
1

Low-Complexity Policies for Energy-Performance Tradeoff
in Chip-Multi-Processors

Avshalom Elyada, Ran Ginosar, Uri Weiser

Dept. Of Electrical Engineering

Technion, Israel Institute of Technology

Haifa 32000, Israel

Abstract
Chip-Multi-Processors (CMP) utilize multiple energy-efficient Processing Elements (PEs) to deliver high performance

while maintaining an efficient ratio of performance to energy-consumption . In order to utilize CMP resources, the
software application is split into multiple tasks that are executed in parallel on the PEs. Dynamic frequency-Voltage
Scaling (DVS) balances performance and energy consumption by dynamically varying a PE's frequency-voltage workpoint
in order to save energy while meeting performance requirements. This work addresses DVS policies for CMP. We
consider multi-task CMP applications with unknown workloads. We dynamically set frequency-voltage workpoints for
each PE in the CMP, attempting to minimize a defined energy-performance criterion.. Other DVS methods typically use
high complexity optimization techniques, which limits the possibility of real-time implementation in performance-driven,
energy-aware systems. In contrast, we investigate simple heuristic DVS policies for simplified serial/parallel task-graphs.
We compare the results of our polices to a theoretical best-case solution and show that these lightweight heuristics achieve
good results with low complexity. In most cases the very simple Constant policy is the most cost-effective.

1. Introduction
Chip-Multi-Processors (CMP) achieve high

performance while maintaining an acceptable ratio of
performance to energy consumption, in comparison to
traditional single-core architectures. Performamce
improvement techniques of single-core architectures,
mainly include (1) taking advantage of shrinking gate-
delays in order to increase the operating frequency, and
(2) using the increased transistor density to add
performance-enhancing microarchitecture features [1],.
Increasing the operation frequency beyond a certain
point is energy inefficient, since energy consumption is
roughly quadratic in frequency, Features such as large
caches, deep execution pipes and complex branch
predictors yield a decreasing performance/energy return
[2]. High energy consumption shortens the battery life of
mobile devices, and may cause power delivery and heat
dispersion problems, which consequently limit feasible
frequencies and performance. CMP architectures, on the
other hand, integrate multiple relatively small and simple

PEs, potentially enabling linear scaling of performance
[3].

Dynamic frequency-Voltage Scaling (DVS) is a
widely practiced [4] and researched [5-7] technique for
energy-performance tradeoff. When using DVS in CMP,
a PE’s frequency is altered dynamically to meet current
performance requirementsm while consuming no more
energy than is necessary. PE supply voltage is also
adjusted in conjunction with frequency; usually kept at
the lowest feasible value that still enables circuit
operation and timing at the current frequency. Scaling
the frequency-voltage workpoint (f,V) can result in
near—quadratic energy savings [6].

In a CMP running multiple dependent tasks, DVS
may save energy without degrading performance.
Typically, at any given time, one of the tasks constitutes
the performance bottleneck. Other PEs can be slowed
down, saving energy without affecting total
performance. We refer to the tactic of slowing down
non-critical tasks as slack-utilization.

2

When all task workloads are known in advance, the
DVS policy sets PE frequencies to utilize precisely all
available time-slacks and thus save the maximum
possible energy without affecting performance.
Typically however, task workloads are unknown in
advance and efficient slack utilization is non-trivial. A
DVS policy which assumes worst-case workloads
achieves limited energy savings, since aggressive
workpoints need to be set to maintain required
performance in the worst case. Conversely,
overestimating slack can lead to performance
degradation. When workloads are unknown they must be
estimated, and the method of estimation is a primary
factor of the efficiency of DVS policies.

Selecting a criterion for DVS policy efficiency is not
a clear-cut issue, since different DVS-capable CMPs for
different applications have different energy- and power-
performance requirements. For example, mobile battery-
operated devices aim at long battery life as well as
performance, while desktop systems and servers
typically optimize power rather than energy
consumption.

Consider a system whose only objective is to
maximize performance. The best policy would be to run
at maximum frequency at all times (in this work we refer
to this policy as the f-max policy). Conversely, a system
which is concerned only with energy minimization
should always run at the minimum frequency (f-min
policy). A more interesting and more practical case is
that of a system which strives to balance between the
two: tuning up frequencies only to the point where the
increased energy consumption is deemed justifiable, and
likewise saving energy by running slower, but only to
the point considered as tolerable performance. This
choice is reflected in the criterion selected to assess
alternative DVS policies, as discussed in Section 2.3.

DVS policies vary in computational complexuty. If
the required calculations for policy implementation are
to be integrated into the system itself and done in real-
time rather than offline and externally, then it is essential
that the energy-consumption and delay of the calculation
itself be minimal. Spending a substantial amount of
execution time and energy just to calculate each
workpoint may considerably offset the savings aimed at,
making it impractical for use in a performance- and
energy-aware system. Thus, a practical slack-utilization
computation must weigh savings accomplished versus its
own complexity.

Previously published DVS policies for CMP
formulate precise optimization problems [8-10] seeking
optimal solutions, typically at the cost of high
computational complexity. In contrast, we introduce
lightweight heuristic DVS-polices, and show that they
achieve good results compared to theoretical bounds. We
show further that in most cases the simplest policy is the
most cost-effective.

This paper is organized as follows. Section 2 defines
the minimization criterion and formulates the DVS
minimization problem. The various lightweight huristic
DVS policies are presented in Section 3, and analyzed in
Section 4. Summary and conclusions are drawn in
Section 5.

