

An In-Storage Implementation of Smith-Waterman

in Resistive CAM
Roman Kaplan, Leonid Yavits, Uri Weiser and Ran Ginosar

Dept. of Electrical Engineering, Technion, IIT
Haifa, Israel

sromanka@tx.technion.ac.il

Abstract—An in-storage implementation of the Smith-Waterman sequence alignment algorithm on a resistive content

addressable memory (ReCAM) based storage is proposed. The ReCAM native compare operation is used to find matching base-

pairs in a fixed number of cycles, regardless of the sequence length. Our in-storage implementation is simulated and compared

to state-of-the-art systolic arrays and GPU-based solutions. We show a 3.4x higher throughput and an order of magnitude lower

power dissipation.

Index Terms—Local Sequence Alignment, Near Data Computing, Processing In Storage, Resistive RAM.

——————————  ——————————

1 INTRODUCTION

NA sequences are frequently compared and searched
for matching or near-matching patterns. The Smith-
Waterman algorithm [1] (S-W) is based on dynamic

programming and designed to find optimal local align-
ment between two sequences. This alignment is based on
the computation of a scoring matrix. The original S-W al-
gorithm was later enhanced by Gotoh [2] to support the
affine gap model.

The quadratic running time complexity of S-W makes it
a good candidate for hardware acceleration. A recent sur-
vey on S-W implementations [6] identified the following
main acceleration platforms: FPGAs, GPUs and Intel Xeon
Phi. The state-of-the-art performance of each will be pre-
sented in Section 4.

In this paper, we propose an in-storage implementation
of the S-W scoring step based on Resistive Content Ad-
dressable Memory (ReCAM) [5]. ReCAM combines data
storage with data processing. We show that in-storage
ReCAM implementation may achieve on average 3x
higher throughput than a GPU implementation, while hav-
ing 12x lower power dissipation.

The rest of this paper is organized as follows. Section 2
presents the architecture of a ReCAM based storage. Sec-
tion 3 explores the in-storage implementation of S-W. Sec-
tion 4 discusses simulation results and Section 0 offers con-
clusions.

2 RECAM BASED STORAGE

Resistive memories store information by modulating
the resistance of nanoscale storage elements. Resistive

memories are nonvolatile, free of leakage power, and
emerge as long-term potential alternatives to charge-based
memories, including NAND flash.

STT-MRAM has generally lower write energy, shorter
write latency, and higher write endurance than other resis-
tive memory technologies [10]. A storage element in an
STT-MRAM cell is a magnetic tunnel junction (MTJ), which
relies on magnetoresistance to encode information. A MTJ
consists of two ferromagnetic layers and a tunnel barrier
layer. One of the ferromagnetic layers has a fixed magnetic
spin, whereas the spin of the second layer can be influ-
enced by applying high-amplitude current. The direction
of spins relative to one another determines the cell re-
sistance. Parallel (anti-parallel) spins result in low (high)
resistance.

KEY

MASK

(a)

Bit Bit Bit Bit

(b)

Bit Bit

Match /

Word Line

Match /

Word Line

Match /

Word Line

TAG

TAG

(c)

MUX

I1

I2

Write

From prev. TAG

Sel
O

To next TAG

TAG
Latch

Shift
select

PrechML

Fig 1. Resistive CAM crossbar array (a) Resistive crossbar, (b) STT-MCAM

bitcell (c) TAG logic

Fig 1 (a) shows the resistive CAM crossbar. A bitcell
(Fig 1 (b)) consists of two transistors and two resistive ele-
ments (2T2R). The KEY register contains a key data word

————————————————

 Roman Kaplan, E-mail: sromanka@tx.technion.ac.il
 Leonid Yavits, E-mail: yavits@tx.technion.ac.il
 Uri Weiser, E-mail: uri.weiser@ee.technion.ac.il
 Ran Ginosar, E-mail: ran@ee.technion.ac.il
 Authors are with the Department of Electrical Engineering, Technion-Israel

Institute of Technology, Haifa 32000, Israel.

D

mailto:sromanka@tx.technion.ac.il
mailto:skva@tx.technion.ac.il
mailto:yavits@tx.technion.ac.il
mailto:uri.weiser@ee.technion.ac.il
mailto:ran@ee.technion.ac.il

to be written or compared against. The MASK register de-
fines the active fields for write and read operations, ena-
bling bit selectivity. The TAG register (Fig 1 (c)) marks the
rows that are matched by the compare operation and may
be affected by a parallel write.

