
Deduplication in Resistive Content Addressable
Memory Based Solid State Drive

R. Kaplan, L. Yavits, A. Morad, R. Ginosar
Dept. of Electrical Engineering, Technion IIT

Haifa, Israel
sromanka@tx.technion.ac.il

Abstract—An in-storage deduplication based on a resistive
content addressable memory (ReCAM) is proposed. The ReCAM
native compare operation is used to find duplicate data blocks in a
fixed number of cycles. The performance of ReCAM based in-
storage deduplication is compared to Solid State Drive (SSD) based
in-line deduplication performed in CPU and DRAM, showing an
average 100x higher throughput at roughly the same energy
consumption.

Keywords—SSD, Deduplication, In-Memory Computing,
Memristor, Resistive RAM, Resistive CAM.

I. INTRODUCTION

Solid state disk (SSD) based on resistive memory (Re-
RAM), offering the potential for higher density, longer reten-
tion and higher endurance than NAND have been explored
recently [6][10]. “Intelligent” or “smart” SSD, where some
processing is implemented in-situ, by an embedded CPU or
even GPU, is also an active field of research [3][5][13]. The
motivation is reduction of latency and energy associated with
data transfer between SSD and main CPU or server.

In this paper, we propose a solid state storage based on
Resistive Content Addressable Memory (ReCAM) [18], and
present in-storage implementation of deduplication. ReCAM
is targeted due to its capability to combine processing with
storage. This technology suits for application in enterprise
high-speed mass storage systems such as high-end storage
appliances [17] rather than in smaller SSDs dedicated for
personal use.

We show that 256GByte ReCAM with inline in-storage
deduplication may achieve on average 100x higher through-
put than typical mass storage appliance with CPU and
DRAM based deduplication [20][17], while consuming sim-
ilar energy. Such ReCAM can be used as a basis for a ultra-
high speed storage, or cache in a hybrid mass storage sys-
tems [4][8]. Another potential application for the proposed
scheme is in-memory deduplication [15].

The rest of this paper is organized as follows. Section II
presents the architecture of ReCAM based storage. Sec-
tion III explores ReCAM based in-storage deduplication and
compares it to related work of conventional deduplication.

Section IV discusses simulation results and Section V offers
conclusions.

II. RECAM BASED STORAGE

As CMOS feature scaling slows down, conventional
memory technology experiences scalability problems. In re-
sponse, resistive memory (ReRAM) technologies emerge as
scalable, long-term potential alternatives to charge-based
memories, including NAND flash [16]. Resistive memories
such as memristors store information by modulating the re-
sistance of nanoscale storage elements. Memristors are two-
terminal devices, where the resistance of the device is
changed by the electrical current or voltage. The resistance
of the memristor is bounded by a minimum resistance
(low resistive state, logic ‘1’) and a maximum resistance

 (high resistive state, logic ‘0’).

A block diagram of a conventional all FLASH storage
appliance is presented in Fig 1. Such appliance typically
comprises a high-performance multicore processor, a large
DRAM and a multitude of FLASH modules, containing
FLASH control and NAND array. The appliance usually
connects to outside world through a dedicated interface such
as SCSI or SAS.

The block diagram of the proposed ReCAM based stor-
age is shown in Fig 2. It contains a number of ReCAM mod-
ules, consisting of an interface unit (for example high speed
Ethernet), ReCAM controller and ReCAM array.

The proposed storage employs the resistive crossbar
of [12] as applied to CAM [1] (Fig 3(a)). The ReCAM array
comprises of bit cells (Fig 3(b)) organized in bit-columns and
word-rows. Several special registers are appended to the
ReCAM array. The KEY register contains a data block to be
written or compared against. The MASK register defines the
active fields for write and read operations (“masks” them
“on”), enabling bit selectivity. The TAG register marks the
rows that are matched by the compare operation and may be
affected by write.

