
Hindawi Publishing Corporation
VLSI Design
Volume 2007, Article ID 90941, 15 pages
doi:10.1155/2007/90941

Research Article
Network Delays and Link Capacities in
Application-Specific Wormhole NoCs

Zvika Guz, Isask’har Walter, Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny

Electrical Engineering Department, Technion–Israel Institute of Technology, Technion city, Haifa 32000, Israel

Received 15 November 2006; Accepted 6 February 2007

Recommended by Maurizio Palesi

Network-on-chip- (NoC-) based application-specific systems on chip, where information traffic is heterogeneous and delay re-
quirements may largely vary, require individual capacity assignment for each link in the NoC. This is in contrast to the standard
approach of on- and off-chip interconnection networks which employ uniform-capacity links. Therefore, the allocation of link
capacities is an essential step in the automated design process of NoC-based systems. The algorithm should minimize the com-
munication resource costs under Quality-of-Service timing constraints. This paper presents a novel analytical delay model for
virtual channeled wormhole networks with nonuniform links and applies the analysis in devising an efficient capacity allocation
algorithm which assigns link capacities such that packet delay requirements for each flow are satisfied.

Copyright © 2007 Zvika Guz et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Network-on-Chip (NoC) is a novel communication para-
digm for MultiProcessor Systems-on-Chip (MPSoCs). NoCs
provide enhanced performance and scalability, in compari-
son with previous communication architectures (e.g., ded-
icated point-to-point signal wires, shared buses, or seg-
mented buses with bridges) [1, 2]. The advantages of NoC are
achieved thanks to efficient sharing of wires and a high level
of parallelism. Many MPSoCs use specialized application-
specific computational blocks, and they require heteroge-
neous, application-specific communication fabrics. These
systems operate under typical precharacterized information-
flow patterns, which can often be classified into a few “use-
cases” [3] where throughput and delay requirements are
specified for data-flows from sources to destinations in the
system.

Application-specific NoC generation has been addressed
previously [4–10]. The NoC can be customized for a par-
ticular application-specific MPSoC through an automatic
network design phase [4, 10–14]. Most previous research
on NoC customization deals with the selection of network
topology, module placement and routing scheme to accom-
modate the expected application-specific data traffic pat-
terns, assuming that all links in the NoC are identical (e.g.,
[15–18]). In this paper, the application-specific customiza-

tion is extended to include allocation of bandwidth for each
link in the network according to expected traffic flows and
their delay requirements. It should be noted that the problem
of capacity allocation is independent of the aforementioned
NoC challenges and can be used in conjunction with other
optimization procedures.

The use of links with uniform capacities, typical of multi-
computer interconnect, is unsuitable for application-specific
NoC. In multicomputer systems, there is often little or no
knowledge about the dynamic bandwidth and timing re-
quirements of the tasks being executed, or about their assign-
ment to a physical processing unit. In addition, in an off-chip
network dynamic routing has an acceptable cost and loads
can be equally distributed among multiple paths.

SoC traffic is usually more heterogeneous, in terms of
both bandwidth and delay requirements. SoC is also sub-
jected to detailed specifications describing the traffic and
timing restrictions of each communicating pair, hence in
many cases all communication characteristics are known
at design time. At the same time, due to more restric-
tive cost considerations, solutions such as dynamic routing
and load distribution are less appealing and instead fixed
shortest-path routing is typically preferred in order to mini-
mize router and network interface logic and communication
power dissipation [4, 10, 12, 13, 15, 19]. As a result, differ-
ent links in the NoC must carry significantly different data

2 VLSI Design

rates and therefore different capacities should be allocated to
them. In addition, different latency requirements for differ-
ent data flows should affect the allocation of extra capacity to
some critical links.

The goal of capacity allocation is to minimize the net-
work cost (in terms of link area and power) while maintaining
acceptable packet delays for the specific system communica-
tion demands [4]. This step in the design process is similar to
timing closure in traditional chip design, where critical path
drivers are often upsized and noncritical drivers are down-
sized for saving power. However, in an NoC, critical timing
paths cannot be uniquely matched to dedicated signal wires,
since multiple messages share the network links. In an NoC,
timing closure must be achieved by adequate bandwidth al-
location to each of the network links: insufficient allocation
will not meet performance requirements, while lavish allo-
cation will result in excessive power consumption and area.
During the design process, the network architect can control
the physical link capacity by setting the number of parallel
wires it is composed of, or by tuning its clock frequency. If
the network is implemented asynchronously, repeaters can
be placed to regulate the throughput of the link.

Wormhole routing [20] is an increasingly common in-
terconnect scheme for NoC as it minimizes communication
latencies, requires small buffer space and is relatively simple
to implement. However, performance evaluation and cus-
tomization process of wormhole-based NoCs heavily rely on
simulations as no existing analysis accounts for the combi-
nation of heterogeneous traffic patterns and virtual channels
[21]. Unfortunately, these are both fundamental characteris-
tics of NoC interconnect. The use of simulations makes the
task of searching for efficient capacity allocation computa-
tionally extensive and does not scale well with the size of the
problem. On the other hand, a detailed exact analytical solu-
tion of a complex NoC is intractable and simplistic approxi-
mations may lead to inaccurate results.

Two contributions are described in this paper. First, a
novel delay analysis for wormhole-based NoCs is presented.
The model approximates the network behavior under a wide
range of loads. Given any system (in terms of topology, rout-
ing, and link capacities) and its communication demands
(in terms of packets length and generation rate), the analysis
estimates the delay experienced by every source-destination
pair. To the best of our knowledge, this is the first analysis of a
wormhole network with nonuniform link capacities. Second,
an algorithm that applies the delay analysis for efficiently al-
locating capacities to network links is described. Simulation
is only used for final verification and fine tuning of the sys-
tem. This methodology considerably decreases the total NoC
cost and significantly improves the speed of the customiza-
tion process.

The rest of this paper is organized as follows: in Section 2,
the capacity allocation problem is formalized. In Section 3,
we present and evaluate a delay model for heterogeneous
wormhole networks with multiple virtual channels and dif-
ferent link capacities. The capacity allocation algorithm is
discussed in Section 4, while Section 5 presents design exam-
ples and simulation results. Finally, Section 6 concludes the

Given:
F
∀ f ∈ F: mf , λ f , T

f
REQ

∀link j, assign link capacity (Cj) s.t.:

∀ f ∈ F: T f ≤ T
f

REQ
∑
Cj is minimal

Figure 1: Capacity assignment minimization problem.

paper. In the appendix, we describe QNoC, a QoS-oriented
architecture for on-chip networks that was used for evalua-
tion of our analysis and capacity allocation technique.

