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Abstract— Special synchronizers exist for special clock 

relations such as mesochronous, multi-synchronous and 

ratiochronous clocks, while variants of N-flip-flop 

synchronizers are employed when the communicating clocks 

are asynchronous. N-flip-flop synchronizers are also used in all 

special cases, at the cost of longer latency than when using 

specialized synchronizers. The reliability of N-flip-flop 

synchronizers is expressed by the standard MTBF formula. 

This paper describes cases of coherent clocks that suffer of a 

higher failure rate than predicted by the MTBF formula; that 

formula assumes uniform distribution of data edges across the 

sampling clock cycle, but coherent clocking leads to drastically 

different situations. Coherent clocks are defined as derived 

from a common source, and phase distributions are discussed. 

The effect of jitter is analyzed, and a new MTBF expression is 

developed. An optimal condition for maximizing MTBF and a 

circuit that can adaptively achieve that optimum are described. 

We show a case study of metastability failure in a real 40nm 

circuit and describe guidelines used to increase its MTBF 

based on the rules derived in the paper. 

Keywords- Synchronization, metastability, mean time between 

failures (MTBF), coherent clocks. 

1 INTRODUCTION 

Recently, a SoC product exhibited an alarmingly high 

rate of random failures in operation. Analysis showed that 

the problem was located in a clock domain crossing based 

on a two flip-flop synchronizer. While such synchronizers 

are designed to bridge asynchronous clock domains, it 

turned out that the domains in question were coherent, 

resulting in an increased failure rate.  

The usual classification  [1] [2] [4] sorts the relationship 

between two clocks based on their frequency and phase 

relations, as in the upper part of Figure 1. No frequency and 

phase relationship is assumed for two asynchronous clocks, 

and various relations exist in the loosely synchronous class. 

That class is further divided into mesochronous, 

plesiocronous and heterochronous groups. The latter group 

is further sub-divided into ratiochronous and non-

ratiochronous  [5] [6] clocks. We employ a different 

classification, based on clock sources, as shown in the lower 

part of Figure 1. Clocks are non-coherent when they are 

sourced from different references and coherent when they 

share a common reference clock. The coherent case is 

further divided into two subcases depending on the nature of 

their phase distribution, uniform and non-uniform. The 

dotted circle groups the cases where the phase distribution is 

uniform, whether coherent or not. Note that some cases of 

the loosely synchronous clocks may be either coherent or 

non-coherent, and hence it is impossible to unify the two 

different classifications. It is widely believed that loosely 

synchronous clock domains may be synchronized using 

either a special purpose synchronizer designed for each of 

the special cases(e.g.,  [7]- [11]), or using a brute-force �-

flip-flop synchronizer of the type designed for asynchronous 

domains  [2] [3] [4] [19]. 

 
Figure 1. Two different classifications for clock relation 

In that latter case, the reliability of the synchronizer is 

given by the estimate of mean time between failures 

(����): 

 ���� = �� 	
�� ∙ 
� ∙ 
� (1) 

where 
�, 
�, � denote the frequency of the clock, the rate of 

the incoming data signal and the settling time allowed for 

synchronization between the clock domains, and � and �� 

are the metastability resolution time constant and its 

window of vulnerability. Significant research has focused 

on the improvement and enhancement of such 

synchronizers  [12] [13] [14]. However, we have realized that 

in certain cases of coherent clocks that expression does not 

apply. 

Deep inside (1) lays the assumption that the probability 

distribution of data edges along the sampling clock period is 

uniform  [2] [15]. However, we show that uniform 

distribution cannot be assumed in coherent clock domains. 

Rather, the common clock source leads to particular non-

uniform phase relations that may result in significantly 

higher failure rates than predicted by (1). 

The paper is organized as follows. Section  2 defines 

coherent clocks and discusses the resulting phase relations. 

Section  3 describes jitter noise and its influence on clock 

phases. In Section  4 we develop a formula for ���� in a 

general coherent clock case and an optimality condition for 

minimum failure rate. In section  5 we show the conditions 

for achieving that minimum and explain why previous 



 

publications  [7]- [11] on adaptive synchronization do not 

provide such optimality. Section  6 presents the case study of 

a synchronization failure in a Soc, as discussed at the 

beginning of this introduction, showing solutions to achieve 

the optimal condition and section  7 concludes the work. 

