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Abstract 
Chip-Multi-Processors (CMP) utilize multiple energy-efficient Processing Elements (PEs) to deliver high performance 

while maintaining an efficient ratio of performance to energy-consumption . In order to utilize CMP resources, the 
software application is split into multiple tasks that are executed in parallel on the PEs. Dynamic frequency-Voltage 
Scaling (DVS) balances performance and energy consumption by dynamically varying a PE's frequency-voltage workpoint 
in order to save energy while meeting performance requirements. This work addresses DVS policies for CMP. We 
consider multi-task CMP applications with unknown workloads. We dynamically set frequency-voltage workpoints for 
each PE in the CMP, attempting to minimize a defined energy-performance criterion.. Other DVS methods typically use 
high complexity optimization techniques, which limits the possibility of real-time implementation in performance-driven, 
energy-aware systems. In contrast, we investigate simple heuristic DVS policies for simplified serial/parallel task-graphs. 
We compare the results of our polices to a theoretical best-case solution and show that these lightweight heuristics achieve 
good results with low complexity. In most cases the very simple Constant policy is the most cost-effective. 

 

 

1. Introduction 
Chip-Multi-Processors (CMP) achieve high 

performance while maintaining an acceptable ratio of 
performance to energy consumption, in comparison to 
traditional single-core architectures. Performamce 
improvement techniques of single-core architectures, 
mainly include (1) taking advantage of shrinking gate-
delays in order to increase the operating frequency, and 
(2) using the increased transistor density to add 
performance-enhancing microarchitecture features [1],. 
Increasing the operation frequency beyond a certain 
point is energy inefficient, since energy consumption is 
roughly quadratic in frequency, Features such as large 
caches, deep execution pipes and complex branch 
predictors yield a decreasing performance/energy return  
[2]. High energy consumption shortens the battery life of 
mobile devices, and may cause power delivery and heat 
dispersion problems, which consequently limit feasible 
frequencies and performance. CMP architectures, on the 
other hand, integrate multiple relatively small and simple 

PEs, potentially enabling linear scaling of performance 
[3].  

Dynamic frequency-Voltage Scaling (DVS) is a 
widely practiced [4] and researched [5-7] technique for 
energy-performance tradeoff. When using DVS in CMP, 
a PE’s frequency is altered dynamically to meet current 
performance requirementsm while consuming no more 
energy than is necessary. PE supply voltage is also 
adjusted in conjunction with frequency; usually kept at 
the lowest feasible value that still enables circuit 
operation and timing at the current frequency. Scaling 
the frequency-voltage workpoint (f,V) can result in 
near—quadratic energy savings [6]. 

In a CMP running multiple dependent tasks, DVS 
may save energy without degrading performance.  
Typically, at any given time, one of the tasks constitutes 
the performance bottleneck. Other PEs can be slowed 
down, saving energy without affecting total 
performance. We refer to the tactic of slowing down 
non-critical tasks as slack-utilization. 



2 

When all task workloads are known in advance, the 
DVS policy sets PE frequencies to utilize precisely all 
available time-slacks and thus save the maximum 
possible energy without affecting performance. 
Typically however, task workloads are unknown in 
advance and efficient slack utilization is non-trivial. A 
DVS policy which assumes worst-case workloads 
achieves limited energy savings, since aggressive 
workpoints need to be set to maintain required 
performance in the worst case.  Conversely, 
overestimating slack can lead to performance 
degradation. When workloads are unknown they must be 
estimated, and the method of estimation is a primary 
factor of the efficiency of DVS policies. 

Selecting a criterion for DVS policy efficiency is not 
a clear-cut issue, since different DVS-capable CMPs for 
different applications have different energy- and power-
performance requirements. For example, mobile battery-
operated devices aim at long battery life as well as 
performance, while desktop systems and servers 
typically optimize power rather than energy 
consumption.  

Consider a system whose only objective is to 
maximize performance. The best policy would be to run 
at maximum frequency at all times (in this work we refer 
to this policy as the f-max policy). Conversely, a system 
which is concerned only with energy minimization 
should always run at the minimum frequency (f-min 
policy). A more interesting and more practical case is 
that of a system which strives to balance between the 
two: tuning up frequencies only to the point where the 
increased energy consumption is deemed justifiable, and 
likewise saving energy by running slower, but only to 
the point considered as tolerable performance. This 
choice is reflected in the criterion selected to assess 
alternative DVS policies, as discussed in Section  2.3.  

DVS policies vary in computational complexuty. If 
the required calculations for policy implementation are 
to be integrated into the system itself and done in real-
time rather than offline and externally, then it is essential 
that the energy-consumption and delay of the calculation 
itself be minimal. Spending a substantial amount of 
execution time and energy just to calculate each 
workpoint may considerably offset the savings aimed at, 
making it impractical for use in a performance- and 
energy-aware system. Thus, a practical slack-utilization 
computation must weigh savings accomplished versus its 
own complexity. 

Previously published DVS policies for CMP 
formulate precise optimization problems [8-10] seeking 
optimal solutions, typically at the cost of high 
computational complexity. In contrast, we introduce 
lightweight heuristic DVS-polices, and show that they 
achieve good results compared to theoretical bounds. We 
show further that in most cases the simplest policy is the 
most cost-effective. 

This paper is organized as follows. Section  2 defines 
the minimization criterion and formulates the DVS 
minimization problem. The various lightweight huristic 
DVS policies are presented in Section  3, and analyzed in 
Section  4. Summary and conclusions are drawn in 
Section  5. 

