
Formal Verification of Synchronizers

Tsachy Kapschitz and Ran Ginosar

VLSI Systems Research Center, Electrical Engineering Department
Technion–Israel Institute of Technology, Haifa 32000, Israel

[ran@ee.Technion.ac.il]

Abstract. Large Systems on Chips (SoC) comprise multiple clock domains, and
inter-domain data transfers require synchronization. Synchronizers may fail due
to metastability, but when using proper synchronization circuits the probability
of such failures can be made negligible. Failures due to unexpected order of
events (caused by interfacing multiple unrelated clocks) are more common.
Correct synchronization is independent of event order, and can be verified by
model checking. Given a synchronizer, a correct protocol is guessed,
verification rules are generated out of the protocol specification, and the model
checker applies these rules to the given synchronizer. An alternative method
verifies correct data transfer and seeks potential data missing or duplication.
Both approaches require specific modeling of multiple clocks, allowing for non-
determinism in their relative ordering. These methods have been applied
successfully to a two-flip-flop synchronizer and a dual clock FIFO.

1 Introduction

Synchronous (clocked) hardware systems are typically partitioned into multiple clock
domains. All sequential elements in the same clock domain are clocked at presumably
the exact same time, but the clocks at different domains may be mutually unrelated—
they may operate at different frequencies, and even when operating at the same
frequency they may tick at different times. These relative frequency and phase
differences may be unknown a-priori, and may also change over time [1]. Such multi-
clock domain systems are also termed GALS (globally asynchronous, locally
synchronous) since the different clocks are assumed mutually asynchronous.

Data transfers between different clock domains require synchronization [2]. Data
that enters a domain and happens to change exactly when the receiving register is
sampling its input may cause that register to become metastable and fail [3]. This
problem is mitigated by properly employing synchronizers and by formally verifying
their correctness. This paper describes methods for formal verification of
synchronizers based on model-checking [4].

Common synchronizers comprise two levels, continuous and discrete. In the realm
of continuous time, it is recognized that often an input change coincides with the
sampling time and consequently the sampling circuit (typically a flip-flop; this paper
does not treat latch-based synchronizers) may take an arbitrarily long time to resolve
 [3]. The synchronization circuit is allowed a certain time period S for resolution, so
that (in case the input indeed changes state at the sampling point) the probability that
the circuit fails to resolve S time later is negligible. However, when the

2

synchronization circuit resolves successfully after such a coincidence within the
period S, its output is set non-deterministically. A typical synchronization circuit
comprises two consecutive flip-flops (Fig. 1) where the first is clocked at the
sampling point and the second one is clocked S time afterwards. Analysis of such
synchronization circuits lies in the analog circuit domain [1] [5] and their presence
may be validated by structural verification algorithms [6]. Both topics are outside the
scope of this paper.

FF1

Domain 2Domain 1
sig1

FF2

sig2

CLK1 CLK2

S after
CLK2

FF1

Domain 2Domain 1
sig1

FF2

sig2

CLK1 CLK2

S after
CLK2

Fig. 1: The two flip flop synchronization circuit with resolution time S

The discrete synchronizer assumes that continuous time issues have already been
resolved by the constituent synchronization circuit(s). The synchronizer handles the
problem that the output of the synchronization circuit may be non-deterministic.
Typical synchronizers achieve that goal by employing a bidirectional handshake
protocol. The goal of formal verification is to guarantee correct operation of the
synchronizer (rather than the synchronization circuit).

It is relatively easy to simulate a synchronizer using a logic simulator, and even
demonstrate incorrect operation in some cases [7]. However, it is infeasible to prove
correctness of the synchronizer by mere simulations. The number of different relative
orderings of clock edges in a multi-clock environment could be extremely large and
simulating all possible cases could be hard to generate and could take excessively
long time. This observation leads to formal verification being the preferred method.

