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Abstract—An in-storage implementation of the Smith-Waterman sequence alignment algorithm on a resistive content 

addressable memory (ReCAM) based storage is proposed. The ReCAM native compare operation is used to find matching base-

pairs in a fixed number of cycles, regardless of the sequence length. Our in-storage implementation is simulated and compared 

to state-of-the-art systolic arrays and GPU-based solutions. We show a 3.4x higher throughput and an order of magnitude lower 

power dissipation. 

Index Terms—Local Sequence Alignment, Near Data Computing, Processing In Storage, Resistive RAM.   
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1 INTRODUCTION 

NA sequences are frequently compared and searched 
for matching or near-matching patterns. The Smith-
Waterman algorithm [1] (S-W) is based on dynamic 

programming and designed to find optimal local align-
ment between two sequences. This alignment is based on 
the computation of a scoring matrix. The original S-W al-
gorithm was later enhanced by Gotoh [2] to support the 
affine gap model. 

The quadratic running time complexity of S-W makes it 
a good candidate for hardware acceleration. A recent sur-
vey on S-W implementations [6] identified the following 
main acceleration platforms: FPGAs, GPUs and Intel Xeon 
Phi. The state-of-the-art performance of each will be pre-
sented in Section 4. 

In this paper, we propose an in-storage implementation 
of the S-W scoring step based on Resistive Content Ad-
dressable Memory (ReCAM) [5]. ReCAM combines data 
storage with data processing. We show that in-storage 
ReCAM implementation may achieve on average 3x 
higher throughput than a GPU implementation, while hav-
ing 12x lower power dissipation.  

The rest of this paper is organized as follows. Section 2 
presents the architecture of a ReCAM based storage. Sec-
tion 3 explores the in-storage implementation of S-W. Sec-
tion 4 discusses simulation results and Section 0 offers con-
clusions.  

2 RECAM BASED STORAGE 

Resistive memories store information by modulating 
the resistance of nanoscale storage elements. Resistive 

memories are nonvolatile, free of leakage power, and 
emerge as long-term potential alternatives to charge-based 
memories, including NAND flash.  

STT-MRAM has generally lower write energy, shorter 
write latency, and higher write endurance than other resis-
tive memory technologies [10]. A storage element in an 
STT-MRAM cell is a magnetic tunnel junction (MTJ), which 
relies on magnetoresistance to encode information. A MTJ 
consists of two ferromagnetic layers and a tunnel barrier 
layer. One of the ferromagnetic layers has a fixed magnetic 
spin, whereas the spin of the second layer can be influ-
enced by applying high-amplitude current. The direction 
of spins relative to one another determines the cell re-
sistance. Parallel (anti-parallel) spins result in low (high) 
resistance. 
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Fig 1. Resistive CAM crossbar array (a) Resistive crossbar, (b) STT-MCAM 

bitcell (c) TAG logic 

Fig 1 (a) shows the resistive CAM crossbar. A bitcell 
(Fig 1 (b)) consists of two transistors and two resistive ele-
ments (2T2R). The KEY register contains a key data word 
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to be written or compared against. The MASK register de-
fines the active fields for write and read operations, ena-
bling bit selectivity. The TAG register (Fig 1 (c)) marks the 
rows that are matched by the compare operation and may 
be affected by a parallel write.   

In a conventional CAM, a compare operation is typi-
cally followed by a read of the matched data word. When 
in-storage processing involves arithmetic operations, a 
compare is usually followed by a parallel write into the un-
masked bits of all tagged rows.  

Any computational expression can be efficiently imple-
mented in ReCAM storage using line-by-line execution of 
the truth table of the expression [5]. Arithmetic operations 
are typically performed bit-serially. Table 1 lists operations 
used in S-W implementation. Parallel compare and write 
are assumed to take a single cycle each. Parallel shift down 
requires three cycles per bit (compare with const ‘1’ copies 
the source bitcolumn into the TAG; shift the TAG vector 
down by setting the shift-select line (see Fig 1(c)); write ‘1’ 
copies the TAG to the destination bitcolumn). Addition is 
performed in a bit-serial manner using a truth table ap-
proach [5]. Arithmetic operation (4th instruction in Table 1) 
where one of the operands is constant (shared by all rows 
of ReCAM) requires half the cycles compared to the same 
operation where both operands are variables (different in 
each row). Row-wise max, which finds the maximum be-
tween two elements in all rows in parallel, scans the ele-
ments bit-serially starting from the MSB. The first two bits 
are compared. In case of equality, the operation continues 
to the next pair of bits. Otherwise, the element containing 
‘1’ is selected as max.  

