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Abstract—We present efficient Dense and Sparse Matrix 

Multiplication on GP-SIMD, a hybrid general purpose SIMD 

computer architecture that eliminates synchronization by in-

memory computing, combining data storage and massively 

parallel processing. Cycle-accurate simulation of on a large set of 

matrices shows enhanced power efficiency relative to conventional 

architectures. 
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I. INTRODUCTION 

Large scale machine learning tasks require extensive dense and 

sparse matrix multiplications. We explore the efficiency of dense 

matrix multiplication (DMM) and sparse matrix multiplication 

(SpMM) on the GP-SIMD architecture. The GP-SIMD is a hybrid 

general purpose SIMD computer architecture that combines data 

storage and massively parallel processing in order to eliminate the 

need to synchronize data between the general purpose processor 

and its accelerators [23]. Figure 1 shows the architecture of the GP-

SIMD, comprising a sequential CPU, a shared memory array, 

instruction and data caches, a SIMD coprocessor, and a SIMD 

sequencer. The SIMD coprocessor contains a large number of fine-

grain processing units, each comprising a single bit ALU, single bit 

function generator and a 4-bit register file. The GP-SIMD 

processor is thus a large memory with massively parallel 

processing capability. No data synchronization between the 

sequential and parallel segments is required since both the general 

purpose sequential processor and the SIMD co-processor access 

the very same memory array. Thus, no time and power penalties 

are incurred for synchronization.  

 

 

 

 
Figure 1. GP-SIMD architecture  Figure 2. Memory array 

containing three operands 

The GP-SIMD architecture has been discussed in [2]. The GP-

SIMD delivers a number of advantages over conventional SIMD 

architectures:  

 Data processing and data storage are unified. There is no need 

for data transfer between sequential memory and SIMD PUs; 

 GP-SIMD allows concurrent operation of the sequential 

processor and SIMD co-processors on the shared memory, 

allowing the sequential processor to offload a task to the 

SIMD while continuing to process some other sequential 

functions.  

 The number of GP-SIMD fine grain processing units matches 

the number of memory rows, striving to match the entire 

dataset.  

 The GP-SIMD architecture enables the sequential processor 

to associatively address the memory array [2]. It may thus 

allow reduction of software complexity for certain sequential 

algorithms.  

 GP-SIMD power dissipation is distributed uniformly over the 

entire processing array rather than being concentrated around 

a smaller number of large, power hungry processing cores. 

Thus, there are fewer hotspots leading to further reduction of 

temperature dependent leakage power [18]. 

In this paper, we present GP-SIMD algorithms for dense and sparse 

matrix multiplication (DMM, SpMM).  

The rest of this paper is organized as follows. Section II 

discusses related work. Section III presents GP-SIMD architecture. 

Section IV presents GP-SIMD algorithms for dense and sparse 

matrix multiplication. Section V details the evaluation 

methodology and presents cycle-accuarte simulation results. 

Section VI concludes this paper. 

II. RELATED WORK 

Vector machines and SIMD architectures are a class of parallel 

computers with multiple processing units performing the same 

operation on multiple data points simultaneously [1][26][3]. Such 

machines exploit data level parallelism, and are thus well suited for 

machine learning over Big Data [7]. The concept of mixing 

memory and logic has been around since the 1960s [16]. Similar to 

DAP, STARAN, CM-2, GAPP, and Associative Processor 

(AP) [21] computer architectures (comprehensive reference is 

provided in [2]), GP-SIMD belongs to a Processing-In-Memory 

(PiM) class of architectures that use a large number of Processing 

Units (PUs) positioned in proximity to memory arrays to 
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implement a massively parallel SIMD computer. To differentiate 

between GP-SIMD and other works, and since keywords like PiM 

and SIMD are often used with different meanings in mind, [2] 

studies the GP-SIMD, cites an exhaustive list of studies, and 

presents a taxonomy categorizing previous works in the 

processing-in-memory (PiM) and SIMD fields.  

Previous studies on SpMM target sparse matrix by dense vector 

multiplication (SpMV) or sparse matrix by dense matrix 

multiplication (SpMM). For simplicity, in this section we apply the 

term SpMM to both SpMM and SpMV. A comprehensive review 

of sparse matrix multiplication techniques is provided by R. 