At the same time, it is relatively hard to define general properties that apply to
every possible synchronizer and, once proven to hold, guarantee synchronization
correctness. There are too many known protocols, numerous flavors of each protocol,
and unlimited methods of implementing each flavor of each protocol. Instead,
structural analysis is applied to recognize synchronizers and to sort them into several
a-priori known types. For each type, a set of properties has been defined, which, when
proven to hold, guarantee correctness. In this paper, we consider the verification of a
simple two-flip-flop synchronizer and a dual-clock FIFO.

The paper describes how to generate formal verification executions of RuleBase (a
model checker [7] [8] using PSL [9]) for any multi-clock domain system employing
the said types of synchronizers. We start with modeling of mutually asynchronous
clocks in Section 2. Next, control verification methods are described in Section 3, and
in Section 4 we introduce a more general way of extracting property specifications
from Signal Transition Graph definitions of concurrent systems. An alternative
method for data-transfer verification is discussed in Section 5.

Formal Verification of Synchronizers 3

2 Modeling multiple clocks

The model checker (MC) [8] performs its algorithms in atomic steps called ticks.
Each synchronous component of the system being verified (the design system) is
assumed to operate in atomic steps called clock cycles. Common model checking
assumes a single clock, but synchronizers must be verified while observing multiple
clocks. Thus, we need to add special modeling of multiple clocks to our specification.

The MC provides for three methods of clock modeling: A deterministic clock
(where the ticks during which the clock changes state are pre-determined), a non-
deterministic clock (where the ticks during which the clock changes state are not
specified and are selected non-deterministically by the MC), and a constrained-choice
clock (where the non-deterministic toggling of the clock is partly constrained by some
specification). Using multiple non-deterministic clocks may result in scenarios that
are impossible in the real design system, and verification may sometimes fail on such
impossible scenarios (false-negatives). The set of all possible clock combinations
covers the set of possible real scenarios. When the two sets are equal, there will not be
any false-negatives.

Consider a design system employing sampling elements that use either positive or
negative edge-triggered flip-flops (FFs). The MC offers two modes of modeling such
FFs, edge-triggered and level-triggered modes. In edge-triggered mode, the FF
samples its input on the rising (falling) edge of the clock, just as in the physical world.
In level-triggered mode (which has no analog in the physical circuit), the clock input
is considered an enabling signal for the FFs: Positive (negative) edge-triggered FFs
sample on every tick when the clock is high (low) and are disabled otherwise (Fig. 2).
When both types of FFs are present in the design system, level-triggered mode cannot
model ticks during which no FF samples its input, and hence edge-triggered mode is
preferred. In simpler cases, level-triggered is employed, as it is more convenient for
clock modeling.

Clock

D_in

D_out

Tick 0 Tick 1 Tick
10

Tick
11

Tick
12

A

A

B C

B

Clock

D_in

D_out

Tick 0 Tick 1 Tick 2 Tick 3 Tick 4

B C DA

B CA

F

Edge-triggered mode Level-triggered mode

Clock

D_in

D_out

Tick 0 Tick 1 Tick
10

Tick
11

Tick
12

A

A

B C

B

Clock

D_in

D_out

Tick 0 Tick 1 Tick 2 Tick 3 Tick 4

B C DA

B CA

F

Edge-triggered mode Level-triggered mode
Fig. 2: Flip-flop modeling by edge- and level-triggered modes

Since the only way by which clocks can affect state changes is through their active
edges (positive, negative, or both), we consider only active edges, and, in particular,
the relative ordering of such edges. Two clocks may be unrelated, namely any
arbitrary number of edges of one clock may happen between two successive edges of
the other clock. In some cases we are interested in rational clocks, which maintain a
rough frequency ratio to each other, as follows.

4

2.1 Mutually–asynchronous clocks

Unrelated, mutually-asynchronous clocks can be modeled as follows in PSL:

VAR CLK1, CLK2: 0..1;
fairness CLK1=1;
fairness CLK2=1;

The only constraint on non-determinism we introduce compels the clocks to create
active edges an infinite number of times, to avoid stagnation of any one of the clock
domains. This is our default model for clocks with unknown frequencies. It needs to
be extended (namely, its non-determinism is constrained) only when it is desirable to
eliminate false-negatives; rational clocks provide such an example.