2 COHERENT CLOCKS 

Synchronization in multiple-clock domain SoC can be 

sorted into two major categories, coherent and non-coherent 

clocking. The coherent clocks scenario is illustrated in 

Figure 2. Two clock domains are fed from two different 

PLLs that are referenced from a common source and apply 

rational frequency multipliers M1,M2. The clock frequencies 

of domains 1 and 2 are 
� and 
� respectively. A data signal 

sourced in domain 1 is sampled by a flip-flop in domain 2. 

This is the case when clock domains are referenced from a 

single oscillator or crystal on board that provides reference 

to all domains. In the general case, no assumption is made 

on the values of 
�  and, 
� , and every ratio is permitted 

according to the programmed values of the PLL multipliers. 

This case is similar to Globally-Ratiochronous, Locally-

Synchronous (GRLS) in  [6].  

 
Figure 2. Coherent clocks 

The non-coherent scenario is illustrated in Figure 3, and 

corresponds to the case where the communicating clock 

domains are sourced from different references. This is the 

case when more than one oscillator is present in the circuit, 

or when synchronizing asynchronous inputs into the system. 

Both coherent and non-coherent cases may be present in 

large SoCs.  

 
Figure 3. Non-coherent clocks 

In the following we deal mostly with the coherent clock 

scenario; non-coherent clocks are discussed briefly at the 

end of Section  3. In Figure 2, data is generated at rate 
�. 

The aim is to analyze the distribution of the phase difference 

between the data leading edge and its sampling clock in 

domain 2. We denote by �(�) the time difference in the ��� 

cycle of clock 
�  (this time difference is henceforth 

expressed as a phase difference). Assuming 
� > 
� , the 

phase is bounded by 0 ≤ �(�) ≤ ��. Figure 4 describes this 

scenario; the leading edge of data is represented by the 

rising edge of clock 1. 

)(nϕ
)1( +nϕ

2T

1T

 
Figure 4. Relative phases of two clocks 

Because both clocks are derived from a common 

reference, they are rational, 

� = 
�
� = 
���
��� = �� + "# (2) 

Where " = ��/gcd	(��,��)  and # = ��/ gcd(��, ��) . 

Following (2) and the waveform diagram of Figure 4, an 

equation describing the evolution of phase for cycle � can 

be derived  [16]. 

�(�) + * ∙ �� = �(� + 1) + � ∙ �� (3) 

where *  can take only two possible values, * = ��  or * = �� + 1. Equation (3) has been studied in the context of 

communication systems  [17] and the solution is given by: 

�(�) = �(0) − � ∙ - ∙ �� − .�(0)�� − � ∙ -/ ∙ �� (4) 

where - = 	� − �� = 01 and �(0) is the phase at time zero. 

An interesting property of (4) is that �(� + #) = �(�) , 

which means that �(�) is periodic with period # and �(�) 

can take at most # different values.  

�(� + #) = 	�(0) − (� + #) ∙ - ∙ �� − .�(0)�� − (� + #)-/ ∙ �� 

= 	�(0) − (� + #) ∙ "# ∙ �� − .�(0)�� − (� + #) "#/ ∙ �� 

= �(0) − � ∙ - ∙ �� − ��(0) − �- ∙ �� = �(�) 
(5) 

An exhaustive analysis  [16] of the solution (4) shows that �(�)  is composed of "  monotonically decreasing sub-

sequences as shown in Figure 8. The possible values of �(�) are uniformly distributed in the interval 20, ��3 and the 

distance between two aligned values of �(�) is then �� #⁄ . 

Figure 5 shows �(�) for a synchronization scenario where 
� is 100Mhz and 
� is 150Mhz. In this case "=1,#=2 and 

as expected the phase between the two signals takes only 

two values. Another example in shown in Figure 6 and its 



 

histogram in Figure 7, where 
�=125Mhz and 
�=150Mhz. 

The frequency ratio is 
� 
� = 1 + 1/5	⁄ , and the phase 

takes only five different discrete values. 

 
Figure 5. Evolution of �(�) over time for 
�=100Mhz and 
� = 150Mhz 

 
Figure 6. Evolution of �(�) over time for 
�=125Mhz and 
� = 150Mhz 

 
Figure 7. Histogram of �(�) for 
�=125Mhz and 
�  = 150Mhz, "=1 #=5 
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Figure 8. 6(7) solution for rational coherent frequencies 

Based on the derived results a general expression for the 

probability density function (89
) of the phase �(�) can be 

obtained: 

89
:(;)(<) = 1# =δ?< − �(@)A	,								<B20, ��31
CD�  (6) 

where δ(E) is the Dirichlet delta function. Figure 9 shows a 

diagram of the 89
 for the phases. 