2. THE LINK CAPACITY ALLOCATION PROBLEM

If all links in an application-specific NoC are given the same
capacity, some of them might be much larger than needed,
consuming unnecessary power and area. Using an analogy to
timing closure in classical VLSI design, this resembles instan-
tiating the strong drivers that are needed in the critical path,
throughout the entire chip.

Alternatively, an efficient capacity allocation assigns just
enough capacity to each of the network links such that all
flows in the system meet their delay requirements while the
total capacity invested in the network is minimized.

In order to formalize the minimization problem, we
introduce the following notation.

F = The set of all flows, from every source module. 1 ≤
s ≤ N to every destination module 1 ≤ d ≤ N .

f i = A flow from the set F.
mi = The mean packet length (number of flits) of flow.

f i ∈ F [flits].
λi = Average packet generation rate of flow f i ∈ F.

[packets/second].

T
f

REQ = The required mean packet delivery time for flow f.
Cj = Capacity of link j [bits/second].

The capacity assignment minimization problem can be
formalized as in Figure 1.

Naı̈ve allocations, based only on flow bandwidth require-
ments, do not yield good solutions. For example, if the capac-
ity assigned to each link is equal to the average data rate of
the flows it carries, any temporary deviation from the aver-
age will cause network congestion and unacceptable delays.
Therefore, the links must be over.3provisioned with band-
width and should be designed to operate at a fairly low av-
erage utilization rate. If utilization rates are too high, net-
work delays will grow and the latency of some flows will be
too long. Assignment of link capacities such that the uti-
lization rates of all links are equal may be a reasonable al-
location heuristic for homogeneous systems, in which all
flows have similar characteristics. However, such an alloca-
tion might lead to extreme waste of resources in a hetero-
geneous scenario. For example (Figure 2), consider a flow
f 1 which injects 1 Gb/s into some network link (00→01),

Zvika Guz et al. 3

f 1 = 1 Gb/s

f 2 = 100 Gb/s

00 01

10 11

Figure 2: Simple example of a system in which equal utilization
capacity assignment is wasteful.

but has a critical latency, such that a bandwidth of 10 Gb/s
is required in that link (10% utilization). Assume that an-
other flow f 2 injects 100 Gb/s into another link, and its la-
tency requirement permits 200 Gb/s (50% utilization) in that
link (10→11). Enforcing equal link utilization throughout
the network will require 10% utilization everywhere and will
unnecessarily increase the second link capacity to 1000 Gb/s.

Intuitively, the capacity of some links can be reduced
based on latency requirements so that delivery times are
stretched to the maximum allowed. Therefore, any effi-
cient capacity allocation algorithm must be latency aware.
Hence, an efficient model for evaluating the delays of pack-
ets through the network is required. The static delay model
derived in Section 3 will be used to direct our capacity allo-
cation algorithm.

3. WORMHOLE DELAY MODEL

In a wormhole network, packets are divided into a sequence
of flits which are transmitted over physical links one by one
in pipeline fashion. A hop-to-hop credit mechanism assures
that a flit is transmitted only when the receiving port has
free space in its input buffer. Performance of such networks
has been studied extensively in the past. While several an-
alytical studies have evaluated the mean latency of packets
in wormhole networks (e.g., [22–29]), no previous work an-
alyzes wormhole networks with heterogeneous link capaci-
ties, which is a fundamental characteristic of NoC that makes
it cost effective [4]. Moreover, existing models evaluate the
mean latency over all flows in the system. Since each SoC flow
must meet its delay requirement, a perflow analysis is neces-
sary. In addition, no previous work analyzes networks with
both virtual-channels and nonuniform source-destination
communication patterns. For example, [22] presents an an-
alytical model of a wormhole network with an arbitrary
number of virtual channels per link. Though comprehen-
sive, it assumes that messages destinations are uniformly dis-
tributed. In [23], the model does reflect nonuniform traffic
but does not address networks with multiple virtual chan-
nels.

Consequently, a new wormhole delay analysis is called
for, one that captures the above fundamental characteristic

of SoC. In the following subsections, we present our worm-
hole analysis. Section 3.1 introduces the network model and
notations, Section 3.2 presents the analysis and Section 3.3
evaluates the analysis.

3.1. The network model

The time to deliver a packet between a specific source-
destination pair is composed of the source queuing time and
the time it take the packet to traverse the network (hereafter
referred to as network time). In a wormhole network, net-
work time is composed of two components [29]: the time it
takes the head flit to reach the destination module (path ac-
quisition time) and the time it takes the rest of the packet to
exit the network (transfer time); path acquisition time is af-
fected by the complex interaction among different flows in
the system and transfer time is affected by other flows shar-
ing the same links (link capacity is time multiplexed among
all virtual channels sharing the link).

Since NoC delay/cost tradeoffs are different from those
of off-chip networks and since performance is a key issue, we
assume that NoCs will be designed to operate under a rela-
tively moderate load. Consequently, for the sake of simplicity
and computational efficiency, our analysis addresses low to
medium loads and does not attempt to achieve high accu-
racy under very high utilizations.

Previous research [21] has showed that adding virtual
channels increases the maximal network throughput. We as-
sume that physical links are split into an adequate number of
virtual channels. In particular, we assume that a head flit can
acquire a VC instantaneously on every link it traverses.

Our analysis focuses on the transfer of long packets, that
is, packets which are composed of a number of flits signif-
icantly larger than the number of buffers along their path.
From the simulations presented in [4], it is clear that such
packets (termed the Block Transfer class of service) are the
ones that place the most stringent demand on NoC resources
and hence dominate the bandwidth requirements. A delay
analysis capturing the latencies of short packet in wormhole
NoCs which is valuable for the system architect is left for fu-
ture work.

We consider a wormhole deadlock-free fixed routing net-
work that is composed of N routers connected by unidirec-
tional links. The packets that constitute the traffic of each
source-destination pair identify a flow.

Our model uses the following assumptions.

(1) Each flow generates fixed length packets using a Pois-
son process (bursty traffic can be modeled by using ar-
tificially larger packet size).

(2) Sources have infinite queues, and sinks immediately
consume flits arriving at their destination.

(3) Routers have a single flit input queue per virtual chan-
nel.

(4) The propagation delay of flits through links and rout-
ers is negligible.

(5) Back pressure credit signal is instantaneous.

4 VLSI Design

We will use the following additional notation to charac-
terize the network:

l = flit size [bits],
πi = the set of links composing the fixed path of flow f i,
πi
j = the set of links that are subsequent to link j on,

flow i’s path (a suffix of the path πi).

The following notation is used in order to analyze the
packets delay:

Ti = the mean packet delivery time of packets of flow
f i (the average time elapsed since a packet is
created until its last flit arrives at its destination),

Qi = mean source queuing time of packet of flow f i

(the average time elapsed since the packet is
created until it enters the network),

Ti
network = the mean network time of packets of flow f i (the

average time elapsed since the packet is inserted
into the network until its last flit is received by
the destination module),

tij = the mean time to deliver a flit of flow i over link j
(waiting for transmission and transmission times),

Λi
j = the total flit injection rate of all flows sharing link

j, except flow f i [flits/second].

