

obtained using full SPICE simulations of [38] for a single cell 

and a row, an incorporating the above results for the memristor. 

ReCAM parameters used for the algorithms performance and 

energy evaluations are listed in Table 2. Full PRINS array 

performance and power simulations were conducted using our 

own cycle-accurate simulator (similar to the one introduced 

in[38]) for each dataset in the paper. 

IV. K-MEANS PRINS IMPLEMENTATION 

K-means is an unsupervised machine learning algorithm for 

clustering unclassified samples. It aims to partition 𝑁 samples 

into K clusters, where each observation belongs to the cluster 

with the nearest center (mean). Every sample usually consists 

of multiple attributes (dimensions). The algorithm performs 

several iterations until reaching convergence, modifying the 

cluster center coordinates and sample cluster assignments in 

each iteration. 

A. In-Storage K-Means Algorithm 

The K-means algorithm pseudocode, as implemented in 

storage, is presented in Figure 3. The algorithm minimizes the 

Euclidean distances between the samples and the cluster means. 

Prior to execution, the means are initialized by randomly 

choosing 𝐾 samples and the minimum Euclidean distance of all 

samples is initialized to the highest possible value. During 

execution, the algorithm consists of two K-iteration loops, 

assignment and update.  

The assignment assigns each sample with a cluster. It does so 

by assigning each sample to the cluster whose mean yields the 

minimal Euclidean distance. In each iteration of lines 3-6 of 

Figure 3, the distance over a single attribute is associatively 

calculated in parallel for all dataset samples. Next, in lines 7-9, 

after all attribute distances were summed, the minimal 

Euclidean distance and the cluster assignment are updated in 

Algorithm 1 K-Means Implementation in PRINS 

// 𝑋: the group of samples. K: number of means 

// Every 𝑥 ∈ 𝑋 is stored in a separate RCAM row 

//Assignment: assign each sample with a cluster 

// Each of the k means is a tuple: (𝑖𝑚𝑒𝑎𝑛, 𝑀𝑒𝑎𝑛)  

1: For each 𝑖𝑚𝑒𝑎𝑛 ∈ [1, 𝐾]: 

 Do-all 𝑥 ∈ 𝑋:  //all samples in parallel 

2: Write 𝑚𝑒𝑎𝑛 coordinates to 𝑡𝑒𝑚𝑝 columns 

3: For each 𝑎𝑡𝑡𝑟 ∈ {𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}: 

4:    𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← 𝑥𝑎𝑡𝑡𝑟 − 𝑚𝑒𝑎𝑛𝑎𝑡𝑡𝑟 

5:    𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← (𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟)2 

6:    𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛 ← 𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛 + 𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟 

7:   Tag rows with 𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛 < 𝑚𝑖𝑛_𝑠𝑞𝐷𝑖𝑠𝑡 

8:   Write 𝑚𝑖𝑛_𝑠𝑞𝐷𝑖𝑠𝑡 ← 𝑠𝑞𝐷𝑖𝑠𝑡𝑡𝑜_𝑚𝑒𝑎𝑛 

9:   Write 𝑖𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑚𝑒𝑎𝑛 ← 𝑖𝑚𝑒𝑎𝑛 

// Update: calculate new mean coordinates 

10: For each 𝑖𝑚𝑒𝑎𝑛 ∈ [1, 𝐾]: 

11:  Tag rows with 𝑖𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑚𝑒𝑎𝑛 == 𝑖𝑚𝑒𝑎𝑛 

12:  For each 𝑎𝑡𝑡𝑟 ∈ {𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}: 

13:   𝑆𝑢𝑚𝑎𝑡𝑡𝑟 ← 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑎𝑡𝑡𝑟) 

14:   𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 ← 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚𝑎𝑡𝑐ℎ_𝑙𝑖𝑛𝑒𝑠) 

15:   𝑚𝑒𝑎𝑛𝑎𝑡𝑡𝑟 ← 𝑆𝑢𝑚𝑎𝑡𝑡𝑟/𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 

Figure 3: K-Means Pseudocode for a single iteration of the 

algorithm 
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Figure 2: A PRINS system, composed of (a) separate multiple 

ReCAM modules and (b) a microcontroller.   

 

Table 2: Simulated PRINS parameters used for performance 

and power efficiency evaluations. 

