
1

Many-cores: Supercomputer-on-chip
How many? And how?

(how not to?)

Ran Ginosar
Technion

Feb 2009

2

Disclosure and Ack
• I am co-inventor / co-founder of Plurality

• Based on 30 years of (on/off) research
• Presentation ideas stolen freely from others

• Suddenly there are many experts at and around the
Technion ☺

3

Many-cores
• CMP / Multi-core is “more of the same”

• Several high-end complex powerful processors
• Each processor manages itself
• Each processor can execute the OS
• Good for many unrelated tasks (e.g. Windows)
• Reasonable on 2–8 processors, then it breaks

• Many-cores
• 100 – 1,000 – 10,000
• Useful for heavy compute-bound tasks
• So far (50 years) many disasters

• But there is light at the end of the tunnel ☺

4

Agenda
• Review 4 cases
• Analyze
• How NOT to make a many-core

5

Many many-core contenders
• Ambric
• Aspex Semiconductor
• ATI GPGPU
• BrightScale
• ClearSpeed Technologies
• Coherent Logix, Inc.
• CPU Technology, Inc.
• Element CXI
• Elixent/Panasonic
• IBM Cell
• IMEC
• Intel Larrabee
• Intellasys
• IP Flex

• MathStar
• Motorola Labs
• NEC
• Nvidia GPGPU
• PACT XPP
• Picochip
• Plurality
• Rapport Inc.
• Recore
• Silicon Hive
• Stream Processors Inc.
• Tabula
• Tilera

(many are dead / dying / will die / should die)

6

PACT XPP
• German company, since 1999

• Martin Vorbach,
an ex-user of Transputers

42x
Transputers
mesh
1980s

7

PACT XPP (96 elements)

8

PACT XPP die photo

9

PACT: Static mapping, circuit-switch reconfigured NoC

10

PACT ALU-PAE

11

PACT
• Static task mapping /

• And a debug tool for that

12

PACT analysis
• Fine granularity computing ☺
• Heterogeneous processors /
• Static mapping
Æ complex programming /

• Circuit-switched NoCÆ static reconfigurations
Æ complex programming /

• Limited parallelism
• Doesn’t scale easily

13

• UK company
• Inspired by Transputers (1980s), David May

42x
Transputers
mesh
1980s

14

322x
16-bit LIW RISC

15

16

17

18

19

20

21

22

23

24

: Static Task Mapping /

Compile

25

• MIMD, fine granularity, homogeneous cores ☺
• Static mapping
Æ complex programming /

• Circuit-switched NoC Æ static reconfigurations
Æ complex programming /

• Doesn’t scale easily
• Can we create / debug / understand static mapping

on 10K?

analysis

26

• USA company
• Based on RAW research @ MIT (A. Agarwal)

• Heavy DARPA funding, university IP
• Classic homogeneous MIMD on mesh NoC

• “Upgraded” Transputers with “powerful” uniprocessor features
• Caches /
• Complex communications /

• “tiles era”

27

Tiles
• Powerful processor
• High freq: ~1 GHz

• High power (0.5W) /

• 5-mesh NoC
• P-M / P-P / P-IO

• 2.5 levels cache //
• L1+ L2
• Can fetch from L2 of others

• Variable access time
• 1 – 7 – 70 cycles

28

Caches Kill Performance
• Cache is great for a single processor

• Exploits locality (in time and space)
• Locality only happens locally on many-cores

• Other (shared) data are buried elsewhere
• Caches help speed up parallel (local) phases

• Amdahl [1967]: the challenge is NOT the parallel
phases

29

Array
• 36-64 processors

• MIMD / SIMD /

• Total 5+ MB memory
• In distributed caches

• High power
• ~27W //

Die photo

30

allows statics
• Pre-programmed streams

span multi-processors
• Static mapping

31

co-mapping: code, memory, routing /

32

static mapping debugger /

33

analysis
• Achieves good performance
• Bad on power
• Hard to scale
• Hard to program

34

• Israel
• Technion research (since

1980s)