A bitcell (Fig 3(b)) consists of two nonlinear bipolar
memristors, storing complementary bits. Diodes are added to
terminate sneak paths. This crossbar constitutes a
ReCAM [18], operating either as a CAM or as a conventional

978-1-5090-0733-2/16/$31.00 ©2016 IEEE 100

ReRAM. The bitcell footprint is , where is the num-
ber of vertically integrated memristor layers [1] (unlike Re-
RAM which have a cell size of).

When operating as a CAM, the ReCAM can perform
Compare and Write operations. The TAG column marks the
rows that are matched by Compare.

Compare is implemented as follows. The Match/Word
line is precharged and the compare key is set on Bit and Bit-
not lines. In the columns that are ignored during comparison,
the Bit and Bit-not lines are kept floating. If all masked-on
bits in a row match the key (i.e., when Bit line ‘1’ is applied
to an memristor and Bit-not line ‘0’ is applied to an

 memristor, or vice versa), the Match/Word line remains
high and ‘1’ is sampled into the corresponding TAG bit. If at
least one bit is mismatched, the Match/Word line discharges

through an memristor and ‘0’ is sampled into the TAG.

Write operation is performed in two phases. First, the
 voltage (where is a threshold voltage required

to switch to the "on" state) is asserted to applicable Bit lines
(to write ‘1’s) and Bit-not lines (to write ‘0’s). Second, the

 voltage (where is a threshold voltage to
switch to the "off" state) is asserted to Bit-not lines (to com-
plement the ‘1’s) and Bit lines (to complement ‘0’s). The
write affects only the tagged rows.

Compare followed by a write operation are illustrated in
Fig 4, which shows a fragment of ReCAM storing ‘0110’ in
the first row and ‘0101’ in the second row; The ReCAM con-
tent is compared with the ‘011x’ key and a new ‘1xxx’ key is
written in the tagged (first) row.

In ReCAM, sneak currents affect the compare operation

Fig 1. Conventional All FLASH Storage Appliance Fig 2. ReCAM based storage appliance

Fig 3. (a) Resistive crossbar, (b) ReCAM bitcell

Time

Compare Write

Match

MisMatch

V (Bit)

Compare Write

0

0

1
Von

Voff

1

Time

‘Z’

‘Z’V (Bit)

ONR OFFR ‘0’‘1’

Von

Voff

V (Bit) V (Bit)

V (Match/Word Line)

Fig 4. Compare and Write in ReCAM

101

(rather than read operation as in a standard ReRAM cross-
bar [18]). More specifically, there are sneak paths leading
from a matching Match/Word Line (which is supposed to re-
tain ‘1’) through neighboring mismatching Match/Word
Lines to the ground. The purpose of per-cell diode [1] is to
terminate such sneak paths, so that current can only flow
from a Match/Word Line to the ground (through a Bit Line)
in one direction.

ReCAM behavior is verified and its performance and en-
ergy figures are obtained by SPICE simulations using the
memristor TEAM model [9].

Two compare operations are defined: A single compare,
where each TAG samples the match line of an individual row,
and a continuous compare, where the match result of an in-
dividual row is ANDed with the TAG of the previous row.

TAG logic is illustrated in Fig 5(a). The AND, OR and
NAND gates are used for continuous compare, as described
in Section III. MATCH logic is illustrated in Fig 5 (b). The
MATCH output (at the bottom of the array) is ‘1’ if there is a
match resulting from Compare in at least one of the ReCAM
rows.

ReCAM behavior, performance and energy dissipation
are further described in [18].

Data addressing in ReCAM based storage is achieved by
storing the physical address alongside each data block, cre-
ating the address field. Read operation in ReCAM storage is
performed in two cycles. First, the address is compared with
the ReCAM address field. Second, the data is read from the
row tagged by the Compare.

Associative addressing provides simple means for both
writing new records and deleting existing records, as shown
in Fig 6.

III. IN-STORAGE RECAM BASED DEDUPLICATION

A. Background
Deduplication is a data compression technique for elimi-

nating redundant copies of repeated data, designed to im-
prove storage utilization. Files are split into multiple data
blocks. Only unique blocks are meant to be stored. With
every new write, a data block is compared against all blocks
in the storage. If a match occurs, a pointer to the previously
stored block is saved in lieu of the data block. Given that the
same data block may occur multiple times (match frequency
is also dependent on the block size), storage efficiency can
be greatly improved [20].