3.2. Wormhole delay analysis

We approximate the source queuing time using the M/D/1
model [30]:

Qi = 1
2 · (1/Ti

network − λi
) − Ti

network

2
. (1)

Clearly, when a flow does not share any of its links
with other flows, (1) is the exact mean queuing time, since
the time required to deliver a packet through the network
(Ti

network) is deterministic. When a packet might be inter-
leaved with other flits within the network, the service time
is not deterministic anymore, and the assumptions of the
M/D/1 model do not hold. However, thorough simulation
(presented in Sections 3.3 and 5) show that (1) is a good ap-
proximation for the queuing time even for flows that are fre-
quently multiplexed.

The network time of a packet in a wormhole network re-
sembles a pipeline traversal. When the number of parts com-
posing the packet is considerably larger than the number of
pipeline stages, the latency (the time it takes the first bits to
exit the pipe) is insignificant compared with the total time,
which in this case is mostly affected by the pipeline’s through-
put. Since packets are assumed to be considerably longer than
the buffers along their path, and since each head flit is as-
sumed to instantaneously acquire a virtual channel on every
link it arrives at, we ignore path acquisition time and approx-
imate the transmission time only.

As in a classic pipeline, the transfer time is dominated
by the stage with the smallest service rate. Since flits of dif-
ferent flows are interleaved on links, the approximation of tij
should account for the transmission time of other flits on the

same link. We use a modification of the basic M/M/1 model-
ing [30] as an approximation of the flit interleaving delay,

tij =
1

1/l · Cj −Λi
j

, (2)

where Λi
j is the bandwidth consumed by all flows other than

flow i on link j. Formally,

Λi
j =

∑

f | j∈π f∧ f �=i
λ f ·mf . (3)

Equation (2) models the mean interleaving delay experi-
enced by flits of flow i on link j as a simple queue, without
accounting for the bandwidth consumed by packets of flow i
itself. This modification is based on the observation that flits
of a flow are interleaved on a physical link due to the delivery
of packets that belong to other flows only.

By substituting (3) into (2) we get

tij =
l

Cj − l ·∑ f | j∈π f∧ f �=i λ f ·mf . (4)

The total network time, which is dominated by the hop
with the longest delay, can then be written as

Ti
network � mi ·max

(
tij | j ∈ πi

)
. (5)

The above approximation does not capture interlink de-
pendencies and is generally too optimistic for medium and
high loads. Wormhole link loads affect each other mainly by
the back-pressure mechanism: a flit must wait for the ar-
rival of a credit for its virtual channel from the following
link. Therefore, flit delivery time over a link (tij) is affected
by the delivery time in subsequent (downstream) links on
the flow’s path. To reflect the effect of flit delay on other
(upstream) links, we replace (4) by the following expression
which accounts for these interlink dependencies. Our simu-
lations (Sections 3.3 and 5) show that this simple expression
successfully estimates the resulting link delay:

t̃ ij = tij +
∑

k|k∈πi
j

l ·Λi
k

Ck
· tik

disti(j, k)
, (6)

where disti(k, j) is the distance (measured in number of
hops) between link j and k on the path of flow i. Formally
written as

disti(k, j) =
∣
∣
∣
∣
πi
j

πi
k

∣
∣
∣
∣ . (7)

Equation (6) approximates the delay experienced by flits
of flow i on link j by adding to the basic flit delay (tij) a term
that takes into account the cumulative effect of the delays of
subsequent links along the path. Each subsequent link de-
lay is weighted by two factors: the links’ distance from link
j(disti(k, j)) and the factor by which the link is utilized by
flows other than flow i itself (l ·Λi

k/Ck).

Zvika Guz et al. 5

f 1

f 2

f 3

15 Gb/s 10 Gb/s 20 Gb/s

20 Gb/s 20 Gb/s 20 Gb/s

00 01 02 03

10 11 12 13

Figure 3: NoC simple example.

As explained above, the mean total network time of each
flow is calculated using the longest interleaving delay on its
path. Therefore, (5) is replaced by

Ti
network � mi ·max

(
t̃ ij | j ∈ πi

)
. (8)

Finally, the total packet delivery time is equal to

Ti = Qi + Ti
network . (9)

3.3. Model characterization

In this section, we evaluate the accuracy of the worm-
hole network delay model by comparison with detailed net-
work simulation of example systems. First, Section 3.3.1
presents a simple example to demonstrate the analysis. Then,
Section 3.3.2 considers a classic scenario of 4 × 4 homoge-
neous systems. We take QNoC (described in the appendix)
as an example of an NoC architecture. The OPNET simu-
lator was extended to include a full NoC simulation based
on the QNoC architecture, including all complex dependen-
cies between different flows in wormhole networks (due to
particular virtual channel assignment schemes, finite router
queues, etc.).

3.3.1. Simple example

To demonstrate the analysis we present a simple and intuitive
example, depicted in Figure 3.

The example system consists of three flows: flow f 1 does
not share any of its links with any other flow. Its path (from
source 00 to destination 03) is composed of links with differ-
ent capacities as shown. Flow f 2, running from source 10 to
destination 13, shares one of its links (11→12) with flow f 3

(running from source 11 to destination 12). Consequently,
while the service time for flow f 1 is constant, the transmis-
sion times of flow f 2 and f 3 are affected by the contention
on their shared link. All of the links on their path have the
same capacity of 20 Gb/s.

Figure 4 presents the normalized average packet delay of
the three flows as a function of varying system load, created
by changing the generation rate of each flow. As expected,
the network delay (path acquisition time plus transfer time)
of flow f 1 (Figure 4(a)) is unaffected by the varying utiliza-
tion, because its packets are never interleaved on a link, and
can always use the entire capacity of the links on its path.

However, when utilization is high, the packet delay increases
due to source queuing latency. Figure 4(a) also shows that the
analytical terms for both the network delay (8) and queuing
time (1) provide good prediction of the simulation results, as
the delivery time is dictated by the path’s lowest capacity link
and the source queue follows M/D/1 assumptions.

Figures 4(b) and 4(c) show the delays of flows f 2 and f 3,
respectively. Unlike flow f 1, the network delays of these flows
grow as link utilization increases, since the available residual
capacity on the common link decreases. As expected, both
flows also experience source queuing delay, which becomes
significant at high utilization. For all three flows, the analysis
closely predicts the network and queuing delays measured by
simulations.

