
A Predictive Synchronizer for Periodic Clock Domains

Uri Frank and Ran Ginosar

VLSI Systems Research Center,
Technion—Israel Institute of Technology, Haifa 32000, Israel

[ran@ee.technion.ac.il]

Abstract. An adaptive predictive clock synchronizer is presented. The synchro-
nizer takes advantage of the periodic nature of clocks in order to predict poten-
tial conflicts in advance, and to conditionally employ an input sampling delay
to avoid such conflicts. The result is conflict-free synchronization with minimal
latency. The adaptive predictive synchronizer adjusts automatically to a wide
range of clock frequencies, regardless of whether the transmitter is faster or
slower than the receiver. The synchronizer also avoids sampling duplicate data
or missing any input.

1 Introduction

Large systems on chip (SoC) typically contain multiple clock domains. Inter-domain com-
munications require data synchronization, which must avoid metastability while typically facili-
tating low latency, high bandwidth, and low power safe transfer. The synchronizer must also
prevent missing any data or reading the same data more than once.

Communicating clock domains can be classified according to the relative phase and fre-
quency of their respective clocks [1] [7] [14]. Heterochronous or periodic domains operate at
nominally different frequencies, plesiochronous domains have very similar clock frequencies,
multi-synchronous domains have the same clock frequency but a slowly drifting relative phase,
and mesochronous domains have exactly the same frequency.

The simplest solution for inter-domain data transfer is the two-flip-flop synchronizer
[1][12][13]. The main problem with that synchronizer is its long latency: Typically, a complete
transfer incurs waiting about one to two clock cycles at each end. Although it is a very robust
solution, it is sometimes misused or even abused in an attempt to reduce its latency [9].

Another commonly used synchronizer is based on dual-clock FIFO [1] [8]. In certain
situations, especially when a complete data packet of a pre-defined size must be transferred,
this may be an optimal solution. Another advantage is that synchronization is safely contained
inside the FIFO, relieving designers of the communicating domains of this delicate design task.
The main drawback of FIFOs is their one-to-two cycle latency that is incurred when the FIFO
is either full or empty, and that scenario is highly typical with periodic clock domains where the
clock frequencies are different.

Mesochronous synchronizers are described in [1] [3] [4] [14]. A rational clocking
synchronizer for a special case of periodic domains in which the two clocks are related by the
ratio of two small integers is described in [6]. Another synchronizer for a limited case of
periodic domains is described in [5]. A plesiochronous synchronizer is proposed in [2]. It
incorporates an exclusion detection controlling a multiplexer that selects either the data or a
delayed version of it. While having a low latency and a “duplicate and miss” algorithm for the
plesiochronous case, it is inapplicable to periodic domains. Another predictive synchronizer for
plesiochronous domains is presented in [11]. It predicts the transmit clock behavior compared
to the receive clock in advance. Using this data an “unsafe” signal is produced to control data
latching.

Dally & Poulton [1] suggest a predictive synchronizer for periodic clock domains in which
two versions of the data are latched and selected according to the output of a phase comparator
that compares the two clocks. The circuit is non-adaptive, requiring advanced knowledge of the
two frequencies, and does not handle missed or duplicate data samples.

We investigate Adaptive Predictive Synchronizers for low-latency bridging periodic do-
mains where the two frequencies are unknown in advance at design time and may also change
from time to time. Such synchronizers are also suitable for other types of domain relationships.
In particular, predictive synchronizers are designed for high performance minimal latency
transfer of data almost every cycle (of the slower clock). The synchronizers must prevent miss-
ing any data or sampling the same data more than once.

In Section 2 we describe the problem and introduce the circuits of the predictive synchro-
nizer. Different components of the synchronizer are presented in Section 3, and miss and dupli-
cate handling are discussed in Section 4. Section 5 analyzes the adaptation time of the synchro-
nizer.

