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Abstract—An in-storage deduplication based on a resistive 
content addressable memory (ReCAM) is proposed. The ReCAM 
native compare operation is used to find duplicate data blocks in a 
fixed number of cycles. The performance of ReCAM based in-
storage deduplication is compared to Solid State Drive (SSD) based 
in-line deduplication performed in CPU and DRAM, showing an 
average 100x higher throughput at roughly the same energy 
consumption.

Keywords—SSD, Deduplication, In-Memory Computing, 
Memristor, Resistive RAM, Resistive CAM.  

I. INTRODUCTION

Solid state disk (SSD) based on resistive memory (Re-
RAM), offering the potential for higher density, longer reten-
tion and higher endurance than NAND have been explored 
recently [6][10]. “Intelligent” or “smart” SSD, where some 
processing is implemented in-situ, by an embedded CPU or 
even GPU, is also an active field of research [3][5][13]. The 
motivation is reduction of latency and energy associated with 
data transfer between SSD and main CPU or server.

In this paper, we propose a solid state storage based on 
Resistive Content Addressable Memory (ReCAM) [18], and 
present in-storage implementation of deduplication. ReCAM 
is targeted due to its capability to combine processing with 
storage. This technology suits for application in enterprise 
high-speed mass storage systems such as high-end storage 
appliances [17] rather than in smaller SSDs dedicated for 
personal use. 

We show that 256GByte ReCAM with inline in-storage 
deduplication may achieve on average 100x higher through-
put than typical mass storage appliance with CPU and 
DRAM based deduplication [20][17], while consuming sim-
ilar energy. Such ReCAM can be used as a basis for a ultra-
high speed storage, or cache in a hybrid mass storage sys-
tems [4][8]. Another potential application for the proposed 
scheme is in-memory deduplication [15]. 

The rest of this paper is organized as follows. Section II 
presents the architecture of ReCAM based storage. Sec-
tion III explores ReCAM based in-storage deduplication and 
compares it to related work of conventional deduplication. 

Section IV discusses simulation results and Section V offers 
conclusions. 

II. RECAM BASED STORAGE

As CMOS feature scaling slows down, conventional 
memory technology experiences scalability problems. In re-
sponse, resistive memory (ReRAM) technologies emerge as 
scalable, long-term potential alternatives to charge-based 
memories, including NAND flash [16]. Resistive memories 
such as memristors store information by modulating the re-
sistance of nanoscale storage elements. Memristors are two-
terminal devices, where the resistance of the device is 
changed by the electrical current or voltage. The resistance 
of the memristor is bounded by a minimum resistance  
(low resistive state, logic ‘1’) and a maximum resistance 

 (high resistive state, logic ‘0’). 

A block diagram of a conventional all FLASH storage 
appliance is presented in Fig 1. Such appliance typically 
comprises a high-performance multicore processor, a large 
DRAM and a multitude of FLASH modules, containing 
FLASH control and NAND array. The appliance usually 
connects to outside world through a dedicated interface such 
as SCSI or SAS. 

The block diagram of the proposed ReCAM based stor-
age is shown in Fig 2. It contains a number of ReCAM mod-
ules, consisting of an interface unit (for example high speed 
Ethernet), ReCAM controller and ReCAM array. 

The proposed storage employs the resistive crossbar 
of [12] as applied to CAM [1] (Fig 3(a)). The ReCAM array 
comprises of bit cells (Fig 3(b)) organized in bit-columns and 
word-rows. Several special registers are appended to the 
ReCAM array. The KEY register contains a data block to be 
written or compared against. The MASK register defines the 
active fields for write and read operations (“masks” them 
“on”), enabling bit selectivity. The TAG register marks the 
rows that are matched by the compare operation and may be 
affected by write.

A bitcell (Fig 3(b)) consists of two nonlinear bipolar 
memristors, storing complementary bits. Diodes are added to 
terminate sneak paths. This crossbar constitutes a 
ReCAM [18], operating either as a CAM or as a conventional 

978-1-5090-0733-2/16/$31.00 ©2016 IEEE 100



ReRAM. The bitcell footprint is , where  is the num-
ber of vertically integrated memristor layers [1] (unlike Re-
RAM which have a cell size of ).  

When operating as a CAM, the ReCAM can perform 
Compare and Write operations. The TAG column marks the 
rows that are matched by Compare. 

Compare is implemented as follows. The Match/Word 
line is precharged and the compare key is set on Bit and Bit-
not lines. In the columns that are ignored during comparison, 
the Bit and Bit-not lines are kept floating. If all masked-on 
bits in a row match the key (i.e., when Bit line ‘1’ is applied 
to an   memristor and Bit-not line ‘0’ is applied to an 

 memristor, or vice versa), the Match/Word line remains 
high and ‘1’ is sampled into the corresponding TAG bit. If at 
least one bit is mismatched, the Match/Word line discharges 

through an  memristor and ‘0’ is sampled into the TAG.   