In a conventional CAM, a compare operation is typi-
cally followed by a read of the matched data word. When
in-storage processing involves arithmetic operations, a
compare is usually followed by a parallel write into the un-
masked bits of all tagged rows.

Any computational expression can be efficiently imple-
mented in ReCAM storage using line-by-line execution of
the truth table of the expression [5]. Arithmetic operations
are typically performed bit-serially. Table 1 lists operations
used in S-W implementation. Parallel compare and write
are assumed to take a single cycle each. Parallel shift down
requires three cycles per bit (compare with const ‘1’ copies
the source bitcolumn into the TAG; shift the TAG vector
down by setting the shift-select line (see Fig 1(c)); write ‘1’
copies the TAG to the destination bitcolumn). Addition is
performed in a bit-serial manner using a truth table ap-
proach [5]. Arithmetic operation (4th instruction in Table 1)
where one of the operands is constant (shared by all rows
of ReCAM) requires half the cycles compared to the same
operation where both operands are variables (different in
each row). Row-wise max, which finds the maximum be-
tween two elements in all rows in parallel, scans the ele-
ments bit-serially starting from the MSB. The first two bits
are compared. In case of equality, the operation continues
to the next pair of bits. Otherwise, the element containing
‘1’ is selected as max.

TABLE 1
OPERATIONS USED IN S-W SCORE CALCULATION

Instruction Cycles

32 bit

Shift 1 row down 96

B <= A + B 256

C <= A + B 512

C <= A +/- const_vector 256

Row-wise Max (A, B) 64

Max Scalar (A) 64

2 bit

Match 10

3 RECAM BASED IN-STORAGE SMITH-
WATERMAN IMPLEMENTATION

3.1 Smith-Waterman Algorithm

S-W identifies the optimal local alignment of two se-
quences by computing a two-dimensional scoring matrix
𝐻. Each element of the matrix, 𝐻𝑖,𝑗, is calculated according

to (3); 𝜎(𝑎𝑖 , 𝑏𝑗) is the match score between the base-pairs in

row 𝑖 and column 𝑗. Matching base-pairs have positive
score (e.g., +2), while mismatching have negative one (e.g.,
-1). The optimal alignment score between two sequences is
the highest score in the matrix 𝐻.

The alignment may contain gaps in both sequences
which are penalized in the score calculation (i.e., have a

negative score). According to the affine gap model [2],
opening a gap is harder than extending it, therefore the
penalty for opening a gap is larger. This affine penalty
scheme is calculated with two additional matrices, 𝐸 and
𝐹, as presented in (1) and (2); 𝐺𝑓𝑖𝑟𝑠𝑡 and 𝐺𝑒𝑥𝑡 are the penal-

ties for starting and extending a gap, respectively. The ma-
trices 𝐸, 𝐹 and 𝐻 are initialized with 𝐸0,𝑗 = 𝐸𝑖,0 = 𝐹0,𝑗 =

𝐹𝑖,0 = 𝐻0,𝑗 = 𝐻𝑖,0 = 0 for all 𝑖 and 𝑗.

Filling the scoring matrix 𝐻 is the computationally in-
tensive part of S-W. In a sequential implementation of the
algorithm, the cell filling order is either row or column-
wise. A parallel implementation allows all independent
cells to be computed in the same iteration. Such cells reside
in the same antidiagonal. The direction of filling the matrix
is along the main diagonal, as illustrated in Fig 2.

Sequential time complexity is 𝑂(𝑛𝑚), where 𝑛 and 𝑚 are
the lengths of the sequences, respectively. Parallel time
complexity is 𝑂(𝑛𝑚 𝑝⁄), where 𝑝 is the number of parallel
processing units. In ReCAM, processing unit is a memory
row. Therefore, unlike in GPU or FPGA implementations,
𝑝 could be larger than 𝑚𝑎𝑥 {𝑛, 𝑚} even for very large 𝑛 and
𝑚. Hence ReCAM can achieve linear time complexity of
𝑂(𝑚𝑎𝑥{𝑛, 𝑚}).

Fig 2. Parallel S-W scoring snapshot. The dot-patterened cell scores were
already computed (entire section 1 and left-most antidiagonal of section 2).