Vuduc [35]. Considering hardware aspects rather than software 

implementation [22], previous work can be divided into three 

categories (TABLE 1). 

 
TABLE 1: SPMM RELATED WORK SUMMARY 

Category Existing Work 

General Purpose Computers  Off-the-shelf [4][9][37][41] 

Advanced multicore [38] 

Manycore supercomputer [6] 

GPU [11][14][25][28][29][36]  

Dedicated Hardware  

Solutions 

FPGA [17][24] 

Manycore Processor [27] 

Distributed Array Processor [13] 

Systolic Processor [32] 

Coherent Processor [5] 

TCAM / PIM [12] 

Heterogeneous platform[30][31] 

3D LiM [33] 

 

The key contribution of the present work is the efficient 

implementation of dense and sparse matrix multiplication on a GP-

SIMD processor, verified by extensive cycle-accurate GP-SIMD 

simulation using a large collection of sparse matrices [39].  

III. THE GP-SIMD PROCESSOR 

In this Section we describe GP-SIMD, focusing on relevant 

aspects of the architecture, arithmetic, logic and associative 

processing capabilities. Further details are given in [2]. 

A. Top Level Architecture  

The GP-SIMD is a hybrid general purpose and SIMD computer 

architecture that resolves the issue of synchronization by in-

memory computing, through combining data storage and 

massively parallel processing. References to on-chip memory 

‘row’ (r) and ‘column’ (c) are physical. Each row may contain 

many words of software programmable width (w) (if w is constant 

for all words, the number of words is thus r· c/w). The number of 

rows typically matches the dataset elements, N. 

 Sequential processor accesses either one word at a time, or 

multiple words. Typically, such a transaction accesses one 

physical row at a time. 

 The SIMD reads/writes a bit-slice (having r bits) 

comprising the same bit-number from all words in some 

partition of the memory. Physically, it may access multiple 

bits in a physical row and all rows per access, namely 

accesses multiple columns of the physical array. 

Figure 1 details the architecture of a GP-SIMD processor. The 

sequential processor schedules and operates the SIMD processor 

via the sequencer. In a sense, the sequential processor is the Master 

controlling a slave SIMD co-processor. The SIMD coprocessor 

contains a number of fine-grain processing units (PUs), as depicted 

in Figure 3, each containing a single bit Full Adder (FA), single bit 

Function Generator (FG) and a 4-bit register file, RA, RB, RC and 

RD. A single PU is allocated per row of the shared memory array, 

and physically resides close to that row. The PUs are 

interconnected using an interconnection network. The set of all r 

registers of the same name constitute a register slice.  Note that the 

length of the memory row (e.g., 256 bits) may be longer than the 

word length of the sequential processor (e.g., 32 bits), so that each 

memory row may contain several words. 

 
Figure 3. GP-SIMD Processing unit 

 

When the SIMD reads data from the shared memory, the 

contents of a bit slice of the memory are transferred into the register 

slice (RAs, RBs or RCs). Upon writing to the shared memory, the 

contents of one of the register slices are transferred into the GP-

SIMD memory array. A conditional register (RD) is utilized to 

enable special/masked microinstructions as depicted in TABLE 2. 

The RD_INST is a part of the SIMD co-processor instruction 

bus driven by the sequencer, and each RD_INST value specifies an 

operation (depicted as a bus going from the sequencer to the SIMD 

co-processor in Figure 3). While the first four operations are self-

explanatory, the last two operations allow the sequential processor 

to perform associative commands on the memory array, as detailed 

in section C below.  

 
TABLE 2: CONDITIONAL/MASKED PU MICROINSTRUCTIONS 

RD_INST RD 

Value 

Operation 

00 0 Memory access (read/write) by the sequential 

processor or the SIMD co-processor. 

00 1 Conditional read command, according to a RD: 

(RD>0 ? RB=0 : RB=Memory output) 

01 0 SIMD co-processor memory-write of RA 

01 1 Conditional write command, according to RD:  

(RD>0 ? Memory input=RB : Memory input=RA). 

10 0 Conditional (masked) read / write: Disable row for 

memory access by sequential processor. Used during 

associative access 

10 1 Conditional (masked) read / write: Enable row for 

memory access by sequential processor. Used during 

associative access 

B. Arithmetic / Logic Operations 

GP-SIMD can implement a wide range of arithmetic and logic 



 

 

processing tasks. Consider a workload using two datasets, A and B, 

each containing N elements, where each element is m bits wide. 