3.3.2. Homogeneous all-to-all example

To demonstrate the accuracy of our analytical model we now
consider a homogeneous system in which every module in-
jects the same amount of bandwidth into the network and
packet destinations are chosen randomly with uniform dis-
tribution. While this is not typical of SoC, this scenario is
very often used to evaluate wormhole networks [21, 22, 25–
29]. We compare the analytical delay model with simulation
results for a varying utilization factor, by using a wide range
of uniform capacity allocation vectors.

Our network, illustrated in Figure 5, is comprised of a
regular four by four two dimensional mesh with symmetric
XY routing [4]. All links have identical capacities; packets of
each flow are generated by a Poisson process, with a mean
rate λ = 1/0.00048 [packets/s]; packets consist of 500 flits,
each flit is 16 bit long.

As can be seen in Figure 6, although all flows inject the
same bandwidth, the different distance and different aggre-
gated load of links along their paths result in a large varia-
tion in packet delays. Assuming that all flows have identical
requirements, the mean packet delivery time of some flows
is much lower than needed. This slack can be trimmed by a
more efficient link capacity scheme.

Figure 7 compares the mean end-to-end packet delay
predicted by the analytical model with simulation results, as
a function of the utilization level of the most utilized link
(i.e., for a wide range of uniform capacity allocations). The
analytical model closely predicts the simulation results for a
wide range of loads, way beyond the loads that are expected
in a practical SoC (the mean absolute error reaches 8% when
utilization is over 90%). The mean absolute error is presented
in Figure 8.

Figure 9 zooms in on two specific flows, depicting the
simulations and analysis end-to-end packet delays of flows
00→10 and 00→33, respectively. As can be seen from the fig-
ure, flow 00→10, which runs on a single link shared by only
two other flows (according to the symmetric XY routing),
suffers a moderate increase in its end-to-end delay as system
load increases. On the other hand, the delay of flow 00→33
is much more sensitive to the system load, experiencing sig-
nificant degradation in its delay as the load increases. This

6 VLSI Design

0.90.80.70.60.50.40.30.20.1

Utilization

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

ti
m

e
Packet delivery times (00→03)

Network time (analysis)

Queueing time (analysis)

Network time (simulation)

Delivery time (simulation)

(a) Flow f 1 (00→03)

0.90.80.70.60.50.40.30.20.1

Utilization

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

ti
m

e

Packet delivery times (10→13)

Network time (analysis)

Queueing time (analysis)

Network time (simulation)

Delivery time (simulation)

(b) Flow f 2 (10→13)

0.90.80.70.60.50.40.30.20.1

Utilization

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

ti
m

e

Packet delivery times (11→12)

Network time (analysis)

Queueing time (analysis)

Network time (simulation)

Delivery time (simulation)

(c) Flow f 3 (11→12)

Figure 4: Simulation and analytical delay decomposition of flows f 1, f 2, and f 3. Horizontal axis marks the maximum link utilization on
the flow’s path; vertical axis is the delay normalized by delivery time in an unloaded network.

flow, running on multiple links, among them few of the most
loaded links in the system, suffers from many contentions
with other flows along its path. The higher loads result in
many collisions, and hence significant increase in its total de-
lay. Although these flows have different characteristics, the
analysis closely predicts the resulting delays measured in sim-
ulations.

4. CAPACITY ALLOCATION

Similar to the TILOS sizing algorithm [31], which uses
static timing analysis to optimize transistor sizes, our algo-
rithm minimizes the resources allocated to network paths
with relaxed timing requirement, and assigns extra net-
work bandwidth to critical paths that need to be optimized.

Zvika Guz et al. 7

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Figure 5: The homogeneous NoC example: a four-by-four mesh
with 48 unidirectional interrouter links.

333231302322212013121110030201
00

Destin
ation

33
32

31
30

23
22

21
20

13
12

11
10

03
02

01
00

Source

0

5

10

15

20

25

M
ea

n
de

la
y

(μ
s)

Mean flow delay

Figure 6: Simulated mean delay in the homogeneous system. Base
plane axes mark the source and destinations module addresses as
defined in Figure 5, respectively, and the vertical axis is the mean
packet delivery time (longest delay is 2.5× longer than the shortest
one).

However, unlike classical VLSI circuits in which each wire
has a unique delay constraint, NoC links are shared by data
flows with different timing requirements which must all be
met.

Using the model presented in Section 3, all network de-
lays can be computed directly, without resorting to simula-
tion, for any set of network parameters. This computation
can be performed in the inner loop of an optimization algo-
rithm which searches for a low-cost capacity allocation for
the NoC links such that all delay requirements are satisfied.

10.80.60.40.20

Utilization

1

2

3

4

5

6

7

N
or

m
al

iz
ed

de
la

y

Mean packet delivery time

Analysis
Simulation

Figure 7: Model estimation and simulation results for the homoge-
neous system. Horizontal axis is the utilization of the most utilized
link and the vertical axis represents the delay normalized by the de-
lay in a zero-loaded system (i.e., where no other flows exist).

10.80.60.40.20

Utilization

0

2

4

6

8

10

12

14

16

R
el

at
iv

e
er

ro
r

(%
)

Absolute error

Mean absolute error

Figure 8: Mean absolute error in the homogeneous system.

If the SoC is to handle multiple use-cases [3], the capac-
ity allocation process should be performed for each case in-
dividually. If link capacities can be dynamically adjusted, the
appropriate bandwidth should be selected at run-time. Else,
the designer can statically set each link’s capacity to the max-
imal bandwidth it requires in all use cases. This will assure
that all timing requirements are met in all operating scenar-
ios.

Our capacity allocation algorithm, specified in Algo-
rithm 1, takes a greedy approach. The initialization phase

8 VLSI Design

0.90.80.70.60.50.40.30.20.1

Utilization

0

5

10

15

20

N
or

m
al

iz
ed

ti
m

e
Packet delivery times (00→10)

Network time (analysis)

Queueing time (analysis)

Network time (simulation)

Delivery time (simulation)

(a)

0.90.80.70.60.50.40.30.20.1

Utilization

0

5

10

15

20

N
or

m
al

iz
ed

ti
m

e

Packet delivery times (00→23)

Network time (analysis)

Queueing time (analysis)

Network time (simulation)

Delivery time (simulation)

(b)

Figure 9: Model estimation and simulation results for the end-to-end delay of flow (a) 00→10 and (b) 00→33 in the homogenous system.
The horizontal axis shows utilization of the most utilized link in the system and the vertical axis represents the delay normalized by the delay
in an unloaded system.