ReCAM Parameter Value 

Technology 28nm 

Frequency 500MHz 

Single row compare energy 1fJ 

Single bit write energy 100jJ 

Bits per row 256 

Single module memory size 256MB 
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parallel for all dataset samples. Note that lines 2-9 are always 

executed in parallel on the entire storage, in a SIMD-like style. 

The update loop recalculates the new mean coordinates. 

First, for each mean index, 𝑖𝑚𝑒𝑎𝑛, all samples assigned to this 

mean are tagged (line 11). Then, for each attribute and for all 

tagged rows, the sum of coordinates is calculated in parallel 

(line 13), followed by counting the number of samples assigned 

to the mean (line 14), both using the reduction tree. Finally, the 

new mean coordinates are calculated by the microcontroller 

(line 15). 

The assignment and update loops may be repeated until the 

mean coordinates convergence. Note that the key 

computational steps are parallelized, and in the update loop 

parallelism (over all samples of the same cluster) is made 

possible by associativity. Convergence is checked at the 

microcontroller by comparing the mean coordinates of each two 

consecutive assignment iterations, then checking if the 

difference exceeds the predefined threshold. If all mean 

coordinates change within the threshold, the execution ends. 

B. K-Means Performance Evaluations 

Several evaluations are performed. We compare our PRINS 

implementation with a multicore CPU [42], FPGA [43], [44], 

single- [45] and 10-GPU cluster [46] K-means 

implementations. Table 4 lists all compared datasets from each 

work. Table 3 presents the average runtime per iteration of each 

architecture, PRINS simulated runtime, relative speedup and 

power efficiency ratio of PRINS relative to the other 

architectures (based on specified power figures for each 

architecture).  

Ding et al. [42] used a high-end eight-core Intel i7-3770K 

CPU. We used two of their largest evaluated datasets for 

comparison, the first containing 2.5M samples (US Census 

Data in Table 4) and 68 attributes. The second contains 1M 

samples and 384 attributes. The attributes were extracted from 

"tiny" images (30×30 pixels each), hence the name Tiny. Li et 

al. [43] showed a simplified MapReduce implementation on 

Xilinx ZC706 FPGA and about 2 million samples and 4 

attributes. Ramanathan et al. [44] presented an implementation 

with work-stealing method of run-time load balancing on an 

Altera Stratix V FPGA. Bhimani et al. [45] presented GPU 

implementation of K-means, using NVIDIA K20M and 

executing on a 1164×1200 pixel RGB image. Each pixel has 

five attributes, three for color and two for coordinates. 

Rossbach et al. [46] used a ten-node cluster. Every node with a 

NVIDIA Tesla K20M GPU and two Intel Xeon E5-2620 CPU, 

which dissipate total of 225W+2×95W=415W. Evaluations 

were performed on a very large data set of 1 billion samples and 

40 dimensions, occupying roughly 150GB. Their average 

iteration time is 49.4 seconds, compared with simulated 0.16 

seconds on PRINS, yielding a speedup of 302. The large 

speedup over the big dataset is attributed to the insensitivity of 

PRINS to dataset size, unlike the GPU cluster, which is limited 

by the communication bandwidth of each GPU.  

V. K-NEAREST NEIGHBORS PRINS IMPLEMENTATION 

K-nearest neighbors (KNN) is another common machine 

learning algorithm frequently used for classification. The 

algorithm computes the distances between an (unclassified) 

input query sample and a dataset of classified samples. Each 

sample consists of multiple attributes and also stores its class. 

The query vector classification is usually determined by the 

majority vote of 𝐾-nearest database samples, hence the name 

𝐾-nearest neighbors. Distance is most commonly Euclidean, 

although Manhattan or Hamming distance might occasionally 

be used, as the two latter options are less computationally 

Table 4: K-Means datasets used for performance comparisons. 

Work 

Ref. 

Dataset 
Clusters 

(K) Name Samples 
Attributes 

(Dimensions) 
Size on 

disk 

[42] 

US Census 
Data [52] 

2.5M 68 318.8MB 10000 

Tiny 1M 384 384MB 10000 

[43] 
Electric 

Power [52] 
2M 4 31.6MB 4 

[44] 
N/A 

(synthetic) 
~1M 1 4MB 128 

[45] 
N/A (1.4MP 
RGB Image) 

1.4M 5 21.3MB 240 

[46] 
N/A 

(synthetic) 
1B 40 157.2GB 120 

 

Table 3: K-Means compared performance to different architectures. 