2.2 Rational clocks

At times, the design system assumes a certain fixed frequency ratio of two clocks
 [10] [11]. Consider the example of 3:2 frequencies of CLK1 and CLK2. In that case,
there are one or two active edges of CLK1 between any two active edges of CLK2. This
is modeled using a non-deterministic auxiliary cyclic counter:

var counter: 0..2;
var CLK1, CLK2: 0..1;
assign next(counter) := if (counter = 1) then {0, 2}
 else (counter + 1) mod 3 endif;
assign CLK1 := counter != 0;
assign CLK2 := counter = 0;

One possible trace of the resulting clocks is shown in Fig. 3(a), where edges are
shown as up-arrows. A refined model also enables simultaneous edges of the two
clocks, as demonstrated in Fig. 3(b):

assign CLK1 := if (counter != 0) then 1 else {0, 1} endif;

Note that this model may produce unrealistic relative orderings, in addition to the
desired ones.

counter

CLK1

CLK2

1 2 0 1 0 1 0 1 2 counter

CLK1

CLK2

1 2 0 1 0 1 0 1 2

(a) (b)

counter

CLK1

CLK2

1 2 0 1 0 1 0 1 2 counter

CLK1

CLK2

1 2 0 1 0 1 0 1 2

(a) (b)
Fig. 3: A 3:2 clocking trace

In general, given two clocks CLK1 and CLK2 with frequency ratio of m:n (WLOG
m>n), between any two active edges of CLK2 there should be N active edges of CLK1,
where ⌊m/n⌋≤N≤⌈m/n⌉. If m is divisible by n then: (m/n-1)≤ N ≤(m/n+1). It is
possible to cover in a single execution of MC a wide range of possible ratios m/n
(including both m>n and m<n cases), if m:n is specified as a non-deterministic
variable.

Formal Verification of Synchronizers 5

3 Control verification

As stated above, data transferred between two mutually asynchronous clock domains
are wrapped by a handshake protocol, implemented with control signals between the
domains. In this section we consider verification of the protocol by examining the
control signals. We first verify the entire synchronizer, using multiple clocks. Next,
we describe an alternative method in which the synchronizer is decomposed into the
two clock domains and each part is verified separately.

3.1 The two flip-flop synchronizer

The most commonly used synchronizer is based on the well-known two-flip-flop
(2FF) synchronization circuit (Fig. 1) [2] [3]. This synchronizer appears in many
flavors, one of which is shown in Fig. 4 (note that we distinguish between
“synchronization circuits” and “synchronizer”—the latter includes two instances of
the former). The sender issues a request R1, which gets synchronized using a 2FF
synchronization circuit, yielding R2. (In high frequency designs, more than two flip-
flops may be required [3] [10].) The receiver then latches the data and sends an
acknowledgement (A2) back to the sender, through another 2FF synchronization
circuit. The data must be held stable in S_BUF as long as the request is true and the
acknowledgement has not yet been asserted. A “push” synchronizer (where data is
sent in the same direction as the “request” signal) is shown, but the same principles
apply also to pull, push-pull, and control-only synchronizers.

R_BUFS_BUFDIN

Sender
Control

Receiver
Control

L E

R1 R2

A2A1

CLK1 CLK2

R_BUFS_BUFDIN

Sender
Control

Receiver
Control

L E

R1 R2

A2A1

CLK1 CLK2

Fig. 4: The two flip-flop synchronizer

(comprising two 2FF synchronization circuits)

The desired synchronizer handshake protocols may be described by means of
STGs (Signal Transition Graphs) that define order of events (logic level transitions) in
the synchronizer [12]. One possible protocol is shown in Fig. 5.