2. Definitions and Problem
Formulation

Consider a CMP platform running a multi-task
application. At any given time, each PE accommodates
one software task. Each PE is independently DVS-
capable, i.e., the workpoint of each PE is controlled
independently of the other PEs. A DVS policy
dynamically assigns (f,V) workpoints to each PE, in
order to minimize a specified performance and energy-
consumption criterion. For simplicity, all PEs are
identical, although these results can be generalized to
heterogeneous-PE systems [3, 11, 12] with few
modifications.

2.1. DVS Hardware Model
DVS-Capable PE Model
We assume that each PE in the system is capable of

operating at a clock frequency within the range
cycles,] secmin max[f f f∈ , and may also be in a standby

mode. At any frequency, the PE operates at the
minimum feasible supply voltage, defining a frequency-
voltage (f,V) operation curve (see [13] for details). Note
that for simplicity we employ a continuous frequency
model, while typical processors operate at only a finite
set of discrete frequencies. The rate of changing the
frequency is also limited in practice due to transition cost
in both energy and performance, and also complexity of
frequent recalculation of the workpoint. It is unrealistic
to change the frequency too often, and we assume a
small number of frequency changes,, therefore we can
neglect the transition overhead.

PE Power, Energy, and Execution Time
We denote the total power consumption of a PE by
() joules

sec P f , where f is the PE's current frequency. As

3

mentioned above, the operating frequency implicitly
defines a corresponding supply voltage. We consider
()0P to be the standby power, consumed by the PE

when it is not doing any work. We further define the
energy consumed per cycle, denoted by () joules

cycle e f .
By definition:

 () ()P f
fe f = . (1)

For a task of unknown workload, the cumulative
density function ()Wcdf w of the workload W is defined
as the probability that the task will be completed within
w cycles or less: ()() PrWcdf w W w= ≤ . Hence the
probability that the task will take w cycles or more to
execute is 1 (1)Wcdf w− − . Some example distributions
are displayed in Figure 1 below, which shows
probability density functions, conventionally defined as

() ()W Wpdf w cdf w′= . These distributions are used in our
simulations, as described in Section 4.

(i)

(ii)

(iii)

(iv)

(v)

Figure 1: Workload distributions: Examples on a 6-PE
CMP.

If the cumulative density and energy-per-cycle
functions are known, we can formulate the expected
energy required to execute a task of workload W on a PE
p by the following expression:

 ()[]
1

1 (1)p w W
w

E e f cdf w
∞

=

= − −∑ , (2)

where wf is the frequency at cycle w . Eq. (2) sums
the energy-per-cycle times the probability that the task
will still be running at that cycle. Convergence is assured
since the task completes within a finite number of
cycles.

Suppose that the task starts at time 0t = and
completes by time t = T . If it completes before that, the
PE goes to a standby state until t = T . We can
reformulate Eq. (2) to include the energy consumed
when the PE is in standby, by dividing the power into
standby power ()0P and active power

() () ()0actP f P f P= − . If we define the corresponding
active energy-per-cycle () ()actP f

facte f = then total
energy can be rewritten as:

 ()[] ()
1

1 (1) 0p act w W
w

E e f cdf w P
∞

=

= − − +∑ T . (3)

The energy-per-cycle functions e(f) and eact(f) are
computed from the PE power function P(f). We used
() 3P f af b= + as the PE power function for our

simulations in Section 4. This power function is justified
as an approximation, since the scaling of the operating
voltage is proportional to the frequency scaling, while
dynamic power consumption is proportional to
frequency times the voltage squared, hence the power is
approximately proportional to the third power of
frequency. In [13] we show that with correct choice of
fitting parameters a and b, () 3P f af b= + is
empirically quite close to real power measurements,
although the fitting parameters do not represent
meaningful dynamic or static power coefficients.
Alternatively, any other power function can be used with
the formulations herein, whether in closed or numeric
form.

To obtain the task execution expected time, Tp, we
sum the delay-per-cycle times the probability that the
task will still be executing at that cycle, in a manner
similar to Eq. (2):

1

1 (1)W
p

w w

cdf w
T

f

∞

=

− −
= ∑ . (4)

2.2. DVS Application Model
In this study we model the application as an

execution timeline comrpsising alternating serial and
parallel phases [3], as shown in Figure 2(a), and focus on
DVS policies for the parallel phases. This simple
execution model is appropriate for numerous
applications [14, 15] and programming models [16].

4

.

Figure 2: An execution timeline with (a) equal workloads,
and (b) unequal workloads. Slack in (b) is utilized in (c) to
save energy with no performance degradation. Reduced
frequencies are indicated by thinner lines.

Tasks of equal workloads running on identical PEs at
the same frequency-voltage work-point will achieve
identical run-times, as shown in Figure 2(a). A typical
example is multiple task instances performing the same
work in parallel on different, equally sized data-sets (i.e.,
Data Decomposition [17]). In such symmetrical cases,
there is no slack to utilize – although the work-point can
be controlled, any energy saved will necessarily come at
the expense of performance. A timeline of unequal
workloads, as shown in Figure 2(b), exhibits slack and
thus presents opportunity for energy saving without
performance degradation. Unequal workloads can occur
when tasks execute in parallel on different data sizes or
when different types of tasks execute in parallel (i.e.,
Functional Decomposition [17]). A timeline such as
Figure 2(b) can also occur in a heterogeneous-PE system
[3, 11] where the PEs have unequal computation
throughput. Combinations of the factors mentioned
above are also possible.