TABLE 1 
OPERATIONS USED IN S-W SCORE CALCULATION 

Instruction Cycles 

32 bit 

Shift 1 row down 96 

B <= A + B 256 

C <= A + B 512 

C <= A +/- const_vector 256 

Row-wise Max (A, B) 64 

Max Scalar (A) 64 

2 bit 

Match 10 

3  RECAM BASED IN-STORAGE SMITH-
WATERMAN IMPLEMENTATION 

3.1 Smith-Waterman Algorithm 

S-W identifies the optimal local alignment of two se-
quences by computing a two-dimensional scoring matrix 
𝐻. Each element of the matrix, 𝐻𝑖,𝑗, is calculated according 

to (3); 𝜎(𝑎𝑖 , 𝑏𝑗) is the match score between the base-pairs in 

row 𝑖 and column 𝑗. Matching base-pairs have positive 
score (e.g., +2), while mismatching have negative one (e.g., 
-1). The optimal alignment score between two sequences is 
the highest score in the matrix 𝐻. 

The alignment may contain gaps in both sequences 
which are penalized in the score calculation (i.e., have a 

negative score). According to the affine gap model [2], 
opening a gap is harder than extending it, therefore the 
penalty for opening a gap is larger. This affine penalty 
scheme is calculated with two additional matrices, 𝐸 and 
𝐹, as presented in (1) and (2); 𝐺𝑓𝑖𝑟𝑠𝑡 and 𝐺𝑒𝑥𝑡 are the penal-

ties for starting and extending a gap, respectively. The ma-
trices 𝐸, 𝐹 and 𝐻 are initialized with 𝐸0,𝑗 = 𝐸𝑖,0 = 𝐹0,𝑗 =

𝐹𝑖,0 = 𝐻0,𝑗 = 𝐻𝑖,0 = 0 for all 𝑖 and 𝑗. 

Filling the scoring matrix 𝐻 is the computationally in-
tensive part of S-W. In a sequential implementation of the 
algorithm, the cell filling order is either row or column-
wise. A parallel implementation allows all independent 
cells to be computed in the same iteration. Such cells reside 
in the same antidiagonal. The direction of filling the matrix 
is along the main diagonal, as illustrated in Fig 2. 

Sequential time complexity is 𝑂(𝑛𝑚), where 𝑛 and 𝑚 are 
the lengths of the sequences, respectively. Parallel time 
complexity is 𝑂(𝑛𝑚 𝑝⁄ ), where 𝑝 is the number of parallel 
processing units. In ReCAM, processing unit is a memory 
row. Therefore, unlike in GPU or FPGA implementations, 
𝑝 could be larger than 𝑚𝑎𝑥 {𝑛, 𝑚} even for very large 𝑛 and 
𝑚. Hence ReCAM can achieve linear time complexity of 
𝑂(𝑚𝑎𝑥{𝑛, 𝑚}).  

 

Fig 2. Parallel S-W scoring snapshot. The dot-patterened cell scores were 
already computed (entire section 1 and left-most antidiagonal of section 2). 

Plain-colored cells are stored in ReCAM (antidiagonals within the dashed 

borders). The cell marked with X contains the global maximum score. Thick 
borders separate ReCAM implementation to different logical sections. 

3.2 ReCAM Implementation of S-W 

In this work we focus on finding the maximal alignment 
score, therefore storing the entire matrix in memory, as 
typically required for backtracking, is not needed. A total 
of four antidiagonals are required to compute a new anti-
diagonal of 𝐻: two of 𝐻 (see (3) and Fig 2), one of 𝐸 (see (1)) 
and one of 𝐹 (see (2)). Five matrix antidiagonals are stored 
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in ReCAM in each iteration. An additional field temp is re-
served to store partial results. The overall space complex-
ity required for executing the algorithm is therefore 
𝑂(min{𝑛, 𝑚}). 

Each of the five antidiagonals is mapped to a 32-bit col-
umn in ReCAM. Every ReCAM row retains one element of 
the vectors temp, AD[2], AD[1], AD[0], F, E, seqA, seqB, 
where AD[0-2], E, F contain the antidiagonals of H, E, F, 
respectively, 𝑆𝑒𝑞𝐴 and 𝑆𝑒𝑞𝐵 contain the 2-bit elements of 
sequences A and B respectively (Fig 3). 

 
Fig 3. Organization of data within ReCAM corssbar array at the beginning 

(a) and end (b) of iteration i (of section 1 in Fig 2 ). AD[2] contents is being 
replaced with the new result.  

S-W implementation on ReCAM can be divided into 
three logical sections. In the first section, marked 1 in Fig 2, 
the most recently scored antidiagonal is longer by one cell 
than the previous one. During the second section (2 in Fig 
2) all antidiagonals are of the same length. In the third sec-
tion (3 in Fig 2) every new scored antidiagonal is one cell 
shorter than the previous.  

