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H-EARtH: Heterogeneous Platform Energy Management  
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Abstract—The Heterogeneous EARtH algorithm aim at finding the optimal platform energy point of a 

heterogeneous cores  CPU by selecting the right core and changing the  voltage and frequency of operation. The 

algorithm is based on a theoretical model employing a small number of parameters, which are extracted from real 

systems using off-line and run-time methods. The model and algorithm have been validated using a cycle accurate 

simulation, and on real systems using 45nm, 32nm and 22nm Intel® Core processors. The Heterogeneous EARtH 

algorithm can save an average of 21% energy with up to 33% savings, compared with symmetric  core architecture, 

and up to 44% compared with the commonly used fixed frequency policies in the heterogeneous CPU.  

1. INTRODUCTION 

Energy consumption of modern compute platforms 

has become a major concern with the growth in data 

center and client computers deployment. DVFS (Dy-

namic Voltage and Frequency Scaling) is the most ef-

fective method for achieving the best performance for a 

given power budget by controlling the voltage and fre-

quency of the CPU.  

Existing systems use demand based algorithms [1] 

or Service Level Agreement (SLA) control methods in 

data centers [2] in order to minimize energy consump-

tion. Recently, new multicore based products introduce 

heterogeneous core architectures that combine fast, 

high power cores with slower, power efficient cores 

aiming at even better energy efficiency. Such architec-

tures include either asymmetric cores, sharing the same 

micro-architecture possibly using different process and 

design targets [3], [4], or heterogeneous cores which 

use different micro-architectures targeting different en-

ergy efficiency levels [5]. These architectures use low 

power cores when energy efficiency is required and use 

the big core for high performance operations. Indeed all 

the above methods assume that smaller core or lower 

DVFS points are more energy efficient. However, con-

trolling CPU power has limited impact on the overall 

energy efficiency of the computing platform due to en-

ergy consumption of other platform components:  

While lowering the core’s voltage and frequency, or us-

ing a power efficient core, decreases core power and en-

ergy, computation time is lengthened, resulting in an in-

crease of energy consumed by other platform compo-

nents [17][18]. When that energy is significant, an al-

ternative policy, Race to Halt (RtH) [7][17], has been 

proposed where the CPU is operated at its maximum 

performance point in order to complete computation as 

soon as possible and turn off the entire platform. Alter-

natively, when the platform and CPU energy are more 

balanced, a mid-point over the DVFS scale may result 

in lower total energy, as shown by the EARtH algorithm 

[18] and as demonstrated in Fig. 1. In this paper, these 

findings are extended to heterogeneous multicores. 

Fig. 1 [18] exemplifies energy consumption of a 

platform as a function CPU voltage and frequency. The 

target performance is achievable by operating at f1 or 

faster. When the CPU power dominates total power, the 

energy follows the dotted curve, and minimum energy 

is achieved when the CPU operates at f1. Indeed, this 

model is assumed in many existing designs [1] and 

studies [6]. Using a power efficient core further reduces 

the total energy consumption. More recently, when 

power dissipation in the rest of the platform has been 

considered, it has been realized that when the rest of the 

platform consumes significantly high power compared 

to the CPU, platform energy follows the dashed curve, 

and the most energy efficient policy is Race to Halt 

(RtH) [7][17]. In such a case, the use of a slower, power 

efficient core might not be desired. In many practical 

systems, however, power is balanced between CPU and 

the rest of the platform and energy is represented by the 

solid curve in Fig 1 above. Previous work [18] has 

shown that in a homogeneous system, the minimum en-

ergy point may happen at some intermediate frequency. 

Furthermore, [18] has introduced the run-time algo-

 

Figure 1: Conceptual total energy in three different plat-

forms. The minimum energy point depends on which por-

tion of the platform dominates power consumption: LFM 

for CPU dominance, max frequency when rest of platform 

dominates, and EARtH point when power is balanced. 