Usually, the actual workload of a task is known only
once the task completes. We must therefore estimate the
workload of each task, and employ this estimation to
assign (f,V) workpoints. The estimation is based on past
performance of tasks of the same type.

2.3. CMP Problem Formulation

The total system energy E of a parallel phase is the
sum of the energies of all PEs 1..p N= , while the
combined execution time T of the parallel period is the
maximum of task execution times:

1..1

 , max
N

p pp Np
E T

==

= =∑E T . (5)

T is determined by the completion time of the last
task, i.e. the critical task running on the critical PE. Note
that it is wasteful for any PE to complete before the
combined execution time T , since it potentially could
have run slower and consumed less energy, finishing at
time T and causing no performance degradation. We
would like to utilize the slack of non-critical tasks in
order to save energy. This notion is illustrated in Figure
2(c), where the reduced frequencies are indicated by
thinner lines.

Alternative DVS policies are judged according to the
balance that they manage to achieve between energy and
performance. Different criteria may assign different
weight to energy and performance. In this study we
employ the criterion of minimal αET , i.e., minimize the
product of energy E , and execution-time T to some
power α. The exponent ρ is used to control the relative
weight of execution time and energy. We prefer α=2,
since 2ET has the useful characteristic of frequency
invariance [18]: 2ET measures policy quality regardless
of the actual frequencies used. A task's energy
consumption is approximately proportional to the square
of the voltage, which is in turn approximately
proportional to the frequency, hence 2E f∝ . On the
other hand, 1

fT ∝ so 2ET fρ α−∝ . In support of this we
find in our simulations that using α < 2 gives inherent
advantage to the f-min policy, while α > 2 favors the f-
max policy. Further supporting this choice is the fact that
any policy which always uses a single constant
frequency (for example f-min and f-max, see Figure 9)
achieves a constant 2ET measure, regardless of
frequency.

Optimization
A straightforward approach to finding an optimal

policy is to solve the following minimization problem:

 []

2

min max

min
. . () 0 , ,

1.. , 1, 2..
ps t f w f f

p N w

∈ ∪

∀ = ∀ = ∞

ET
 (6)

Namely, minimize 2ET while frequencies are
constrained to an operating range, or 0 if the PE is idle.

(c)

(a)

(b)

5

Substituting E and T from Eqs. (5) into Eq. (6),
and further substituting pE and pT (the individual PE
energy and delay) from Eq. (3) and (4), we note that the
ensuing optimization problem seems very hard, despite
the simplifications already assumed in the model.
Rigorous analysis of this minimization problem is
beyond the scope of the present work. Moreover, we
suggest that although this problem may be solvable,
yielding some optimal frequency assignment per set of
task distributions, the computation required is likely to
be too great to justify implementation in any practical
system. In a performance-driven energy-aware system,
and assuming frequency assignment is integrated as part
of the system’s computational requirements in real-time,
we must weigh the improvement that a computation
offers versus the cost of the computation itself, both in
energy and performance. This observation rationalizes
the approach of searching for simple lightweight
heuristic DVS policies.

3. DVS Policies
In this section we describe a group of relatively

simple frequency assignment policies for a CMP. Since
all policies share the same outline and differ only in
certain details, we first describe the common outline and
then specify the differences for each policy.

3.1. Common Outline for All
Policies

At the t=0 fork-point of the parallel phase in the
timeline, all policies perform the same steps:

(1) Find the PE (task) estimated to have the most
remaining work, which is referred to as the
estimated-critical PE (ECP).

(2) Set a joint-target-time (JTT) for all PEs to
complete their tasks, and assign PE frequencies
(and voltages).

(3) Run until the ECP finishes (or time interval
elapsed).

(4) Update workload estimations.
(5) Loop back to Step (1) above.

In Step (1): We compute the expected value of the
(remaining) estimated work for all PEs (currently
running tasks):

 , ,
ˆ [|]p rem p p compW E W W= (7)

Note that at time t=0, the completed work
, 0p compW = . From this estimation we find the ECP, the

PE for which the estimated work is maximal:

, ,1..

,1..

ˆ ˆmax{ }

ˆarg max{ }

ECP rem p remp N

p remp N

W W

ECP W
=

=

=

=
. (8)

In Step (2): The ECP is assigned maxf . Intuitive
reasoning for this is that 2ET is frequency invariant if
we ignore (0)P , which means that results depend solely
on the amount of utilized slack, while actual PE
frequencies are insignificant. However, (0)P cannot be
ignored. Therefore, assigning maxf to the ECP, i.e.,
running as fast as possible, will clearly minimize standby
energy consumption. Optimality of assigning maxf to the
critical PE is proven in Section 3.2 for a case of known
workloads.

To utilize the available time-slack, we want all the
other (non-critical) PEs to complete together with the
critical PE. We therefore set a joint-target-time for all
PEs, which is the expected completion time of the ECP:

l

,

max

ECP remWJTT
f

= , (9)

where l ,ECP remW is the estimated (remaining) work of
the ECP. Frequency assignment of the other (non-
critical) PEs is described per each policy below.

In Step (3): All PEs run at their assigned frequencies
until the ECP completes. (In case of the Interval policy
described in 3.4, re-estimation and re-assignment are
performed also at intermediate fixed time intervals.) The
ECP is expected to complete last by definition, and this
will typically be the case. However since workloads are
statistical it is possible that the ECP will complete before
other PEs.