In this protocol, two event sequences flow in parallel: data sampling (E+ E-) and
partial acknowledgement (A+ R-). The fork in the STG enables several alternative
scenarios, and verification rules should allow all of them, as derived in Section 4
below. Given a synchronizer (e.g. in terms of HDL), the verification task comprises
three steps: (1) guessing which protocol is used by the synchronizer, (2) using the
STG that specifies that protocol in order to generate verification rules, and (3)
verifying the rules with the Model Checker.

6

A1+

R1+

R1-L+

L-

A1-

A2+

R2+

R2-

E+

E-

A2-

A1+

R1+

R1-L+

L-

A1-

A2+

R2+

R2-

E+

E-

A2-
Fig. 5: STG of the 2FF synchronizer

3.2 Separate verification of two domains

Verifying a design with multiple clocks may incur a heavy computational load. We
consider separate verification of these domains as a simpler alternative. The 2FF
synchronizer can be easily partitioned into its constituent domains, as in Fig. 6. The
cross-domain relations R1+ R2+, A2+ A1+, R1- R2- and A2- A1- are implied
by the structure (2FF synchronization circuits) and are assumed verified by means of
structural analysis. Thus, they do not need to be verified by assertions.

A1+

R1+

R1-L+

L-

A1-

A2+

R2+

R2-

E+

E-

A2-

A1+

R1+

R1-L+

L-

A1-

A2+

R2+

R2-

E+

E-

A2-

A1+

R1+

R1-L+

L-

A1-

A2+

R2+

R2-

E+

E-

A2-

A1+

R1+

R1-L+

L-

A1-

A2+

R2+

R2-

E+

E-

A2-

Fig. 6: STG of the 2FF synchronizer

decomposed into the Sender and Receiver clock domains

In the following, we present some verification rules that are derived informally from
the two STGs. A formal approach is described in Section 4. We seek to verify that the
behaviors made possible by the STGs (relative to the signals that are defined in the
STGs) are followed by the circuit being verified, and that sequences that are
prohibited by the STGs cannot happen in the circuit.

The rules are designed to verify that the STG events occur in a correct order and
that each event happens only in the state(s) in which it is enabled. Consider the event
L– in Fig. 6. L is the signal that loads data into the sender’s register (Fig. 4). The
event L– must take place exactly between L+ and R1+. The following rule verifies
that:

AG (!A1 & !R1 & L -> fell(L) before! !(!A1 & !R1))

Namely, once L is high, it should fall strictly before either R1 or A1 rise. The rule is
violated if data load happens concurrently with the setting of R. This is indeed a real
problem that can manifest itself in a system where the receiver is much faster than the
sender. If L and R1 are asserted simultaneously (as some practical synchronizers tend
to do…), L+ will load the data into the sender’s register only at the end of CLK1

Formal Verification of Synchronizers 7

cycle, but meanwhile R1 may reach the receiver (recall TCLK1 ≫ TCLK2) and cause it
to sample data even before it was actually sent [10].

It is insufficient to verify that data is loaded into the sender’s register before
handshake starts. We should also verify that there is no overrun by the next cycle:

AG (fell(L) -> !R1 & !A1)

In words, once L goes low, it should remain low until A1 is reset.

4 Converting synchronizer STG into verification rules

In this section we discuss how to convert the synchronizer STG directly into PSL
assertions. We employ STG to specify synchronizer behavior, where each STG node
represents a single switching event of some signal, and where arcs imply precedence.
For our methods, the STG nodes have to be uniquely identifiable. For instance, two
nodes that indicate the transition x+ are tagged x+/1, x+/2. They can be
distinguished by the state of all other variables in each case (some of which may be
“don’t care”).

Note that similar properties are required for synthesis of STG into asynchronous
circuits [14]. To verify that the given synchronizer complies with the STG, we prove
that:
• Signal transition events (in the synchronizer) occur in the order specified by the

STG.
• A signal transition event (in the synchronizer) occurs only in the states where it is

allowed.