)(npdfϕ

 
Figure 9. Probability density function diagram of 6(7) 

2.1 Small perturbations in clock frequencies  

In the previous examples 
� 
�⁄  took perfect rational 

numbers with low Q values, corresponding to only a few 

possible values of the phase �(�). What happens if a small 

perturbation appears in one of the clocks? To answer this 

question, we denote the number of different possible phases 

for frequencies 
�  and 
�  as F(
�, 
�) . As seen in the 

previous sub-section, for 
� 
�⁄ = �� + " #⁄ , F(
�, 
�) =#. A special property related to F(
�, 
�) is that for a small 

frequency perturbation, say (
�, 
� + G) , the value F(
�, 
� + G) may become unbounded. A formal proof of 

this discontinuity of F(
�, 
�)  requires precise definitions 

and is beyond the scope of this paper. Instead, a general 

guideline about this claim is presented. First, we denote the 

deviation from 
�  as a fraction of 
� , meaning G =
� ∙ HI H�⁄ , and for small perturbations H� ≫ HI. Then, the 

number of possible phases for the perturbed frequency 

values is given by F(
�, 
� + G) = #K , where 
LMNOLP = ��Q + 0K1K. 

Substituting, we obtain the expression: 

��Q + "K#K = 
� + RSRT ∙ 
�
� = �� + " ∙ H� + �� ∙ HI ∙ # + " ∙ HI# ∙ H�  (7) 

From (7), #K  can be at most # ∙ H� and since H�is a large 

number, the number of possible phases F(
�, 
� + G) =# ∙ H�  is very large. In some cases, the numerator and 

denominator in (7) may have common divisors, lowering 

the value of F. In summary, while for certain frequencies 
�, 
�  the number of possible phases can take a limited 

number of values (#),  for a small perturbation of those 

frequencies the number of possible phases may drastically 

increase. 

To show the above argument, we consider a case where 
� = 125�ℎW  and 
� = 151.5�ℎW , meaning G = 1.5	�ℎW 

and 
RSRT = 0.01 , representing a 1% deviation from 
� =150�ℎW . Figure 10 and Figure 11 show �(�)  and its 

histogram. The number of possible phases increased from 5 

to 250 possible phases. The histogram in Figure 11 

resembles a continuous uniform distribution, since it is 

composed of a large number of delta functions. 
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Figure 10. �(�) for 
�=125Mhz and 
�  = 151.5Mhz 
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Figure 11. Histogram of �(�) for 
�=125Mhz and 
�  = 151.5Mhz, "=53 #=250. A small segment is magnified for clarity. 

3 CLOCK PHASE PROBABILITY DISTRIBUTION 

The preceding analysis ignores noise. In periodic 

electronic signals, noise manifests as phase jitter. To 

understand the effect of jitter on the values of �(�) , we 

assume the noise is independent, time invariant and 

additive  [18]. Then, 

 �I(�) = �(�) + Y(�) (8) 

where ��(�) describes the jittered phase at cycle �, Y(�) is 

the jitter component that is assumed to have normal 

distribution �(0, Z�), and �(�) are the ideal phase values 

as described in the previous section. Figure 12 and Figure 

13 show the effect of noise on the phase positions for 
�=125Mhz and 
� = 150Mhz case. As expected, instead of 

delta like phase positions, Gaussian like distributions in 

each of the peaks are obtained. Figure 14 and Figure 15 

show a similar example for the case of a slight deviation 

from the desired frequencies. Since the number of possible 

phase positions increases drastically, the final result is 

almost a continuous uniform distribution through all 

possible phases. 

In the non-coherent scenario Figure 3, the ratio of the 

two clock frequencies cannot in general be expressed as a 

rational number. This is true even when the two reference 

clocks are specified to the same nominal frequency. Rather, 

this ratio is modeled as a rational number plus a small 

perturbation. Hence, based on the analysis of small 

perturbations explained above, the relative phases span a 

wide range in a manner close to uniform distribution. This 

situation persists even when adding noise. 