These vectors are mapped into the GP-SIMD memory array such 

that two 𝑚  bit adjacent column-groups hold vectors A and B. 

Assume that we need to add the two vectors and place the results 

into m+1 bit column-group S, as illustrated in Figure 2 (where 

m=4). The addition is performed in 𝑚 single-bit addition steps:  

𝑐[∗] | 𝑠[∗]𝑖 = 𝑎[∗]𝑖 + 𝑏[∗]𝑖 + 𝑐[∗]   
∀ 𝑖 = 0, … , 𝑚 − 1 

(1) 

where 𝑖 is the bit index and ‘∗’ is the vector index (corresponding 

to a PU and memory row). Since addition is carried out 

simultaneously for all vector elements, fixed point 𝑚 bit addition 

consumes 3𝑚 ∈ 𝑂(𝑚)   cycles, independent of the size of the 

vectors N. 

Using the same logic, subtracting or performing logic AND, 

OR, XOR via the function generator on the two operand sets entails 

𝑂(𝑚) cycles as well. Compare immediate operation between set A 

and a fixed word sourced from the sequential processor requires 

only 𝑂(𝑚)  cycles since the second operand is sourced from the 

sequencer, not from the memory array. 

Fixed point multiplication and division in GP-SIMD are also 

implemented bit-serially but word-parallel, consisting of a series 

of add-shift and subtract-shift vector operations. Shift is 

implemented by appropriate column addressing and therefore 

requires no extra cycles. Thus, fixed point 𝑚 × 𝑚 𝑏𝑖𝑡  vector 

multiplication requires 3𝑚 ∗ 𝑚 ∈ 𝑂(𝑚2) cycles, regardless of the 

vector size, N. Floating-point arithmetic for GP-SIMD is 

somewhat more complex to implement. Different exponents 

require shifting mantissas by different lengths, resulting in a 

sequence of bit-serial vector operations. IEEE single precision 

floating-point vector multiplication takes close to 2500 cycles, 

regardless of the length of the dataset, N. 

C. Associative Operations 

GP-SIMD, besides being a massively parallel SIMD 

accelerator, can implement classical CAM operations such as 

associative search, sorting and ordering. The CAM allows 

comparing all data words to a key, tagging the matching words, and 

possibly reading some or all tagged words one by one. Consider a 

large vector, where each element is m bits wide, illustrated by 

column A in Figure 2. The Sequential processor wishes to find all 

elements in vector A matching a certain Key of m bits, and reset the 

matched values of A (that is, A[i|A[i]==Key]=0). The sequential 

CPU issues a compare immediate of Key on column A, storing the 

single bit-slice compare results output in register RD. At this point, 

register RD has logic one in all rows where A matches the Key and 

zero elsewhere. Next, a masked write is performed by the 

sequential processor only to flagged rows of the memory array. To 

that end, the output of RD enables writing of each memory row 

(RD_INST bus is set to ‘10’), and the sequential processor writes 

‘0’ to the A column of the memory array. Only the matching rows 

are enabled for writing, and the A values of only these rows are 

reset. Elsewhere, in non-matching rows, the A values are left 

unaffected. 

Content-addressable access is achieved as follows. Assume that 

the memory array contains a vector of unique indices (A), adjacent 

to a vector of data (B). Comparing vector A with a key, followed 

by setting the RD_INST Bus to ‘10’ while issuing read to the 

memory array, allows the sequential processor to fetch a single 

value of vector B, corresponding to the row in which vector A 

matched the Key (that is, Output=B[i|A[i]==Key]). When multiple 

rows match the key, the values must be read one by one. Further, a 

portion of GP-SIMD memory grid may be programed to mimic bit-

serial TCAM [2].  

D. Interconnection Network  

Since GP-SIMD processing operation is mainly bitwise, the 

interconnection can be a relatively simple circuit-switched 

network. An example of an efficient network is a logarithmic ±k 

nearest neighbor, forming N-bit shift register. Assuming each PU 

has a single bit direct access to its ±𝑌  neighbors, where 𝑌 ∈
{1,2,4, … , 𝑙𝑜𝑔2𝑁} , transferring in parallel an entire vector of N 

rows (a slice of the shared array) by H rows up/down entails a 

maximum of 𝑂(𝑚 + 𝑚log2 (𝐻)) cycles, independent of the vector 

size, N. Note that if 𝐻 ⊂ 𝑌 , the transfer time entails O(2𝑚) ∈
O(𝑚) cycles.  