4.1 Identifying enabling states

Correct ordering of all events may be assured by the exhaustive proof of correct
execution of all events. Each event has its own condition that enables its execution. In
STG, the condition is fulfilled by a marking (a mapping of tokens to arcs) where all
arcs incoming into the event carry tokens, enabling firing of the event. The condition
is converted into a rule that verifies that the enabled transition actually takes place
before the enabling state is changed:

AG (EnablingState -> Transition(E) before !EnablingState)

To verify that events take place only in the proper states, we verify that
AG (Transition(E) -> SetOfEnablingStates)

For example, in Fig. 6:
AG (!R2 & !A2 & !E -> rose(R2) before !(!R2 & !A2 & !E))
AG (rose(R2) -> !A2 & !E)

Thus, an event (a STG node) is enabled to make its signal transition during state of
some other signals. More generally, multiple states may be allowed at the time of this
transition. Consider, for instance, the A2+ event in the Receiver domain of Fig. 6. To
determine the set of states in which A2+ is enabled, one should identify the signals

8

that are guaranteed invariant when this transition can happen. While the leftmost
token is placed on the incoming arc of A2+ (allowing A2+ to fire), the rightmost
token may be located on any one of three different arcs: R2+ E+, E+ E-, or E-

A2-. Thus, E may be either high or low when A2 rises. Hence, only the state of R2
is well defined during the event A2+ (namely, R2=1). Thus, the A2+ event is enabled
by R2 & !A2.

Let’s introduce some notations. For each event E (an STG node):
• sig(E) - the transitioning signal of E. E.g., sig(A2+)=A2.
• st(E) – the state of sig(E) when E is enabled. E.g., st(A2+)=!A2.
• S(E) - the disjunction of all states in which E is enabled, not including st(E). E.g.,

S(A2+)=(R2&!E)|(R2&E)=R2.
• T(E) - the signal transition of E. E.g., T(A2+)=rose(A2).
• P(E) – (the set of paths parallel to paths that contain E): all paths that start at a

predecessor of E, terminate at a successor of E, but do not include E. E.g.
P(A2+)={… E+ E- …}

• C(E) - all signals whose transitions are included in P(E). These signals may change
concurrently with E . E.g., C(A2+)=E.

• W(E)=US \ (C(E)∪{sig(E)}) where US is the universal set of signals: the set of
the signals that cannot change concurrently with E . E.g., W(A2+)={R2}.

• StE(w) - the state of signal w when E is enabled. This is meaningful only for
w∈W(E). E.g., StA2(R2)=1.

The disjunction of states S(E) may be expressed as

()
() (())

w W
S w St w

∈
= =∧ E

E
E .

The following procedure generates StE(w) for each E and w∈W(E). The
Enabled() function returns all enabled events at a given marking of the STG. The
Fire(E) function fires an event E in the STG (removing tokens from all arcs
incoming into E and placing tokens on all arcs outgoing from E). The
LastTr[*]array is used by the algorithm for holding the last STG-node covered for
each signal. Pred[*][*] is a two-dimensional array that for each STG-node E and
each signal u holds the STG-node that corresponds to the last transition of u covered
before the firing of E. That array is built by exhaustive firing of the STG:

Formal Verification of Synchronizers 9

Pred[*][*] null
LastTr[*] null
While (∃E ∧ ∃u: Pred[E][u] == null)
{
 Foreach F ∈ Enabled() {
 Foreach signal v { Pred[F][v] LastTr[v] }
 Fire(F)
 LastTr[sig(F)] T(F)
 }
}

In a deterministic STG , there is only one well-defined state for each signal in
W(E). Thus, it is sufficient to determine these states by static analysis of the STG,
as is done above. The following algorithm finds W(E):

W(*) {}
Foreach event E
 Foreach signal u
 {
 E

u
 = Pred[E][u]

 If foreach E’
u
 such that sig(E’

u
)==u ∧ T(E’

u
)≠T(E

u
):

 ∃p=path(E
u
,E’

u
) ∧ E∈p then

 {
 W(E) W(E) ∪ {u}
 If T(E

u
)=rose(u) then StE(u) 1

 else StE(u) 0
 }
 }

If Eu∈P(E) then ∃E’u such that ∀p=path(Eu, E’u): E∉p. Otherwise Eu is a
predecessor of E and E must occur before any other opposite transition of u ⇒ u
belongs to E-invariant-set, which is a contradiction.