[18] 
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rithm EARtH to identify and track that minimum en-

ergy working point. As we extend the study to hetero-

geneous systems, it is not obvious whether the fast, high 

power core, or the slow, energy efficient core, will re-

sult in the best platform energy consumption. This pa-

per demonstrates this observation for the first time and 

presents a novel heterogeneous Energy Aware Race to 

Halt (H-EARtH) algorithm that identifies the minimum 

energy point at run time for heterogeneous CPUs. It 

identifies at run time which core to use and at what fre-

quency, in order to achieve the global minimum plat-

form energy. The paper also validates the H-EARtH al-

gorithm by measurements on real platforms and by cy-

cle accurate simulations.  

When considering a minimum energy point, rele-

vant factors that affect power and performance should 

be accounted for. The relation of frequency to perfor-

mance or overall execution time depends on parameters 

such as CPU and platform architecture, workload-de-

pendent memory access patterns and memory organiza-

tion. Core micro-architecture in a heterogeneous CPU 

greatly affects the power and the overall workload run 

time.  In this research we evaluate both asymmetric and 

heterogeneous CPUs. Other relevant parameters in-

clude platform and CPU power as functions of work-

load, core type and voltage frequency operating point. 

The H-EARtH algorithm presented in this paper ac-

counts for all these parameters, and the paper demon-

strates collecting them on real platforms and cross pre-

dicting the parameters from the active core to a different 

type of non-active core at run time. To measure asym-

metric cores, we instrumented platforms with two types 

of the Intel® Core i7 processors manufactured on 45, 

32 and 22nm processes: A standard voltage CPU used 

as the high performance  core, and an Ultra-Low Volt-

age (ULV) CPU for the power efficient core. The algo-

rithm was tested using 37 different benchmarks and at 

different temperatures.  To evaluate heterogeneous 

cores, we used Intel® ATOM™ core, simulated with 

the unified interconnect and memory hierarchy, for the 

small, energy efficient core of the heterogeneous CPU. 

The paper shows that the H-EARtH algorithm achieves 

the optimal minimum platform energy accuracy of 

2.2%. We demonstrate that heterogeneous CPU, which 

is operated at this optimal H-EARtH point, achieves an 

average of 21% energy savings with up to 33% savings 

compared to a homogeneous CPU.  The H-EARtH al-

gorithm can save up to 44% energy compared to either 

of the two fixed frequency policies, Race-to-Halt (RtH) 

and Lowest-Frequency-Mode (LFM) operating points. 

The accuracy of the cross prediction of parameter was 

0.62%. In a real system, the actual operation point will 

be at or above that calculated minimum, according to 

the SLA requirements set by the operating system. Run-

ning slower, or with a smaller core is not energy effi-

cient. 

 

This paper makes the following observations and con-

tributions: 

 An energy efficient core does not always lead to an 

energy efficient platform. Minimum platform energy 

may be achieved at an intermediate processor fre-

quency on either a big core or a small core. 

 A heterogeneous CPU offers an energy efficient plat-

form, but achieving this energy efficiency requires 

selecting the proper core and frequency.  

 An analytical model identifies the most energy effi-

cient core and calculates the minimum energy fre-

quency, using a small number of parameters. 

 H-EARtH algorithm finds the optimal energy point 

(core type and frequency) in real platforms at run 

time. The algorithm is based on the required CPU and 

platform parameters, some produced offline and oth-

ers collected at run time. 

 It is possible to accurately cross-predict the non-ac-

tive core parameters from a different type of active 

core at run time.                                                                                                                              

 H-EARtH algorithm and the model are evaluated on 

different core designs, process generations and mi-

cro-architectures. The model predictions are vali-

dated on real platforms and by cycle accurate simula-

tions.  

2. THE THEORETICAL MODEL 

We first review the platform energy model of homo-

geneous cores [18] in Sect. 2.1 and extend it to hetero-

geneous cores in Sect. 2.2. 