E. Reduction Tree 

A common reduction operation sums up a large array of values. 

Consider a vector A of N fixed point m-bit elements, as illustrated 

in Figure 2. Further, consider a hardware reduction tree 

implemented using a pipelined binary adder tree. The first level of 

the tree sums two single bits from two adjacent PUs. Following 

log2 𝑁 levels, the scalar sum of the entire array becomes available. 

The fixed precision summation of vector A entails reading a single 

column slice of vector A, LSB first, and summing this column via 

the reduction tree. The addition is carried out simultaneously for 

all vector elements, column-slice at a time until all m columns have 

been processed. In a similar manner, the reduction tree having 

floating-point adders, sums up a large array of floating-point 

values. Further, rather than waiting for the reduction tree operation 

to complete, the tree can be operated in pipeline fashion. In such a 

case it takes O(m) cycles to store a set of m-bit values into the tree, 

and from that point the GP-SIMD can start working on the next set. 

F. GP-SIMD Performance Summary 

Consider a data set having two m-bit N-element vectors A and 

B. TABLE 3 summarizes the arithmetic/logic performance of the 

GP-SIMD processor, as analyzed in the previous sections. 

 
TABLE 3: ARITHMETIC/LOGIC PERFORMANCE 

Command Performance (cycles) 
Read/Write(address) 𝑂(1) 

Cmp(A, Immediate) 𝑂(𝑚) 

Conditional Write (address) 𝑂(1) 

FP Add/Sub/Mult(A, B) 2500 

HW Reduction tree 𝑂(m) 

 

Write and read delays in GP-SIMD are identical to those of a 

conventional SRAM. Since both SRAM write and read delays in 

contemporary technologies are well under 300ps [19], the GP-

SIMD can be operated at or above 3GHz. The matrix 

multiplication algorithms presented in this paper utilize the 



 

 

sequential processor. The sequential processor is a baseline 

microprocessor, similar to that of [12], with a simple 4 stage 

pipeline and a typical instruction set including arithmetic/logic, 

memory access and control instructions. A single-precision 

floating-point addition and multiplication in the CPU is assumed 

to be performed in a single pipeline stage. 

As described in [2], 8 million PU array (256 bits per memory 

row) would occupy close to 200mm2 in 22nm technology. 

IV. MATRIX MULTIPLICATION ON GP-SIMD 

In this section we describe the implementation of dense and 

sparse matrix multiplication algorithms on GP-SIMD. We assume 

two input matrices, the N×M multiplier matrix A and M×L 

multiplicand matrix B, are stored in the GP-SIMD memory in the 

Coordinate List (COO) format, where nonzero elements are stored 

along with their row and column indices. The output 𝐶 = 𝐴 × 𝐵 is 

of dimension N×L. Figure 4 illustrates the COO storage format of 

two 2×2 dense matrices; the PUs of the GP-SIMD are shown to the 

left. Note that the GP-SIMD storage may have large number of 

memory columns (typically, 256). These memory columns may be 

grouped together into fields, each representing a variable, flag, etc. 

Note also that, for efficient implementation, the multiplicand 

matrix B is stored in a transposed form. Further, each column of 

the multiplicand matrix B is stored in a number of memory rows 

round up to the nearest power of two (2 memory rows in the 

figure).  

 
Figure 4. GP-SIMD COO storage format 

 

In this example, the value field (Val) is allocated 32 bit-slices 

(memory columns 0:31) to accommodate a single precision 

floating-point number. The Row and Col fields are allocated 1 bit-

slice each (memory columns 32:33). 

A. Dense Matrix Multiplication 

Dense matrix multiplication is explained by means of the 

example of Figure 4. Element 𝐴1,1  is to be multiplied by all 

elements of the first row of matrix B, to form two singleton 

products. In the same manner, 𝐴1,2  is to be multiplied by all 

elements of the second row of the multiplicand matrix B, to form 

two singleton products, and so on. We thus have three main 

procedures: 

 Broadcast: match the row-elements of B with the appropriate 

column-elements of A (namely, match 𝐴∗,𝑖 with 𝐵𝑖,∗). 