4.2 Generating verification rules

Having introduced the formalism in 4.1, we can write a rule of the following form for
each STG event:

 AG(S(E) & st(E) → T(E) before! !S(E)) (1)
The weak before (without !) operator is employed when the event E refers to an input
signal (The circuit cannot compel an input). In order to verify that signal transitions
take place only in their enabling states, we verify the following rules for each signal c:

 () rose()

() fell()

AG (rose() ())

AG (fell() ())
T

T

S

S
∀ =

∀ =

→

→

∨
∨

E: E c

E: E c

c E

c E
 (2)

Eq. (1) and (2) constitute the set of verification rules for logic that may be specified
by the STG. For instance, applying the equations to the C-element STG in Fig. 7
yields the following rules:

AG (!A & !C -> rose(A) before C)
AG (!B & !C -> rose(B) before C)

10

AG (A & B & !C -> rose(C) before! !(A & B))
AG (A & C -> fell(A) before !C)
AG (B & C -> fell(B) before !C)
AG (!A & !B & C -> fell(C) before! !(!A & !B))
AG (rose(A) -> !C)
AG (fell(A) -> C)
AG (rose(B) -> !C)
AG (fell(B) -> C)
AG (rose(C) -> A & B)
AG (fell(C) -> !A & !B)

A+ A-

B+ B-
C+ C-

A+ A-

B+ B-
C+ C-

Fig. 7: C-element STG

5 Verifying data transfers

As we have seen, a synchronizer usually wraps the cross-domain data transfer by a
control handshake protocol. The advantage of control verification of domain-
decomposed synchronizers (Section 3.2) is that no multiple clock modeling is
required. However, control verification suffers of the following disadvantages:
• Control verification is protocol specific. The rules are useful for verifying a certain

synchronizer and cannot in general be applied to other synchronizers.
• The STG that specifies the control protocol may need to be changed in order to

satisfy some properties, such as Complete State Coding [13], in order to enable
rule derivation. The “well-behaved” STG is often more complex than the original
one.

• Third, quite complex rules may be needed for verification, incurring a heavy MC
computational load.

In the previous section we discussed control verification of handshake protocols. In
this section we show how to prove that the actual data transfer is correct, without
considering the control signals. If the controller has an error, it will be discovered
through data verification. The goal of data transfer verification is to prove that any
data item sent by the sender is eventually sampled exactly once by the receiver.

5.1 2FF data transfers

The data transfer part of a 2FF synchronizer is shown in Fig. 8. The verifier interprets
the loading of data DIN into the leftmost register as an attempt by the sender to send
it. A sampling into the rightmost register is interpreted as an attempt by the receiver to
receive data. The verifier must prove that no data item is either missed or sampled
more than once by the receiver.

Formal Verification of Synchronizers 11

R_BUFS_BUFDIN

L E

CLK1 CLK2

R_BUFS_BUFDIN

L E

CLK1 CLK2

Fig. 8: Cross-domain data transfer structure

The first verification rule checks data integrity:
AG (CLK1 & L & DIN(0)=1 ->
 next_event(CLK2 & E)(S_BUF(0)=1))

A similar rule can be written for the value 0. Integrity is checked only for a single
data bit because all the other bits will behave in the same way, as guaranteed by
structural verification. In addition to data integrity, we should verify that:
• Data is not duplicated—the receiver does not sample the data if the sender did not

send any:
AG (CLK2 & E -> AX ((CLK1 & L) before (CLK2 & E)))

• Data is not missed—the receiver eventually receives data that was sent by the
sender:
AG (CLK1 & L -> AX ((CLK2 & E) before! (CLK1 & L)))

In words, between any two sendings there must be one reception, and vice versa. The
second assertion uses the strong before! operator (with !) to verify that the event
(CLK2 & E) eventually takes place even if the subsequent event (CLK1 & L) does not
happen at all.