In Step (4): If the ECP completes (or a time-interval
elapses) while other PEs still have remaining work, re-
estimation is performed, taking into account the work
done by each PE so far. The cycle is repeated until all
PEs have completed their work.

Figure 3 shows a flowchart of the common outline.
The specific variations of the policies are described next.

6

Figure 3: Flowchart of common outline for all polices

3.2. The "Oracle" Policy
The Oracle policy is a non-causal, hypothetical

policy which assumes future knowledge of the
workloads. When simulating the Oracle policy we still
generate workloads statistically, however we assume that
they are known in advance, before run time. We use the
Oracle policy results as a lower bound for comparing to
causal, implementable policies in which the exact
workloads are not known in advance.

Given that the workloads are known, we calculate the
optimal frequencies pf to assign to each PE 1..p N= .
In particular we show that maxf is optimal for the critical
PE. We denote the known task workloads on each PE

pW , and define T to be the joint execution time for all
PEs. Because the workload of each PE is known and the
execution time is set, energy can be minimized by
running at a constant frequency that is just fast enough to
finish the task by its deadline. This is a well established
result which is due to the convexity of e(f), the energy-
per-cycle [19]. Therefore we assign constant frequencies

pW
p Tf = to each PE. We initially assume that

frequencies are not restricted to any range, and later
incorporate frequency bounds. All PEs complete exactly
at T, so that full slack utilization is attained.

Assuming that there exists a T as above and it
minimizes 2ET , that T can be found by differentiating

2ET w.r.t. T and equating the derivative to 0:

()

() ()

()

2 2 2

1 1

2

1

2
2

1

2 2

1 1

0

2 0

0

2 3 (0)

N N
p

p p act
p p

N
p

p act
p

N
p p

p act
p

N N
p p

p act p act
p p

W
T E T W e NP T

T

Wd T W e NP T
dT T

W W
T W e NP

T T

W W
T W e W e NP T

T T

= =

=

=

= =

⎡ ⎤⎛ ⎞
= = + ⇒⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
′+ − + =⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

′= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑

∑

∑ ∑

ET

ET

Now if we assume the power model described in
Section 2.1, then 2() , () 2act acte x ax e x ax′= = and
substituting in (10) we find that the two sums cancel out:

()
2

2 2 2

1 1

2

2 2 3 (0)

3 (0)

N N
p p

p p
p p

W Wd T W a W a NP T
dT T T

NP T
= =

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
=

∑ ∑ iET

. (11)

Note that if P(0)=0 then this means the criterion is
truly frequency invariant, since the measure does not
depend on the operating frequencies. Otherwise, T=0 is
required in order to minimize the criterion, but since that
is not possible, the shortest execution time we can set is

() maxmax pT W f= , so all frequencies are
correspondingly set as follows:

max , 1..
max()

p
p

p

pp

W
f map

T

W
map f p N

W

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

. (12)

No re-estimation is necessary since all task
workloads are known. The ()map function maps the
frequency in (12) to a feasible frequency. In the simple
case of a continuous frequency range, this merely means
trimming out-of-range values to minf and maxf
correspondingly. (Also note that in the particular case of
Eq. (12) the inner result is already bounded by maxf .) All
PEs complete precisely at T, with the exception of non-
critical PEs with a small workload which run at

minf according to Eq. (12), finishing before T.

3.3. The Constant Policy
The Constant policy is a simple policy in which a

constant frequency is assigned to each PE. After
calculating the JTT and assigning the ECP to run at the
maximum frequency maxf , we set non-critical PE

7

frequencies with an aim to complete at the joint-target-
time:

l l

l l

l

, ,

, ,
max

,

()

() , 1..

p rem p rem
p

p rem p rem

ECP rem

Wf map
JTT

Wmap f p N
W

λσ

λσ

+
= =

+
=

 (13)

where l ,p remW is the remaining work estimation of PE
p, l ,p remσ is the standard deviation of ,p remW , and 0λ ≥
is the bias parameter. At time t=0 no work has been done
so the remaining work is the total work. The ()map
function maps the result of Eq. (13) to a feasible PE
frequency as described above.

For 0λ = , pf is set so that PE p completes l ,p remW
work during the time it takes the ECP to complete
l

,ECP remW work. However since delay outweighs energy
for the 2ET criterion, we can achieve better results by
setting the bias parameter 0λ > , as described below in
Section 4.1.

Note that the critical PE frequency can also be
formulated using Eq. (13) if we assume 0λ ≥ and
substitute l ,p remW with l ,ECP remW .

Early Completion of the Estimated-
critical PE
If the ECP completes while other PEs still have

remaining work (step (3) in the outline), then the
assumptions by which frequencies were assigned in step
(2) no longer hold. In this case we update the estimations
l

,p remW l ,p remσ to reflect the work done so far, Wp,comp,
and repeat steps (1) and (2): set a new joint-target-time
and a new ECP, and assign new PE frequencies. We
continue steps (1) to (4) repeatedly until all PEs have
completed.

Figure 4 shows an example of applying the Constant
policy in a 3-PE system. Figure 4(a) shows the workload
distributions, and then two scenarios are illustrated. In
Figure 4(b), the workloads are such that the ECP (red,
dotted) completes last. This is the expected, common
scenario. In Figure 4(c), the ECP unexpectedly finishes
first, causing re-estimation; a new ECP is selected
(green, dashed) and work-points are reassigned.