2.1 Homogeneous core 

A workload run can be characterized as two distinct 

phases, active and idle, as described in Fig 2. The active 

  

Figure 2: Conceptual platform power over time while CPU 

is in active and idle states. Platform power is divided into 

continuous power and power that can be turned off when 

CPU execution ends.  

Platform run time power

Platform constant power

tCPU tMEM

CPU 

Idle

CPU Active power

Time

P
ow

er



HETEROGENEOUS EARTH – ENERGY AWARE RACE TO HALT 3 

 

 

phase is further split into interleaved off-chip memory-

bound intervals (tMEM) and CPU-bound intervals 

(tCPU) [9],[10], [11]. While changing the CPU frequency 

changes the CPU run-time inversely proportional to the 

frequency, off-chip memory-bound intervals are not af-

fected by CPU frequency. Rather than measuring the 

time intervals directly, we used the method described 

below. Furthermore, the energy efficient cores utilize a 

simpler mechanism to overcome the memory wall and 

therefore have  a higher tC and same tMEM using the same 

interconnect. 

At first glance the power and energy consumption 

of modern platforms as a function of CPU frequency 

seem hard to predict. However, once the different power 

and energy components are properly categorized, order 

emerges. We categorize power dissipation into the fol-

lowing components: 

 CPU power (dashed Orange in Fig. 2), consumed at 

run time, comprising both dynamic and leakage parts, 

having nonlinear dependency on frequency and volt-

age.  

 Platform active power, dissipated by the platform as 

a result of workload activity, and can be further di-

vided into two sub categories: 

 Fixed energy (not shown in Fig 2): During work-

load execution, a fixed amount of data is trans-

ferred to and from memory, disk drives, etc. If 

spread over longer time, the power is lower and 

vice versa but the energy for each transaction is 

constant. This activity is a function of the applica-

tion foot print in memory and disk and does not de-

pend on CPU frequency and therefore translates to 

fixed energy.  

 Constant runtime power (solid Green in Fig. 2):  

Memory and peripheral devices may consume 

power as long as there is activity in the system. 

That power can be turned off during platform idle 

times. The energy impact of this power is propor-

tional to the run time of the workload and therefore 

inversely proportional to CPU frequency. 

 Platform constant power (Light Yellow in Fig. 2) 

dissipated by the platform regardless of workload 

activity (display, DDR self-refresh, etc.). Unlike 

runtime power, it is not turned off. Existing tech-

niques can minimize this portion of the platform 

power [17].  

We look for the minimum of the sum of all these energy 

components. CPU frequency affects the energy result-

ing from only CPU power and platform active constant 

power, and hence the optimization process focuses on 

them. While other, more complex dependencies exist 

on the platform, our study shows that those are second 

order effects and can be ignored by the model with min-

imal impact on overall accuracy. 

The platform energy model is described by the fol-

lowing parameters: 

 

f0 - Reference lowest frequency of the CPU  
fc - Frequency, relative to f0. fc = factual / f0.  
tc - CPU bound run-time at fc. tc0 is tc at f0 

tm - Memory bound run-time, fixed for all fc 

P0 - Lowest CPU power consumed at f0 

Pc - CPU power at fc. Power scales as a function 
of  frequency Pc = P0F(fc).  

Pl - Platform active constant power at fc. 