Write operation is performed in two phases. First, the 
 voltage (where  is a threshold voltage required 

to switch to the "on" state) is asserted to applicable Bit lines 
(to write ‘1’s) and Bit-not lines (to write ‘0’s). Second, the 

 voltage (where  is a threshold voltage to 
switch to the "off" state) is asserted to Bit-not lines (to com-
plement the ‘1’s) and Bit lines (to complement ‘0’s). The 
write affects only the tagged rows.

Compare followed by a write operation are illustrated in 
Fig 4, which shows a fragment of ReCAM storing ‘0110’ in 
the first row and ‘0101’ in the second row; The ReCAM con-
tent is compared with the ‘011x’ key and a new ‘1xxx’ key is 
written in the tagged (first) row. 

In ReCAM, sneak currents affect the compare operation 

Fig 1. Conventional All FLASH Storage Appliance Fig 2. ReCAM based storage appliance

Fig 3. (a) Resistive crossbar, (b) ReCAM bitcell
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(rather than read operation as in a standard ReRAM cross-
bar [18]). More specifically, there are sneak paths leading 
from a matching Match/Word Line (which is supposed to re-
tain ‘1’) through neighboring mismatching Match/Word 
Lines to the ground. The purpose of per-cell diode [1] is to 
terminate such sneak paths, so that current can only flow 
from a Match/Word Line to the ground (through a Bit Line) 
in one direction. 

ReCAM behavior is verified and its performance and en-
ergy figures are obtained by SPICE simulations using the 
memristor TEAM model [9].

Two compare operations are defined: A single compare, 
where each TAG samples the match line of an individual row, 
and a continuous compare, where the match result of an in-
dividual row is ANDed with the TAG of the previous row. 

TAG logic is illustrated in Fig 5(a). The AND, OR and 
NAND gates are used for continuous compare, as described 
in Section III. MATCH logic is illustrated in Fig 5 (b). The 
MATCH output (at the bottom of the array) is ‘1’ if there is a 
match resulting from Compare in at least one of the ReCAM 
rows. 

ReCAM behavior, performance and energy dissipation 
are further described in [18].

Data addressing in ReCAM based storage is achieved by 
storing the physical address alongside each data block, cre-
ating the address field. Read operation in ReCAM storage is 
performed in two cycles. First, the address is compared with 
the ReCAM address field. Second, the data is read from the 
row tagged by the Compare. 

Associative addressing provides simple means for both 
writing new records and deleting existing records, as shown 
in Fig 6. 

III. IN-STORAGE RECAM BASED DEDUPLICATION

A. Background
Deduplication is a data compression technique for elimi-

nating redundant copies of repeated data, designed to im-
prove storage utilization. Files are split into multiple data 
blocks. Only unique blocks are meant to be stored. With 
every new write, a data block is compared against all blocks 
in the storage. If a match occurs, a pointer to the previously 
stored block is saved in lieu of the data block. Given that the 
same data block may occur multiple times (match frequency 
is also dependent on the block size), storage efficiency can 
be greatly improved [20].

Deduplication operates on the physical layer of the stor-
age, managing a set of data structures to expose a consecu-
tive logical layer of storage. Each data block has two ad-
dresses, physical (PA) and logical (LBA). Only the LBAs are 
exposed to the outside world, while physical addresses are 
used internally by the deduplication mechanism.

B. Related Work: Conventional Deduplication
In a typical inline storage deduplication system (compris-

ing disk/SSD storage, CPU and DRAM for holding indices 
and tables), the basic deduplication data unit is termed a 
chunk. Upon writing a new data chunk to storage, comparing 
the chunk contents (typically 4-8 KByte) to the entire storage 
is infeasible. Instead, a much shorter representation, called a 
fingerprint or hash (e.g., 20-byte SHA-1 hash) is calculated 
for each chunk, and the fingerprint is looked up in a chunk 
index. If no entry is found, the chunk is stored and a new 
entry is added to the chunk index. In addition to the finger-
print, the index entry also holds at least the chunk’s PA and 
the number of references to it (Fig 7). If the fingerprint of the 
new chunk is found, its number of references is incremented. 
An additional address translation table holds both the LBA 

Fig 5. (a) TAG Logic; (b) MATCH logic

  Init {       // called once when storage is formatted 
 Empty_bit column is set    
  } 
  
  Write_data (address, data) { 
 Compare (empty_bit_col==1) // tag topmost row having 

// empty_bit=1 
 Write (address, data, empty_bit=0)  // write into masked-on 

// address, data, empty_bit fields 
// of the tagged row 

  } 
 
 Delete_data (address) { 
 Compare (address_field==address) 
 Write (empty_bit=1)   // write into masked-on empty_bit  
        // field of the tagged row 
  } 

Fig 6. Associative Write and Delete in ReCAM
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and the PA of each chunk.