If we regard the complexity of one (f,V) work point
assignment (including the preceding remaining workload
estimation) as O(1), then the complexity of the Constant
policy can be approximately regarded as O(N), N being
the number of PEs in the system. This approximation
ignores the occasional work-point re-estimation that is
required when the ECP completes before other PEs.

However, this is justified since the probability of this
scenario is (a) generally small, (b) distribution
dependent, (c) very hard to calculate and incorporate into
complexity estimations, and (d) common among all
described policies, so it generally shouldn’t affect
comparing them.

(a)

(b)

(c)

Figure 4: Constant policy example with three PEs: (a)
workload distributions, (b) the ECP (red, dotted) finishes
last as expected, (c) the ECP finishes first, re-estimation is
performed.

3.4. The Interval Policy
The Interval policy is an enhancement of the

Constant policy described above. The Interval policy
assigns constant frequencies in the same way as the
Constant policy. But in the Interval policy, the critical
PE is re-chosen and frequencies are reassigned at
intermediate fixed time intervals. For each time interval,
estimated remaining workloads are used to choose the
critical PE and frequencies for the next interval. Re-
estimating remaining workloads and re-assigning work-
points following the re-estimation may offer a significant
advantage: the difference between the estimated
remaining workloads at time t=0, compared to the
estimations at a later time when all PEs have done a
certain amount of work, may be substantial. Interval can
be viewed as a refinement of the Constant policy: the
shorter the time interval, the more accuracy can be
achieved.

Note that it is possible to calculate frequency
assignments not just for the current interval but for
future intervals as well, since all the needed information
is available at time t=0. The only information that is not
available at time t=0 is actual task workloads. So at any

8

given time we can calculate frequencies to be assigned
for future intervals, and these calculations will be valid
until the time the ECP completes. Therefore, although it
is easier to understand Interval as a process of
recalculating frequencies at each interval, in practice
Interval calculates frequencies at time t=0, and
recalculates only when an ECP completes.

A bias parameter λ exists also for the Interval policy
and allows tuning in the same way as for the Constant
policy. Figure 5 shows an example of the Interval policy
with 2 PEs.

(a)

(b)

(c)

Figure 5 : Interval policy example with two PEs: (a)
workload distributions, (b) the ECP (green, dashed)
finishes last as expected, (c) the ECP finishes first.

In typical examples, the frequency of non-critical
PEs increases with time, as shown in Figure 5. This
behavior is similar to the behavior of PACE [20], as
explained in the following section. However, decreasing
frequencies can occur, since PE frequencies are a
function of the estimated remaining workload relative to
the estimated remaining workload of the ECP at each
interval. Notably, when there is a substantial difference
in both the mean and variance of workload distributions,
both increasing and decreasing frequencies can occur, as
shown in Figure 6 below.

Note that in Figure 6, there is an ECP switch at a
certain time during the run. The ECP (green, dashed) is
initially estimated to have more remaining work, and
thus it is designated as the ECP and assigned fmax.
However as time progresses the ECP does more work
relative to the other (blue, solid) PE, until a time where
the other PE’s estimated remaining work surpasses that

of the ECP, thus the other (blue, solid) PE is designated
the new ECP.

(a)

(b)

Figure 6: Another interval policy example, with 2 PEs
having substantial difference in both the mean and
variance of their workload distributions, (a). Both
increasing and decreasing frequencies are observed, (b).
The PE marked in dashed green is initially the ECP, but
after some time the PE marked in blue becomes the new
ECP.

Since the complexity of the Constant policy is O(N),
the complexity of the Interval policy is O(kN), where k is
the number of time intervals at which re-estimation
occurs.

3.5. The Multi-PACE Policy
Energy-performance tradeoff in a single standalone

PE has been studied extensively [9, 21-24]. The Multi-
PACE policy presented in this section is an attempt to
generalize from the well-known single-processor
approach PACE [20] onto CMP systems.

PACE Scheduling for a Single Processor
Consider a task of given workload probability

distribution ()Wpdf w , running on a PE with a
continuous frequency range min, max[]f f f∈ , with some
soft deadline D, i.e. a deadline that is required to be
attained only in a certain fraction of cases, not
necessarily all the time. We represent this by the
probability PMD (Probability of Meeting the Deadline).
Given ()Wpdf w of a task, a deadline D, and PMD, we
can find the maximum workload PMDw for which a task
will meet its deadline.

The PACE scheme is an analytically optimal method
for minimizing the expected energy subject to
probabilistically meeting the deadline [20]. Given the
above inputs, PACE computes the optimal frequency
schedule per cycle:

9

 min, max

()
([], (), ,),

[0,]
W

PMD

f w
PACE f f pdf w D PMD
w w

=

∈

. (14)

Conversion from f(w), which expresses the frequency
as a function of work cycles done, to a more intuitive f(t)
time function, is straightforward.

As mentioned above in Section 3.2, running at a
constant frequency is optimal in case workloads are
known, but not so when workloads are unknown. PACE
stands for Processor Acceleration to Conserve Energy,
reflecting the fact that the optimal frequency schedule is
an increasing function when workloads are unknown. An
intuitive explanation for this is that a task workload may
be small or large, so it is worthwhile to run slowly at
first. If the workload is small then the task can easily
complete by the deadline, saving energy by running at a
low frequency. As the deadline approaches, if the task
has not yet completed the frequency is gradually
increased in order to assure meeting the deadline with
probability PMD.