5.2 Dual clock FIFO data transfers

The 2FF synchronizer incurs a long latency, and successive data transfers every clock
cycle are impossible. Dual-clock FIFO synchronizers (Fig. 9) are typically employed
when high throughput transfers are needed [2] [7]. Data items are written by the
sender into a dual port memory, and are subsequently read by the receiver. Write and
read pointers are used to manage memory access. Full and empty indications should
prevent any over- or under-runs; they are computed based on comparing the write and
read pointers. Since these pointers belong to different clock domains, they must first
be synchronized. Each pointer consists of several bits, depending on the FIFO size.
Thus, it becomes necessary to synchronize multi-bit items (without resorting to the
slow 2FF synchronizer).

12

RD_PTRSYNC

SYNC Empty
Logic

Full
Logic

empty

full

WR_PTR

WR_ADDR

RD_ADDRWR_EN

RD_EN

WR_DATA RD_DATA

RD_PTRSYNC

SYNC Empty
Logic

Full
Logic

empty

full

WR_PTR

WR_ADDR

RD_ADDRWR_EN

RD_EN

WR_DATA RD_DATA

Fig. 9: A dual-clock FIFO synchronizer

A fast parallel multi-bit synchronization circuit is shown in Fig. 10. It faces the
danger that more than one bit may become metastable at the same time. Going out of
metastability, some of these bits may resolve to one and others may resolve to zero.
Consequently, the combined multi-bit value is invalid, and in general such a
synchronization circuit should be avoided [10]. However, if it is guaranteed that at
most one bit changes state at any given cycle, this circuit is safe, in the sense that the
receiver never receives a value that was not sent by the sender.

Fig. 10: A parallel synchronizer: Safe if only one bit changes at a time

The dual-clock FIFO employs Gray-code for its write and read pointers, assuring that
at most one bit changes at a time. To verify the FIFO that contains such parallel
synchronization circuits, we must allow for non-deterministic delay. We employ the
following non-deterministic delay model for the FFs that constitute this parallel
synchronization circuit. If the input changes at the same tick as the clock, the output is
non-deterministically either the old or the new value (an earlier version has been
proposed in [15]):

Module FF_nondet (/*INPUT*/ clk) (/*OUTPUT*/ q)
ASSIGN
 next(q) :=
 if (clk) then
 if (fell(d) | rose(d)) then {d , q}
 else d endif
 else q endif;

The two FIFO clocks are unrelated, and therefore modeled as described in Section
 2.1. The following rule verifies that any data written to the FIFO is eventually read
out:

forall x: boolean:
 formula
 { AG (wclk & wen & !full & wr_data(0)=x ->
 AF (rclk & ren & !empty & rd_data(0)=x))}

Formal Verification of Synchronizers 13

The main difference between this formula and the one used above to validate the
simple 2FF synchronizer is the awareness that since the FIFO may hold multiple data
items, a written value may not be the one which is read on the next read access of the
receiver. This is reflected by the use of the AF operator, meaning that any written
value should be read out some time in the future. However, this check is insufficient,
because it does not verify that the data items are read in the same order as they were
written. To verify ordering, we introduce indexing, as follows:

define DEPTH := 4;
var widx : 0..(2DEPTH -1);
ASSIGN

init(widx):= 0;
next(widx):= if (wclk & wen & !full)

 then (widx+1) mod DEPTH
 else widx endif;

ridx is defined similarly for the reader. The write and read indices are increased
each time a value is written or read, respectively. The following formula uses those
indices:

forall idx: 0.. (2DEPTH -1):
forall x: boolean:
 formula
 { AG ((wclk & wen & !full & widx=idx & wr_data(0)=x) ->
next_event(rclk & ren & !empty & ridx=idx) (rd_data(0)=x))}

The dual clock FIFO synchronizer serves as an example for cross-domain data
transfers through memory and for verifying parallel synchronization circuits.