Deduplication operates on the physical layer of the stor-
age, managing a set of data structures to expose a consecu-
tive logical layer of storage. Each data block has two ad-
dresses, physical (PA) and logical (LBA). Only the LBAs are
exposed to the outside world, while physical addresses are
used internally by the deduplication mechanism.

B. Related Work: Conventional Deduplication
In a typical inline storage deduplication system (compris-

ing disk/SSD storage, CPU and DRAM for holding indices
and tables), the basic deduplication data unit is termed a
chunk. Upon writing a new data chunk to storage, comparing
the chunk contents (typically 4-8 KByte) to the entire storage
is infeasible. Instead, a much shorter representation, called a
fingerprint or hash (e.g., 20-byte SHA-1 hash) is calculated
for each chunk, and the fingerprint is looked up in a chunk
index. If no entry is found, the chunk is stored and a new
entry is added to the chunk index. In addition to the finger-
print, the index entry also holds at least the chunk’s PA and
the number of references to it (Fig 7). If the fingerprint of the
new chunk is found, its number of references is incremented.
An additional address translation table holds both the LBA

Fig 5. (a) TAG Logic; (b) MATCH logic

 Init { // called once when storage is formatted
 Empty_bit column is set
 }

 Write_data (address, data) {
 Compare (empty_bit_col==1) // tag topmost row having

// empty_bit=1
 Write (address, data, empty_bit=0) // write into masked-on

// address, data, empty_bit fields
// of the tagged row

 }

 Delete_data (address) {
 Compare (address_field==address)
 Write (empty_bit=1) // write into masked-on empty_bit
 // field of the tagged row
 }

Fig 6. Associative Write and Delete in ReCAM

102

and the PA of each chunk.

Conventional implementations of deduplication require a
dedicated computer within the storage appliance. For exam-
ple, a disk-based deduplication system [20] with usable ca-
pacity of 6TB employs 15 SATA drives (connected in
RAID6), 500GB each, and two dual-core CPUs with 8GB of
DRAM. It reaches 90% CPU utilization at peak I/O perfor-
mance. All chunk metadata is stored on disk, while the
DRAM serves as a cache for chunk metadata, to reduce non-
I/O storage access. An expansion of that system [4] includes
a flash-based SSD serving as fast storage for the entire chunk
metadata. The configuration is similar to [20], although
smaller, with a RAID4 storage comprising five hard drives,
500GB each, a dual-core CPU and 4GB of DRAM. As in the
previous work, DRAM serves as a small cache for chunk
metadata. Both papers provide detailed lists of parameters
to tune for optimal system performance, such as the number
of hash functions used in a variant of cuckoo hashing for the
chunk index data structure, the size of a smaller fingerprint
to be stored in DRAM, or the Bloom filter vector length (re-
ferred to as summary vector in [4]) for fast identification of
non-stored chunks.

Xtremio’s X-brick [17] is an example of an all-flash high-
end large-scale contemporary storage appliance, according
to Fig 1. Each of its units contains either 13 or 25 SSDs with
an effective capacity of 3.2 or 7.2 TB, respectively. The ap-
pliance supports up to 8 units and uses a quad-core processor
with 256GB of DRAM.

At the other end of the spectrum, [2] shows an example
of an in-SSD deduplication with the purpose of enhancing
the device endurance. The authors suggest using the device
controller and memory buffer to calculate the chunk finger-
print. Deduplication is implemented with an additional indi-
rection in the flash translation layer and uses the buffer as a
small cache (similar to the DRAM in [4] and [20]). The pro-
posed system uses two types of hash fingerprints and addi-
tional data structures to maintain the additional level of indi-
rection.

We see that while greatly improving storage efficiency
and reducing cumulative number of writes, typical inline
deduplication may increase system cost and energy con-
sumption, and may limit the data throughput (number of in-
put-output operations, or IOPS). The same conclusion was
noted in [20].