 
Figure 12. �I(�) for 
�=125Mhz and 
�  = 150Mhz with jitter 

 
Figure 13. Histogram of �I(�) for 
�=125Mhz and 
� = 150 Mhz, "=1 #=5 Z = 0.06�� 

 
Figure 14. �I(�) for 
�=125Mhz and 
�  = 151.5Mhz 

 
Figure 15. Histogram of �I(�) for 
�=125Mhz and 
� = 151.5Mhz, "=53 #=250 

So far we have shown that the different clock scenarios 

can be classified based on their clock reference. In the non-

coherent case the phase is distributed uniformly, while in 

the coherent case the phase distribution may become non-
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uniform depending on the clock frequencies. When the 

phase is non-uniformly distributed, ���� calculated using 

(1) is invalid; a new expression for the coherent non-

uniform case follows in the next section. 

4 COHERENT CLOCK MTBF 

A failure in a synchronizer appears when the data-clock 

separation is inside the metastability window of 

vulnerability. Then synchronizer failure probability can be 

expressed as 

 "(
\@]^_�) = "(|�I(�) − a�| < a�2 ) (9) 

where a� is the theoretical phase separation that causes the 

synchronizer output to settle at the metastability 

voltage (cd)  [15]. The parameter a�  is the metastability 

window around a�  such that for �I(�) values outside the 

interval 2a� − ef� , a� + ef� 3, the voltage at the output of the 

synchronizer takes defined valid values within bounded time 

and there is no risk of further metastability propagation. 

However, if 	�I(�) lies inside the interval, the synchronizer 

output is delayed generating intermediate voltages at its 

output at the system sampling time which may propagate 

metastability to the synchronous domain and lead to a 

failure (Figure 16). a� is assumed symmetrical for the ease 

of the derivation while in real circuits it may be non-

symmetric around a�. 
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Figure 16. Synchronization diagram  

Following (6) and (8), and since the probability density 

function of the sum of two independent random variables is 

the convolution of their separate density functions, the pdf 

of �I(�) can be written as 

89
:S(;)(E) = 1# 12g√Z= �ijklm(n)o pM 	, <B20, ��31
CD�  (10) 

The value of 	σ  is the standard deviation of the jitter 

noise in the circuit. The probability density can be regarded 

as cyclic with cycle ��. The resulting 89
 function takes a 

form similar to the diagrams of Figure 17. 

From (10) and Figure 17, we identify two different 

scenarios. When �� > 2#Z, (10) represents a non-uniform 

distribution as in Figure 17(a), having maxima and minima 

similar to the example of Figure 13. This happens because 

the distance between the ideal phase positions (��/# ) is 

larger than the standard deviation (Z) of the noise and the 

maxima are well separated. When �� < 2#Z , the 

summation in (10) produces a mixture that can be 

approximated by a continuous uniform distribution, as in 

Figure 17(b). This is because the Gaussian mean locations 

(�(@)) are uniformly distributed through the clock period 

and the distance between phase positions is shorter than the 

standard deviation of the noise. An alternative analysis in 

the Fourier domain yields a similar criterion for the 

uniformity of the overall distribution. 
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Figure 17. Probability density function diagram of �I(�), (a) for �� > 2#Z. (b) �� < 2#Z 

Using (10) the failure probability can be re-written as: 

"(|�I(�) − a�| < a�2 ) = 1# 12g√Z r s=�ijtlm(n)o pM 	1
CD� u

evNwfM

eviwfM
9< (11) 

When �� < 2#Z, the 89
��(�) is approximately constant, 

and " j|�I(�) − a�| < ef� p = efxM  which is the usual result for 

uniform phase distribution  [15].  

Assuming the data rate is given by 
� , a new general ����  expression for the coherent clocks scenario can be 

derived from (11) : 

���� = 1
\@]^_�	_\<� = 1"(|�I(�) − a�| < ef� ) ∙ 
� (12) 

Evidently, coherent clocking may lead to a different 

MTBF than expression (1). 