2. Definitions and Problem 
Formulation 

Consider a CMP platform running a multi-task 
application. At any given time, each PE accommodates 
one software task. Each PE is independently DVS-
capable, i.e., the workpoint of each PE is controlled 
independently of the other PEs. A DVS policy 
dynamically assigns (f,V) workpoints to each PE, in 
order to minimize a specified performance and energy-
consumption criterion. For simplicity, all PEs are 
identical, although these results can be generalized to 
heterogeneous-PE systems [3, 11, 12] with few 
modifications. 

2.1. DVS Hardware Model 
DVS-Capable PE Model 
We assume that each PE in the system is capable of 

operating at a clock frequency within the range 
cycles, ]  secmin max[f f f∈ , and may also be in a standby 

mode. At any frequency, the PE operates at the 
minimum feasible supply voltage, defining a frequency-
voltage (f,V) operation curve (see [13] for details). Note 
that for simplicity we employ a continuous frequency 
model, while typical processors operate at only a finite 
set of discrete frequencies. The rate of changing the 
frequency is also limited in practice due to transition cost 
in both energy and performance, and also complexity of 
frequent recalculation of the workpoint. It is unrealistic 
to change the frequency too often, and we assume a 
small number of frequency changes,, therefore we can 
neglect the transition overhead. 

PE Power, Energy, and Execution Time 
We denote the total power consumption of a PE by 
( ) joules

sec P f , where f  is the PE's current frequency. As 
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mentioned above, the operating frequency implicitly 
defines a corresponding supply voltage. We consider 
( )0P  to be the standby power, consumed by the PE 

when it is not doing any work. We further define the 
energy consumed per cycle, denoted by ( ) joules

cycle e f . 
By definition: 

 ( ) ( )P f
fe f = . (1) 

For a task of unknown workload, the cumulative 
density function ( )Wcdf w  of the workload W is defined 
as the probability that the task will be completed within 
w  cycles or less: ( )( ) PrWcdf w W w= ≤ . Hence the 
probability that the task will take w  cycles or more to 
execute is  1 ( 1)Wcdf w− − . Some example distributions 
are displayed in Figure 1 below, which shows 
probability density functions, conventionally defined as 

( ) ( )W Wpdf w cdf w′= . These distributions are used in our 
simulations, as described in Section  4. 

 
(i) 

 
(ii) 

  
(iii) 

 
(iv) 

 
(v) 

Figure 1: Workload distributions: Examples on a 6-PE 
CMP.  

If the cumulative density and energy-per-cycle 
functions are known, we can formulate the expected 
energy required to execute a task of workload W on a PE 
p  by the following expression: 

 ( )[ ]
1

1 ( 1)p w W
w

E e f cdf w
∞

=

= − −∑ , (2) 

where wf  is the frequency at cycle w . Eq. (2) sums 
the energy-per-cycle times the probability that the task 
will still be running at that cycle. Convergence is assured 
since the task completes within a finite number of 
cycles. 

Suppose that the task starts at time 0t =  and 
completes by time t = T . If it completes before that, the 
PE goes to a standby state until t = T . We can 
reformulate Eq. (2) to include the energy consumed 
when the PE is in standby, by dividing the power into 
standby power ( )0P  and active power 

( ) ( ) ( )0actP f P f P= − . If we define the corresponding 
active energy-per-cycle ( ) ( )actP f

facte f =  then total 
energy can be rewritten as: 

 ( )[ ] ( )
1

1 ( 1) 0p act w W
w

E e f cdf w P
∞

=

= − − +∑ T . (3) 

The energy-per-cycle functions e(f) and eact(f) are 
computed from the PE power function P(f). We used 
( ) 3P f af b= +  as the PE power function for our 

simulations in Section  4. This power function is justified 
as an approximation, since the scaling of the operating 
voltage is proportional to the frequency scaling, while 
dynamic power consumption is proportional to 
frequency times the voltage squared, hence the power is 
approximately proportional to the third power of 
frequency. In [13] we show that with correct choice of 
fitting parameters a and b, ( ) 3P f af b= +  is 
empirically quite close to real power measurements, 
although the fitting parameters do not represent 
meaningful dynamic or static power coefficients. 
Alternatively, any other power function can be used with 
the formulations herein, whether in closed or numeric 
form. 

To obtain the task execution expected time, Tp, we 
sum the delay-per-cycle times the probability that the 
task will still be executing at that cycle, in a manner 
similar to Eq. (2): 

 
1

1 ( 1)W
p

w w

cdf w
T

f

∞

=

− −
= ∑ . (4) 

2.2. DVS Application Model 
In this study we model the application as an 

execution timeline comrpsising alternating serial and 
parallel phases [3], as shown in Figure 2(a), and focus on 
DVS policies for the parallel phases.  This simple 
execution model is appropriate for numerous 
applications [14, 15] and programming models [16]. 
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.  

 

 
Figure 2: An execution timeline with (a) equal workloads, 
and (b) unequal workloads. Slack in (b) is utilized in (c) to 
save energy with no performance degradation. Reduced 
frequencies are indicated by thinner lines. 

 

Tasks of equal workloads running on identical PEs at 
the same frequency-voltage work-point will achieve 
identical run-times, as shown in Figure 2(a). A typical 
example is multiple task instances performing the same 
work in parallel on different, equally sized data-sets (i.e., 
Data Decomposition [17]). In such symmetrical cases, 
there is no slack to utilize – although the work-point can 
be controlled, any energy saved will necessarily come at 
the expense of performance. A timeline of unequal 
workloads, as shown in Figure 2(b), exhibits slack and 
thus presents opportunity for energy saving without 
performance degradation. Unequal workloads can occur 
when tasks execute in parallel on different data sizes or 
when different types of tasks execute in parallel (i.e., 
Functional Decomposition [17]). A timeline such as 
Figure 2(b) can also occur in a heterogeneous-PE system 
[3, 11] where the PEs have unequal computation 
throughput. Combinations of the factors mentioned 
above are also possible. 

