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Abstract. An adaptive predictive clock synchronizer is presented. The synchro-
nizer takes advantage of the periodic nature of clocks in order to predict poten-
tial conflicts in advance, and to conditionally employ an input sampling delay 
to avoid such conflicts. The result is conflict-free synchronization with minimal 
latency. The adaptive predictive synchronizer adjusts automatically to a wide 
range of clock frequencies, regardless of whether the transmitter is faster or 
slower than the receiver.  The synchronizer also avoids sampling duplicate data 
or missing any input.  

1   Introduction 

Large systems on chip (SoC) typically contain multiple clock domains. Inter-domain com-
munications require data synchronization, which must avoid metastability while typically facili-
tating low latency, high bandwidth, and low power safe transfer. The synchronizer must also 
prevent missing any data or reading the same data more than once.  

Communicating clock domains can be classified according to the relative phase and fre-
quency of their respective clocks  [1] [7] [14].  Heterochronous or periodic domains operate at 
nominally different frequencies, plesiochronous domains have very similar clock frequencies, 
multi-synchronous domains have the same clock frequency but a slowly drifting relative phase, 
and mesochronous domains have exactly the same frequency.  

The simplest solution for inter-domain data transfer is the two-flip-flop synchronizer 
[1][12][13]. The main problem with that synchronizer is its long latency: Typically, a complete 
transfer incurs waiting about one to two clock cycles at each end. Although it is a very robust 
solution, it is sometimes misused or even abused in an attempt to reduce its latency  [9]. 

Another commonly used synchronizer is based on dual-clock FIFO  [1] [8]. In certain 
situations, especially when a complete data packet of a pre-defined size must be transferred, 
this may be an optimal solution. Another advantage is that synchronization is safely contained 
inside the FIFO, relieving designers of the communicating domains of this delicate design task. 
The main drawback of FIFOs is their one-to-two cycle latency that is incurred when the FIFO 
is either full or empty, and that scenario is highly typical with periodic clock domains where the 
clock frequencies are different.  

Mesochronous synchronizers are described in  [1] [3] [4] [14]. A rational clocking 
synchronizer for a special case of periodic domains in which the two clocks are related by the 
ratio of two small integers is described in [6]. Another synchronizer for a limited case of 
periodic domains is described in  [5]. A plesiochronous synchronizer is proposed in  [2]. It 
incorporates an exclusion detection controlling a multiplexer that selects either the data or a 
delayed version of it.  While having a low latency and a “duplicate and miss” algorithm for the 
plesiochronous case, it is inapplicable to periodic domains. Another predictive synchronizer for 
plesiochronous domains is presented in  [11]. It predicts the transmit clock behavior compared 
to the receive clock in advance. Using this data an “unsafe” signal is produced to control data 
latching.  



Dally & Poulton  [1] suggest a predictive synchronizer for periodic clock domains in which 
two versions of the data are latched and selected according to the output of a phase comparator 
that compares the two clocks. The circuit is non-adaptive, requiring advanced knowledge of the 
two frequencies, and does not handle missed or duplicate data samples. 

We investigate Adaptive Predictive Synchronizers for low-latency bridging periodic do-
mains where the two frequencies are unknown in advance at design time and may also change 
from time to time. Such synchronizers are also suitable for other types of domain relationships. 
In particular, predictive synchronizers are designed for high performance minimal latency 
transfer of data almost every cycle (of the slower clock). The synchronizers must prevent miss-
ing any data or sampling the same data more than once.  

In Section 2 we describe the problem and introduce the circuits of the predictive synchro-
nizer. Different components of the synchronizer are presented in Section 3, and miss and dupli-
cate handling are discussed in Section 4. Section 5 analyzes the adaptation time of the synchro-
nizer.  

2   Synchronizer Overview 

Consider high bandwidth data sent from a transmitter clock domain to a receiver domain. 
The data lines change state simultaneously with the rising clock of the transmitter domain, and 
the transmitter clock is sent to the receiver together with the data, serving as a “data valid” or 
“ready” signal (this is also termed “source synchronous” data transfer). Metastability may 
happen at the receiving end if the receiver (sampling) clock rises simultaneously with the 
transmitter clock.  