Multi-PACE (f,V) Work-point Assignment
We introduce Multi-PACE, which utilizes PACE to

form a DVS policy for a CMP, as follows. After setting
the ECP to run at maxf and setting the JTT as in Eq. (9),
non-critical PE frequencies are set according to PACE
with the JTT as a deadline:

,min, max

()

([], (), ,),

[0,]
p rem

p

W

PMD

f w

PACE f f pdf w JTT PMD

w w

=

∈

. (15)

To clarify, note that JTT is not an application
deadline. Rather, it is computed following Eq. (9). We
use the PACE deadline mechanism to synchronize
completion times between PEs.

PACE does not specifically define which frequency
to use for the post-deadline part (i.e., cycles greater
than PMDw). Multi-PACE runs at maxf during the cycles
subsequent to PMDw in an attempt to minimize delay past
the JTT. Figure 7 shows an example of applying Multi-
PACE, using the same workload distributions as in
Figure 4(a).

(a)

(b)

Figure 7: Multi-PACE example with two PEs, workload
distributions as in Workload distributions are as in Figure
4. (a) the ECP (green, dashed) finishes last as expected;
(b) the ECP finishes first.

The value of PMD has a significant effect on the
overall results. If PMD is too high, multi-PACE sets
overly aggressive frequency schedules, resulting in
excessive energy consumption. On the other hand,
choosing PMD too low increases the probability of
missing the JTT, causing increased overall execution
time. In Section 4.1 we experiment with different PMD
values for Multi-PACE. The use of PMD is similar to the
use of the λ bias parameter for the Constant and
Interval policies.

Multi-PACE requires PEs to have a continuous
frequency range and to be able to change frequency
every cycle, but this is not practical for reasons
previously discussed. Practical methods of implementing
PACE, which can apply to Multi-PACE as well, are
described in [20, 23].

As explained above, the complexities of the Constant
and Interval policies are O(N) and O(kN) respectively,
where N is the number of PEs and k is the number of
intervals. In principle, frequencies are recalculated in
Multi-PACE for each cycle. In a practical system,
however, the workload distributions would be built by
collecting data into a histogram, and their granularity
would therefore be according to the number of histogram
bins, denoted by B. Thus the number of frequency
changes in multi-PACE is in practice proportional to B,
and thus the complexity of the multi-PACE policy is
O(BN) [20].

4. Simulations and Results
In this section we present simulation results of the

proposed DVS policies. We used a few sets of synthetic
probability distributions to represent the task workloads,
as shown above in Figure 1.

We simulated a system with six identical PEs, each
with a continuous frequency range of 0.32GHz to
1.5GHz. Energy was calculated using the power model
of 3()P f af b= + with []30.8 , 0.2Watt

GHz
a b Watt⎡ ⎤= =⎣ ⎦ as

fitting parameters, as described in section 2.1.

10

4.1. Choosing Bias Parameters
Prior to comparing the policies, we consider the issue

of selecting bias parameters: λ for Constant and
Interval policies, and PMD for Multi-PACE. As
previously mentioned, setting PE work-points so tasks
complete their estimated workloads at the JTT is sub-
optimal. Delay outweighs energy for the 2ET criterion,
therefore missing the JTT by a certain time margin
incurs a greater penalty than finishing before the JTT by
that same time margin. Better results can be achieved by
setting the bias parameter 0λ > in Eq. (13), thereby
running faster. A similar effect can be achieved for the
Multi-PACE policy by tweaking the PMD parameter in
Eq. (15).

Figure 8 shows policy results, in terms of
2ET values, normalized to the Oracle policy, for

distributions (i), (ii), and (v) of Figure 1, using different
bias values λ and PMD. As can be seen in Figure 8, each
case shows a certain optimal choice of the bias
parameters λ and PMD. However, the results are not
very sensitive to small variations, and thus it is
reasonable to use the same bias parameter (λ or PMD)
for all distributions. Empirically, a good choice lies in
the range of 0.5-0.8. The effect of λ on 2ET is less
accentuated in Interval than in Constant, since Interval
performs periodic re-estimations of ()i

remW and ()i
remσ .

(a) Constant

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dist. (i)
dist. (ii)
dist. (v)

Normalized
 ET2

Bias

(b) Interval

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dist. (i)
dist. (ii)
dist. (v)

Normalized
 ET2

Bias

(c) Multi-PACE

1

1.2

1.4

1.6

1.8

0.5 0.6 0.7 0.8 0.9 0.98

dist. (i)
dist. (ii)
dist. (v)

Normalized
 ET2

PMD
Figure 8: Comparison of bias values for policies (a)
Constant, (b) Interval (50ms), and (c) Multi-PACE
policies. Distributions (i), (ii), and (v) (see Figure 1) are
shown.

4.2. DVS Policy Comparison
We simulated each of the workload distributions

shown in Figure 1 using Oracle, Constant, Multi-PACE,
and Interval policies. For Interval, we used intervals
lengths of 50, 100, 150 and 200 milliseconds which
correspond to roughly 16, 8, 4, and 2 intervals
throughout the simulated execution time. We chose bias
parameters 0.8λ = for Constant, 0.5λ = for Interval
and PMD=80% for Multi-PACE, following the
conclusions of Section 4.1.