Usually, the actual workload of a task is known only 
once the task completes. We must therefore estimate the 
workload of each task, and employ this estimation to 
assign (f,V) workpoints. The estimation is based on past 
performance of tasks of the same type.  

2.3. CMP Problem Formulation 

The total system energy E  of a parallel phase is the 
sum of the energies of all PEs 1..p N= , while the 
combined execution time T  of the parallel period is the 
maximum of task execution times: 

 
1..1

  ,   max
N

p pp Np
E T

==

= =∑E T . (5) 

T  is determined by the completion time of the last 
task, i.e. the critical task running on the critical PE. Note 
that it is wasteful for any PE to complete before the 
combined execution time T , since it potentially could 
have run slower and consumed less energy, finishing at 
time T  and causing no performance degradation. We 
would like to utilize the slack of non-critical tasks in 
order to save energy. This notion is illustrated in Figure 
2(c), where the reduced frequencies are indicated by 
thinner lines. 

Alternative DVS policies are judged according to the 
balance that they manage to achieve between energy and 
performance. Different criteria may assign different 
weight to energy and performance. In this study we 
employ the criterion of minimal αET , i.e., minimize the 
product of energy E , and execution-time T  to some 
power α. The exponent ρ is used to control the relative 
weight of execution time and energy. We prefer α=2, 
since 2ET  has the useful characteristic of frequency 
invariance [18]: 2ET  measures policy quality regardless 
of the actual frequencies used. A task's energy 
consumption is approximately proportional to the square 
of the voltage, which is in turn approximately 
proportional to the frequency, hence 2E f∝ . On the 
other hand, 1

fT ∝  so 2ET fρ α−∝ . In support of this we 
find in our simulations that using α < 2 gives inherent 
advantage to the f-min policy, while α > 2 favors the f-
max policy. Further supporting this choice is the fact that 
any policy which always uses a single constant 
frequency (for example f-min and f-max, see Figure 9) 
achieves a constant 2ET  measure, regardless of 
frequency. 

Optimization 
A straightforward approach to finding an optimal 

policy is to solve the following minimization problem: 

 [ ]

2

min max

min
. .  ( ) 0 , ,

1.. ,  1, 2..
ps t f w f f

p N w

∈ ∪

∀ = ∀ = ∞

ET
 (6) 

Namely, minimize 2ET  while frequencies are 
constrained to an operating range, or 0 if the PE is idle. 

(c) 

(a)

(b)
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Substituting E  and T  from Eqs. (5) into Eq. (6), 
and further substituting pE  and pT  (the individual PE 
energy and delay) from Eq. (3) and (4), we note that the 
ensuing optimization problem seems very hard, despite 
the simplifications already assumed in the model. 
Rigorous analysis of this minimization problem is 
beyond the scope of the present work. Moreover, we 
suggest that although this problem may be solvable, 
yielding some optimal frequency assignment per set of 
task distributions, the computation required is likely to 
be too great to justify implementation in any practical 
system. In a performance-driven energy-aware system, 
and assuming frequency assignment is integrated as part 
of the system’s computational requirements in real-time, 
we must weigh the improvement that a computation 
offers versus the cost of the computation itself, both in 
energy and performance. This observation rationalizes 
the approach of searching for simple lightweight 
heuristic DVS policies. 

3. DVS Policies 
In this section we describe a group of relatively 

simple frequency assignment policies for a CMP. Since 
all policies share the same outline and differ only in 
certain details, we first describe the common outline and 
then specify the differences for each policy. 

3.1. Common Outline for All 
Policies 

At the t=0 fork-point of the parallel phase in the 
timeline, all policies perform the same steps: 

(1) Find the PE (task) estimated to have the most 
remaining work, which is referred to as the 
estimated-critical PE (ECP). 

(2) Set a joint-target-time (JTT) for all PEs to 
complete their tasks, and assign PE frequencies 
(and voltages). 

(3) Run until the ECP finishes (or time interval 
elapsed). 

(4) Update workload estimations.  
(5) Loop back to Step (1) above. 

In Step (1): We compute the expected value of the 
(remaining) estimated work for all PEs (currently 
running tasks): 

 , ,
ˆ [ | ]p rem p p compW E W W=  (7) 

Note that at time t=0, the completed work 
, 0p compW = . From this estimation we find the ECP, the 

PE for which the estimated work is maximal: 

 
, ,1..

,1..

ˆ ˆmax{ }

ˆarg max{ }

ECP rem p remp N

p remp N

W W

ECP W
=

=

=

=
. (8) 

In Step (2): The ECP is assigned maxf . Intuitive 
reasoning for this is that 2ET  is frequency invariant if 
we ignore (0)P , which means that results depend solely 
on the amount of utilized slack, while actual PE 
frequencies are insignificant. However, (0)P  cannot be 
ignored. Therefore, assigning maxf  to the ECP, i.e., 
running as fast as possible, will clearly minimize standby 
energy consumption. Optimality of assigning maxf  to the 
critical PE is proven in Section  3.2 for a case of known 
workloads. 

To utilize the available time-slack, we want all the 
other (non-critical) PEs to complete together with the 
critical PE. We therefore set a joint-target-time for all 
PEs, which is the expected completion time of the ECP: 

 
l

,

max

ECP remWJTT
f

= , (9) 

where l ,ECP remW  is the estimated (remaining) work of 
the ECP. Frequency assignment of the other (non-
critical) PEs is described per each policy below. 

In Step (3): All PEs run at their assigned frequencies 
until the ECP completes. (In case of the Interval policy 
described in  3.4, re-estimation and re-assignment are 
performed also at intermediate fixed time intervals.) The 
ECP is expected to complete last by definition, and this 
will typically be the case. However since workloads are 
statistical it is possible that the ECP will complete before 
other PEs. 