Plain-colored cells are stored in ReCAM (antidiagonals within the dashed

borders). The cell marked with X contains the global maximum score. Thick
borders separate ReCAM implementation to different logical sections.

3.2 ReCAM Implementation of S-W

In this work we focus on finding the maximal alignment
score, therefore storing the entire matrix in memory, as
typically required for backtracking, is not needed. A total
of four antidiagonals are required to compute a new anti-
diagonal of 𝐻: two of 𝐻 (see (3) and Fig 2), one of 𝐸 (see (1))
and one of 𝐹 (see (2)). Five matrix antidiagonals are stored

 , , -1 , -1max - (i) ; - (ii)i j i j ext i j firstE E G H G (1)

 , -1, -1,max - (i) ; - (ii)i j i j ext i j firstF F G H G (2)

   

     

1, 1

,

, ,

, i ;
max

 ii ; iii ;0 iv

i j i j

i j

i j i j

H a b
H

E F

 
  

  
  

 (3)

in ReCAM in each iteration. An additional field temp is re-
served to store partial results. The overall space complex-
ity required for executing the algorithm is therefore
𝑂(min{𝑛, 𝑚}).

Each of the five antidiagonals is mapped to a 32-bit col-
umn in ReCAM. Every ReCAM row retains one element of
the vectors temp, AD[2], AD[1], AD[0], F, E, seqA, seqB,
where AD[0-2], E, F contain the antidiagonals of H, E, F,
respectively, 𝑆𝑒𝑞𝐴 and 𝑆𝑒𝑞𝐵 contain the 2-bit elements of
sequences A and B respectively (Fig 3).

Fig 3. Organization of data within ReCAM corssbar array at the beginning

(a) and end (b) of iteration i (of section 1 in Fig 2). AD[2] contents is being
replaced with the new result.

S-W implementation on ReCAM can be divided into
three logical sections. In the first section, marked 1 in Fig 2,
the most recently scored antidiagonal is longer by one cell
than the previous one. During the second section (2 in Fig
2) all antidiagonals are of the same length. In the third sec-
tion (3 in Fig 2) every new scored antidiagonal is one cell
shorter than the previous.

Fig 4 presents the pseudocode of the S-W score finding
on ReCAM. Its main loop can be adjusted to implement
each of three logical sections presented in Fig 2, as is ex-
plained below. The elements of the last three scored anti-
diagonals (plain-colored cells in Fig 2), retained in AD[0-
2], are accessed in a round-robin manner, where the left
one (AD[2] in Fig 3 and the index left_AD in Fig 4) is re-
placed by the new result. The result of the previous itera-
tion is stored in AD[middle_AD] (AD[1] in Fig 3).

Fig 3 shows a ReCAM crossbar snapshot, at the begin-
ning (a) and the end (b) of a single iteration of the section
1 of Fig 2. Before calculating the match score, 𝑠𝑒𝑞𝐵 is
shifted one row down in order for all to-be-matched base-
pairs to reside in the same ReCAM rows (right-most col-
umn in Fig 3). AD[left_AD] is also shifted one row down
for the matching cells to be aligned (AD[0] in Fig 3). After
calculating the matching score, AD[left_AD] is no longer
required and is therefore used to store temporary results.
Next, the max between the match score and zero is calcu-
lated. We note that (ii) in (1) and (2) belong to the same
antidiagonal, therefore it is enough to calculate (ii) once
and use both for E and F. After calculating E its columns
are shifted one row down to have the values of E aligned
with the appropriate ones in the result vector. In section 1
and 2 of Fig 2, the down-shifted columns require zero-pad-
ding of the top-most ReCAM row. Once all four elements

of (3) are calculated, the result column is searched for the
maximal 𝐻 cell score, and the global max is updated.

The total number of iterations equals the sum of lengths
of the two sequences. Each iteration performs 17 instruc-
tions. Shift is performed in a single cycle. The number of
ReCAM rows affected by instruction is marked by [*]. It
increases (decreases) in the 1st (3rd) section and remains
constant in the 2nd section. Both 1st and 2nd sections require
zero padding at the first row of every down-shifted
ReCAM column to initialize the first rows of 𝐸, 𝐹, 𝐻 at zero.
The 3rd section does not require such padding.