Policy Comparison

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(i) (ii) (iii) (iv) (v)

distribution

ET2

 (Normalized)

Multi-PACE
Constant
Interval 50ms
Interval 100ms
Interval 150ms
Interval 200ms
Oracle
F-min
F-max

Figure 9: ET2 compared across all policies

For each distribution, Figure 9 shows 2ET
compared across all policies, normalized as above to the
results of Oracle, which we regard as a lower bound.
Additionally, the results show that f-min and f-max
policies reach the same results in 2ET for all
distributions. This follows from the approximate
frequency invariance of 2ET , and likewise holds for any
other policy that always uses a single constant
frequency. Thus we expect our policies to achieve results
that are in between Oracle and f-max/f-min, i.e., better
than running at an arbitrary constant frequency (which
we regard as 0% improvement), but worse than the
optimal policy in which exact workloads are known in
advance (100%). As can be seen, this is indeed the case.

11

The Interval policy usually achieves the best results
while Constant, the simplest policy, usually achieves the
worst results. However, the difference between the
policies is generally quite small, with no more than 4-
13% difference between the best and worst policies
(except for example iv, which is discussed next.)

Despite the above similarities, distribution (iv) of
Figure 1 is an example where the Interval policy stands
out. As can be seen in Figure 1(iv), two of the six task
workloads of example (iv) have a bimodal distribution
(51 10i or 510 10i cycles) while the other four are known
(57.5 10i cycles). At time t=0, the estimated critical
workload is 57.5 10i cycles. However, once the bimodal-
distributed tasks complete 510 cycles work, the
estimation may change to 610 cycles, enabling the
known-workload tasks to run slower, saving
considerable energy. Interval performs much better than
all other policies since it is the only policy that re-
estimates the critical workload.

With further regard to the Interval policy, we note
that increasing the interval resolution (increasing the
number of re-estimations) provides only minor,
insignificant improvement. A few re-estimations over a
relatively large period of time can drastically change the
outcome, as demonstrated by example (iv), while
additional re-estimations have only a marginal effect.

Multi-PACE on the whole achieves better results
than Constant and worse than Interval in the simulated
examples. Multi-PACE is more dependent on correct
estimation of the critical task than the other policies, and
therefore produces slightly better results in cases where
there is little uncertainty regarding the critical task (v),
compared to cases where the uncertainty is greater (iii).

Computational Complexity
In Section 3, we concluded that the complexities of

Constant, Interval, and Multi-PACE are O(N), O(kN),
and O(BN), respectively; where N is the number of PEs,
k the number of intervals, and B the number of workload
histogram bins. Since increasing the number of intervals
for the Interval policy beyond a small number provides
only marginal improvement (note the marginal
improvement when using shorter intervals in Figure 9), it
is reasonable to assume small values for k. On the other
hand, Multi-PACE performs no re-estimation, so it needs
a considerable large number of bins B [20]. B does not
necessarily need to be of cycle granularity, but will be
several orders larger than k, i.e., k<<B. Following this

reasoning, we conclude that the relative complexity of
the policies is O(N) < O(kN) << O(BN).

5. Summary and Conclusions
In this work, we started by formulating an energy-

performance tradeoff optimization problem of an
application running on a CMP. We noted the complexity
of the problem, which makes it virtually impractical for
implementation.

As an alternative to direct optimization, we described
several simple heuristic DVS policies for energy-
performance tradeoff. These policies try to utilize
available time-slack in order to save energy in a
performance-aware manner. The frequency-invariant

2ET criterion was employed for comparing the policies.
The policies described were: Constant, a policy that tries
to estimate the best constant frequency to assign to each
PE; Interval, which works in a manner similar to
Constant but reassigns new frequencies at fixed time
intervals, and Multi-PACE, applying PACE, an optimal
scheme for a single-core system with a deadline
requirement, for use in a CMP.

We compared these policies using various
distributions, and presented several examples. We
showed that, except for some isolated cases, all policies
reach comparable results. Increasing the number of re-
estimations (using Interval) improves results compared
to estimating merely once at the beginning (using
Constant). However, the marginal return sharply
diminishes with the number of re-estimations. Multi-
PACE produces results that are anywhere between
Interval and Constant, occasionally appearing at the top
or bottom of the results list, depending on the
distribution.

We analyzed the policy complexities, and showed
that Constant is the least complex, followed by Interval,
while Multi-PACE has the highest complexity,
significantly higher than Constant and Interval. Since the
results are usually quite close for all policies, we
conclude that the least complex policy, Constant, is
usually preferred. In individual cases, such as
distribution (iv) shown in Figure 1, there is justification
for using Interval. Based on these findings, a scheme
could be contemplated whereby the number of intervals
is chosen dynamically based on certain characteristics of
the distribution, or alternatively, start with a default
number of intervals, and assess the result over time to
determine if the number of intervals can be decreased.
Multi-PACE generally does not achieve better results

12

than any of the other two, and has a very high
complexity, so it is not preferred.

Frequency-voltage transitions, which are not
considered in this work, may degrade the results since
each transition is accompanied by performance and
energy penalties [6]. When the cost of transitions is
considered, simple policies such as Constant become
even more attractive because they use fewer transitions.

The following issues are left for future research:

1. Study of more complex task-graphs.

2. Discret (f-V) workpoint sets.

3. With regard to 2), the interval policy may be
enhanced to consider re-estimation at flexible times.
Such an interval policy would determine when to jump

to an adjacent discrete workpoint, rather than directly
calculating a new workpoint at an arbitrary time.

4. Test cases based on real application traces.

5. Applications may data assisting in estimation of
their own remaining work, which can improve the
accuracy of remaining workload estimations.