C. In-ReCAM Deduplication
The proposed ReCAM based inline deduplication re-

quires neither external CPU nor DRAM. The deduplication
is accomplished entirely within the ReCAM, using its in-
storage processing capabilities.

ReCAM based deduplication is illustrated in Fig 8. Each
data block in ReCAM storage is divided into

= row-segments of
 size. For example, for 256-bit wide ReCAM

and 4KB blocks, the number of segments is = . Data
blocks are stored in ReCAM in segment by segment fashion,
in consecutive ReCAM rows. The first segment of each
data block is marked by ‘1’ in the block_start bit column.

Fig 8. ReCAM based deduplication scheme, following the same sequence
of writes as in Fig 7.

Fig 7. Conventional deduplication scheme after writing the following
sequence of (data block, LBA): (A, x), (A, y), (B, y+1), (C, y+2). The
storage, chunk index and address translation table reside in the physical
layer.

103

The values of block_start in all other ReCAM rows of the
data block are zero.

During write, a new data block is compared (in parallel)
against all data blocks stored in the ReCAM to search for a
stored identical copy. This is achieved by a sequence of one
single compare followed by - continuous compare opera-
tions. During the single compare, COMPS is set (Fig 5a) and
start_block bit column is masked-on, to enable comparison
of only the first segment of each data block in the storage.
During the following - continuous compares, the result
(TAG) of every consecutive compare is ANDed with the re-
sult of the previous compare. Thus, in each compare, only
the rows matched in the previous compare are active, and the
number of active rows drops progressively, significantly re-
ducing the compare energy. The outcome of a series of
compare operations is signaled by MATCH (Fig 5b).
MATCH=‘1’ means that the new data block is a duplicate
and should not be stored. One cycle is required for each sin-
gle compare, resulting in cycles for discovering the block
is a duplicate.

Otherwise, the new block is unique. In that case it is writ-
ten into the ReCAM along with its (arbitrarily assigned,
unique) PA. As described above, the block is written segment
by segment into consecutive rows, and the first segment is
marked ‘1’ in the start_block bit column. Each segment is
written in one cycle to storage.

In both cases (unique and duplicate), the LBA of the data
block is placed together with its PA in an associative address
translation table, which can be stored in a separate module of
the ReCAM storage. The translation table mapping can be
optimized to eliminate storing multiple copies of the same
PA (of duplicated blocks). Writing the LBA and PA can take
1-2 cycles each, depending on . Overall,
write takes cycles.

 Read is done in two steps. First, the LBA of the data
block is searched in the associative address translation table
(done in 1-2 cycles). The corresponding PA is retrieved from
the table. Second, the PA is searched in the ReCAM storage
(by compare), followed by read of the data block from the
matched ReCAM rows. It is accomplished by a series of
one cycle read operations, starting with the row marked by
‘1’ in the start_block bit column. Overall, read operation
takes cycles.

Deletion of a data block is performed in three steps. In
the first step, the LBA is searched in the address translation
table; its PA is retrieved (to be used at the second step), and
the entry at the address translation table is deleted (using the
delete_data function of Fig 6). This step takes a total of 3
cycles. In the second step, the PA (retrieved at the first step)
is searched again in the address translation table, which takes
1-2 cycles; if MATCH returns ‘0’, it means that the deleted

block has no duplicates. In this case, it is deleted from the
ReCAM storage in cycles. Overall, delete operation also
takes cycles.

IV. SIMULATION

We simulate the ReCAM based deduplication using the
cycle-accurate CAM simulator introduced in [19], employ-
ing ReCAM performance and power figures obtained by
SPICE simulations. During ReCAM execution we record
and count all operations (compare, write and delete). The
simulated ReCAM size is 256GB, running at 1GHz. External
data throughput is assumed non-limiting (contemporary in-
terconnect such as multi-lane PCIe is capable of supporting
in excess of 2.2M IOPS).