2 Synchronizer Overview

Consider high bandwidth data sent from a transmitter clock domain to a receiver domain.
The data lines change state simultaneously with the rising clock of the transmitter domain, and
the transmitter clock is sent to the receiver together with the data, serving as a “data valid” or
“ready” signal (this is also termed “source synchronous” data transfer). Metastability may
happen at the receiving end if the receiver (sampling) clock rises simultaneously with the
transmitter clock.

The Two-Way Adaptive Predictive Synchronizer (Fig. 1. A Two-Way Predictive Synchro-
nizer with Miss and Duplicate Protection) synchronizes bi-directional communications between
two periodic clock domains (‘Left’ and ‘Right’). The synchronizer receives the two clocks, and
manages safe data transfers both ways. It produces SEND and RECV control outputs to both
domains, indicating when it is safe to receive and send new data on both sides, avoiding data
misses and duplicates due to mismatched clock frequencies.

E
N

E
N

Predictive Synchronizer
Right RECV

Right CLOCK

Right SEND

Left RECV

Left CLOCK

Left SEND

Fig. 1. A Two-Way Predictive Synchronizer with Miss and Duplicate Protection

Fig. 2 shows the internal structure of the two-way predictive synchronizer. Since it is sym-
metric, in the following we will mostly consider only one half of it, the part that moves data
from Left to Right. We adopt the term “Local Clock” for the receiver’s clock (the Right Clock
in this case) and “External Clock” for the sender’s (Left) clock. In the following we describe
the synchronizer circuits in a top-down manner.

Right
Keep-Out
Control

Right
S - R

Circuit

Right
RECV

Left
SEND

Left
Clock

Right
Clock
Select

EN

Right RCK

Right Keep-Out

Left
Keep-Out
Control

Left
S - R

Circuit

Left
RECV

Right
SEND

Right
Clock

Left
Clock
Select

EN

Left RCK

Left Keep-Out

Fig. 2. Architecture of the two-way predictive synchronizer

One way of avoiding synchronization failures is to delay the sampling (local) clock when
the input changes simultaneously with it. In order to decide if we need to delay, we track the
rising edges of both the local and external clocks. If the rising edges occur “close” to one an-
other (within a predetermined range d) we delay the sampling clock by a predetermined amount
TKO to “keep out” of the danger zone. We can realize such a scheme by using the keep-out
signal as a selector to a multiplexer on the clock (Fig. 3).

Thanks to the periodic nature of the clocks, we can reduce the number of cycles needed for
synchronization by predicting the relative clock timing one cycle in advance. Let TLOCAL and
TEXT be the clock periods of the receiver (local) and transmitter (external) clocks, respectively.
Let’s assume that we have a conflict at time zero. In order to have a second conflict, an integral
number of cycles of the local clock must span the same time as an integral number of cycles of
the external clock, namely there should exist some K and N such that:

 local extN T K T× = ×

 ()1 local ext local ext ext ext
K KN T KT T KT T K T
N N

  
− = − = − = ∆ + −    

 ext local
K T T
N

 
⇒ ∆ = −  

This means that if we delay the external clock signal by ∆ we will get a conflict after N-1
cycles of Tlocal instead of N. The predictor (contained in the “Keep-Out Control”) is shown in
Section 3. We could similarly predict the clock more than one cycle in advance, but the further
in advance we try to predict, the larger the cumulative error (resulting from skew, drift, and
jitter in the prediction circuits).

The predicted external clock is phase-compared to the local clock. The phase comparator
detects a conflict when the rising edges of the two clocks happen at less than a certain delay d
between them. The detection is used as a selector to the clock delay multiplexer (Fig. 3). Fig. 4
shows waveforms of a conflict and its resolution (when the sampling clock is delayed). Combi-

national logic can be placed right after the sampling register of the receiver, as can be seen in
Fig. 3. The maximal allowed combinational delay is T-TKO, and thus the incurred synchroni-
zation latency is only TKO, a small portion of the cycle time.