The Two-Way Adaptive Predictive Synchronizer (Fig. 1. A Two-Way Predictive Synchro-
nizer with Miss and Duplicate Protection) synchronizes bi-directional communications between 
two periodic clock domains (‘Left’ and ‘Right’). The synchronizer receives the two clocks, and 
manages safe data transfers both ways. It produces SEND and RECV control outputs to both 
domains, indicating when it is safe to receive and send new data on both sides, avoiding data 
misses and duplicates due to mismatched clock frequencies. 
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Fig. 1. A Two-Way Predictive Synchronizer with Miss and Duplicate Protection 

Fig. 2 shows the internal structure of the two-way predictive synchronizer. Since it is sym-
metric, in the following we will mostly consider only one half of it, the part that moves data 
from Left to Right. We adopt the term “Local Clock” for the receiver’s clock (the Right Clock 
in this case) and “External Clock” for the sender’s (Left) clock. In the following we describe 
the synchronizer circuits in a top-down manner. 
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Fig. 2. Architecture of the two-way predictive synchronizer 

One way of avoiding synchronization failures is to delay the sampling (local) clock when 
the input changes simultaneously with it. In order to decide if we need to delay, we track the 
rising edges of both the local and external clocks. If the rising edges occur “close” to one an-
other (within a predetermined range d) we delay the sampling clock by a predetermined amount 
TKO to “keep out” of the danger zone. We can realize such a scheme by using the keep-out 
signal as a selector to a multiplexer on the clock (Fig. 3). 

Thanks to the periodic nature of the clocks, we can reduce the number of cycles needed for 
synchronization by predicting the relative clock timing one cycle in advance.  Let TLOCAL and 
TEXT be the clock periods of the receiver (local) and transmitter (external) clocks, respectively. 
Let’s assume that we have a conflict at time zero. In order to have a second conflict, an integral 
number of cycles of the local clock must span the same time as an integral number of cycles of 
the external clock, namely there should exist some K and N such that: 
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This means that if we delay the external clock signal by ∆ we will get a conflict after N-1 
cycles of Tlocal instead of N. The predictor (contained in the “Keep-Out Control”) is shown in 
Section 3. We could similarly predict the clock more than one cycle in advance, but the further 
in advance we try to predict, the larger the cumulative error (resulting from skew, drift, and 
jitter in the prediction circuits).  

The predicted external clock is phase-compared to the local clock. The phase comparator 
detects a conflict when the rising edges of the two clocks happen at less than a certain delay d 
between them. The detection is used as a selector to the clock delay multiplexer (Fig. 3). Fig. 4 
shows waveforms of a conflict and its resolution (when the sampling clock is delayed). Combi-



national logic can be placed right after the sampling register of the receiver, as can be seen in 
Fig. 3. The maximal allowed combinational delay is T-TKO, and thus the incurred synchroni-
zation latency is only TKO, a small portion of the cycle time. 

3   Keep-Out Control 

The Keep-Out Control (Fig. 3) consists of the clock predictor and the phase comparator. A 
conceptual clock predictor is shown in Fig. 5 [1]. The “TLOCAL delay” block is an adaptive delay 
line tuned to the cycle time of the local clock. The “programmable delay” block is another 
adaptive delay line. The feedback circuit adjusts it so that the two inputs to the conflict detector 
rise at approximately the same time. Once adjusted, the “predicted clock” output provides a 
copy of the external clock one local cycle time in advance. 
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Fig. 3. The Keep-Out Control, sampling clock selector, and the receiver’s sampling register 
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Fig. 4. A conflict is predicted one cycle in advance, delaying input sampling 

The programmable delay line consists of a simple digital tapped inverter chain  [4] [15]. The 
delay can be either increased or decreased one step each cycle. A four-flip-flop circuit is used 
to construct both a basic conflict detector (Fig. 6) and a two-way conflict detector (Fig. 8). 
These two conflict detectors allow about one half cycle time for any metastability in the first 
sampling stage to resolve. We show below (Section 3.1) that it is an extremely safe conflict 
detector. 
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Fig. 5. Adaptive clock predictor 
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Fig. 6. Conflict Detector 



The conflict detector (Fig. 6) detects simultaneous rising edges (within d delay of each 
other). The “TLOCAL delay” block (Fig. 7) is a simplified digital DLL, consisting of a conflict 
detector and two programmable delays. This circuit starts with a minimal delay and increases 
the delay until it is equal to a full cycle. The flip-flop provides a loop delay (of two local clock 
cycles) until the lower programmable delay line has had time to adjust to a new value and the 
conflict detector has responded to that new value. Once the lower delay line has converged to 
TLOCAL, its programming code is copied to the upper delay line. 