In Step (4): If the ECP completes (or a time-interval 
elapses) while other PEs still have remaining work, re-
estimation is performed, taking into account the work 
done by each PE so far. The cycle is repeated until all 
PEs have completed their work. 

Figure 3 shows a flowchart of the common outline. 
The specific variations of the policies are described next. 
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Figure 3: Flowchart of common outline for all polices 

3.2. The "Oracle" Policy 
The Oracle policy is a non-causal, hypothetical 

policy which assumes future knowledge of the 
workloads. When simulating the Oracle policy we still 
generate workloads statistically, however we assume that 
they are known in advance, before run time. We use the 
Oracle policy results as a lower bound for comparing to 
causal, implementable policies in which the exact 
workloads are not known in advance. 

Given that the workloads are known, we calculate the 
optimal frequencies pf  to assign to each PE 1..p N= . 
In particular we show that maxf  is optimal for the critical 
PE. We denote the known task workloads on each PE 

pW , and define T to be the joint execution time for all 
PEs. Because the workload of each PE is known and the 
execution time is set, energy can be minimized by 
running at a constant frequency that is just fast enough to 
finish the task by its deadline. This is a well established 
result which is due to the convexity of e(f), the energy-
per-cycle [19]. Therefore we assign constant frequencies 

pW
p Tf =  to each PE. We initially assume that 

frequencies are not restricted to any range, and later 
incorporate frequency bounds. All PEs complete exactly 
at T, so that full slack utilization is attained. 

Assuming that there exists a T as above and it 
minimizes 2ET , that T can be found by differentiating 

2ET  w.r.t. T and equating the derivative to 0:  

 

( )

( ) ( )

( )

2 2 2

1 1

2

1

2
2

1

2 2

1 1

0

2 0

0

2 3 (0)

N N
p

p p act
p p

N
p

p act
p

N
p p

p act
p

N N
p p

p act p act
p p

W
T E T W e NP T

T

Wd T W e NP T
dT T

W W
T W e NP

T T

W W
T W e W e NP T

T T

= =

=

=

= =

⎡ ⎤⎛ ⎞
= = + ⇒⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
′+ − + =⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

′= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑

∑

∑ ∑

ET

ET
 

Now if we assume the power model described in 
Section  2.1, then 2( ) , ( ) 2act acte x ax e x ax′= =  and 
substituting in (10) we find that the two sums cancel out: 

 

( )
2

2 2 2

1 1

2

2 2 3 (0)

3 (0)

N N
p p

p p
p p

W Wd T W a W a NP T
dT T T

NP T
= =

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
=

∑ ∑ iET

. (11) 

Note that if P(0)=0 then this means the criterion is 
truly frequency invariant, since the measure does not 
depend on the operating frequencies. Otherwise, T=0 is 
required in order to minimize the criterion, but since that 
is not possible, the shortest execution time we can set is 

( ) maxmax pT W f= , so all frequencies are 
correspondingly set as follows: 

 

max ,  1..
max( )

p
p

p

pp

W
f map

T

W
map f p N

W

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

. (12) 

No re-estimation is necessary since all task 
workloads are known. The ()map  function maps the 
frequency in (12) to a feasible frequency. In the simple 
case of a continuous frequency range, this merely means 
trimming out-of-range values to minf  and maxf  
correspondingly. (Also note that in the particular case of 
Eq. (12) the inner result is already bounded by maxf .) All 
PEs complete precisely at T, with the exception of non-
critical PEs with a small workload which run at 

minf according to Eq. (12), finishing before T. 

3.3. The Constant Policy 
The Constant policy is a simple policy in which a 

constant frequency is assigned to each PE. After 
calculating the JTT and assigning the ECP to run at the 
maximum frequency maxf , we set non-critical PE 
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frequencies with an aim to complete at the joint-target-
time: 

 

l l

l l

l

, ,

, ,
max

,

( )

( )  ,  1..

p rem p rem
p

p rem p rem

ECP rem

Wf map
JTT

Wmap f p N
W

λσ

λσ

+
= =

+
=

 (13) 

where l ,p remW  is the remaining work estimation of PE 
p, l ,p remσ  is the standard deviation of ,p remW , and 0λ ≥  
is the bias parameter. At time t=0 no work has been done 
so the remaining work is the total work. The ()map  
function maps the result of Eq. (13) to a feasible PE 
frequency as described above. 

For 0λ = , pf  is set so that PE p  completes l ,p remW  
work during the time it takes the ECP to complete 
l

,ECP remW  work. However since delay outweighs energy 
for the 2ET criterion, we can achieve better results by 
setting the bias parameter 0λ > , as described below in 
Section  4.1. 

Note that the critical PE frequency can also be 
formulated using Eq. (13) if we assume 0λ ≥  and 
substitute l ,p remW  with l ,ECP remW . 

Early Completion of the Estimated-
critical PE 
If the ECP completes while other PEs still have 

remaining work (step (3) in the outline), then the 
assumptions by which frequencies were assigned in step 
(2) no longer hold. In this case we update the estimations 
l

,p remW  l ,p remσ  to reflect the work done so far, Wp,comp, 
and repeat steps (1) and (2): set a new joint-target-time 
and a new ECP, and assign new PE frequencies. We 
continue steps (1) to (4) repeatedly until all PEs have 
completed. 

Figure 4 shows an example of applying the Constant 
policy in a 3-PE system. Figure 4(a) shows the workload 
distributions, and then two scenarios are illustrated. In 
Figure 4(b), the workloads are such that the ECP (red, 
dotted) completes last. This is the expected, common 
scenario. In Figure 4(c), the ECP unexpectedly finishes 
first, causing re-estimation; a new ECP is selected 
(green, dashed) and work-points are reassigned.  