 Multiply: multiply pairs of matched elements  

 Reduce: add the singleton products together 

The broadcast procedure is performed as a sequence of associative 

operations on the sequential processor, while Multiply and Reduce 

are performed as parallel operations on the SIMD processor, as 

follows. In GP-SIMD, the sequential processor can associatively 

match rows of memory array with a Key of k bits (in O(k) cycles, 

cf. Sect. C). Once executed, all rows matching the Key are tagged 

(RD of the tagged rows contain ‘1’).  The sequential processor can 

then execute associative read/write from/to the tagged rows (in 

O(1) cycles), achieving Broadcast.  

 

 
Figure 5. Broadcast, 2x2 Figure 6. Broadcast, 2xL 

 

Figure 5 and Figure 6 illustrate two general cases of broadcast, 

while Figure 7 and Figure 8 demonstrate Broadcast and Multiply 

on the example of Figure 4. Starting from the first row of A, the 

sequential processor fetches 𝐴1,1 and 𝐴1,2, broadcasting them one 

by one to the appropriate rows of B (into temporary field 𝑇1), as 

follows: 

1. Element 𝐴1,1 is read by the sequential processor (O(1) cycles), 

2. The Row index fields of B are compared with the column 

index of 𝐴1,1  (‘1’) and matching memory rows are tagged  

(O(1) cycles), 

3. 𝐴1,1 is written into field 𝑇1 of the tagged rows  (O(1) cycles). 

Thus, broadcasting a single element of A into matching pairs of B 

takes three cycles. In the general case, for N×M multiplier matrix, 

Broadcast entails 𝑂(𝑁 𝑙𝑜𝑔𝑀) cycles. Once all elements of the first 

row of matrix A are broadcast into the appropriate places (as 

depicted in Figure 7), a single floating-point multiplication is 

performed, and M×N singleton products are stored (as illustrated 

in Figure 8). 

 

 
Figure 7. Broadcast Figure 8. Multiply 

 

Since the multiplicand matrix B is transposed, the sum of the 

singletons residing in rows 5 and 6 yields 𝐶1,1, the first element of 

the output matrix, and the sum of singletons residing in rows 7, 8 

yields 𝐶1,2. The Reduction process is effectively implemented by 

the hardware reduction tree. For single precision floating-point 

vector summation, the hardware reduction tree takes about 32 

cycles (bit-serially feeding  the 32 bits of the numbers into the tree, 

which subsequently reduces these number off-line in a pipeline 

fashion) and  following the transfer of these singletons into the tree, 

processing of the next matrix row (Broadcast and Multiply) is 

initiated. The outputs of reduction tree are fed directly to the 

sequential processor, that stores the computed elements of C into 

the designated memory addresses. 

Although we detailed a single precision floating-point 

Broadcast, Multiply, and Reduce procedures, any operand 

wordlength may be considered. Further, although the example 

shows matrices A and B stored in separate PUs and memory rows, 



 

 

typically they would be stored side by side to enable handling 

larger matrices. 

The hardware reduction tree of floating-point operands entails 

considerable area penalty. For effective implementation, note that 

Reduce follows a very long Multiply procedure of 2500 cycles. 

Pipelined Multiply-Reduce is thus preferable, in which a single 

floating-point accumulator can serially add up to 2500 singleton 

products, before piping its results to the next level of the tree. With 

that, the area and power of the reduction tree is kept at bay. 

The Broadcast, Multiply, and Reduce procedures are now 

repeated for the next row of the multiplier matrix A, until all rows 

have been processed. The pseudo code of the algorithm is depicted 

in Figure 9. It includes two nested loops. The external loop goes 

over the rows of matrix A. The internal loop performs Broadcast 

of all row elements of A. 