/∗assign initial capacities∗/
(1) foreach link e:

(2) Ce ←
∑

f∈F:e∈π f λ f ·mf · l
(3) end foreach

(4) foreach flow f ∈ F:
/∗evaluate current packet delivery time∗/

(5) T f ← Delay Model (C, f)

(6) while (T f > T
f

REQ)
/∗look for most sensitive link∗/

(7) foreach e ∈ π f :
(8) ∀ j �= e: C̃ j = Cj

(9) C̃e = Ce + δ

(10) T
f
e ← Delay Model (C̃, f)

(11) end foreach

/∗get most sensitive link∗/
(12) e′ = argmine{T f

e }
/∗increase its capacity∗/

(13) Ce′ = Ce′ + δ
(14) end while

(15) end foreach

Algorithm 1: Capacity allocation algorithm.

allocates a minimal preliminary capacity to each link in the
network (lines 1–3). The main loop (lines 4–15) analyses
each source-destination flow separately. It first uses the delay
model (Section 3) to approximate the flow’s delay given the
current capacity allocation vector (line 5). If the delay is

longer than required (line 6), the algorithm allocates a small,
predefined amount (δ) of extra capacity to the flow’s path. It
first temporarily increases the capacity of all links along the
path separately (lines 7–11) and approximates the resulting
packet delay. It then searches for the link with the largest
gain from bandwidth addition, that is, the link for which
adding capacity results in the shortest delay overall (line 12).
The extra capacity is added only to that link (line 13). When
the algorithm terminates, all flows meet their required delay.
Since the algorithm handles flow-by-flow, considering for
every flow only the links along its path for optimization, and
since every iteration on the flow’s links reduces the delay
of the weakest link along that flow’s path, the algorithm is
bound to terminate with locally minimal allocation as its
output. Investigation of detailed convergence properties and
complexity analysis are left as future work.

In practice, the analytical model does not capture all
complex dependencies and effects in a virtual channeled
wormhole network. As a result, the mean delay of a few flows
may be underestimated and the capacity of some links might
be too small. Therefore, the resulting assignment is verified
using network simulation, and some extra capacity is added
to these flows’ path.

5. DESIGN EXAMPLES

Two examples are presented, to demonstrate the delay model
and the benefit of using the capacity allocation algorithm.
Both examples exhibit nonuniform communication pat-
terns, which are more realistic in SoC than the homogeneous

Zvika Guz et al. 9

PE4 PE7 PE5 PE9 PE11

PE2

PE3 PE8 PE10 PE1 PE12

120 120

120120

120
120

120

120

240

240

480 48016
16

1.6

(a)

PE1 PE2 PE3 PE4

PE5 PE6 PE7 PE8

PE9 PE10 PE11 PE12

(b)

Figure 10: (a) Task graph and (b) placement for the DVD decoder system.

example used in Section 3. Modules communicate with only
a subset of all possible destinations and different flows have
different bandwidth and different delay requirements. In the
first example, some modules send and receive packets from
a single module (many-to-one and one-to-many patterns),
emulating a SoC in which data is generated and destined at
specific modules (e.g., SoCs in which there is a main CPU or
a single cache memory, or SoCs that use an off-chip DRAM).
The second example considers a video application, in which
the main data path is pipelined, that is, data blocks are for-
warded from module to module.

For each example, we apply the suggested capacity alloca-
tion algorithm and present its benefit over uniform link ca-
pacities assignment. We have implemented a tool that auto-
matically assigns link capacities given the network topology,
routing scheme, communication demands, and QoS require-
ments. This tool, which uses the aforementioned delay model
and capacity allocation algorithm (described in Section 4), is
to be used by the chip interconnect designer to minimize net-
work resources. For simulation, we have used the OPNET-
based NoC simulator described in Section 3.3.

5.1. DVD video decoder example

The first heterogeneous network comprises a regular three
by four, two dimensional mesh with XY routing, imple-
menting a DVD video decoder. Table 1 describes the differ-
ent flow characteristics and delay requirements and Figure 10
presents the task graph and module placement.

We have compared the total capacity assigned by the ca-
pacity allocation algorithm with a uniform assignment that
meets the same requirements. Figure 11 presents the capac-
ities assigned to each link by the algorithm. While the uni-
form assignment requires a total of 41.8 Gb/s, the algorithm
used only 25.2 Gb/s, achieving a 40% reduction of resources.
Figure 12 shows that all flows meet their requirements and
that the static analytical delay model adequately predicts the
simulated latencies.

Figure 13 compares the packets delay slacks (i.e., the dif-
ference between the actual packet delay and the delay re-

Table 1: DVD decoder system.

Flow
Interarrival
time (μs)

Packet length
(flits)

Required delay
(μs)

00→01 16.67 500 5

01→12 66.67 500 10

01→10 66.67 500 10

01→00 66.67 500 5

01→02 16.67 500 10

01→21 5 000.00 500 15

01→13 500.00 500 10

03→01 66.67 500 10

10→01 66.67 500 10

12→01 66.67 500 10

12→22 66.67 500 5

20→03 66.67 500 10

21→01 500.00 500 15

22→01 33.30 500 10

23→13 33.30 500 10

quirement) in the two allocations. Since in the uniform al-
location all links are assigned identical capacity, the mean
packet delays of some of the flows are much lower than re-
quired. On the other hand, the capacity allocation algorithm
adjusts individual link capacities, thus reducing the slack and
improving efficiency. Note that some flows may benefit from
links with high capacity on their path that is needed to satisfy
the requirements of other flows sharing the link. As a result
slacks are still possible even in an optimal allocation.

5.2. Video processing application

The second example is a video processing application, based
on the video object plane decoder (VOPD) system presented
in [5]. The system, illustrated in Figure 14, has 15 data
flows. The commutation characteristic (Table 2) and mod-
ules’ placement (Figure 14(b)) were adapted from [5] and a
reasonable set of delay requirements were added.

10 VLSI Design

3

2

1

0
X location

2

1

0

Y location

0

0.5

1

1.5

2

C
ap

ac
it

y
(G

bi
t/

s)

Link capacities

Rightward link

Leftward link

Downward link

Upward link

(a)

Link
Assigned capacity
(Gb/s)

Link
Assigned capacity
(Gb/s)

00→01 1.87 23→22 0

01→02 1.53 00→10 0

02→03 0.93 10→20 0

10→11 0.89 01→11 0.86

11→12 0 11→21 0.53

12→13 0 02→12 0.97

20→21 1.10 12→22 1.69

21→22 1.14 03→13 0.93

22→23 1.27 13→23 0

01→00 1.66 10→00 0

02→01 1.22 20→10 0

03→02 1.22 11→01 0.89

11→10 0.86 21→11 0.6

12→11 0 12→02 1.46

13→12 0 22→12 1.15

21→20 0 13→03 1.03

22→21 0 23→13 1.27

(b)

Figure 11: Links capacity assigned by the capacity allocation algorithm for the DVD system.