Platform 
Work 

Ref. 
Device/s TDP (W) Dataset Name 

Avg. Time per 
Iteration (sec) 

PRINS Time 
per Iteration 

(sec) 

PRINS 
Average 

Power (W) 

PRINS 
Speedup 

PRINS Power 
Efficiency Ratio 

CPU [42] 
Intel 

i7-3770K 
77 

US Census Data 76 6 63.7 12.6× 15.2× 

Tiny 48.5 9.3 81.3 5.2× 5× 

FPGA 
[43] Xilinx ZC706 25 Electric Power 8.5 msec 0.55 msec 7.3 15.5× 52.6× 

[44] 
Altera 

Stratix V 
25 N/A (synthetic) 22 msec 4.5 msec 4 4.9× 30.4× 

GPU 
[45] NVIDIA K20M 225 

1.4MP RGB 
Image 

1.77 43 msec 5 86.2× 1900× 

[46] 
Cluster of ten 

nodes 
4150 N/A (synthetic) 49.4 0.16 27.7kW 302× 45× 
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demanding. For example, the Automata Processor (compared to 

PRINS in subsection VB) does not have an arithmetic logic unit 

and is therefore using a variation of Hamming distance for 

efficient implementation of KNN. 

In a von Neumann machine, the required computational 

effort is proportional to dataset size and is the main cause for 

limited performance on large datasets. In contrast, in-data 

implementation of KNN is not limited by dataset size and can 

therefore provide high performance on very large datasets. 

A. In-Storage K-Nearest Neighbors Algorithm 

KNN algorithm pseudocode on PRINS is presented in Figure 

4. This implementation calculates the Euclidean distance 

between the query vector and the dataset samples, followed by 

serially selecting the K closest samples. The algorithm 

comprises two steps. The first step computes the Euclidean 

distance (squared) between the query vector and each dataset 

sample. In each iteration of the first step (lines 1-4 in Figure 4), 

deltas of one attribute are calculated in parallel for all samples 

(line 2), squared (line 3) and added to the final distance 𝑠𝑞𝐷𝑖𝑠𝑡 

(line 4). The number of iterations in the first loop equals the 

number of attributes. Adapting the implementation for a 

different distance calculation (e.g. Hamming) can be done by 

changing the computation in lines 2-4 appropriately. 

The second step (lines 5-9) iteratively finds the K dataset 

samples that are closest to the query vector (the nearest 

neighbors), one by one. Every iteration tags the minimal 

unmarked Euclidean distance (lines 6-7), reads the tagged 

sample class (line 8) and increments a histogram counter for 

that class (line 9, performed by the microcontroller). Overall the 

loop is iterated K times.  

B. K-Nearest Neighbors Performance Evaluations 

We compare our PRINS implementation with FPGA [43][5], 

GPU [48][5], multicore CPU [5], and an Automata Processor 

[5] KNN implementations. Table 5 lists the compared datasets 

from each work. Table 6 shows the runtime results and of each 

compared platform, the simulated runtime results of PRINS, 

and the relative speedup and power efficiency of PRINS 

relative to the other architectures. In [47], Pu et al.  presented a 

FPGA implementation of KNN using Stratix IV 4SGX530 and 

the KDD-CUP 2004 quantum physics dataset, with 20,480 

samples and 64 attributes. For K=20, runtime was 69ms. On 

PRINS, the runtime for the same dataset, regardless of the 

number of samples, is 1.1ms, resulting in speedup of 62.8. 

Gutierez et al. [48] analyzed a GPU-based KNN on NVIDIA 

K20M. They applied it to KDD-CUP 1999 dataset of 4.9 

million samples and 42 attributes, and achieved runtime of 

2msec for K=1000. On PRINS, the same task completes in 

0.21ms, showing speedup of almost 10. Energy efficiency 

figures for [47] and [48] were calculated based on the device 

power and reported execution time. 