  

Dimensions:  

 A: Multiplier, N×M single precision floating-point matrix 

 B: Multiplicand, M×L single precision floating-point matrix 

Data structure: 

 COO: each element accompanied by its row and col indices 

Memory column fields: 

 A and B: 32b single precision  

 ROW_INDEX: COO row index, max(log(N),log(L)) bits 

 COL_INDEX: COO column index, log(M) bits 

 T: 32b single precision temporary. Used to store singletons 

 

GP-SIMD-DMM(A, B) 

 Clear column-field T  ~32 cycles 

 For all A rows i=1:N 

  Broadcast: For all A columns j=1:M 

   Read A[i,j] by sequential CPU  ~1 cycle 

   Tag all rows in B that have ROW_INDEX == j  O(log(M)) 

   Conditional write A[i,j] to T in tagged rows  ~1 cycle 

  Multiply: Multiply B by T, store the results into T  

  Reduce: Reduction tree on column-field T 

  Store outputs in designated space 

end  

Figure 9. GP-SIMD DMM pseudo code 

 

The complexity of the algorithm is as follows: 

𝑁[𝑀(1 + log
2

𝑀 + 1) + 𝐶𝑀𝑢𝑙𝑡 + 𝐶𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛] (2) 

where 𝐶𝑀𝑢𝑙𝑡 = 2500 cycles and 𝐶𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 32 cycles.  

Note that for large N, M, the complexity of GP-SIMD DMM 

approaches 𝑂(𝑁𝑀 log2 𝑀)  and 𝑂(𝑁2  log2 𝑁)  for square 

matrices. For example, the estimated complexity of multiplying 

a 10,000×10,000 matrix A exceeds 1B cycles. 

The GP-SIMD DMM algorithm may also be used for 

multiplying dense matrix by dense vector, but it takes the same 

number of cycles regardless of the number of columns (L) of B (as 

illustrated in Figure 6). Thus, the efficiency of the GP-SIMD DMM 

algorithm grows with the number of columns of the multiplicand 

matrix B (efficiency is defined as the number of actually performed 

arithmetic operations divided by the number of PUs times total 

cycle count, namely the maximum number of operations possible 

during the execution time). 

B. Sparse Matrix Multiplication 

In this section we describe the implementation of multiplication 

of sparse matrix A by dense matrix B. The algorithm is similar to 

dense matrix multiplication (Sect. A) but instead of processing all 

N×M elements of A, we only process the nonzero elements: 

 Broadcast is executed only for nonzero elements of A, 

 Multiply and Reduce are performed only for nonzero rows of 

A. 

The pseudo code of the GP-SIMD SpMM algorithm is depicted in 

Figure 10. 

 

Dimensions:  

 A: Multiplier, N×M single precision floating-point sparse matrix 

 B: Multiplicand, M×L single precision floating-point dense matrix 

Data structure: 

 COO: each element accompanied by its row and col indices 

Memory column fields: 

 A and B: 32b single precision  

 ROW_INDEX: COO row index, max(log(N),log(L)) bits 

 COL_INDEX: COO column index, log(M) bits 

 T: 32b single precision temporary. Used to store singletons 

 

GP-SIMD-SpMM(A, B) 

 Clear column-field T  ~32 cycles 

 Last_row=1; 

 While (not end of matrix A)  

  Broadcast: Read the next value of A  ~1 cycle 

      Store the element’s row index into current_row_index 

  If(Last_row<current_row_index) 

   Multiply: Multiply B by T, store the results into T  

   Reduce: Reduction tree on column-field T 

   Store outputs in designated space 

   For i=1: current_row_index- Last_row-1  //skip empty rows 

    Store zero outputs in designated space 

   Last_row=current_row_index; 

   Clear column-field T  ~32 cycles 

  Broadcast: Tag all rows in B that have ROW_INDEX == j  O(log(M)) 

  Broadcast: Conditional write A[i,j] to tagged column T  ~1 cycle 

end  

Figure 10. GP-SIMD SpMM pseudo code 

 

The complexity of GP-SIMD SpMM is approximately 

𝑁𝑁𝑁𝑍[𝑀𝑁𝑁𝑍(1 + log
2

𝑀 + 1) + 𝐶𝑀𝑢𝑙𝑡 + 𝐶𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛] (3) 

where 𝑁𝑁𝑁𝑍  is the number of nonzero rows of matrix A and 

𝑀𝑁𝑁𝑍  is the average number of nonzero elements per row 

(equal to number of nonzero elements of the multiplier matrix 

A, denoted by 𝐴𝑁𝑁𝑍, divided by 𝑁𝑁𝑁𝑍). Thus, for large 𝑁𝑁𝑁𝑍, 

𝑀𝑁𝑁𝑍 , the complexity of the algorithm approaches 

𝑂(𝐴𝑁𝑁𝑍 log2 𝑀) . For example, given sparse 10,000×10,000 

matrix A with only 1,000 nonzero elements (10-5 density) and 

large 𝑀𝑁𝑁𝑍 , the complexity of GP-SIMD SpMM is about 

16,000  cycles, 10-5 times shorter than GP-SIMD DMM. 