23
→

13

22
→

01

21
→

01

20
→

03

12
→

22

12
→

01

10
→

01

03
→

01

01
→

21

01
→

13

01
→

12

01
→

10

01
→

02

01
→

00

00
→

01

Flow [source→ destination]

0

5

10

15

T
im

e
(μ

s)

Packet delivery times

Analytical
Simulation
Requirement

Figure 12: Flow delay (DVD decoder system).

As in the previous example, we have compared the total
capacity assigned by the capacity allocation algorithm with a
uniform assignment that meets the same requirements.

Figure 15 presents the capacities assigned by the algo-
rithm to each link and Figure 16 shows the resulting delays.
In this example, a uniform allocation that meets all latency
requirements consumes a total of 640 Gb/s, while the algo-
rithm used only 369 Gb/s, thus reducing total capacity by
40%. Unlike the DVD decoder example, here there are almost
no slacks remaining. This is due to the fact that most links are

23
→

13

22
→

01

21
→

01

20
→

03

12
→

22

12
→

01

10
→

01

03
→

01

01
→

21

01
→

13

01
→

12

01
→

10

01
→

02

01
→

00

00
→

01

Flow [source→ destination]

0

10

20

30

40

50

60

70

Sl
ac

k
(%

)

Packet delay slack

Uniform
Algorithm

Figure 13: Mean packet delay slack as extracted from simulation,
for uniform and algorithm-based allocation.

not shared by multiple flows, and hence flows do not benefit
from capacity allocated in order to satisfy the needs of other
flows.

In both examples presented above the capacity alloca-
tion algorithm was able to achieve significant resource sav-
ings thanks to different bandwidth and requirements of the
different flows, and thanks to the diversity in link loads. Since
some flows have weaker requirements than others, it is pos-
sible to allocate relatively low capacity to some of the links,
without causing any flow to violate its delay requirement. As

Zvika Guz et al. 11

vld rld iquan idct

iscan acdc upsamp arm

smem

pad

vopm

vopr

70 357

362
362

362

27
16

16

353

49 300

313

313

94

500

(a)

idct arm vopm pad

iquan upsamp vopr smem

acdc iscan rld vld

(b)

Figure 14: VOPD (a) task graph and (b) placement.

3

2

1

0
X location

2

1

0

Y location

0

10

20

30

C
ap

ac
it

y
(G

bi
t/

s)

Link capacities

Rightward link

Leftward link

Downward link

Upward link

(a)

Link
Assigned capacity
(Gb/s)

Link
Assigned capacity
(Gb/s)

00→01 12.03 23→22 10.54

01→02 26.59 00→10 0

02→03 26.59 10→20 0

10→11 0 01→11 12.03

11→12 11.66 11→21 0

12→13 11.78 02→12 12.75

20→21 21.17 12→22 0

21→22 21.17 03→13 0

22→23 21.17 13→23 0

01→00 25.67 10→00 11.95

02→01 0 20→10 12.01

03→02 11.73 11→01 0

11→10 20.88 21→11 0

12→11 20.88 12→02 0

13→12 20.88 22→12 0

21→20 11.98 13→03 11.78

22→21 11.98 23→13 21.17

(b)

Figure 15: Links capacity assigned by the capacity allocation algorithm for the VOPD system.

a result, heterogeneous systems are more likely for a substan-
tial resource saving than homogeneous ones.

6. SUMMARY

Allocating different capacities to different network links is an
important phase in the design process of application-specific
NoC-based systems. A good assignment algorithm should al-
locate network resources efficiently so that QoS and perfor-
mance requirements are met but total cost is minimized.

The paper made two novel contributions: first, a simple
static timing analysis delay model was presented. The analy-
sis captures virtual channeled wormhole networks with dif-
ferent link capacities and eliminates the reliance on simula-
tions for timing estimation. The paper also introduced an al-

location algorithm that greedily assigns link capacities using
the analytical delay model, so that packets of each flow arrive
within the required time. Using design examples, we showed
the potential benefit of automated link capacity allocation in
a typical NoC-based SoC design, where the traffic is hetero-
geneous and critical delay requirements vary significantly.

APPENDIX

QNoC ARCHITECTURE

We present QNoC (Quality-of-service NoC) [4] architec-
ture as an example of network characteristics and NoC-based
system design. Although we have used the QNoC architec-
ture for evaluation of our analysis and capacity allocation

12 VLSI Design

Table 2: VOPD application.

Flow
Interarrival
time (μs)

Packet length
(flits)

Required delay
(μs)

00→11 0.6916 128 0.2

01→00 15.26 128 0.08

01→03 15.26 128 0.08

02→03 2.597 128 0.1

02→12 0.4883 128 0.2

03→02 0.78 128 0.2

10→00 0.6839 128 0.2

11→12 0.8138 128 0.2

12→03 0.78 128 0.2

13→10 9.042 128 0.1

20→10 0.6744 128 0.2

20→13 4.982 128 0.1

21→20 0.6744 128 0.2

22→21 0.6744 128 0.2

23→22 3.488 128 0.2

23
→

22

22
→

21

21
→

20

20
→

13

20
→

10

13
→

10

12
→

03

11
→

12

10
→

00

03
→

02

02
→

12

02
→

03

01
→

03

01
→

00

00
→

11

Flow [source→ destination]

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

T
im

e
(μ

s)

Packet delivery times

Analytical
Simulation
Requirement

Figure 16: Flow delays (VOPD system).

technique, it should be noted that both the delay analysis
(Section 3) and the allocation algorithm (Section 4) are ap-
plicable to other architectures, with different topologies and
other fixed routing schemes.

Unlike traditional off-chip computer networks, which are
built for future growth and compatibility with standards, on-
chip networks can be designed and customized for an a pri-
ori known set of computing resources, given precharacter-
ized traffic patterns and Quality-of-Service (QoS) require-
ments, while minimizing VLSI cost [4, 32, 33]. For example,
topology generation, module placement, routing path selec-
tion and network link capacity allocation are performed at
system design time, resulting in an efficient network imple-
mentation in terms of area and power.

The generic QNoC architecture is based on QoS worm-
hole packet routing and a planar irregular mesh topology

(0, 0) (0, 2) (0, 3) (0, 5)

(1, 0) (1, 1)

(1, 3)

(1, 4) (1, 5)

(2, 0)

(2, 2) (2, 4)

(3, 2) (3, 3) (3, 4) (3, 5)

Figure 17: Example of an irregular mesh QNoC.

×2

×5

×3

×10

1
V

C

1 VC

1 VC

3
V

CQNoC
router

Figure 18: An example of an asymmetric network: multiple VCs
are needed on the outgoing link.

(Figure 17). Our definition of an irregular mesh topology is
identical to the full mesh including module addresses, except
that some routers and links are missing. Wormhole routing
[20] is an increasingly common interconnect architecture for
NoC as it minimizes communication latencies and reduce
buffer space. In QNoC, we enhance regular wormhole rout-
ing with the ability to provide different classes of QoS, related
to end-to-end delay, throughput or round-trip delay.