Fig 4 presents the pseudocode of the S-W score finding 
on ReCAM. Its main loop can be adjusted to implement 
each of three logical sections presented in Fig 2, as is ex-
plained below. The elements of the last three scored anti-
diagonals (plain-colored cells in Fig 2), retained in AD[0-
2], are accessed in a round-robin manner, where the left 
one (AD[2] in Fig 3 and the index left_AD in Fig 4) is re-
placed by the new result. The result of the previous itera-
tion is stored in AD[middle_AD] (AD[1] in Fig 3).  

Fig 3 shows a ReCAM crossbar snapshot, at the begin-
ning (a) and the end (b) of a single iteration of the section 
1 of Fig 2. Before calculating the match score, 𝑠𝑒𝑞𝐵 is 
shifted one row down in order for all to-be-matched base-
pairs to reside in the same ReCAM rows (right-most col-
umn in Fig 3). AD[left_AD] is also shifted one row down 
for the matching cells to be aligned (AD[0] in Fig 3). After 
calculating the matching score, AD[left_AD] is no longer 
required and is therefore used to store temporary results. 
Next, the max between the match score and zero is calcu-
lated. We note that (ii) in (1) and (2) belong to the same 
antidiagonal, therefore it is enough to calculate (ii) once 
and use both for E and F. After calculating E its columns 
are shifted one row down to have the values of E aligned 
with the appropriate ones in the result vector. In section 1 
and 2 of Fig 2, the down-shifted columns require zero-pad-
ding of the top-most ReCAM row. Once all four elements 

of (3) are calculated, the result column is searched for the 
maximal 𝐻 cell score, and the global max is updated.  

The total number of iterations equals the sum of lengths 
of the two sequences. Each iteration performs 17 instruc-
tions. Shift is performed in a single cycle. The number of 
ReCAM rows affected by instruction is marked by [*]. It 
increases (decreases) in the 1st (3rd) section and remains 
constant in the 2nd section. Both 1st and 2nd sections require 
zero padding at the first row of every down-shifted 
ReCAM column to initialize the first rows of 𝐸, 𝐹, 𝐻 at zero. 
The 3rd section does not require such padding. 

At the beginning of the execution (section 1 in Fig 2), 
only the top-most ReCAM row is active. Each subsequent 
iteration activates an additional row until reaching the to-
tal of min{𝑚, 𝑛} rows. In section 2, the number of active 
rows remains constant. In section 3, the number of active 
rows decreases, starting with the top-most row and ad-
vancing downward in each iteration. The average number 
of active rows is: 𝑠𝑒𝑞𝐴 ⋅ 𝑠𝑒𝑞𝐵/(𝑠𝑒𝑞𝐴 + 𝑠𝑒𝑞𝐵). 

 SmithWatermanScore(A, n, B, m) { 

1 init (temp, AD[2…0][*], F[*], E [*], seqA[*], seqB[*])  (0,…,0,A,0) 

2 max_score  0   //scalar to hold the maximal cell value 

3 for  i=0 to n+m-1 do  { 

4    right_AD  i mod 3; middle_AD  (i – 1) mod 3;  left_AD  (i – 2) mod 3 

5    seqB[*]  B[i…1] // Prepare subsequence B for next iteration 

6    shift AD[left_AD][*]   1  row down 

7    AD[right_AD][*] AD[left_AD][*] + match(seqA[*], seqB[*])  // (i) in Eq. (3) 

   //AD[left_AD] is not needed anymore. Will be used as a temp variable 

8    AD[right_AD]  max{ AD[right_AD][*], 0}     // (iv) in (3) 

9    AD[left_AD][*]  AD[middle_AD][*] – 𝐺𝑓𝑖𝑟𝑠𝑡 [*]     // (i) in (1) & (2) 

10    temp  F[*] – 𝐺𝑒𝑥𝑡 [*] 

11    F[*]  max{ AD[left_AD][*], temp}    // (ii) in (2) 

12    AD[right_AD][*]  max{ AD[right_AD][*], F[*]}    // (ii) in (3) 

13    temp  E[*] – 𝐺𝑒𝑥𝑡 [*] 

14    E[*]  max{ AD[left_AD][*], temp }    // (ii) in (1)  

15    shift E[*]   1  row down 

16    AD[right_AD][*]  max{ AD[right_AD][*], E [*]}   // (iii) in (3) 

17    max_score  max{ maxColumnScalar( AD[right_AD][*]), max_score } 

18 } 

Fig 4. Pseudo-code of S-W implementation on ReCAM 

4 SIMULATION 

We simulate the ReCAM using a cycle-accurate simula-
tor introduced in [5], employing ReCAM performance and 
power figures obtained by SPICE simulations. The simu-
lated ReCAM parameters are listed in Table 2. Compare 
and write energy figures are taken from [5]. 