Similar to the GP-SIMD DMM algorithm, GP-SIMD SpMM 

efficiency grows with the number of columns in the 

multiplicand matrix B. 



 

 

Note that GP-SIMD SpMM is similar to GP-SIMD DMM, 

except for several cycles spent by the sequential processor 

handling matrix indices. It is thus preferable to employ the GP-

SIMD SpMM algorithm even for dense matrices (with a minor 

modification for skipping zero elements). Hence, in the 

following  section, only the results of GP-SIMD SpMM cycle 

accurate simulations are presented.  

V. CYCLE ACCURATE SIMULATIONS  

The GP-SIMD simulator [2] is used to quantify performance 

and power of the GP-SIMD SpMM. The experimental setup, 

matrix statistics and simulation results are described in this section.  

A. Experimental Setup 

To simulate sparse matrix multiplication, we use 1,000 floating-

point square matrices with the number of nonzero elements 

spanning from one hundred thousand to eight million, randomly 

selected from the collection of sparse matrices from the University 

of Florida [39]. Figure 11 presents the selected test-set. 

 

 

Figure 11. University of Florida Sparse Matrix Collection, (a) Matrix 

dimension vs. average number of nonzero elements per row, (b) Histogram of 

the average number of nonzero elements per row 

We simulate the dense and sparse matrix multiplication using 

the GP-SIMD simulator [2]. Each pair of matrix elements and the 

resulting singleton product are processed by a single GP-SIMD 

processing unit. Simulations are performed on Intel® XEON™ 

C5549 processor with 32GB RAM, and simulation times for the 

100K—8M nonzero element matrices range between few minutes 

and few tens of hours. The simulator is cycle based, keeping record 

of the state of each register of each PU and of the memory row 

assigned to it. Each command (for example, floating-point 

multiply) is broken down to a series of fine-grain single bit PU 

operations. In a similar manner to SimpleScalar [8], the simulator 

also keeps track of the registers, buses and memory cells that 

switch during execution. With the switching activity and area 

power models of each baseline operation detailed in [2], the 

simulator tracks the total energy consumed during workload 

execution.  

As detailed in earlier sections, GP-SIMD performance depends 

on the data wordlength rather than on data set size. If matrix 

elements are presented in a floating-point format, the wordlength 

is 32 bit (IEEE754 single precision). Data set size in SpMM 

typically equals the number of nonzero elements in the sparse 

matrix.  

B. SpMM Cycle Accurate Simulations 

In this section we compare our cycle accurate simulations 

results with those of nVidea K20 [10], Intel XEON PHI [10] and 

Associative Processor (AP) [22]. Although the efficiency of the 

presented GP-SIMD SpMM algorithm grows with the number of 

columns L of matrix B, for fair comparison we will limit our 

analysis to multiplicand (B) matrices having 16 columns, as used 

in [10]. Further, we assume a GP-SIMD having 8 million PUs 

having an area of approximately 200mm2 in standard 22nm 

technology [2]. We consider test-case sparse multiplier matrices A 

having 1M columns or less and up to 8M nonzero elements, and 

dense multiplicand matrices B with 16 columns. Figure 12 presents 

the sparse by dense matrix multiplication execution times 

employing the GP-SIMD SpMM algorithm of Section IV for these 

matrices.   

 

 
Figure 12. Execution cycles vs. number of nonzero elements 

 

Note the spread in execution times (per each number of nonzero 

elements) caused by the sensitivity of the GP-SIMD SpMM 

algorithm to the average number of nonzero elements per row. For 

two matrices with a similar number of nonzero elements, the 

difference of two orders of magnitude in the average number of 

nonzero elements per row results in a similar difference in the 

execution time. This sensitivity of performance to the average 

number of nonzero elements per row is shared, although possibly 

to a lesser extent, by conventional SpMV and SpMM 

implementations (on GPU or multicore) [15][40]. Since the 

average of nonzero elements per row in our test-set is somewhat 
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capped (see Figure 11(b)), as the number of nonzero elements 

grows, so does the average number of rows and columns of 

matrices. Execution time of Broadcast depends on the number of 

columns of matrix A (cf. Sect. IV). 
 