The full design cycle of such a network consists of the
following stages. First, the traffic and QoS requirements
of the target SoC are identified. Next, the network is cus-
tomized by appropriate module placement and by applying
a least cost, shortest path routing function, thus minimizing
power dissipation and maximizing network resource utiliza-
tion [4, 33]. Finally, network load balancing is performed by
link bandwidth allocation so that the predefined multiclass
QoS requirements of each communication flow are satisfied
while reducing the cost to a minimum (see Section 2). Note
that this methodology is in contrast with off-chip networks,
where the traffic requirements change over time and the
routing mechanisms need to balance the load of this chang-
ing traffic over given topology and link capacities, which were
designed for legacy or unknown loads. This important fea-
ture of QNoC allows constructing a heterogeneous worm-
hole network with interrouter links of different speeds.

Zvika Guz et al. 13

#VC

#VC

#VC

#VC

Signal

RT

RD/WR

Block

Output port Input port

Network link

VC

SL

BufSize

Figure 19: Multiplexing multiple SLs and VCs over a physical QNoC link.

Output portsInput ports

VC
SL

BufSize

Signal

RT

RD/WR

Block

Signal

RT

RD/WR

Block

C
ro

ss
-b

ar

Credit CreditScheduler
Control &

routing

...
...

Figure 20: A QNoC router.

QNoC service levels

In order to support different classes of QoS for different
kinds of on-chip traffic, we identify different types of com-
munication requirements and define appropriate service lev-
els (SL) to support them. For example, consider the follow-
ing four different SLs: Signaling (urgent short packets that
are given the highest priority), Real-Time (guaranteed band-
width and latency to streamed audio and video), Read/Write
(short memory and register accesses), and Block-Transfer
(long messages such as DMA transfers).

In QNoC, a priority ranking among different SLs is es-
tablished. For example, Signaling is given the highest prior-
ity and Block-Transfer the lowest. QNoC employs preemp-
tive communication scheduling where data of a higher prior-
ity packet is always transmitted before that of a lower service
level (a round-robin is employed within service levels). Ad-
ditional service levels may be defined if desired.

Virtual channels

High performance wormhole-based interconnection net-
works are often equipped with virtual channels (VCs), which
increase link utilization and overall network performance
[21]. When links have different capacities, multiple VCs al-
low better utilization of high bandwidth links by multiplex-

ing several slow flows over the link. Figure 18 depicts a simple
example where the capacity of an outgoing link (×10) equals
the overall capacity of the three incoming links. However, the
high capacity outgoing link can be fully utilized only by si-
multaneous multiplexing of the incoming flows. This can be
achieved by implementing multiple VCs on this high capac-
ity outgoing link.

In QNoC every SL at each network link can be extended
with its own number of VCs. The flits of different SLs/VCs
that contend for the link bandwidth are time-multiplexed ac-
cording to some arbitration policy over a single physical link
(Figure 19). Previous research [21] has showed that adding
VCs increases the maximal network throughput. We assume
that physical links are split into an adequate number of VCs.
In particular, we assume that a head flit can acquire a VC in-
stantaneously on every link it traverses.

QNoC routers

QNoC router consists of input and output ports that are in-
terconnected by a crossbar switch (Figure 20). Arriving flits
are buffered at the input ports, awaiting transmission by the
output ports. There are dedicated buffers for each SL and
each VC. Relatively small buffers are allocated to each, ca-
pable of storing only a few flits. On the first flit of a packet,
the router invokes a routing algorithm to determine to which

14 VLSI Design

output port that packet is destined. The router then sched-
ules the transmission for each flit on the appropriate output
port.

Each output port of a router is connected to an input port
of a next router via a communication link. The output port
maintains the number of available flit slots per each SL and
VC in the buffer of the next input port. The number is decre-
mented upon transmitting a flit and incremented upon re-
ceiving a buffer-credit from the next router. When a space
is available, the output port schedules transmission of flits
that are buffered at the input ports and wait for transmission
through that output port.

Router arbitration policy

Each output port schedules transmission of flits according
to the availability of buffers in the next router and the ser-
vice level priority of the pending flits. Once a higher priority
packet appears on one of the input ports, transmission of the
current packet is preempted and the higher priority packet
gets through. Transmission of the lower priority packets is
resumed only after all higher-priority packets have been ser-
viced.

In QNoC, each SL is further divided into multiple VCs
that are scheduled for transmission by the VC arbitration
mechanism. VC arbitration consists of two phases. The first
phase is VC allocation, in which available output VCs are al-
located to the pending packets on the VCs from the input
ports. When an output VC is allocated for a packet, this VC
status becomes “active” and it can participate in the second
phase of VC arbitration. The second phase is scheduling of
these “active” VCs for transmission on each output link.

The QNoC architecture was modeled in detail in the OP-
NET environment [34], and flit-accurate simulations of ev-
ery network instance can be performed.

ACKNOWLEDGMENTS

This work was partially supported by the Semiconductor Re-
search Corporation (SRC), Intel Corporation, and the iSRC
consortium.

REFERENCES

[1] P. Guerrier and A. Greiner, “A generic architecture for on-
chip packet-switched interconnections,” in Proceedings of De-
sign, Automation and Test in Europe Conference ands Exhibition
(DATE ’00), pp. 250–256, Paris, France, March 2000.

[2] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Proceedings of the 38th Design
Automation Conference (DAC ’01), pp. 684–689, Las Vegas,
Nev, USA, June 2001.

[3] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. de
Micheli, “A methodology for mapping multiple use-cases onto
networks on chips,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’06), vol. 1, pp. 118–123,
Munich, Germany, March 2006.

[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal

of Systems Architecture, vol. 50, no. 2-3, pp. 105–128, 2004, spe-
cial issue on network on chip.

[5] D. Bertozzi, A. Jalabert, S. Murali, et al., “NoC synthesis flow
for customized domain specific multiprocessor systems-on-
chip,” IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 113–129, 2005.

[6] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks:
a scalable, communication-centric embedded system design
paradigm,” in Proceedings of the 17th International Conference
on VLSI Design (VLSID ’04), vol. 17, pp. 845–851, Mumbai,
India, January 2004.

[7] K. Srinivasan, K. S. Chatha, and G. Konjevod, “An automated
technique for topology and route generation of application
specific on-chip interconnection networks,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD ’05), pp. 231–237, San Jose, Calif, USA, Novem-
ber 2005.

[8] M. K.-F. Schäfer, T. Hollstein, H. Zimmer, and M. Glesner,
“Deadlock-free routing and component placement for ir-
regular mesh-based networks-on-chip,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD ’05), pp. 238–245, San Jose, Calif, USA, Novem-
ber 2005.