If we regard the complexity of one (f,V) work point 
assignment (including the preceding remaining workload 
estimation) as O(1), then the complexity of the Constant 
policy can be approximately regarded as O(N), N being 
the number of PEs in the system. This approximation 
ignores the occasional work-point re-estimation that is 
required when the ECP completes before other PEs. 

However, this is justified since the probability of this 
scenario is (a) generally small, (b) distribution 
dependent, (c) very hard to calculate and incorporate into 
complexity estimations, and (d) common among all 
described policies, so it generally shouldn’t affect 
comparing them. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Constant policy example with three PEs: (a) 
workload distributions, (b) the ECP (red, dotted) finishes 
last as expected, (c) the ECP finishes first, re-estimation is 
performed. 

3.4. The Interval Policy 
The Interval policy is an enhancement of the 

Constant policy described above. The Interval policy 
assigns constant frequencies in the same way as the 
Constant policy. But in the Interval policy, the critical 
PE is re-chosen and frequencies are reassigned at 
intermediate fixed time intervals. For each time interval, 
estimated remaining workloads are used to choose the 
critical PE and frequencies for the next interval. Re-
estimating remaining workloads and re-assigning work-
points following the re-estimation may offer a significant 
advantage: the difference between the estimated 
remaining workloads at time t=0, compared to the 
estimations at a later time when all PEs have done a 
certain amount of work, may be substantial. Interval can 
be viewed as a refinement of the Constant policy: the 
shorter the time interval, the more accuracy can be 
achieved. 

Note that it is possible to calculate frequency 
assignments not just for the current interval but for 
future intervals as well, since all the needed information 
is available at time t=0. The only information that is not 
available at time t=0 is actual task workloads. So at any 
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given time we can calculate frequencies to be assigned 
for future intervals, and these calculations will be valid 
until the time the ECP completes. Therefore, although it 
is easier to understand Interval as a process of 
recalculating frequencies at each interval, in practice 
Interval calculates frequencies at time t=0, and 
recalculates only when an ECP completes. 

A bias parameter λ  exists also for the Interval policy 
and allows tuning in the same way as for the Constant 
policy. Figure 5 shows an example of the Interval policy 
with 2 PEs. 

 
(a) 

 
(b) 

 
(c) 

Figure 5 : Interval policy example with two PEs: (a) 
workload distributions, (b) the ECP (green, dashed) 
finishes last as expected, (c) the ECP finishes first. 

In typical examples, the frequency of non-critical 
PEs increases with time, as shown in Figure 5. This 
behavior is similar to the behavior of PACE [20], as 
explained in the following section. However, decreasing 
frequencies can occur, since PE frequencies are a 
function of the estimated remaining workload relative to 
the estimated remaining workload of the ECP at each 
interval. Notably, when there is a substantial difference 
in both the mean and variance of workload distributions, 
both increasing and decreasing frequencies can occur, as 
shown in Figure 6 below.  

Note that in Figure 6, there is an ECP switch at a 
certain time during the run. The ECP (green, dashed) is 
initially estimated to have more remaining work, and 
thus it is designated as the ECP and assigned fmax. 
However as time progresses the ECP does more work 
relative to the other (blue, solid) PE, until a time where 
the other PE’s estimated remaining work surpasses that 

of the ECP, thus the other (blue, solid) PE is designated 
the new ECP. 

 

 
(a) 

 
(b) 

Figure 6: Another interval policy example, with 2 PEs 
having substantial difference in both the mean and 
variance of their workload distributions, (a). Both 
increasing and decreasing frequencies are observed, (b). 
The PE marked in dashed green is initially the ECP, but 
after some time the PE marked in blue becomes the new 
ECP. 

Since the complexity of the Constant policy is O(N), 
the complexity of the Interval policy is O(kN), where k is 
the number of time intervals at which re-estimation 
occurs. 

3.5. The Multi-PACE Policy 
Energy-performance tradeoff in a single standalone 

PE has been studied extensively [9, 21-24]. The Multi-
PACE policy presented in this section is an attempt to 
generalize from the well-known single-processor 
approach PACE [20] onto CMP systems. 

PACE Scheduling for a Single Processor 
Consider a task of given workload probability 

distribution ( )Wpdf w , running on a PE with a 
continuous frequency range min, max[ ]f f f∈ , with some 
soft deadline D, i.e. a deadline that is required to be 
attained only in a certain fraction of cases, not 
necessarily all the time. We represent this by the 
probability PMD (Probability of Meeting the Deadline). 
Given ( )Wpdf w of a task, a deadline D, and PMD, we 
can find the maximum workload PMDw  for which a task 
will meet its deadline. 

The PACE scheme is an analytically optimal method 
for minimizing the expected energy subject to 
probabilistically meeting the deadline [20]. Given the 
above inputs, PACE computes the optimal frequency 
schedule per cycle: 
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 min, max

( )
([ ], ( ), , ),

[0, ]
W

PMD

f w
PACE f f pdf w D PMD
w w

=

∈

. (14) 

Conversion from f(w), which expresses the frequency 
as a function of work cycles done, to a more intuitive f(t) 
time function, is straightforward. 

As mentioned above in Section  3.2, running at a 
constant frequency is optimal in case workloads are 
known, but not so when workloads are unknown. PACE 
stands for Processor Acceleration to Conserve Energy, 
reflecting the fact that the optimal frequency schedule is 
an increasing function when workloads are unknown. An 
intuitive explanation for this is that a task workload may 
be small or large, so it is worthwhile to run slowly at 
first. If the workload is small then the task can easily 
complete by the deadline, saving energy by running at a 
low frequency. As the deadline approaches, if the task 
has not yet completed the frequency is gradually 
increased in order to assure meeting the deadline with 
probability PMD. 