Given the above notations, the frequency-dependent 

part Ef  of platform energy is: 

 

(1) 𝐸𝑓 = (𝑡𝑐 + 𝑡𝑚) ∙ (𝑃𝑐 + 𝑃𝑙) = (
𝑡𝑐0

𝑓𝑐
+ 𝑡𝑚) ∙ (𝑃0 ∙

𝐹(𝑓𝑐 )  + 𝑃𝑙) 
 

For the purpose of optimization it is also more con-

venient to consider energy relative to the platform en-

ergy 𝐸𝑓0 at the reference point 𝑓0. Dividing equation (1) 

by the same equation with 𝑡𝑐 = 𝑡𝑐0 yields: 

 

 

(2) 
𝐸𝑓

𝐸𝑓0
=

(
𝑡𝑐0
𝑓𝑐

+𝑡𝑚)∙(𝑃𝑐𝑜∙𝐹(𝑓𝑐 )+𝑃𝑙)

(𝑡𝑐0+𝑡𝑚)∗(𝑃𝑐𝑜 +𝑃𝑙)
= (

𝑡𝑐0

(𝑡𝑐0+𝑡𝑚)
∙

1

𝑓𝑐
+

𝑡𝑚

(𝑡𝑐0+𝑡𝑚)
) ∙ (

𝑃𝑐0

(𝑃𝑐0+𝑃𝑙)
∙ 𝐹(𝑓𝑐 ) +

𝑃𝑙

(𝑃𝑐0+𝑃𝑙)
) 

 

We define two platform and workload terms. One is 

CPU to Platform Power Ratio (CPR), namely the ratio 

between CPU power at 𝑓0 and total platform power: 

 

𝐶𝑃𝑅 =
𝑃𝑐0

(𝑃𝑐0+𝑃𝑙)
 ;     Clearly  1 − 𝐶𝑃𝑅 =

𝑃𝑙

(𝑃𝑐0+𝑃𝑙)
 

 

The CPU power is a function of workload charac-

teristics while the components of platform power that 

impact CPR are not dependent on the workload. CPR 

can be calculated as described in Sect. 3. Note that leak-

age power dependency on temperature is accounted for 

in this power measurement.  CPR1 implies that the 

platform power is dominated by CPU power, while 

CPR0 implies that the rest of the platform dominates 

the total platform power; in real platforms, CPR lies in 

between these two extremes. 

The second parameter we define is scalability, the 

ratio of CPU-bound time to total execution time, com-

puted at f0. We define workload scalability (SCA) as: 

 

𝑆𝐶𝐴 =
𝑡𝑐0

(𝑡𝑐0+𝑡𝑚)
 , and clearly 1 − 𝑆𝐶𝐴 =

𝑡𝑚

(𝑡𝑐0+𝑡𝑚)
 

 

SCA is a workload characteristic that represents the 

performance dependency on CPU frequency. High 
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scalability (SCA1) indicates that performance is CPU 

bound and tightly related to frequency, while low scala-

bility (SCA0) indicates that the performance is 

memory bound and not impacted by frequency. On 

modern CPU architectures it is not possible to measure 

workload time intervals tc and tm directly because they 

are tightly interleaved. SCA, however, can be extracted 

at run time by collecting execution parameters, as ex-

plained in Sect. 3. 

The platform energy can now be expressed as: 

(3) 
𝐸𝑓

𝐸𝑓0
= (𝑆𝐶𝐴 ∙

1

𝑓𝑐
+ 1 − 𝑆𝐶𝐴) ∙ (𝐶𝑃𝑅 ∙ 𝐹(𝑓𝑐 ) + 1 − 𝐶𝑃𝑅) 

To minimize energy, we need to find the frequency 

that minimizes Equation (3). This equation implies that 

the relative platform energy is a function of overall run 

time (which is inversely related to frequency), of the 

CPU power (reflected in F(fc), depending non-linearly 

on frequency), and of SCA and CPR, characteristics of 

the platform and the workload. A typical core power is 

a polynomial function of frequency 𝑃𝑐 ∝ 𝑓𝑐
α with α in 

the range of 1.5 – 3, but the algorithm applies to any 

function that properly describes the power to frequency 

dependency. The platform constant power component 

Pl does not depend on the workload; it is characterized 

once for this optimization. The platform components 

that do not depend on the workload, do not impact the 

optimal frequency as described above.  

2.2 Heterogeneous core 

We now extend the model to heterogeneous cores. 