6. Real-time applications, which need to achieve a
periodic deadline, can be modeled by replacing the
execution time T in the criterion with a relative

D−T measure which results in penalty only to the
extent by which the application missed its deadline.

References
[1] F. Pollack, "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies," in

Micro 32, 1999.
 http://www.intel.com/research/mrl/Library/micro32Keynote.pdf
[2] E. Grochowski, R. Ronen, J. Shen, and H. Wang, "Best of Both Latency and Throughput," in Proceedings of the

IEEE International Conference on Computer Design (ICCD'04) - Volume 00: IEEE Computer Society, 2004.
[3] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade, "Performance, Power Efficiency and

Scalability of Asymmetric Cluster Chip Multiprocessors," IEEE Computer Architecture Letters, vol. 5, 2006.
[4] "Intel Enhanced SpeedStep(R) Technology"
 http://www.intel.com/support/processors/mobile/pentium4/sb/CS-007499.htm
 http://www.intel.com/support/processors/mobile/pm/sb/CS-007981.htm
[5] T. Pering, T. Burd, and R. Brodersen, "The simulation and evaluation of dynamic voltage scaling algorithms," in

Proceedings of the 1998 international symposium on low power electronics and design. Monterey, California,
United States, 1998, pp. 76-81.

[6] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, "Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under dynamic workloads," in Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design. San Jose, California, 2002.

[7] K. Flautner, S. Reinhardt, and T. Mudge, "Automatic performance setting for dynamic voltage scaling," Wireless
Networks, vol. 8, pp. 507-520, 2002.

[8] S. Yaldiz, A. Demir, S. Tasiran, P. Ienne, and Y. Leblebici, "Characterizing and exploiting task load variability
and correlation for energy management in multi core systems," in 3rd Workshop on Embedded Systems for Real-
Time Multimedia, 2005, 2005, pp. 135-140.

[9] Y. Zhang, X. S. Hu, and D. Z. Chen, "Task scheduling and voltage selection for energy minimization," in
Proceedings of the 39th conference on Design automation. New Orleans, Louisiana, USA, 2002, pp. 183-188.

[10] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, "Overhead-conscious voltage selection for
dynamic and leakage energy reduction of time-constrained systems," Computers and Digital Techniques, IEE
Proceedings-, vol. 152, pp. 28-38, 2005.

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, "Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance," in Proceedings of the 31st annual international
symposium on Computer architecture. Munchen, Germany: IEEE Computer Society, 2004.

[12] S. Ghiasi, T. Keller, and F. Rawson, "Scheduling for heterogeneous processors in server systems," in Proceedings
of the 2nd conference on Computing frontiers. Ischia, Italy, 2005, pp. 199-210.

[13] A. Elyada, "Low Complexity Policies for Energy-Performance Tradeoff in Chip-Multi-Processors," in Electrical
Engineering. Haifa: Techion, Israel Institute of Technology, 2007.

[14] M. L. Crow and M. Ilic, "The parallel implementation of the waveform relaxation method for transient stability
simulations," IEEE Trans. on Power Systems, vol. 5, pp. 922-932, Aug 1990.

[15] R. A. Saleh, K. A. Gallivan, M.-C. Chang, I. N. Hajj, D. Smart, and T. N. Trick, "Parallel circuit simulation on
supercomputers," Proceedings of the IEEE, vol. 77, pp. 1915-1931, Dec 1989.

13

[16] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory programming," in
Computational Science and Engineering, IEEE, vol. 5, 1998, pp. 46-55.

[17] J. Ross, "Media Applications Shine with Pipelined Data Domain Decomposition Threading"
 http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/digitalmedia/success/52517.htm
[18] A. J. Martin, M. Nystroem, and P. Penzes, "ET2: A metric for time and energy efficiency of computation," in

Power Aware Computing, Series in Computer Science, R. Graybill and R. Melhem, Eds. Norwell, MA: Kluwer
Academic Publishers, 2002, pp. 293-315.

[19] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Scheduling Computer and Manufacturing
Processes. Berlin, Germany: Springer-Verlag, 1996.

[20] J. R. Lorch and A. J. Smith, "PACE: a new approach to dynamic voltage scaling," IEEE Transactions on
Computers, vol. 53, pp. 856-869, 2004.

[21] R. Jejurikar, C. Periera, and R. Gupta, "Leakage aware dynamic voltage scaling for real-time embedded systems "
Proceedings of the 41st annual conference on Design automation pp. 275-280, 2004.

[22] R. Xu, D. Mosse, and R. Melhem, "Minimizing expected energy in real-time embedded systems," in Proceedings
of the 5th ACM international conference on Embedded software. Jersey City, NJ, USA, 2005, pp. 251-254.

[23] R. Xu, C. Xi, R. Melhem, and D. Moss, "Practical PACE for embedded systems," in Proceedings of the 4th ACM
international conference on Embedded software. Pisa, Italy, 2004, pp. 54-63.

[24] D. Zhu, R. Melhem, and B. Childers, "Scheduling with Dynamic Voltage/Speed Adjustment Using Slack
Reclamation in Multi-Processor Real-Time Systems," IEEE Trans. on Parallel and Distributed Systems, 2003.

[25] L.-F. Leung, C.-Y. Tsui, and W.-H. Ki, "Minimizing energy consumption of multiple-processors-core systems
with simultaneous task allocation, scheduling and voltage assignment," in Proceedings of the 2004 conference on
Asia South Pacific design automation. Yokohama, Japan, 2004, pp. 647-652.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