We compare our ReCAM deduplication implementation
with opendedup [14], which supports inline deduplication
and runs on top of the local filesystem. It allows for either
variable or fixed-size blocks and does not limit the amount
of stored data. In our analysis, we use blocks of 1KB, 2KB,
4KB and 8KB. We run opendedup on a server with four octa-
core Intel Xeon E5-4650 CPUs with 64GB of RAM and
800GB Intel SSD DC P3700 drive.

To evaluate the performance and energy consumption of
opendedup, we use the file system benchmark IOzone [11].
IOzone allows writing data chunks with fixed number of du-
plicate parts, to control the degree of deduplication. All runs
include writing of 50GB of data, with varying percentage of
duplicate blocks. Each test was repeated with inline dedupli-
cation on and off, to isolate the CPU and DRAM energy con-
sumptions during deduplication. Intel performance counter
monitor [7] was used for measurements.

As demonstrated by [20], real-world workloads have
high variability in the percentage of duplicate data. Our goal
is to exhaustively examine ReCAM performance and energy
consumption. Therefore we use a suite of artificial workloads
with a varying degree of duplication ratio. It allows us to
control both the workload and the mainline system parame-
ters. Both opendedup and ReCAM deduplicate all duplicate
blocks.

The simulated write throughput as a function of percent-
age of deduplicated blocks is presented in Fig 9. The meas-
ured throughput of opendedup is also presented in Fig 9 for
comparison. The ReCAM throughput increases with the per-
centage of duplicate blocks, as the number of writes drops.
For 8KB data blocks, ReCAM storage reaches 2.2M IOPS
for 30% duplicate blocks. For comparison, high-end all-flash
X-brick storage appliance reaches 150K IOPS in 30% write,
70% read operation [17], similar to the simulated perfor-
mance of opendedup.

104

The simulated energy consumption of ReCAM based
deduplication as a function of percentage of deduplicated
blocks is presented in Fig 10.

To understand the energy benefits of continuous com-
pare, we simulate the energy consumption without deactivat-
ing the ReCAM rows that have mismatched in previous com-
pares (using single rather than continuous compare, with
COMPS input in Fig 5(a) set to ‘1’). This results in much
higher simulated energy consumption.

The measured energy consumption of opendedup (in-
cluding the SSD energy consumption) is also presented in
Fig 10 for comparison. The energy consumption of ReCAM
based deduplication is in the same range (slightly higher for
smaller blocks, lower for larger blocks).

V. CONCLUSIONS

This paper explores deduplication in a novel solid state
storage based on Resistive Content Addressable Memory
(ReCAM). ReCAM enables storage with in-situ processing
capabilities. We show that ReCAM-based in-storage dedu-
plication implementation can provide up to 100x higher
throughput than typical CPU and DRAM based deduplica-
tion schemes, while consuming similar or lower energy.

More generally, ReCAM may enable additional types of
applications that combine storage with processing, such as in
smart SSD [2] and cache in large-scale hybrid storage sys-
tems [4][8].

ACKNOWLEDGMENT

(appropriate acknowledgements will be added to the final
paper.)

REFERENCES

[1] Alibart, F., Sherwood, T., & Strukov, D. B. "Hybrid CMOS/nanodevice circuits
for high throughput pattern matching applications”, IEEE Conference on Adap-
tive Hardware and Systems, 2011.

[2] Chen, F., Luo, T., & Zhang, X. "CAFTL: A Content-Aware Flash Translation
Layer Enhancing the Lifespan of Flash Memory based Solid State
Drives."FAST. Vol. 11. 2011.

[3] Cho, B. Y., Jeong, W. S., Oh, D., & Ro, W. W. “XSD: Accelerating MapReduce
by harnessing the GPU inside an SSD,” in Proceedings of the 1st Workshop on
Near-Data Processing. 2013.

[4] Debnath, Biplob K., Sudipta Sengupta, and Jin Li. ”ChunkStash: Speeding up
inline storage deduplication using flash memory”, USENIX Annual Technical
Conference, p. 16, 2010.