We focus on multithreaded workloads, although the al-

gorithm applies to single threaded workloads as well 

(Figure 13 and Figure 14). In our heterogeneous core, 

at any given time, only one core type is active and we 

can calculate the CPR and SCA values only for that ac-

tive core at run time. It is therefore needed to predict the 

parameters of the non-active core from the active core. 

The interconnect and the memory architecture of our 

heterogeneous CPU are shared, and therefore tm for both 

big and small cores are equal. We approximate the 

runtime of the CPU bounded portion on the big vs. 

small core as a fixed ratio: k×tc_big = tc_small.  Using a 

fixed k is only an approximation, e.g., if the big core has 

a bigger floating-point unit, workloads that use it exten-

sively might benefit more than others. A balanced mix 

of different instructions reduces this variance. We eval-

uate this model on a real system and using simulations. 

We have defined above: 

 

𝑆𝐶𝐴 =
𝑡𝑐0

(𝑡𝑐0+𝑡𝑚)
 , and clearly 1 − 𝑆𝐶𝐴 =

𝑡𝑚

(𝑡𝑐0+𝑡𝑚)
 

 

Dividing the two equations (using indices b for the big 

core and s for the small one): 

 
𝑡𝑐𝑏

𝑡𝑚
=

𝑆𝐶𝐴𝑏

1−𝑆𝐶𝐴𝑏
 , and    

𝐾∗𝑡𝑐𝑏

𝑡𝑚
=

𝑆𝐶𝐴𝑠

1−𝑆𝐶𝐴𝑠
 

 

Finally: 

(4) 
𝑆𝐶𝐴𝑠

1−𝑆𝐶𝐴𝑠
=

𝐾∗𝑆𝐶𝐴𝑏

1−𝑆𝐶𝐴𝑏
 

 

Equation (4) provides a function to calculate the scala-

bility of a non-active core based on the measured SCA 

of the active core at run-time (with a known k).  

Equation (3) expresses the energy in relative terms. 

Note that E0 of the small core is lower than the big core 

energy at the same reference frequency. In order to 

compare the energy, we need to place the energy on a 

common scale: 

 

(5) 
𝐸0𝑏

𝐸0s
=

𝑃0𝑏 ∗𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑏

𝑃0𝑠 ∗𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑠
 

 

The power at the reference point is measured at system 

configuration as described in Sect. 3. We use fixed dy-

namic power ratio to predict CPU power and extract 

CPR. To calculate the run time of a workload we now 

divide 1-SCA of the big core by the small core:  

 

(6) 
𝑡𝑐𝑠+𝑡𝑚

𝑡𝑐𝑏+𝑡𝑚
=

𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑠

𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑏
=

1−𝑆𝐶𝐴𝑏

1−𝑆𝐶𝐴𝑠
 

 
Using (5) and (6) we can compare the energy of big and 

small cores on a common scale and minimize overall 

energy using (3). Equations (3), (5) and (6) constitute a 

theoretical model that allows calculating the global 

minimum energy operating point for a given workload 

at runtime. Here, the ‘operating point’ is the combina-

tion of core type, operating voltage and frequency. The 

rest of the paper demonstrates how to practically imple-

ment the theoretical model on real systems, evaluate the 

accuracy of the implementation and evaluate the energy 

savings achieved.  

3. HETEROGENEOUS  H-EARTH 

ALGORITHM 

We propose the H-EARtH algorithm as described in 

Fig. 3 below and validate its predictions on real sys-

tems. It implements the theoretical model above at 

runtime.  The core selection is performed as follows: 

the minimum energy frequency is calculated using 

Equation (3) individually for each core type and 

brought to a common scale using equations (5) and (6). 