Lee et al. [5] presented KNN simulation on the Micron 

Automata Processor (AP) [4]. AP is a non-von Neumann near-

data processing architecture for high speed automata 

evaluation. Automata processors do not have an arithmetic 

logic unit (ALU), therefore the authors could not use Euclidean 

distance. Instead, a variation of Hamming distance on quantized 

binary code [49] of the input was used. The authors compared 

AP performance with several existing platforms. We use the 

authors’ projected performance of the AP with their proposed 

automata optimizations and architectural extensions, which 

show the best performance and energy figures.  

In addition, we select the three best-performing compared 

platforms from [5] to be included in our comparisons: an Intel 

Xeon multicore CPU, a Xilinx Kintex-7 FPGA and an NVIDIA 

GTX Titan X GPU. Several datasets were used, each of 220≈1M 

samples, binary coded to 64-256 bit. For CPU, the authors used 

the FLANN implementation [50] of Hamming distance. For 

GPU, a CUDA implementation of KNN [51] was modified to 

use XOR and population count, instead of Euclidean distance. 

Energy efficiency figures for all comparisons with [5] are 

reported in [5] and are used as-is in this work. For the other two 

comparisons, device published TDP were used (25W for the 

Stratix IV and 225W for the NVIDIA K20M). On PRINS, the 

Table 5: KNN compared datasets and platforms with PRINS. 

Work 
Ref. 

Dataset   

Name Samples Attributes 
Size on 

Disk 
K 

[47] KDD-Cup 2004 20.5k 64 5.2MB 20 

[48] KDD-Cup 99 4.9M 42 800MB 1000 

[5] 

WordEmbed [53]  64 8MB 2 

SIFT [54] ~1M 128 16MB 4 

TagSpace [55]  256 32MB 16 

 

Algorithm 2 KNN Implementation in PRINS 

//K denotes the number of nearest neighbors. 

//Every sample 𝑥 ∈ 𝑋 may be stored in several consecutive 

RCAM rows; the code assumes one row per sample for 

simplicity. 

//Each sample is characterized by M attributes 

//Calculate distance of each dataset sample from query 

1: For each 𝑎𝑡𝑡𝑟 ∈ {𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}: 

 Do-all 𝑥 ∈ 𝑋:         //all samples in parallel 

2: 𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← 𝑄𝑢𝑒𝑟𝑦𝑎𝑡𝑡𝑟 − 𝑥𝑎𝑡𝑡𝑟 

3: 𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟 ← (𝑑𝑖𝑠𝑡𝑎𝑡𝑡𝑟)2   

4:    𝑠𝑞𝐷𝑖𝑠𝑡 ← 𝑠𝑞𝐷𝑖𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑠𝑞𝐷𝑖𝑠𝑡𝑎𝑡𝑡𝑟 

//Find 𝐾 closest samples 

//Histogram of all classes maintained by microcontroller 

//Start with all samples unmarked 

5: Loop K times 

6:  Tag all unmarked samples 

7:  Tag and mark first row with min value of 𝑠𝑞𝐷𝑖𝑠𝑡 

8:  Retrieve 𝑐𝑙𝑎𝑠𝑠 of tagged row to microcontroller 

9:  On microcontroller: Histogram[𝑐𝑙𝑎𝑠𝑠]++ 

//Classification: Class with highest histogram 

Figure 4: KNN Pseudocode. 
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lack of hardened arithmetic units allows for flexibility of the 

compute operations. The binary Hamming distance calculation 

can be performed efficiently with a series of 1-bit compare and 

8-bit counter increment operations on the entire dataset in 

parallel, resulting in considerable speedups and equal or better 

power efficiency compared with all platforms. 

VI. CONCLUSIONS 

This paper presents an evaluation of K-means and KNN 

compute intensive machine learning algorithms on PRINS, a 

non-von Neumann processing-in-storage system based on 

resistive content addressable memory (ReCAM). PRINS is a 

massively parallel and scalable SIMD architecture with in-situ 

processing capabilities. It uses associative processing instead of 

Boolean logic which allows executing any logic or arithmetic 

operation in a fixed number of cycles. Every ReCAM integrated 

circuit can contain hundreds of millions of data rows, each row 

serving as an associative processing unit.  

PRINS performance and power-efficiency while executing 

these two algorithms have been compared to several other 

works. The evaluation shows that PRINS improves 

performance by up to three orders of magnitude and achieves 

better power efficiency for both algorithms, when compared to 

host based and near-data processing architectures. 
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