3 Keep-Out Control

The Keep-Out Control (Fig. 3) consists of the clock predictor and the phase comparator. A
conceptual clock predictor is shown in Fig. 5 [1]. The “TLOCAL delay” block is an adaptive delay
line tuned to the cycle time of the local clock. The “programmable delay” block is another
adaptive delay line. The feedback circuit adjusts it so that the two inputs to the conflict detector
rise at approximately the same time. Once adjusted, the “predicted clock” output provides a
copy of the external clock one local cycle time in advance.

CL

TKO

KEEP
OUT

CLOCK
PREDICTOR

PHASE
COMPARATOR

Keep-Out Control

RCK

External
Clock

External
Data

Local
Clock

Predicted
Clock

Clock
Select
Circuit

Fig. 3. The Keep-Out Control, sampling clock selector, and the receiver’s sampling register

Local clock

External clock

Predicted clock

Keep Out

RCK

Fig. 4. A conflict is predicted one cycle in advance, delaying input sampling

The programmable delay line consists of a simple digital tapped inverter chain [4] [15]. The
delay can be either increased or decreased one step each cycle. A four-flip-flop circuit is used
to construct both a basic conflict detector (Fig. 6) and a two-way conflict detector (Fig. 8).
These two conflict detectors allow about one half cycle time for any metastability in the first
sampling stage to resolve. We show below (Section 3.1) that it is an extremely safe conflict
detector.

CONFLICT
DETECTOR

Shift

T LOCAL DELAY Programmable
 Delay

Predicted
Clock

Local
Clock

External
Clock

Fig. 5. Adaptive clock predictor

Shift

Clk1

Clk2

d

d

Fig. 6. Conflict Detector

The conflict detector (Fig. 6) detects simultaneous rising edges (within d delay of each
other). The “TLOCAL delay” block (Fig. 7) is a simplified digital DLL, consisting of a conflict
detector and two programmable delays. This circuit starts with a minimal delay and increases
the delay until it is equal to a full cycle. The flip-flop provides a loop delay (of two local clock
cycles) until the lower programmable delay line has had time to adjust to a new value and the
conflict detector has responded to that new value. Once the lower delay line has converged to
TLOCAL, its programming code is copied to the upper delay line.

This circuit, however, does not track TLOCAL very well: If the local clock cycle decreases, the
delay line would have to be reset and tuned from the beginning. Hence we employ a two-way
conflict detector (Fig. 8), which operates bi-directionally to either decrease or increase the
delay. It detects which clock rises first (“a < b” in the figure means “a rises before b” and “a~b”
means that they rise simultaneously). If the delayed clock rises before the non-delayed one,
then the delay is increased, and vice versa.

Conflict
 detector

Shifter

Shift

Delay
CountClock

Divider

 Programmable
 Delay

 Programmable
 Delay

Delay
Count

Delayed
Clock

IN

Local Clock

OUT

Half Clock Freq

Fig. 7. The adjustable TLOCAL Delay Line

Clk1

Clk2

Clk1 > Clk2

Clk1 < Clk2

Clk1~Clk2

Increase
Delay

Decrease
Delay

Local
Delayed

Clock

Local
Clock d

d

Fig. 8. Two-way conflict detector

To understand the (180º) phase shift signal in Fig. 8, consider the scenario in Fig. 9. When
the two clocks have precisely inverted phases, the TLOCAL block cannot decide whether to in-
crease or decrease the delay. We resolve that ambiguity by deciding to always increase the
delay in that case.

The TLOCAL DLL (Fig. 7) converges to the cycle time of the local clock as follows. The
minimum step by which the delay line can be increased or decreased is q. The DLL starts from
a small delay and increases the delay by steps of size q up to the complete local cycle time,
taking /LOCALT q steps. Each step takes two local clock cycles, and thus the total conver-

gence time of the DLL is ()/ 2LOCAL LOCALT q T× × .

We now examine the clock predictor circuit in more detail (Fig. 10). Programmable Delay 1
is started at zero delay, and the delay is increased progressively until the two inputs to the
conflict detector concur. The loop delay in this case (the delay between successive steps of
delay adjustment) must be the maximum of the two clock cycles. Since it is unknown in ad-
vance which clock is slower (the external or the local clock), the rate reducer (Fig. 11) waits for
at least one cycle of each, synchronizing to each clock in turn by means of two flip-flops.