Conventional implementations of deduplication require a 
dedicated computer within the storage appliance. For exam-
ple, a disk-based deduplication system [20] with usable ca-
pacity of 6TB employs 15 SATA drives (connected in 
RAID6), 500GB each, and two dual-core CPUs with 8GB of 
DRAM. It reaches 90% CPU utilization at peak I/O perfor-
mance. All chunk metadata is stored on disk, while the 
DRAM serves as a cache for chunk metadata, to reduce non-
I/O storage access. An expansion of that system [4] includes 
a flash-based SSD serving as fast storage for the entire chunk 
metadata. The configuration is similar to [20], although 
smaller, with a RAID4 storage comprising five hard drives, 
500GB each, a dual-core CPU and 4GB of DRAM. As in the 
previous work, DRAM serves as a small cache for chunk 
metadata.  Both papers provide detailed lists of parameters 
to tune for optimal system performance, such as the number 
of hash functions used in a variant of cuckoo hashing for the 
chunk index data structure, the size of a smaller fingerprint 
to be stored in DRAM, or the Bloom filter vector length (re-
ferred to as summary vector in [4]) for fast identification of 
non-stored chunks.

Xtremio’s X-brick [17] is an example of an all-flash high-
end large-scale contemporary storage appliance, according 
to Fig 1. Each of its units contains either 13 or 25 SSDs with 
an effective capacity of 3.2 or 7.2 TB, respectively. The ap-
pliance supports up to 8 units and uses a quad-core processor 
with 256GB of DRAM. 

At the other end of the spectrum, [2] shows an example 
of an in-SSD deduplication with the purpose of enhancing 
the device endurance. The authors suggest using the device 
controller and memory buffer to calculate the chunk finger-
print. Deduplication is implemented with an additional indi-
rection in the flash translation layer and uses the buffer as a 
small cache (similar to the DRAM in [4] and [20]). The pro-
posed system uses two types of hash fingerprints and addi-
tional data structures to maintain the additional level of indi-
rection. 

We see that while greatly improving storage efficiency 
and reducing cumulative number of writes, typical inline 
deduplication may increase system cost and energy con-
sumption, and may limit the data throughput (number of in-
put-output operations, or IOPS). The same conclusion was 
noted in [20].

C. In-ReCAM Deduplication
The proposed ReCAM based inline deduplication re-

quires neither external CPU nor DRAM. The deduplication 
is accomplished entirely within the ReCAM, using its in-
storage processing capabilities. 

ReCAM based deduplication is illustrated in Fig 8. Each 
data block in ReCAM storage is divided into 

=  row-segments of 
 size. For example, for 256-bit wide ReCAM 

and 4KB blocks, the number of segments is = . Data 
blocks are stored in ReCAM in segment by segment fashion, 
in  consecutive ReCAM rows. The first segment of each 
data block is marked by ‘1’ in the block_start bit column. 

Fig 8. ReCAM based deduplication scheme, following the same sequence 
of writes as in Fig 7.

Fig 7. Conventional deduplication scheme after writing the following 
sequence of (data block, LBA): (A, x), (A, y), (B, y+1), (C, y+2). The 
storage, chunk index and address translation table reside in the physical 
layer.
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The values of block_start in all other ReCAM rows of the 
data block are zero. 

During write, a new data block is compared (in parallel) 
against all data blocks stored in the ReCAM to search for a 
stored identical copy. This is achieved by a sequence of one 
single compare followed by -  continuous compare opera-
tions. During the single compare, COMPS is set (Fig 5a) and 
start_block bit column is masked-on, to enable comparison 
of only the first segment of each data block in the storage. 
During the following - continuous compares, the result 
(TAG) of every consecutive compare is ANDed with the re-
sult of the previous compare. Thus, in each compare, only 
the rows matched in the previous compare are active, and the 
number of active rows drops progressively, significantly re-
ducing the compare energy. The outcome of a series of   
compare operations is signaled by MATCH (Fig 5b). 
MATCH=‘1’ means that the new data block is a duplicate 
and should not be stored. One cycle is required for each sin-
gle compare, resulting in  cycles for discovering the block 
is a duplicate.

Otherwise, the new block is unique. In that case it is writ-
ten into the ReCAM along with its (arbitrarily assigned, 
unique) PA. As described above, the block is written segment 
by segment into  consecutive rows, and the first segment is 
marked ‘1’ in the start_block bit column. Each segment is 
written in one cycle to storage.