The lowest energy between the cores is selected. The H-

EARtH algorithm requires a one-time characterization 
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procedure at platform production and a run time mod-

ule. At system production the CPU and platform power 

are measured at several frequencies. Based on these 

measurements 𝑃(𝑓𝑐) for each core type are obtained and 

stored in a non-volatile memory for future use by the H- 

EARtH algorithm. In the case of polynomial depend-

ency𝑃𝑐 ∝ 𝑓𝑐
α, only 𝛼 for each core is stored. Measuring 

Pl directly is not possible. We use linear extrapolation 

to zero frequency to calculate Pl. Note that in practical 

implementations this procedure can be done once for a 

platform model and a BIOS procedure can update the 

values based on system actual configuration such as 

DDR memory type and size. The k ratio between the big 

and small cores is measures on a single, 100% scalable 

application.  At run time, the H-EARtH algorithm cal-

culates CPR and SCA as follows. 

Calculating CPR requires the knowledge of CPU 

power consumption at runtime. Several methods have 

been proposed in the past to predict the CPU power 

based on micro architectural event counters 

[12],[13],[15]. Furthermore, modern CPUs report this 

value via a built-in power metering, which is used in 

this study [14]. CPR is then calculated as: 

 

𝐶𝑃𝑅 =
𝑃𝑐0

(𝑃𝑐0 + 𝑃𝑙)
 

Calculating SCA, which represents how perfor-

mance (application run time) scales with frequency.  

Scalability depends on memory access patterns. Previ-

ous work [9],[10],[11] have used memory access pat-

terns to perform DVFS for power performance optimi-

zations. Furthermore, new CPUs (e.g., Intel® Core™ 

Sandy Bridge) use memory stalls counters to generate 

scalability metric [18] and optimize energy consump-

tion in active CPU states; that metric has been used in 

this study. The SCA value of the non-active core is cal-

culated using equation (4).  

The H-EARtH algorithm described in Fig. 3 works 

as follows: One time setting of the computing platform 

is required. This setup requires measuring Pl and char-

acterizing each of the cores power as a function of volt-

age and frequency, and storing the results in a non-vol-

atile memory for future use. At runtime, the H-EARtH 

algorithm is performed once every time interval and 

calculates CPR and SCA. In our study we evaluated 

these parameters every 1mSec and performed voltage 

and frequency decisions every 10mSec. The H-EARtH 

algorithm is executed on the currently active core but 

the CPR, SCA and Ef0 are calculated for each type of 

core. The algorithm then searches for 𝑓𝑐 that minimizes 

Equation (3) separately for each of the cores. In our 

study we used a linear search. There is small number of 

valid frequency points (8 in our implementation) and 

therefore the computational overhead is very small. The 

calculated energy of the cores is compared and the core 

type that results in minimum energy is selected for the 

next time interval. Finally, the optimal frequency is 

combined with the frequency requested by the operat-

ing system based on the required level of service. The 

energy savings results in this paper are measured with-

out any minimum service level requirements. They rep-

resent the maximum energy savings potential. Lower 

energy savings will be achieved if the CPU is driven by 

the operating system to a higher frequency in order to 

deliver higher performance.   

 

4. INSIGHTS FROM THE THEORETICAL 

MODEL 

We evaluate Equations (3), (5) and (6) and extract 

some practical insights. This section is merely a para-

metric study of the theoretical model. The actual meas-

ured results of real workloads are described in Sect. 5.  

CPR1 implies that the platform power is dominated 

by the CPU and the least frequency mode (LFM) policy 

is preferable. Furthermore, the smaller, more power ef-

ficient core may further improve energy efficiency. For 

CPR0, the power is dominated by the platform and 

RtH policy on the big core should achieve lower energy 

H-EARtH Algorithm  
 
// Parameter initialization. Offline characterization at  
// system design. Parameters stored in, or loaded by 

BIOS at power up 
  
Get Pl    // Get Platform Run Time Power 

Get α    // Characterize F(fc); Function can be 
// polynomial, table or other. 