TABLE 2  
COMPARISON OF RECAM SIMULATED PERFORMANCE VS. THE 

HIGHEST-PERFORMING MULTI-GPU OF [7] 

Our simulation used sequence data retrieved from the 
National Center for Biotechnology Information (NCBI), 

ReCAM Parameter Value 

Active storage size 8GB 
Frequency 500Mhz 

Compare energy per bit 1fJ 
Write energy per bit 100fJ 



 

 

comparing human (GRCh37) and chimpanzee (panTro4) 
homologous chromosomes, similar to [7]. To measure the 
performance of SW, the metric CUPS (Cell Updates per 
Second) is used. We compare our performance results to 
those of different S-W platforms identified in Section 1. A 
multi-GPU implementation presented in [7] reached 11.08 
TCUPS using a cluster of 128 compute nodes with a total 
of 384 Tesla M2090 GPUs. The FPGA-based highest re-
ported performance of S-W is 6.02 TCUPS, obtained by the 
RIVYERA S6-LX150 platform [3] which uses 128 FPGAs. 
Highest performance achieved on a Xeon Phi based plat-
form is 0.23 TCUPS, reported by [4] with 4 Xeon Phi accel-
erators.  ReCAM performance is obtained when compar-
ing the chromosome 1, resulting in a total of 57.2 peta score 
cells. Table 3 summarizes the performance comparison of 
all the above S-W implementations. 

Although the TCUPS values were obtained in different 
platforms, with different sequences, and cannot be com-
pared directly, they do provide an indication of the poten-
tial of each platform. 

 
TABLE 3 

SUMMARY OF STATE-OF-THE-ART PERFORMANCE FOR S-W 

SCORING STEP IN PREVIOUS WORKS AND IN RECAM 

Accelerator FPGA GPU Xeon Phi ReCAM 

Performance 
(TCUPS) 
/ # of PEs 

6.02 
/ 128 

[3] 

11.08  
/ 384 

[7] 

0.23 
/ 4 
[4] 

52.68 
/ 1 

 
Table 4 shows further comparison of ReCAM perfor-

mance with the highest performing implementation, the 
multi-GPU cluster in [7]. We present the simulated 
ReCAM performance for several input sizes, alongside the 
scoring performance reported in [7]. 

TABLE 4 
COMPARISON OF RECAM SIMULATED PERFORMANCE VS. THE 

HIGHEST-PERFORMING MULTI-GPU OF [7] 

The simulated ReCAM power dissipation for aligning 
chr5 with the parameters presented in Table 2 is 6,600W (to 
sustain this power figure, the ReCAM is divided into 32 
separate 256MB ICs).  The multi-GPU implementation us-
ing 384 Tesla M2090 GPUs dissipates roughly 80kW. To 
conclude: ReCAM solution provides 12x lower power dis-
sipation and 3.4x faster execution compared to GPU based 
platform. 

5 CONCLUSIONS AND FUTURE WORK 

We have seen the potential benefits of using a resistive 

CAM to calculate the S-W score of two DNA sequences. By 
exploiting ReCAM’s content addressability, the presented 
implementation can be extended to align two protein se-
quences, with a modest degradation in performance. Such 
implementation can store the entire substitution matrix 
(e.g., BLOSUM[8]) as truth-table to be accessed when cal-
culating the match score of every pair of proteins. 

Due to ReCAM’s highly parallel architecture, the pre-
sented implementation of S-W scoring step can be ex-
tended to align complete organism sequences. For exam-
ple, the alignment discussed in Section 4 can be extended 
so that each section of the S-W presented in Fig 2 will be 
executed for all chromosomes in parallel. The runtime of 
each section will be determined by the pair containing the 
longest chromosome (execution time is max {𝑚, 𝑛}). Once a 
pair has completed the execution, the next section can start 
executing for all chromosomes in parallel. This implemen-
tation requires keeping record of rows active in each in-
struction for every chromosome, which may result in a per-
formance overhead of 15% compared with aligning only 
two sequences. 

This work can be extended to implement the second 
part of S-W algorithm, i.e., finding the alignment. We as-
pire to maintain the linear time and space complexities. 
Such solution has been suggested by Myers and Miller [9] 
and is also used by [7]. 
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Chr. Table Size 
(Peta Cells) 

Max. Perf. 
of [7] (TCUPS) 

ReCAM Perf. 
(TCUPS) 

chr1 56.91 - 52.68 
chr5 33.04 11.08 37.92 
chr8 21.07 10.43 30.78 
chr16 8.13 9.7 19.29 