Multi-PACE (f,V) Work-point Assignment 
We introduce Multi-PACE, which utilizes PACE to 

form a DVS policy for a CMP, as follows. After setting 
the ECP to run at maxf and setting the JTT as in Eq. (9), 
non-critical PE frequencies are set according to PACE 
with the JTT as a deadline: 

 
,min, max

( )

([ ], ( ), , ),

[0, ]
p rem

p

W

PMD

f w

PACE f f pdf w JTT PMD

w w

=

∈

. (15) 

To clarify, note that JTT is not an application 
deadline. Rather, it is computed following Eq. (9). We 
use the PACE deadline mechanism to synchronize 
completion times between PEs.  

PACE does not specifically define which frequency 
to use for the post-deadline part (i.e., cycles greater 
than PMDw ). Multi-PACE runs at maxf  during the cycles 
subsequent to PMDw  in an attempt to minimize delay past 
the JTT. Figure 7 shows an example of applying Multi-
PACE, using the same workload distributions as in 
Figure 4(a). 

 
(a) 

 
(b) 

Figure 7: Multi-PACE example with two PEs, workload 
distributions as in Workload distributions are as in Figure 
4. (a) the ECP (green, dashed) finishes last as expected; 
(b) the ECP finishes first. 

The value of PMD has a significant effect on the 
overall results. If PMD is too high, multi-PACE sets 
overly aggressive frequency schedules, resulting in 
excessive energy consumption. On the other hand, 
choosing PMD too low increases the probability of 
missing the JTT, causing increased overall execution 
time. In Section  4.1 we experiment with different PMD 
values for Multi-PACE. The use of PMD is similar to the 
use of the λ  bias parameter for the Constant and 
Interval policies. 

Multi-PACE requires PEs to have a continuous 
frequency range and to be able to change frequency 
every cycle, but this is not practical for reasons 
previously discussed. Practical methods of implementing 
PACE, which can apply to Multi-PACE as well, are 
described in [20, 23]. 

As explained above, the complexities of the Constant 
and Interval policies are O(N) and O(kN) respectively, 
where N is the number of PEs and k is the number of 
intervals. In principle, frequencies are recalculated in 
Multi-PACE for each cycle. In a practical system, 
however, the workload distributions would be built by 
collecting data into a histogram, and their granularity 
would therefore be according to the number of histogram 
bins, denoted by B. Thus the number of frequency 
changes in multi-PACE is in practice proportional to B, 
and thus the complexity of the multi-PACE policy is 
O(BN) [20]. 

4. Simulations and Results 
In this section we present simulation results of the 

proposed DVS policies. We used a few sets of synthetic 
probability distributions to represent the task workloads, 
as shown above in Figure 1.  

We simulated a system with six identical PEs, each 
with a continuous frequency range of 0.32GHz to 
1.5GHz. Energy was calculated using the power model 
of 3( )P f af b= +  with [ ]30.8 ,  0.2Watt

GHz
a b Watt⎡ ⎤= =⎣ ⎦  as 

fitting parameters, as described in section  2.1. 
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4.1. Choosing Bias Parameters 
Prior to comparing the policies, we consider the issue 

of selecting bias parameters: λ  for Constant and 
Interval policies, and PMD for Multi-PACE. As 
previously mentioned, setting PE work-points so tasks 
complete their estimated workloads at the JTT is sub-
optimal. Delay outweighs energy for the 2ET criterion, 
therefore missing the JTT by a certain time margin 
incurs a greater penalty than finishing before the JTT by 
that same time margin. Better results can be achieved by 
setting the bias parameter 0λ >  in Eq. (13), thereby 
running faster. A similar effect can be achieved for the 
Multi-PACE policy by tweaking the PMD parameter in 
Eq. (15). 

Figure 8 shows policy results, in terms of 
2ET values, normalized to the Oracle policy, for 

distributions (i), (ii), and (v) of Figure 1, using different 
bias values λ and PMD. As can be seen in Figure 8, each 
case shows a certain optimal choice of the bias 
parameters λ and PMD. However, the results are not 
very sensitive to small variations, and thus it is 
reasonable to use the same bias parameter (λ or PMD) 
for all distributions. Empirically, a good choice lies in 
the range of 0.5-0.8. The effect of λ  on 2ET  is less 
accentuated in Interval than in Constant, since Interval 
performs periodic re-estimations of ( )i

remW  and ( )i
remσ .  

 

(a) Constant

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dist. (i)
dist. (ii)
dist. (v)

Normalized 
 ET2

Bias  

(b) Interval
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(c) Multi-PACE
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Figure 8: Comparison of bias values for policies (a) 
Constant, (b) Interval (50ms), and (c) Multi-PACE 
policies. Distributions (i), (ii), and (v) (see Figure 1) are 
shown. 

4.2. DVS Policy Comparison 
We simulated each of the workload distributions 

shown in Figure 1 using Oracle, Constant, Multi-PACE, 
and Interval policies. For Interval, we used intervals 
lengths of 50, 100, 150 and 200 milliseconds which 
correspond to roughly 16, 8, 4, and 2 intervals 
throughout the simulated execution time. We chose bias 
parameters 0.8λ =  for Constant, 0.5λ =  for Interval 
and PMD=80% for Multi-PACE, following the 
conclusions of Section  4.1.  