This circuit, however, does not track TLOCAL very well: If the local clock cycle decreases, the 
delay line would have to be reset and tuned from the beginning. Hence we employ a two-way 
conflict detector (Fig. 8), which operates bi-directionally to either decrease or increase the 
delay. It detects which clock rises first (“a < b” in the figure means “a rises before b” and “a~b” 
means that they rise simultaneously). If the delayed clock rises before the non-delayed one, 
then the delay is increased, and vice versa. 
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Fig. 7. The adjustable TLOCAL Delay Line 
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Fig. 8. Two-way conflict detector 

To understand the (180º) phase shift signal in Fig. 8, consider the scenario in Fig. 9. When 
the two clocks have precisely inverted phases, the TLOCAL block cannot decide whether to in-
crease or decrease the delay. We resolve that ambiguity by deciding to always increase the 
delay in that case. 

The TLOCAL DLL (Fig. 7) converges to the cycle time of the local clock as follows. The 
minimum step by which the delay line can be increased or decreased is q. The DLL starts from 
a small delay and increases the delay by steps of size q up to the complete local cycle time, 
taking /LOCALT q  steps. Each step takes two local clock cycles, and thus the total conver-

gence time of the DLL is ( )/ 2LOCAL LOCALT q T× × . 

We now examine the clock predictor circuit in more detail (Fig. 10). Programmable Delay 1 
is started at zero delay, and the delay is increased progressively until the two inputs to the 
conflict detector concur. The loop delay in this case (the delay between successive steps of 
delay adjustment) must be the maximum of the two clock cycles. Since it is unknown in ad-
vance which clock is slower (the external or the local clock), the rate reducer (Fig. 11) waits for 
at least one cycle of each, synchronizing to each clock in turn by means of two flip-flops.  

The delay introduced by the rate reducer between successive adjustments of Programmable 
Delay 1 (two passes around the circle in the rate reducer) is 4TLOCAL+4TEXTERNAL (in the worst 
case). Programmable Delay 1 must be tuned to a total delay of 

EXTERNAL LOCAL
K T TNε  = × −
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 (as in 

Section 2). Since each time the delay is increased only by q, the number of steps required to 
tune Programmable Delay 1 is  ( )EXTERNAL LOCAL

K T TN
q

 × −
  As the delay between successive steps is 

determined by the rate reducer, the total tuning time for Programmable Delay 1 is 
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The total adaptation time comprises the above expression plus the DLL convergence 
time, ( )/ 2LOCAL LOCALT q T× × . This adaptation time is further analyzed in Section 5. 
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Fig. 10. Adaptive clock predictor 
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Fig. 11. Rate Reducer 

3.1 Metastability of the conflict detector 

We note that, in a standard SoC (namely a digital IC based on standard cells and designed 
with standard EDA tools) the shortest clock cycle is typically about 160 FO4 inverter delays 
[16]. The nominal FO4 inverter delay depends mostly on the process technology (e.g. about 
30ps for 0.13µm logic CMOS technology). Thus, the shortest high phase (with a 50% duty 
cycle clock) is about 80 inverter delays long. The lower bound is determined as follows. When 
the two clocks differ by about d, the conflict detector can enter metastability and take a long 
time to resolve. The MTBF of such a conflict detector can be determined as follows. Assume τ 
is one inverter delay, W is two inverter delays, and FD=FC (conflict is possible every cycle 
when the two clocks are about equal frequency), then  [12]: 
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 That very safe MTBF (quoted in years) scales quite well over a number of process tech-
nologies. In fact, even if the time reserved for metastability resolution is halved to about 40 
FO4 inverter delays, the MTBF would still safely exceed 10,000 years, an acceptable goal for 
most SoCs. 

The conflict resolution delay d should be large enough to accommodate local jitter and delay 
variations inside the conflict detector. For instance, d=10 FO4 inverter delays could be used. 
The “keep out” delay TKO must be longer than d and shorter than one half cycle of the fastest 
possible clock. For example, TKO=20 inverter delays could be used. 