The maximum possible ����  ratio is given when a� 

lies on a peak or in a valley of the probability distribution 

function. In those cases, the ���� ratio is given by: 



 

����y����z = ����d{|����dC; ≈ �E8 j−	�(@)−�(@)
Z p2

�E8 ~−	j�(@)+�22#p−�(@)
Z �2 		

= �j �22#Zp2
 (13) 

In common cases, jitter represents a few percent of the 

clock period. Taking Z ��⁄ = 0.02  (2%) and # = 3 , the ����  ratio becomes 4160, meaning ����  may increase 

or decrease by 4-5 orders of magnitude. This ���� 

variation should be added to other design margins by 

increasing the settling time by 9� (ln	(4160) ≈ 9), which in 

modern technologies (especially LP) can add up to 0.5-1 

nsec latency. A similar scenario is shown in  [20] by means 

of a special feedback setup that creates metastable events in 

almost every cycle. When the jitter is extremely low, the 

MTBF ratio becomes very high (e.g. for 0.5% jitter the ratio 

is almost 10�� ), which is a considerable improvement in 

MTBF. 

In most cases the MTBF uncertainty caused by coherent 

clocks should be compensated by an additional settling time 

margin. Those margins in synchronizer design should be 

added to other Process technology, temperature and supply 

voltage margins (PVT). 

5 MAXIMIZING MTBF 

Many synchronizers have been proposed for different 

types of coherent clock relations, such as mesochronous, 

multi-synchronous, plesiochronous and periodic clocks. 

However, in this section we consider maximizing the MTBF 

or N-flip-flop synchronizers, when employed between 

coherent clock domains. 

Because (10) can be non-uniform as described 

previously, we aim at optimizing the synchronization setup 

in order to maximize MTBF. Since a� and a� are intrinsic 

parameters of the flip-flops and Z is related to the jitter of 

the clock network (basically the jitter of the reference clock 

from which both 
�  and 
�  are derived), we focus our 

optimization on the phases �(@). The absolute phases are a 

function of interconnect and internal delays, which 

determine the value of �I(0), while the relative phase is 

independent of any delay and is given by �� #⁄ . Internal 

flip-flop delays depend on the circuit design and hence the 

only available parameter in a system level perspective is the 

interconnect delay that affects �(@) by an overall offset. 

To find the optimum value of �(@) that yields maximum 

MTBF, one should solve equation (14): 

�(@) = argmax:(C) ���� (14) 

Since the MTBF function is monotonic, it follows  

�(@)�z� = argmin:(C) ���
�� r s=�ijtlm(n)o pM	1

CD� uevNwfM

eviwfM
9<

���
��

 (15) 

Since (15) does not have analytical solution, an 

approximation is given by: 

�(@)�z� = a� −	a�2 − ?�(@ + 1) − �(@)A2�������������xM �1⁄
≈ a� − ��2# (16) 

A graphical representation of the solution is shown in 

Figure 18. The analytical solution matches the intuitive 

approach that the interconnect delay is to be adjusted so that 

the point a� lies between any two peaks �(@) values. 

It is possible to build a circuit that produces the optimal 

MTBF condition derived in (16). Since a�	 is usually not 

known to the system designer, a method for adaptive delay 

learning is implemented. Previous works on adaptive 

synchronization  [7]- [11] do not take a�  into consideration 

and consequently may be unable to achieve the maximum ����.  
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Figure 18. Graphical representation of solution of (15) 

The principle of the adaptive delay unit is shown in 

Figure 19 and consists of a variable delay and delay control 

block that are independent of the synchronizer. The delay 

control receives both 
�, 
� and the output of the first flip-

flop in the synchronizer and generates a control signal (set) 

that sets the delay value. The output of the first synchronizer 

stage is critical in order to generate the condition shown in 

(16). Once the delay is found, the control unit locks the 

value. This procedure is triggered after a reset of the clock 

domains and the delay is kept locked until any of the 

frequencies is changed.  

 
Figure 19. Adaptive delay unit block diagram 



 

6 CASE STUDY 

In this section we present a real circuit that a-posteriori 

was found to present metastability failures. The circuit was 

part of a commercial SoC in a 40nm technology. This 

presentation aims to achieve two goals: first, to demonstrate 

that phase distribution may be non-uniform in coherent 

clock circuits as shown in previous sections; second, to 

describe techniques useful for detection and analysis of 

random metastability failures. 

The relevant portion of the circuit is shown in Figure 20. 

 
Figure 20. Block diagram of circuit showing failing circuitry 

In order to locate the failure, Infra-red emission analysis 

(IREM) was used. It identified an area of the SoC that 

exhibited irregular emissions correlated to the failure event. 