The delay introduced by the rate reducer between successive adjustments of Programmable
Delay 1 (two passes around the circle in the rate reducer) is 4TLOCAL+4TEXTERNAL (in the worst
case). Programmable Delay 1 must be tuned to a total delay of

EXTERNAL LOCAL
K T TNε  = × −
 

 (as in

Section 2). Since each time the delay is increased only by q, the number of steps required to
tune Programmable Delay 1 is ()EXTERNAL LOCAL

K T TN
q

 × −
  As the delay between successive steps is

determined by the rate reducer, the total tuning time for Programmable Delay 1 is

()
()4

EXTERNAL LOCAL

LOCAL EXTERNAL

K T TN T T
q

 × −
 

× +

The total adaptation time comprises the above expression plus the DLL convergence
time, ()/ 2LOCAL LOCALT q T× × . This adaptation time is further analyzed in Section 5.

Clock

Delayed Clock

Fig. 9. 180º Phase shift

Conflict
detector

Rate
reducer

Decrease / Increase

DLL

Local Clock Shift
TLOCAL DELAY

 Programmable
 Delay 1

 Programmable
 Delay 2

Predicted Clock

Local Clock

External
Clock

Fig. 10. Adaptive clock predictor

External
Clock

Local
Clock

Output

Fig. 11. Rate Reducer

3.1 Metastability of the conflict detector

We note that, in a standard SoC (namely a digital IC based on standard cells and designed
with standard EDA tools) the shortest clock cycle is typically about 160 FO4 inverter delays
[16]. The nominal FO4 inverter delay depends mostly on the process technology (e.g. about
30ps for 0.13µm logic CMOS technology). Thus, the shortest high phase (with a 50% duty
cycle clock) is about 80 inverter delays long. The lower bound is determined as follows. When
the two clocks differ by about d, the conflict detector can enter metastability and take a long
time to resolve. The MTBF of such a conflict detector can be determined as follows. Assume τ
is one inverter delay, W is two inverter delays, and FD=FC (conflict is possible every cycle
when the two clocks are about equal frequency), then [12]:

/ 2 80
39 2010 101 12

160 160

T

C D

e eMTBF inverter delays years
WF F

τ

τ= = × ≈ ≈

× ×

 That very safe MTBF (quoted in years) scales quite well over a number of process tech-
nologies. In fact, even if the time reserved for metastability resolution is halved to about 40
FO4 inverter delays, the MTBF would still safely exceed 10,000 years, an acceptable goal for
most SoCs.

The conflict resolution delay d should be large enough to accommodate local jitter and delay
variations inside the conflict detector. For instance, d=10 FO4 inverter delays could be used.
The “keep out” delay TKO must be longer than d and shorter than one half cycle of the fastest
possible clock. For example, TKO=20 inverter delays could be used.

Thus, while it is unlikely that any conflict detector has not resolved by the time it is used, it
may have resolved to an unexpected value. Let us consider that situation for each of the conflict
detectors. Note that in each half of the predictive synchronizer (Fig. 2) only the Keep-Out
Control receives both clocks. Inside the Keep-Out Control, any one of the three conflict detec-
tors may be affected. The effect of bad resolution of the conflict detectors in the TLOCAL DLL
and in the loop that adjusts Programmable Delay 1 (Fig. 10) is merely a potential extension of
the convergence time. In the case of the phase comparator that generates Keep-Out (Fig. 3),
note that it could become metastable when the local and external clocks are about d apart.
However, a wrong value of Keep-Out is inconsequential in this case, and the data is sampled
safely whether Keep-Out is asserted or not. The different cases are exemplified in Fig. 12.

Local clock

External clock

Sampling Clock

d d

TKO

Fig. 12. Cases of incorrectly resolved Keep-Out: Input data is sampled either at local clock or
after TKO delay; in either case, it is safely separate from the rising edge of the external clock.