Thus, while it is unlikely that any conflict detector has not resolved by the time it is used, it 
may have resolved to an unexpected value. Let us consider that situation for each of the conflict 
detectors. Note that in each half of the predictive synchronizer (Fig. 2) only the Keep-Out 
Control receives both clocks. Inside the Keep-Out Control, any one of the three conflict detec-
tors may be affected. The effect of bad resolution of the conflict detectors in the TLOCAL DLL 
and in the loop that adjusts Programmable Delay 1 (Fig. 10) is merely a potential extension of 
the convergence time. In the case of the phase comparator that generates Keep-Out (Fig. 3), 
note that it could become metastable when the local and external clocks are about d apart. 
However, a wrong value of Keep-Out is inconsequential in this case, and the data is sampled 
safely whether Keep-Out is asserted or not. The different cases are exemplified in Fig. 12. 
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Fig. 12. Cases of incorrectly resolved Keep-Out: Input data is sampled either at local clock or 
after TKO delay; in either case, it is safely separate from the rising edge of the external clock. 

4  Misses & Duplicates 

When the transmitter clock is faster than the receiver’s, the transmitter cannot send new data 
every cycle or else some data values will be missed by the receiver (Fig. 13). Conversely, when 
the receiver uses a faster clock, it cannot sample the input every cycle or else it will sample the 
same data more than once (Fig. 14). 
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Fig. 13. Miss Condition 
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Fig. 14. Duplicate Condition 

The complete two-way predictive synchronizer (Fig. 1) provides control signals to avoid 
missed and duplicate data. The SEND signal (generated on the receiver side) guarantees (when 



low) that a fast sender will keep its output unchanged until it is sampled, and the RECV signal, 
generated by the receiver, stops (when low) a fast receiver from using the same data more than 
once. Fig. 15 describes the algorithm that generates SEND and RECV in terms of a Signal 
Transition Graph (STG). RECV is set upon a rising edge of the external clock (new data is 
available) and reset by a rising edge of the local clock (new data has been received, ready to 
receive the next one). SEND is simply the opposite of RECV. The STG is implemented, for 
instance, by the circuit of Fig. 16. Note that RCK is employed instead of the Local Clock; 
otherwise, that circuit would have been subject to metastability. RCK is now guaranteed to 
never coincide with the External Clock. Note also that this circuit cannot be synthesized di-
rectly from the STG by tools such as Petrify  [17]. 

An example waveform of a fast receiver is given in Fig. 17 and a fast sender scenario is 
shown in Fig. 18. 

Although metastability cannot occur in the S-R circuit, it can occur in the conflict detector 
leading to a wrong keep-out signal resulting in a wrong delaying of RCK. This can happen as 
shown before in Fig. 12 when the clocks are d time apart. The case when the external clock 
rises d time before the local clock is inconsequential because the relative ordering of the two 
clocks is unaffected (RCK succeeds the external clock). 
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Fig. 15. SEND and RECV Control STG (dou-
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Fig. 16. Duplicate and Miss Control Circuit 
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Fig. 18. Fast Sender Waveforms 

We now look at the case when the external clock rises after the local clock. In the case of a 
fast sender, RECV and SEND are extended (Fig. 19) and sampling the data by the receiver is 
delayed until the next cycle (Fig. 18). The worst case may happen when both clocks have the 
same frequency, and (when the external clock lags the local clock by d time) Keep-Out happens 
to oscillate every cycle—the resulting data transfer rate is effectively cut in half (but misses and 
duplicates are avoided). 
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Fig. 19. Wrong Keep-Out on Fast Sender 

5  Analysis 

As shown in Section 3, the total adaptation time is  

( )
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The chart in Fig. 20 shows the adaptation time, measured in cycles of a 100MHz local clock 
as a function of the external clock frequency, where the delay resolution q=100ps. Note that 
this is a very simplistic analysis; minor modification of the circuits could enable binary-search 
type of convergence, which would reduce total adaptation time by a logarithmic factor. 
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Fig. 20. Adaptation time of the predictive synchronizer (100MHz local clock, 100ps digital 
delay resolution) 

6  Conclusions 

A two-way adaptive predictive synchronizer for SoC with multiple clock domains has been 
presented. The synchronizer takes advantage of the periodic nature of clocks in order to predict 



potential conflicts in advance, and to conditionally employ an input sampling delay to avoid 
such conflicts. The result is conflict-free synchronization with almost zero latency (much less 
than one cycle). The adaptive predictive synchronizer adjusts automatically to a wide range of 
clock frequencies, regardless of whether the transmitter is faster or slower than the receiver. 
The synchronizer also avoids sampling duplicate data or missing any input. Adaptation to 
changing clock frequencies have been shown to require anywhere from tens of cycles to ten 
thousand cycles, depending on the relative frequencies. 
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