Figure 22 shows the IREM image during normal system 

operation and just prior to failure. In normal operation, only 

one emission spot was visualized. Prior to a failure, 

additional emission spots were observed. Multiple signals in 

the vicinity of the culprit location were examined, by adding 

FIB micro-probes. Figure 21 shows the synchronizing 

clocks and the waveform at the output of the synchronizer 

(signal S1), with an unexpectedly-short pulse, caused by a 

late output transition generated by metastability. Logically, 

this event was determined to cause the failure. 

Since the system employed coherent clocks, we studied 

the phase relation of the micro-probed clock and the data 

feeding into the suspected synchronizer. Figure 23, Figure 

24 and Figure 25 show waveforms and histograms of the 

phase distribution between 
�  and 
�  for different 

configurations, captured by an oscilloscope. Clock 

waveforms are shown in purple, phase histogram is shown 

in blue, a zoomed version of the phase histogram is shown 

in green and the measured period for 
� is shown in yellow. 

In Figure 23 the ratio 
� 
�⁄ = 8 + 1 3⁄ , giving three peaks 

in the histogram. In Figure 24 the ratio 
� 
�⁄ = 8 + 1 5⁄ , 

giving 5 peaks, and in Figure 25, 
� 
�⁄ = 8 + 1 2⁄ , giving 2 

peaks. The value of a� was obtained from simulations and 

static timing analysis and its position is marked in each of 

the graphs. 

 
Figure 21. Oscilloscope waveform at the output of the synchronizer 

(S1) 

Using the value of a�  and the phase histogram, we 

calculated the probability of failure, by the ratio of the 

events in a window around a� divided by the overall event 

number in the histogram. Table 1 shows the result of the 

failure probability for different values of the 
� 
�⁄  ratio. 

The failure probability changes by very large factors. We 

then validated these findings by measuring failure 

probabilities of the SoC for each of the tabulated ratios. 

Finally, we directed the SoC user to use only the ratios that 

are highlighted in the table, since they lead to significantly 

reduced failure probabilities.  

We note that the proposed solution did not fix the 

problem completely, but increased the ���� by two orders 

of magnitude, which resulted in an acceptable solution for 

the specific application. 

 
Figure 22. IREM and layout mapped IREM (a) during normal operation. (b) During system failure



 

In the future, a similar SoC may employ a circuit like in 

Figure 19 to dynamically adjust a�  and achieve an even 

better improvement in ����.  

The synchronizer in Figure 20 was poorly designed and 

the case is presented here to illustrate the coherent clock 

phase distribution and not as a method to solve metastability 

issues. 

a0  
Figure 23. Phase histogram for 
� 
�⁄ = 8 + 1 3⁄  

a0  
Figure 24. Phase histogram for 
� 
�⁄ = 8 + 1 5⁄  

a0  
Figure 25. Phase histogram for 
� 
�⁄ = 8 + 1 2⁄  

Table 1. Failure probability for different 
� 
�⁄  ratios 

 

7 CONCLUSIONS 

We have proposed a new classification of CDC 

synchronization based on the source of the clock references 

involved. Coherent and non-coherent clock scenarios are 

introduced. In the non-coherent clock scenario the clock 

phase distribution is shown to be uniform as assumed in 

previous publications. In contrast, coherent clock 

synchronization is shown to present non-uniform phase 

distribution in some cases depending on clock frequencies. 

A condition for non-uniformity versus uniformity in 

coherent clocks is developed. A new formula for ���� in 

the general coherent clock scenario is developed and an 

expression for optimum ����  is found. A general block 

diagram of an adaptive synchronization scheme that can 

maximizes ����  is proposed. A real case of 

synchronization failure in a coherent clocking SoC is 

presented, demonstrating measured non-uniform phase 

distribution and also illustrating how random metastability 

failures can be detected and localized in real chips.  
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f2/f1 RATIO EVENT RATIO PROBABILITY

8+1/3 15/63800 0.0002351

8+1/4 80/77300 0.0010349

8+2/3 15/55700 0.0002693

8+1/2 5/27600 0.0001812

8+3/4 5/23500 0.0002128

8+1/5 50/62400 0.0008013

8+2/5 50/48900 0.0010225

8+3/5 50/57100 0.0008757

8+4/5 50/50900 0.0009823

9+2/3 30/51400 0.0005837

9+4/5 55/52800 0.0010417

9+3/5 60/54200 0.0011070

9+3/4 55/51800 0.0010618

9+1/2 50/53300 0.0009381