PLURALITY

35

Architecture: Part I

“anti-local” addressing by interleaving
MANY banks / ports
negligible conflicts

fine granularity
NO PRIVATE MEMORY

tightly coupled memory
equi-distant (1 cycle each way)
fast combinational NOC

PPPPPPPP

external memory

shared memory

P-to-M resolving NoC

PLURALITY

36

PPPPPPPP

external memory

shared memory

P-to-M resolving NoC

low latency parallel scheduling
enables fine granularity

scheduler

P-to-S
scheduling NoC

“anti-local” addressing by interleaving
MANY banks / ports
negligible conflicts

fine granularity
NO PRIVATE MEMORY

tightly coupled memory
equi-distant (1 cycle each way)
fast combinational NOC

Architecture: Part IIPLURALITY

37

Floorplan

S

PLURALITY

38

programming model

• Compile into
• task-dependency-graph = ‘task map’
• task codes

• Task maps loaded into scheduler
• Tasks loaded into memory

regular
duplicable task xxx(dependencies)
join/fork
{

… INSTANCE ….
…..

}

Task template: PPPPPPPP

external memory

shared memory

P-to-M resolving NoC

scheduler

P-to-S
scheduling NoC

PLURALITY

39

Fine Grain Parallelization
• Convert (independent) loop iterations

• for (i=0; i<10000; i++) { a[i] = b[i]*c[i]; }

• into parallel tasks
• duplicable task XX(…) 10000
{ ii = INSTANCE;

a[ii] = b[ii]*c[ii];
}

• All tasks, or any subset, can be executed in parallel

40

Task map example (2D FFT)
Duplicable task

…
…
…

…
…
…

Conditional task

Join / fork task

41

Another task map (linear solver)

42

Linear Solver: Simulation snap-shots

43

Architectural Benefits
• Shared, uniform (equi-distant) memory

• no worry which core does what
• no advantage to any core because it already holds the data

• Many-bank memory + fast P-to-M NoC
• low latency
• no bottleneck accessing shared memory

• Fast scheduling of tasks to free cores (many at once)
• enables fine grain data parallelism
• impossible in other architectures due to:

• task scheduling overhead
• data locality

• Any core can do any task equally well on short notice
• scales automatically

• Programming model:
• intuitive to programmers
• easy for automatic parallelizing compiler

PLURALITY

44

• Target design (no silicon yet)
• 256 cores
• 500 MHz

• For 2 MB, slower for 20 MB

• Access time: 2 cycles (+)
• 3 Watts

• Designed to be
• Attractive to programmers (simple)
• Scalable
• Fight Amdahl’s rule

PLURALITY

45

Analysis

46

The VLSI-aware many-core (crude) analysis

 One core N-core

Area a A (fixed)

Num.
processors 1 /N A a=

Frequency f a=
Af a
N

= =

Performance a N a NA=

Power p af a a= = A AP Np A a
N

= = =

Perf/Power N∝

Common error I:
Assume that a is fixed

Common error II:
Maximize frequency

Common error III:
Assume performance
is linear in N

Common error IV:
Assume power
is linear in N

47

The VLSI-aware many-core (crude) analysis

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

10 100 1000

Number of Processors

Power Perf Freq Perf/Power

power ∝ 1/√N

perf ∝ √N

freq ∝ 1/√N

Perf / power ∝ N

64 256

48

things we shouldn’t do in many-cores
• No processor-sensitive code

• No heterogeneous processors
• No speculation

• No speculative execution
• No speculative storage (aka cache)
• No speculative latency (aka packet-switched or circuit-switched NoC)

• No bottlenecks
• No scheduling bottleneck (aka OS)
• No issue bottlenecks (aka multithreading)
• No memory bottlenecks (aka local storage)

• No programming bottlenecks
• No multithreading / GPGPU / SIMD / static mappings / heterogeneous

processors / …
• No statics

• No static task mapping
• No static communication patterns

49

Conclusions
• Powerful processors are inefficient
• Principles of high-end CPU are damaging

• Speculative anything, cache, locality, hierarchy
• Complexity harms (when exposed)

• Hard to program
• Doesn’t scale

• Hacking (static anything) is hacking
• Hard to program
• Doesn’t scale

• Keep it simple, stupid [Pythagoras, 520 BC]

50