4 Misses & Duplicates

When the transmitter clock is faster than the receiver’s, the transmitter cannot send new data
every cycle or else some data values will be missed by the receiver (Fig. 13). Conversely, when
the receiver uses a faster clock, it cannot sample the input every cycle or else it will sample the
same data more than once (Fig. 14).

 Loca l C lock

E xte rna l C lock

a b cInput D a ta

Fig. 13. Miss Condition

 Local Clock

External Clock

a b cInput Data

Fig. 14. Duplicate Condition

The complete two-way predictive synchronizer (Fig. 1) provides control signals to avoid
missed and duplicate data. The SEND signal (generated on the receiver side) guarantees (when

low) that a fast sender will keep its output unchanged until it is sampled, and the RECV signal,
generated by the receiver, stops (when low) a fast receiver from using the same data more than
once. Fig. 15 describes the algorithm that generates SEND and RECV in terms of a Signal
Transition Graph (STG). RECV is set upon a rising edge of the external clock (new data is
available) and reset by a rising edge of the local clock (new data has been received, ready to
receive the next one). SEND is simply the opposite of RECV. The STG is implemented, for
instance, by the circuit of Fig. 16. Note that RCK is employed instead of the Local Clock;
otherwise, that circuit would have been subject to metastability. RCK is now guaranteed to
never coincide with the External Clock. Note also that this circuit cannot be synthesized di-
rectly from the STG by tools such as Petrify [17].

An example waveform of a fast receiver is given in Fig. 17 and a fast sender scenario is
shown in Fig. 18.

Although metastability cannot occur in the S-R circuit, it can occur in the conflict detector
leading to a wrong keep-out signal resulting in a wrong delaying of RCK. This can happen as
shown before in Fig. 12 when the clocks are d time apart. The case when the external clock
rises d time before the local clock is inconsequential because the relative ordering of the two
clocks is unaffected (RCK succeeds the external clock).

 RECV+
SEND -

RECV -
SEND +

CLKlocal+CLKlocal-

CLKlocal=0

CLKlocal=1

CLKexternal=1

CLKexternal=0

CLKexternal+CLKexternal-

Fig. 15. SEND and RECV Control STG (dou-
ble arrows are probe arcs: the transition hap-

pens if the place holds a token)

1 D Q

Q

CLR#

1 D Q

Q

CLR# RECV

SEND

External
Clock

RCK

Fig. 16. Duplicate and Miss Control Circuit

A B C

A B C

Local Clock

External Clock

RCK

RECV

 SEND

Data Sent

Data Received

Fig. 17. Fast Receiver Waveforms

A B C

A B C

Local Clock

External Clock

RCK

 RECV

Data Sent

Data Received

SEND

Fig. 18. Fast Sender Waveforms

We now look at the case when the external clock rises after the local clock. In the case of a
fast sender, RECV and SEND are extended (Fig. 19) and sampling the data by the receiver is
delayed until the next cycle (Fig. 18). The worst case may happen when both clocks have the
same frequency, and (when the external clock lags the local clock by d time) Keep-Out happens
to oscillate every cycle—the resulting data transfer rate is effectively cut in half (but misses and
duplicates are avoided).

A B

A B

Local Clock

External Clock

RCK

RECV

SEND

Data Sent

Data Received

Wrong
 Keep-Out

Fig. 19. Wrong Keep-Out on Fast Sender

5 Analysis

As shown in Section 3, the total adaptation time is

()
()4 2

EXTERNAL LOCAL
LOCAL

LOCAL EXTERNAL LOCAL

K T T TN T T T
q q

 × −
 

× + + × ×

The chart in Fig. 20 shows the adaptation time, measured in cycles of a 100MHz local clock
as a function of the external clock frequency, where the delay resolution q=100ps. Note that
this is a very simplistic analysis; minor modification of the circuits could enable binary-search
type of convergence, which would reduce total adaptation time by a logarithmic factor.