 
Figure. 13. Performance (GFLOPs) vs. average number of nonzero elements 

per row 

 

The performance the GP-SIMD SpMM algorithm as a function 

of the average number of nonzero elements per row is presented in 

Figure. 13. The figure demonstrates a close to logarithmic 

dependency of the GP-SIMD SpMM algorithm performance on the 

average number of nonzero elements per row. Hence, if the average 

number of nonzero elements per row is small (which is consistently 

the case in the University of Florida collection matrices), the 

effectiveness of the GP-SIMD SpMM algorithm is limited. GP-

SIMD SpMM algorithm is least efficient for diagonal matrices, 

where there is only about one multiplication per nonzero row. On 

the other end of the efficiency scale is dense matrix multiplication, 

where the Multiply procedure is applied to 𝑀 ∙ 𝐿 elements of the 

multiplicand matrix B in parallel, per each matrix row.  

 

 
Figure 14. Performance (GFLOPs) vs. number of nonzero elements 

 

The performance the GP-SIMD SpMM, AP, and two 

commercial processors (Intel XEON-PHI and K20 [10]) as 

functions of the number of nonzero elements is presented in Figure 

14, and the simulated power consumption of the GP-SIMD SpMM, 

and AP (as well as reported power of NVidia K20 [34]) is presented 

in Figure 15(a). 

  

 
Figure 15. (a) Power consumption (Watt) vs. average number of nonzero 

elements per row. (b) Power efficiency (GFLOPs/W) vs. average number of 
nonzero elements per row 

 

The GP-SIMD SpMM power efficiency is in the range of 0.1 to 

100 GFLOPS/W (see Figure 15(b)). The power efficiency declines 

with the number of nonzero elements (requiring higher power 

consumption). The SpMM/SpMV power efficiency of advanced 

contemporary GPUs such as NVidia’s K20 and GTX660 is in the 

0.1-0.5 GFLOPS/W range [34]. A wide variety of multicore 

processors such as quad-core AMD Opteron 2214, quad-core Intel 

Xeon E5345, eight-core Sun UltraSparc T2+ T5140 and eight-SPE 

IBM QS20 Cell reportedly reach the SpMM power efficiency of 

up to 0.03 GFLOPS/W [38]. Several FPGA SpMV and SpMM 

implementation were proposed (for example [24] [20]), however 

these studies focused on optimization of performance or energy-

delay, and power dissipation figures were not reported. The GP-

SIMD and AP power efficiency advantage stem from in-memory 

computing (there are no data transfers between processing units 

and memory hierarchies) and from low-power design made 

possible by the very small size of each processing unit.  

A noticeable limitation of the GP-SIMD SpMM algorithm is the 

sequential processing of matrix rows (the outer loop of Figure 10). 

A parallelization of matrix row processing may significantly 

improve the performance of the GP-SIMD SpMM algorithm. For 

example, diagonal matrices can easily be processed in a row-

parallel manner when there is only one nonzero singleton product 

per each matrix row.  
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VI. CONCLUSIONS 

We investigate an efficient implementation of dense and sparse 

matrix multiplication for the GP-SIMD, and simulate sparse matrix 

multiplication using a large variety of sparse matrices. Dense N×M 

matrix multiplication algorithm has a computational complexity of 

𝑂(𝑁𝑀 log2 𝑀)  and the efficiency grows with the number of 

columns of the multiplicand matrix. Further, sparse matrix 

multiplication has a computational complexity of 𝑂(𝐴𝑁𝑁𝑍 log2 𝑀) 

(where 𝐴𝑁𝑁𝑍 is the number of nonzero elements of the multiplier 

matrix), and the efficiency grows with the number of multiplier 

matrix’s average nonzero elements per row, and with the number 

of multiplicand matrix’s columns. 

Lastly, we show that GP-SIMD sparse matrix multiplication is 

more power-efficient than conventional GPU or multicore based 

solutions. 
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