[5] Do, J., et al. “Query processing on smart SSDs: Opportunities and challenges,”
in Proceedings of SIGMOD’13, ACM, pp. 1221–1230

[6] Fujii H., et al. "x11 performance increase, x6. 9 endurance enhancement, 93%
energy reduction of 3D TSV-integrated hybrid ReRAM/MLC NAND SSDs by
data fragmentation suppression", IEEE VLSIC 2012.

[7] Intel Performance Counter Monitor. Intel Corporation. URL: www.in-
tel.com/software/pcm

[8] Kim, Y., Gupta, A., Urgaonkar, B., Berman, P., & Sivasubramaniam, A., "Hy-
bridStore: a cost-efficient, high-performance storage system combining SSDs
and HDDs." IEEE 19th International Symposium on MASCOTS, 2011.

[9] Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. "TEAM: threshold
adaptive memristor model”, IEEE Transactions on Circuits and Systems I,
2013.

[10] Myoung-Jae L., et al. "A fast, high-endurance and scalable non-volatile memory
device made from asymmetric Ta2O5− x/TaO2− x bilayer structures." Nature
materials 10.8 (2011): 625-630.

[11] Norcott, W. D., & Capps, D., "Iozone filesystem benchmark." URL: www.
iozone.org 55 (2003).

[12] Patel, R., Kvatinsky, S., Friedman, E. G., & Kolodny, A., "Multistate Register
Based on Resistive RAM", IEEE Transactions on VLSI, 23(9), pp. 1750-1759,
2015.

[13] Sang-Woo J., et al. "BlueDBM: an appliance for big data analytics." ISCA-42,
2015.

[14] Silverberg S., “Opendedup SDFS." (2010).

Fig 10. Deduplication energy for different block sizes vs. percentage of
deduplicated blocks, for data blocks of 1KB, 2KB, 4KB and 8KB while
writing 50GByte of data

0 20 40 60 80 100
103

104

105

Percentage of deduplicated blocks

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

)

ReCAM 1KB
ReCAM 2KB
ReCAM 4KB
ReCAM 8KB
OPNDDP 1KB
OPNDDP 2KB
OPNDDP 4KB
OPNDDP 8KB

Fig 9. Write performance for different block sizes vs. percentage of dedu-
plicated blocks, for data blocks of 1KB, 2KB, 4KB and 8KB (OPNDDP =
Opendedup)

0 50 100
104

105

106

107

108

Percentage of deduplicated blocks

P
ea

k
w

rit
e

pe
rfo

rm
an

ce
 (I

O
P

S
)

ReCAM 1KB
ReCAM 2KB
ReCAM 4KB
ReCAM 8KB
OPNDDP 1KB
OPNDDP 2KB
OPNDDP 4KB
OPNDDP 8KB

105

[15] Stevenson, J. P., Firoozshahian, A., Solomatnikov, A., Horowitz, M., & Cheri-
ton, D., "Sparse matrix-vector multiply on the HICAMP architecture." Proceed-
ings of the 26th ACM international conference on Supercomputing, 2012.

[16] Ventra, M. D., Pershin, Y. V., & Chua, L. O. "Circuit elements with memory:
memristors, memcapacitors, and meminductors," Proceedings of the IEEE
97(10), pp. 1717-1724, 2009.

[17] X-Brick tech spec. URL: https://www.emc.com/collateral/data-sheet/h12451-
xtremio-4-system-specifications-ss.pdf

[18] Yavits, L., Kvatinsky, S., Morad, A., & Ginosar, R., “Resistive Associative Pro-
cessor”, IEEE Computer Architecture Letters, 14(2), pp. 148 – 151, 2015.

[19] Yavits, L., Morad, A., & Ginosar, R., “Computer Architecture with Associative
Processor Replacing Last Level Cache and SIMD Accelerator”, IEEE Transac-
tions on Computers, 2013

[20] Zhu, B., Li, K., & Patterson, R. H., “Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System,” in 6th USENIX Conf. File and Storage
Technologies (FAST), 2008

106

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