Policy Comparison

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(i) (ii) (iii) (iv) (v)

distribution

ET2

 (Normalized)

Multi-PACE
Constant
Interval  50ms
Interval 100ms
Interval 150ms
Interval 200ms
Oracle
F-min
F-max

 
Figure 9: ET2 compared across all policies 

For each distribution, Figure 9 shows 2ET  
compared across all policies, normalized as above to the 
results of Oracle, which we regard as a lower bound. 
Additionally, the results show that f-min and f-max 
policies reach the same results in 2ET  for all 
distributions. This follows from the approximate 
frequency invariance of 2ET , and likewise holds for any 
other policy that always uses a single constant 
frequency. Thus we expect our policies to achieve results 
that are in between Oracle and f-max/f-min, i.e., better 
than running at an arbitrary constant frequency (which 
we regard as 0% improvement), but worse than the 
optimal policy in which exact workloads are known in 
advance (100%). As can be seen, this is indeed the case. 
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The Interval policy usually achieves the best results 
while Constant, the simplest policy, usually achieves the 
worst results. However, the difference between the 
policies is generally quite small, with no more than 4-
13% difference between the best and worst policies 
(except for example iv, which is discussed next.) 

Despite the above similarities, distribution (iv) of  
Figure 1 is an example where the Interval policy stands 
out. As can be seen in Figure 1(iv), two of the six task 
workloads of example (iv) have a bimodal distribution 
( 51 10i  or 510 10i cycles) while the other four are known 
( 57.5 10i cycles). At time t=0, the estimated critical 
workload is 57.5 10i cycles. However, once the bimodal-
distributed tasks complete 510 cycles work, the 
estimation may change to 610 cycles, enabling the 
known-workload tasks to run slower, saving 
considerable energy. Interval performs much better than 
all other policies since it is the only policy that re-
estimates the critical workload. 

With further regard to the Interval policy, we note 
that increasing the interval resolution (increasing the 
number of re-estimations) provides only minor, 
insignificant improvement. A few re-estimations over a 
relatively large period of time can drastically change the 
outcome, as demonstrated by example (iv), while 
additional re-estimations have only a marginal effect. 

Multi-PACE on the whole achieves better results 
than Constant and worse than Interval in the simulated 
examples. Multi-PACE is more dependent on correct 
estimation of the critical task than the other policies, and 
therefore produces slightly better results in cases where 
there is little uncertainty regarding the critical task (v), 
compared to cases where the uncertainty is greater (iii). 

Computational Complexity  
In Section  3, we concluded that the complexities of 

Constant, Interval, and Multi-PACE are O(N), O(kN), 
and O(BN), respectively; where N is the number of PEs, 
k the number of intervals, and B the number of workload 
histogram bins. Since increasing the number of intervals 
for the Interval policy beyond a small number provides 
only marginal improvement (note the marginal 
improvement when using shorter intervals in Figure 9), it 
is reasonable to assume small values for k. On the other 
hand, Multi-PACE performs no re-estimation, so it needs 
a considerable large number of bins B [20]. B does not 
necessarily need to be of cycle granularity, but will be 
several orders larger than k, i.e., k<<B. Following this 

reasoning, we conclude that the relative complexity of 
the policies is O(N) < O(kN) << O(BN). 

5. Summary and Conclusions 
In this work, we started by formulating an energy-

performance tradeoff optimization problem of an 
application running on a CMP. We noted the complexity 
of the problem, which makes it virtually impractical for 
implementation. 

As an alternative to direct optimization, we described 
several simple heuristic DVS policies for energy-
performance tradeoff. These policies try to utilize 
available time-slack in order to save energy in a 
performance-aware manner. The frequency-invariant 

2ET  criterion was employed for comparing the policies. 
The policies described were: Constant, a policy that tries 
to estimate the best constant frequency to assign to each 
PE; Interval, which works in a manner similar to 
Constant but reassigns new frequencies at fixed time 
intervals, and Multi-PACE, applying PACE, an optimal 
scheme for a single-core system with a deadline 
requirement, for use in a CMP. 

We compared these policies using various 
distributions, and presented several examples. We 
showed that, except for some isolated cases, all policies 
reach comparable results. Increasing the number of re-
estimations (using Interval) improves results compared 
to estimating merely once at the beginning (using 
Constant). However, the marginal return sharply 
diminishes with the number of re-estimations. Multi-
PACE produces results that are anywhere between 
Interval and Constant, occasionally appearing at the top 
or bottom of the results list, depending on the 
distribution. 

We analyzed the policy complexities, and showed 
that Constant is the least complex, followed by Interval, 
while Multi-PACE has the highest complexity, 
significantly higher than Constant and Interval. Since the 
results are usually quite close for all policies, we 
conclude that the least complex policy, Constant, is 
usually preferred. In individual cases, such as 
distribution (iv) shown in Figure 1, there is justification 
for using Interval. Based on these findings, a scheme 
could be contemplated whereby the number of intervals 
is chosen dynamically based on certain characteristics of 
the distribution, or alternatively, start with a default 
number of intervals, and assess the result over time to 
determine if the number of intervals can be decreased. 
Multi-PACE generally does not achieve better results 
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than any of the other two, and has a very high 
complexity, so it is not preferred.  

Frequency-voltage transitions, which are not 
considered in this work, may degrade the results since 
each transition is accompanied by performance and 
energy penalties [6]. When the cost of transitions is 
considered, simple policies such as Constant become 
even more attractive because they use fewer transitions. 

The following issues are left for future research: 

1. Study of more complex task-graphs. 

2. Discret (f-V) workpoint sets. 

3. With regard to  2), the interval policy may be 
enhanced to consider re-estimation at flexible times. 
Such an interval policy would determine when to jump 

to an adjacent discrete workpoint, rather than directly 
calculating a new workpoint at an arbitrary time. 

4. Test cases based on real application traces.  

5. Applications may data assisting in estimation of 
their own remaining work, which can improve the 
accuracy of remaining workload estimations. 

6. Real-time applications, which need to achieve a 
periodic deadline, can be modeled by replacing the 
execution time T  in the criterion with a relative 

D−T  measure which results in penalty only to the 
extent by which the application missed its deadline. 