[9] M. Palesi, S. Kumar, and R. Holsmark, “A method for router
table compression for application specific routing in mesh
topology NoC architectures,” in Proceedings of the 6th Inter-
national Workshop on Architectures, Modeling, and Simulation
(SAMOS ’06), pp. 373–384, Samos, Greece, July 2006.

[10] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A.
Rǎdulescu, and E. Rijpkema, “A design flow for application-
specific networks on chip with guaranteed performance to ac-
celerate SOC design and verification,” in Proceedings of Design,
Automation and Test in Europe (DATE ’05), vol. 2, pp. 1182–
1187, Munich, Germany, March 2005.

[11] J. Hu and R. Marculescu, “Application-specific buffer space al-
location for networks-on-chip router design,” in Proceedings
of IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD ’04), pp. 354–361, San Jose, Calif, USA, Novem-
ber 2004.

[12] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HER-
MES: an infrastructure for low area overhead packet-switching
networks on chip,” Integration, the VLSI Journal, vol. 38, no. 1,
pp. 69–93, 2004.

[13] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L.
Benini, “XPIPES: a latency insensitive parameterized network-
on-chip architecture for multi-processor SoCs,” in Proceed-
ings of the 21st International Conference on Computer Design
(ICCD ’03), pp. 536–539, San Jose, Calif, USA, October 2003.

[14] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch,
“The Nostrum backbone-a communication protocol stack for
networks on chip,” in Proceedings of the 17th International
Conference on VLSI Design (VLSID ’04), pp. 693–696, Mum-
bai, India, January 2004.

[15] M. Coenen, S. Murali, A. Ruadulescu, K. Goossens, and G. de
Micheli, “A buffer-sizing algorithm for networks on chip using
TDMA and credit-based end-to-end flow control,” in Proceed-
ings of the 4th International Conference on Hardware/Software
Codesign and System Synthesis, pp. 130–135, Seoul, Korea, Oc-
tober 2006.

[16] G. Ascia, V. Catania, and M. Palesi, “Multi-objective mapping
for mesh-based NoC architectures,” in Proceedings of the 2nd
International Conference on Hardware/Software Codesign and
Systems Synthesis, pp. 182–187, Stockholm, Sweden, Septem-
ber 2004.

Zvika Guz et al. 15

[17] S. Murali and G. de Micheli, “SUNMAP: a tool for automatic
topology selection and generation for NoCs,” in Proceedings
of the 41st Design Automation Conference, pp. 914–919, San
Diego, Calif, USA, June 2004.

[18] U. Y. Ogras and R. Marculescu, ““It’s a small world after all”:
NoC performance optimization via long-range link insertion,”
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 14, no. 7, pp. 693–706, 2006.

[19] N. Banerjee, P. Vellanki, and K. S. Chatha, “A power and per-
formance model for network-on-chip architectures,” in Pro-
ceedings of the Conference on Design, Automation and Test
in Europe (DATE ’04), vol. 2, pp. 1250–1255, Paris, France,
February 2004.

[20] W. J. Dally and C. J. Seitz, “The torus routing chip,” Distributed
Computing, vol. 1, no. 4, pp. 187–196, 1986.

[21] W. J. Dally, “Virtual-channel flow control,” in Proceedings of
the 17th Annual International Symposium on Computer Archi-
tecture (ISCA ’90), pp. 60–68, Seattle, Wash, USA, June 1990.

[22] H. Sarbazi-Azad, A. Khonsari, and M. Ould-khaoua, “Perfor-
mance analysis of deterministic routing in wormhole k-ary n-
cubes with virtual channels,” Journal of Interconnection Net-
works, vol. 3, no. 1-2, pp. 67–73, 2002.

[23] S. Loucif and M. Ould-Khaoua, “Modeling latency in deter-
ministic wormhole-routed hypercubes under hot-spot traffic,”
Journal of Supercomputing, vol. 27, no. 3, pp. 265–278, 2004.

[24] C. Roche, P Palnati, M. Gerla, F. Neri, and E. Leonardi, “Per-
formance of congestion control mechanisms in wormhole
routing networks,” in Proceedings of the 16th Annual Joint Con-
ference of the IEEE Computer and Communications Societies,
Driving the Information Revolution (INFOCOM ’97), vol. 3,
pp. 1365–1372, Kobe, Japan, April 1997.

[25] J. Kim and C. R. Das, “Hypercube communication delay with
wormhole routing,” IEEE Transactions on Computers, vol. 43,
no. 7, pp. 806–814, 1994.

[26] R. I. Greenberg and L. Guan, “Modeling and comparison of
wormhole routed mesh and torus networks,” in Proceedings of
the 9th IASTED Iasted International Conference on Parallel and
Distributed Computing Systems, Washington, DC, USA, Octo-
ber 1997.

[27] B. Ciciani, M. Colajanni, and C. Paolucci, “Performance eval-
uation of deterministic wormhole routing in k-ary n-cubes,”
Parallel Computing, vol. 24, no. 14, pp. 2053–2075, 1998.

[28] J. T. Draper and J. Ghosh, “A comprehensive analytical model
for wormhole routing in multicomputer systems,” Journal of
Parallel and Distributed Computing, vol. 23, no. 2, pp. 202–214,
1994.

[29] W. J. Dally, “Performance analysis of k-ary n-cube intercon-
nection networks,” IEEE Transactions on Computers, vol. 39,
no. 6, pp. 775–785, 1990.

[30] L. Kleinrock, Queuing Systems, Volume 1: Theory, John Wiley
& Sons, New York, NY, USA, 1975.

[31] J. P. Fishburn and A. E. Dunlop, “TILOS: a posynomial pro-
gramming approach to transistor sizing,” in Proceedings of
the IEEE International Conference on Computer Aided Design
(ICCAD ’85), pp. 326–328, Santa Clara, Calif, USA, Novem-
ber 1985.

[32] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Cost con-
siderations in network on chip,” Integration, the VLSI Journal,
vol. 38, no. 1, pp. 19–42, 2004.

[33] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Routing
table minimization for irregular mesh NoCs,” in Proceedings
of Design Automation and Test in Europe (DATE ’07), Nice,
France, March 2007.

[34] OPNET modeler, http://www.opnet.com/.

http://www.opnet.com/

	Introduction
	The link capacity allocation problem
	Wormhole delay model
	The network model
	Wormhole delay analysis
	Model characterization
	Simple example
	Homogeneous all-to-all example

	Capacity allocation
	Design examples
	DVD video decoder example
	Video processing application

	Summary
	APPENDIX
	QNoC Architecture
	QNoC service levels
	Virtual channels
	QNoC routers
	Router arbitration policy

	Acknowledgments
	REFERENCES