In both cases (unique and duplicate), the LBA of the data 
block is placed together with its PA in an associative address 
translation table, which can be stored in a separate module of 
the ReCAM storage. The translation table mapping can be 
optimized to eliminate storing multiple copies of the same 
PA (of duplicated blocks). Writing the LBA and PA can take 
1-2 cycles each, depending on . Overall, 
write takes  cycles.  

 Read is done in two steps. First, the LBA of the data 
block is searched in the associative address translation table 
(done in 1-2 cycles). The corresponding PA is retrieved from 
the table. Second, the PA is searched in the ReCAM storage 
(by compare), followed by read of the data block from the 
matched ReCAM rows. It is accomplished by a series of  
one cycle read operations, starting with the row marked by 
‘1’ in the start_block bit column. Overall, read operation 
takes  cycles.  

Deletion of a data block is performed in three steps. In 
the first step, the LBA is searched in the address translation 
table; its PA is retrieved (to be used at the second step), and 
the entry at the address translation table is deleted (using the 
delete_data function of Fig 6). This step takes a total of 3 
cycles. In the second step, the PA (retrieved at the first step) 
is searched again in the address translation table, which takes 
1-2 cycles; if MATCH returns ‘0’, it means that the deleted 

block has no duplicates. In this case, it is deleted from the 
ReCAM storage in  cycles. Overall, delete operation also 
takes  cycles.

IV. SIMULATION

We simulate the ReCAM based deduplication using the 
cycle-accurate CAM simulator introduced in [19], employ-
ing ReCAM performance and power figures obtained by 
SPICE simulations. During ReCAM execution we record 
and count all operations (compare, write and delete).  The 
simulated ReCAM size is 256GB, running at 1GHz. External 
data throughput is assumed non-limiting (contemporary in-
terconnect such as multi-lane PCIe is capable of supporting 
in excess of 2.2M IOPS).

We compare our ReCAM deduplication implementation 
with opendedup [14], which supports inline deduplication 
and runs on top of the local filesystem. It allows for either 
variable or fixed-size blocks and does not limit the amount 
of stored data. In our analysis, we use blocks of 1KB, 2KB, 
4KB and 8KB. We run opendedup on a server with four octa-
core Intel Xeon E5-4650 CPUs with 64GB of RAM and 
800GB Intel SSD DC P3700 drive.

To evaluate the performance and energy consumption of 
opendedup, we use the file system benchmark IOzone [11]. 
IOzone allows writing data chunks with fixed number of du-
plicate parts, to control the degree of deduplication. All runs 
include writing of 50GB of data, with varying percentage of 
duplicate blocks. Each test was repeated with inline dedupli-
cation on and off, to isolate the CPU and DRAM energy con-
sumptions during deduplication. Intel performance counter 
monitor [7] was used for measurements. 

As demonstrated by [20], real-world workloads have 
high variability in the percentage of duplicate data. Our goal 
is to exhaustively examine ReCAM performance and energy 
consumption. Therefore we use a suite of artificial workloads 
with a varying degree of duplication ratio. It allows us to 
control both the workload and the mainline system parame-
ters. Both opendedup and ReCAM deduplicate all duplicate 
blocks.

The simulated write throughput as a function of percent-
age of deduplicated blocks is presented in Fig 9. The meas-
ured throughput of opendedup is also presented in Fig 9 for 
comparison. The ReCAM throughput increases with the per-
centage of duplicate blocks, as the number of writes drops. 
For 8KB data blocks, ReCAM storage reaches 2.2M IOPS 
for 30% duplicate blocks. For comparison, high-end all-flash 
X-brick storage appliance reaches 150K IOPS in 30% write, 
70% read operation [17], similar to the simulated perfor-
mance of opendedup. 
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The simulated energy consumption of ReCAM based 
deduplication as a function of percentage of deduplicated 
blocks is presented in Fig 10. 

To understand the energy benefits of continuous com-
pare, we simulate the energy consumption without deactivat-
ing the ReCAM rows that have mismatched in previous com-
pares (using single rather than continuous compare, with 
COMPS input in Fig 5(a) set to ‘1’). This results in much 
higher simulated energy consumption. 

The measured energy consumption of opendedup (in-
cluding the SSD energy consumption) is also presented in 
Fig 10 for comparison. The energy consumption of ReCAM 
based deduplication is in the same range (slightly higher for 
smaller blocks, lower for larger blocks).

V. CONCLUSIONS

This paper explores deduplication in a novel solid state 
storage based on Resistive Content Addressable Memory 
(ReCAM). ReCAM enables storage with in-situ processing 
capabilities. We show that ReCAM-based in-storage dedu-
plication implementation can provide up to 100x higher 
throughput than typical CPU and DRAM based deduplica-
tion schemes, while consuming similar or lower energy.

More generally, ReCAM may enable additional types of 
applications that combine storage with processing, such as in 
smart SSD [2] and cache in large-scale hybrid storage sys-
tems [4][8]. 
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