 

 

References 
[1] F. Pollack, "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies," in 

Micro 32, 1999. 
               http://www.intel.com/research/mrl/Library/micro32Keynote.pdf 
[2] E. Grochowski, R. Ronen, J. Shen, and H. Wang, "Best of Both Latency and Throughput," in Proceedings of the 

IEEE International Conference on Computer Design (ICCD'04) - Volume 00: IEEE Computer Society, 2004. 
[3] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade, "Performance, Power Efficiency and 

Scalability of Asymmetric Cluster Chip Multiprocessors," IEEE Computer Architecture Letters, vol. 5, 2006. 
[4] "Intel Enhanced SpeedStep(R) Technology" 
               http://www.intel.com/support/processors/mobile/pentium4/sb/CS-007499.htm 
               http://www.intel.com/support/processors/mobile/pm/sb/CS-007981.htm 
[5] T. Pering, T. Burd, and R. Brodersen, "The simulation and evaluation of dynamic voltage scaling algorithms," in 

Proceedings of the 1998 international symposium on low power electronics and design. Monterey, California, 
United States, 1998, pp. 76-81. 

[6] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, "Combined dynamic voltage scaling and adaptive body 
biasing for lower power microprocessors under dynamic workloads," in Proceedings of the 2002 IEEE/ACM 
international conference on Computer-aided design. San Jose, California, 2002. 

[7] K. Flautner, S. Reinhardt, and T. Mudge, "Automatic performance setting for dynamic voltage scaling," Wireless 
Networks, vol. 8, pp. 507-520, 2002. 

[8] S. Yaldiz, A. Demir, S. Tasiran, P. Ienne, and Y. Leblebici, "Characterizing and exploiting task load variability 
and correlation for energy management in multi core systems," in 3rd Workshop on Embedded Systems for Real-
Time Multimedia, 2005, 2005, pp. 135-140. 

[9] Y. Zhang, X. S. Hu, and D. Z. Chen, "Task scheduling and voltage selection for energy minimization," in 
Proceedings of the 39th conference on Design automation. New Orleans, Louisiana, USA, 2002, pp. 183-188. 

[10] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, "Overhead-conscious voltage selection for 
dynamic and leakage energy reduction of time-constrained systems," Computers and Digital Techniques, IEE 
Proceedings-, vol. 152, pp. 28-38, 2005. 

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, "Single-ISA Heterogeneous Multi-Core 
Architectures for Multithreaded Workload Performance," in Proceedings of the 31st annual international 
symposium on Computer architecture. Munchen, Germany: IEEE Computer Society, 2004. 

[12] S. Ghiasi, T. Keller, and F. Rawson, "Scheduling for heterogeneous processors in server systems," in Proceedings 
of the 2nd conference on Computing frontiers. Ischia, Italy, 2005, pp. 199-210.   

[13] A. Elyada, "Low Complexity Policies for Energy-Performance Tradeoff in Chip-Multi-Processors," in Electrical 
Engineering. Haifa: Techion, Israel Institute of Technology, 2007.                

[14] M. L. Crow and M. Ilic, "The parallel implementation of the waveform relaxation method for transient stability 
simulations," IEEE Trans. on Power Systems, vol. 5, pp. 922-932, Aug 1990. 

[15] R. A. Saleh, K. A. Gallivan, M.-C. Chang, I. N. Hajj, D. Smart, and T. N. Trick, "Parallel circuit simulation on 
supercomputers," Proceedings of the IEEE, vol. 77, pp. 1915-1931, Dec 1989. 



13 

[16] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory programming," in 
Computational Science and Engineering, IEEE, vol. 5, 1998, pp. 46-55.                

[17] J. Ross, "Media Applications Shine with Pipelined Data Domain Decomposition Threading" 
              http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/digitalmedia/success/52517.htm      
[18] A. J. Martin, M. Nystroem, and P. Penzes, "ET2: A metric for time and energy efficiency of computation," in 

Power Aware Computing, Series in Computer Science, R. Graybill and R. Melhem, Eds. Norwell, MA: Kluwer 
Academic Publishers, 2002, pp. 293-315. 

[19] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Scheduling Computer and Manufacturing 
Processes. Berlin, Germany: Springer-Verlag, 1996. 

[20] J. R. Lorch and A. J. Smith, "PACE: a new approach to dynamic voltage scaling," IEEE Transactions on 
Computers, vol. 53, pp. 856-869, 2004. 

[21] R. Jejurikar, C. Periera, and R. Gupta, "Leakage aware dynamic voltage scaling for real-time embedded systems " 
Proceedings of the 41st annual conference on Design automation pp. 275-280, 2004. 

[22] R. Xu, D. Mosse, and R. Melhem, "Minimizing expected energy in real-time embedded systems," in Proceedings 
of the 5th ACM international conference on Embedded software. Jersey City, NJ, USA, 2005, pp. 251-254. 

[23] R. Xu, C. Xi, R. Melhem, and D. Moss, "Practical PACE for embedded systems," in Proceedings of the 4th ACM 
international conference on Embedded software. Pisa, Italy, 2004, pp. 54-63. 

[24] D. Zhu, R. Melhem, and B. Childers, "Scheduling with Dynamic Voltage/Speed Adjustment Using Slack 
Reclamation in Multi-Processor Real-Time Systems," IEEE Trans. on Parallel and Distributed Systems, 2003. 

[25] L.-F. Leung, C.-Y. Tsui, and W.-H. Ki, "Minimizing energy consumption of multiple-processors-core systems 
with simultaneous task allocation, scheduling and voltage assignment," in Proceedings of the 2004 conference on 
Asia South Pacific design automation. Yokohama, Japan, 2004, pp. 647-652. 

                
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