6 Conclusions

We have demonstrated how to verify synchronizers using model checking. Rather
than attempt to prove any synchronizer, we assume a given scheme and compare the
synchronizer with its assumed specification. Synchronizer behavior is specified using
signal transition graphs (STG). The STG is converted into verification rules, and the
model checker applies these rules to the given synchronizer. If model checking fails,
another STG specification may need to be considered.

An alternative method has been described, by which we verify correct data transfer
through a synchronizer and seek any potential for missing or duplicating the data.
Both approaches require specific modeling of multiple clocks, allowing for non-
determinism in their relative ordering.

These methods have been applied successfully to a number of synchronizers, such
as the two-flip-flop synchronizer and dual clock FIFOs, and including the more
complex adaptive predictive synchronizer of [11].

Synchronizers may be subject to metastability effects. These effects may be
contained by specific synchronization circuits, so that their failure probability is
negligible. However, even when metastability is handled properly, synchronizers may
still fail, if they encounter an unexpected order of events due to interfacing multiple

14

unrelated clock domains. Correct synchronization is independent of such order of
events; we have shown how to employ model checking to verify that.

7 References

[1] A. Iyer and D. Marculescu, “Power Efficiency of Voltage Scaling in Multiple Clock,
Multiple Voltage Cores", IEEE/ACM Int. Conf. on Computer Aided Design (ICCAD), pp.
379-386, Nov. 2002.

[2] W. J. Dally and J. W. Poulton, “Digital System Engineering”, Cambridge University
Press, 1998.

[3] L. Kleeman, A. Cantoni, “Metastable behavior in digital systems”, IEEE Design and Test
of Computers, pp. 4-19, Dec. 1987.

[4] E.M. Clarke, O. Grumberg and D.A. Peled, “Model Checking”, The MIT Press, 2000.
[5] C. Dike, E. Burton, “Miller and noise effects in a synchronizing flip-flop”, IEEE J. Solid-

State Circuits, 34(6) , pp. 849-855, June 1999.
[6] T. Kapschitz, R. Ginosar, R. Newton, “Verifying Synchronization in Multi-Clock Domain

SoC”, DVCon 2004.
[7] Y. Semiat, R. Ginosar, “Timing measurements of synchronization circuits”, 9th Int. Symp.

Asynchronous Circuits and Systems (ASYNC), pp. 68-77, May 2003.
[8] I. Beer, S. Ben-David, C. Eisner, A. Landver, “RuleBase: an industry-oriented formal

verification tool”, Design Automation Conference, pp. 665-660 June 1996.
[9] M. Gordon, J. Hurd and K. Slind, “Executing the formal semantics of the Accellera

Property Specification Language by mechanised theorem proving,” CHARME, LNCS
2860, pp. 200–215, 2003.

[10] R. Ginosar, "Fourteen Ways to Fool Your Synchronizer", 9th Int. Symp. Asynchronous
Circuits and Systems (ASYNC), pp. 89-96, 2003.

[11] U. Frank and R. Ginosar, “A Predictive Synchronizer for Periodic Clock Domains,”
PATMOS, LNCS 3254, pp. 402–412, 2004.

[12] J. Sparso, S. Furber, “Principles of Asynchronous Circuit Design”, Kluwer Academic
Publishers, Dec. 2001.

[13] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev, “Complete state
encoding based on the theory of regions”, 2nd Int. Symp. Asynchronous Circuits and
Systems, pp. 36-47, March 1996.

[14] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev, “Petrify: a
tool for manipulating concurrent specifications and synthesis of asynchronous
controllers,” IEICE Transactions on Information and Systems, E80-D(3), pp. 315– 325,
1997.

[15] K. Yorav, S. Katz and R. Kiper, “Reproducing Synchronization Bugs with Model
Checking”, CHARME 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