At the beginning of the execution (section 1 in Fig 2),
only the top-most ReCAM row is active. Each subsequent
iteration activates an additional row until reaching the to-
tal of min{𝑚, 𝑛} rows. In section 2, the number of active
rows remains constant. In section 3, the number of active
rows decreases, starting with the top-most row and ad-
vancing downward in each iteration. The average number
of active rows is: 𝑠𝑒𝑞𝐴 ⋅ 𝑠𝑒𝑞𝐵/(𝑠𝑒𝑞𝐴 + 𝑠𝑒𝑞𝐵).

 SmithWatermanScore(A, n, B, m) {

1 init (temp, AD[2…0][*], F[*], E [*], seqA[*], seqB[*])  (0,…,0,A,0)

2 max_score  0 //scalar to hold the maximal cell value

3 for i=0 to n+m-1 do {

4 right_AD  i mod 3; middle_AD  (i – 1) mod 3; left_AD  (i – 2) mod 3

5 seqB[*]  B[i…1] // Prepare subsequence B for next iteration

6 shift AD[left_AD][*] 1 row down

7 AD[right_AD][*] AD[left_AD][*] + match(seqA[*], seqB[*]) // (i) in Eq. (3)

 //AD[left_AD] is not needed anymore. Will be used as a temp variable

8 AD[right_AD]  max{ AD[right_AD][*], 0} // (iv) in (3)

9 AD[left_AD][*]  AD[middle_AD][*] – 𝐺𝑓𝑖𝑟𝑠𝑡 [*] // (i) in (1) & (2)

10 temp  F[*] – 𝐺𝑒𝑥𝑡 [*]

11 F[*]  max{ AD[left_AD][*], temp} // (ii) in (2)

12 AD[right_AD][*]  max{ AD[right_AD][*], F[*]} // (ii) in (3)

13 temp  E[*] – 𝐺𝑒𝑥𝑡 [*]

14 E[*]  max{ AD[left_AD][*], temp } // (ii) in (1)

15 shift E[*] 1 row down

16 AD[right_AD][*]  max{ AD[right_AD][*], E [*]} // (iii) in (3)

17 max_score  max{ maxColumnScalar(AD[right_AD][*]), max_score }

18 }

Fig 4. Pseudo-code of S-W implementation on ReCAM

4 SIMULATION

We simulate the ReCAM using a cycle-accurate simula-
tor introduced in [5], employing ReCAM performance and
power figures obtained by SPICE simulations. The simu-
lated ReCAM parameters are listed in Table 2. Compare
and write energy figures are taken from [5].

TABLE 2
COMPARISON OF RECAM SIMULATED PERFORMANCE VS. THE

HIGHEST-PERFORMING MULTI-GPU OF [7]

Our simulation used sequence data retrieved from the
National Center for Biotechnology Information (NCBI),

ReCAM Parameter Value

Active storage size 8GB
Frequency 500Mhz

Compare energy per bit 1fJ
Write energy per bit 100fJ

comparing human (GRCh37) and chimpanzee (panTro4)
homologous chromosomes, similar to [7]. To measure the
performance of SW, the metric CUPS (Cell Updates per
Second) is used. We compare our performance results to
those of different S-W platforms identified in Section 1. A
multi-GPU implementation presented in [7] reached 11.08
TCUPS using a cluster of 128 compute nodes with a total
of 384 Tesla M2090 GPUs. The FPGA-based highest re-
ported performance of S-W is 6.02 TCUPS, obtained by the
RIVYERA S6-LX150 platform [3] which uses 128 FPGAs.
Highest performance achieved on a Xeon Phi based plat-
form is 0.23 TCUPS, reported by [4] with 4 Xeon Phi accel-
erators. ReCAM performance is obtained when compar-
ing the chromosome 1, resulting in a total of 57.2 peta score
cells. Table 3 summarizes the performance comparison of
all the above S-W implementations.

Although the TCUPS values were obtained in different
platforms, with different sequences, and cannot be com-
pared directly, they do provide an indication of the poten-
tial of each platform.

TABLE 3

SUMMARY OF STATE-OF-THE-ART PERFORMANCE FOR S-W

SCORING STEP IN PREVIOUS WORKS AND IN RECAM

Accelerator FPGA GPU Xeon Phi ReCAM

Performance
(TCUPS)
/ # of PEs

6.02
/ 128

[3]

11.08
/ 384

[7]

0.23
/ 4
[4]

52.68
/ 1

Table 4 shows further comparison of ReCAM perfor-

mance with the highest performing implementation, the
multi-GPU cluster in [7]. We present the simulated
ReCAM performance for several input sizes, alongside the
scoring performance reported in [7].