1

10

100

1,000

10,000

0 100 200 300 400

External clock frequency (MHz)

N
um

be
r o

f L
oc

al
 C

yc
le

s

Fig. 20. Adaptation time of the predictive synchronizer (100MHz local clock, 100ps digital
delay resolution)

6 Conclusions

A two-way adaptive predictive synchronizer for SoC with multiple clock domains has been
presented. The synchronizer takes advantage of the periodic nature of clocks in order to predict

potential conflicts in advance, and to conditionally employ an input sampling delay to avoid
such conflicts. The result is conflict-free synchronization with almost zero latency (much less
than one cycle). The adaptive predictive synchronizer adjusts automatically to a wide range of
clock frequencies, regardless of whether the transmitter is faster or slower than the receiver.
The synchronizer also avoids sampling duplicate data or missing any input. Adaptation to
changing clock frequencies have been shown to require anywhere from tens of cycles to ten
thousand cycles, depending on the relative frequencies.

References
[1] W.J. Dally and J.W. Poulton, “Digital Systems Engineering,” Cambridge University Press,

1998.
[2] L.R. Dennison, W.J. Dally and D. Xanthopolous, “Low-latency plesiochronous data retim-

ing,” Proc.16th Conf. Adv. Res. in VLSI, pp. 304-315, 1995.
[3] A. Chakraborty, M.R. Greenstreet, “Efficient self-timed interfaces for crossing clock

domains,” Proc.9th IEEE Int. Symp. Asynchronous Circuits and Systems (ASYNC’03), pp.
78-88, 2003.

[4] Y. Semiat and R.Ginosar, “Timing Measurements of Synchronization Circuits,” Proc. 9th
IEEE Int. Symp. on Asynchronous Circuits and Systems (ASYNC’03), 2003.

[5] J. Gandhi, “Apparatus for fast logic transfer of data across asynchronous clock domains”
USA Patent 6,172,540, 2001.

[6] L.F.G. Sarmenta, G.A. Pratt, S.A. Ward, “Rational Clocking,” Proc. ICCD, pp.217-228,
1995.

[7] D.G. Messerschmitt, “Synchronization in Digital System Design,” IEEE J. Selected Areas
in Communication,8(8), 1990.

[8] T. Chelcea and S.M. Nowick, “Robust Interfaces for Mixed-Timing Systems with
Application to Latency-Insensitive Protocols,” Proc. ACM/IEEE Design Automation
Conference, 2001.

[9] R. Ginosar, "Fourteen Ways to Fool Your Synchronizer,” Proc. 9th IEEE Int. Symp. on
Asynchronous Circuits and Systems (ASYNC03), 2003.

[10] Kessels, Peeters, Kim, “Bridging Clock Domains by synchronizing the mice in the mouse-
trap,” Proc. PATMOS, 2003.

[11] W.K. Stewart, S.Ward, “A solution to a special case of Synchronization Problem,” IEEE
Trans. Comp.,37(1), 1988.

[12] C. Dike and E. Burton, “Miller and Noise Effects in a Synchronizing Flip-flop,” IEEE J.
Solid-State Circuits, 34(6), pp. 849-855, 1999.

[13] D. J. Kinniment, A. Bystrov, and A. Yakovlev, “Synchronization Circuit Performance,”
IEEE J. Solid-State Circuits,37, pp. 202--209, 2002.

[14] R. Ginosar and R. Kol, “Adaptive Synchronization,” Proc. ICCD, 1998.
[15] S.W. Moore, G.S. Taylor, P.A. Cunningham, R.D. Mullins, and P. Robinson, “Self-

Calibrating Clocks for Globally Asynchronous Locally Synchronous Systems,” Proc.
ICCD, 2000.

[16] International Technology Roadmap for Semiconductors (ITRS), 2001.
[17] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, "Petrify: a

tool for manipulating concurrent specifications and synthesis of asynchronous control-
lers," IEICE Transactions on Information and Systems, Vol. E80- D, No. 3, pp. 315– 325,
1997.