TABLE 4
COMPARISON OF RECAM SIMULATED PERFORMANCE VS. THE

HIGHEST-PERFORMING MULTI-GPU OF [7]

The simulated ReCAM power dissipation for aligning
chr5 with the parameters presented in Table 2 is 6,600W (to
sustain this power figure, the ReCAM is divided into 32
separate 256MB ICs). The multi-GPU implementation us-
ing 384 Tesla M2090 GPUs dissipates roughly 80kW. To
conclude: ReCAM solution provides 12x lower power dis-
sipation and 3.4x faster execution compared to GPU based
platform.

5 CONCLUSIONS AND FUTURE WORK

We have seen the potential benefits of using a resistive

CAM to calculate the S-W score of two DNA sequences. By
exploiting ReCAM’s content addressability, the presented
implementation can be extended to align two protein se-
quences, with a modest degradation in performance. Such
implementation can store the entire substitution matrix
(e.g., BLOSUM[8]) as truth-table to be accessed when cal-
culating the match score of every pair of proteins.

Due to ReCAM’s highly parallel architecture, the pre-
sented implementation of S-W scoring step can be ex-
tended to align complete organism sequences. For exam-
ple, the alignment discussed in Section 4 can be extended
so that each section of the S-W presented in Fig 2 will be
executed for all chromosomes in parallel. The runtime of
each section will be determined by the pair containing the
longest chromosome (execution time is max {𝑚, 𝑛}). Once a
pair has completed the execution, the next section can start
executing for all chromosomes in parallel. This implemen-
tation requires keeping record of rows active in each in-
struction for every chromosome, which may result in a per-
formance overhead of 15% compared with aligning only
two sequences.

This work can be extended to implement the second
part of S-W algorithm, i.e., finding the alignment. We as-
pire to maintain the linear time and space complexities.
Such solution has been suggested by Myers and Miller [9]
and is also used by [7].

ACKNOWLEDGMENT

Present work was partially funded by the Intel Collabora-
tive Research Institute for Computational Intelligence.

REFERENCES

[1] Smith, Temple F., and Michael S. Waterman. "Identification of common

molecular subsequences." Journal of molecular biology 147.1 pp. 195-

197, 1981.

[2] Gotoh, Osamu. "An improved algorithm for matching biological se-

quences."Journal of molecular biology 162.3 (1982): 705-708.

[3] L.Wienbrandt. The FPGA-based High-Performance Computer

RIVYERA for Applications in Bioinformatics. In Language, Life, Limits: 10th

CiE, pages 383-392. Springer 2014.

[4] Y. Liu and B. Schmidt. 2014b. SWAPHI: Smith-Waterman protein data-

base search on Xeon Phi coprocessors. In IEEE ASAP. 184–185.

[5] L. Yavits et al, “Resistive Associative Processor”, IEEE Computer Archi-

tecture Letters, 14(2), pp. 148 – 151, 2015.

[6] E.F.D.O. Sandes, A. Boukerche, and A.C.M.A.D. Melo, Parallel Optimal

Pairwise Biological Sequence Comparison: Algorithms, Platforms, and

Classification. ACM Computing Surveys (CSUR), 48(4), p.63, 2016.

[7] Sandes, E. F. O., et al. "CUDAlign 4.0: Incremental Speculative Traceback

for Exact Chromosome-Wide Alignment in GPU Clusters."

[8] S. Henikoff, and J. G. Henikoff. "Amino acid substitution matrices from

protein blocks." Proceedings of the National Academy of Sciences 89, no. 22,

pp. 10915-10919, 1992.

[9] E. W. Myers and W. Miller. Optimal alignments in linear space. Com-

puter Applications in the Biosciences, 4(1):11–17, 1988.

[10] Huai, Yiming. "Spin-transfer torque MRAM (STT-MRAM): Challenges

and prospects." AAPPS Bulletin 18.6 (2008): 33-40.

Chr. Table Size
(Peta Cells)

Max. Perf.
of [7] (TCUPS)

ReCAM Perf.
(TCUPS)

chr1 56.91 - 52.68
chr5 33.04 11.08 37.92
chr8 21.07 10.43 30.78
chr16 8.13 9.7 19.29