 
// Run time optimization control 
 
Every time interval { 
    For each core { 

Pc = CPU power  // Sample CPU power me-
ter;  

// internal meter or calcu-
lated 

 CPR = Pc/(Pc+Pl) 

 Get SCA  // Read CPU monitor or use 
// collected statistics. 

Fopt=min((𝑆𝐶𝐴 ∙
1

𝑓𝑐
+ 1 − 𝑆𝐶𝐴) ∙ 

(𝐶𝑃𝑅 ∙ 𝑓𝑐
∝ + 1 − 𝐶𝑃𝑅))  

      over valid frequencies 
  Freq = Get Operating System frequency request 

F(resolved) = max(Fopt, Freq) 
        } 

Scale energy
𝐸𝑓

𝐸𝑓0
 to a common reference using equations 

(5) and (6). Select the core with minimum energy 
} 
 

Figure 3: The H-EARtH algorithm 
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consumption; the smaller core typically does not help 

reduce energy any further—it may actually result in 

higher energy consumption. While previous works 

[10],[11],[17] were limited to these two frequency ex-

tremes, we extend the analysis to the entire range in be-

tween and these extreme points become special cases of 

the model. Fig. 4 illustrates the relative energy as a 

function of frequency for different SCA and CPR value.  

Fig. 4a describes the relative total energy as a func-

tion of CPU frequency and different SCA values, where 

CPR is fixed in this example at some typical value of 

20%. The minimum energy point is marked on each 

chart by a red dot. A low SCA value (uppermost line 

chart) implies that the application is mostly memory-

bound and therefore increasing the CPU frequency does 

not reduce the run time significantly. Running the CPU 

at higher frequency increases the CPU power and en-

ergy. The total platform energy however is not be re-

duced enough to compensate for the higher CPU power. 

The optimal frequency for low SCA values is therefore 

as low as possible. For higher SCA values (lower lines 

on the chart) the run time scales well with CPU fre-

quency and therefore the platform energy savings are 

higher than energy for workloads with low SCA.  Sim-

ilarly, Fig 4b exemplifies the total energy consumption 

for different CPR values while keeping SCA fixed at 1. 

The top chart indicates high CPR, caused by high CPU 

power relative to the platform. Optimal policy obvi-

ously would be running the CPU at lowest frequency 

and saving power of the highest power component. 

As demonstrated in the charts of Fig. 4, the analyti-

cal model suggests that there is an optimal frequency 

point which assures the minimum overall energy for a 

computational task. This frequency either lies within 

the operating frequency range, or falls on one of the 

boundaries. If the minimum resides on the minimum 

frequency point, the correct policy would be running at 

LFM. If the minimum resides on the maximum fre-

quency point, the correct policy would be RtH. The op-

timal operating point is a function of two runtime pa-

rameters, SCA and CPR. In this study we find these pa-

rameters and select the operating frequency that mini-

mizes platform energy consumption. 

Fig. 5 exemplifies the parametric behavior of the H-

EARtH algorithm for asymmetric and heterogeneous 

core CPUs such as [3], [4], [5]. We demonstrate the al-

gorithm such that low power core’s highest frequency 

equals the high performance core’s lowest frequency. In 

this demonstration, selecting the small core results in 

lower power at every point to the left of the cross-over 

point in Fig. 5, and on the right of that point the big core 

leads to lower power. In our actual run time study, this 

crossover point is a function of the workload behavior 

and is evaluated at run time. Fig. 5 describes the total 

platform relative energy and the optimal frequency in 

similar format to Fig. 4. Observe in Fig. 5a that in sev-

eral scenarios, the low power core running at its highest 

frequency provides the lowest platform energy. In Fig. 

5b we can see that at low power workloads with high 

scalability, however, the high performance core pro-

vides lower platform energy while high power work-

loads with low scalability are best run on the low power 

core and lower frequency.    

As described above, the theoretical model supports 

the claim that the minimum energy can be achieved at 

either the big or the small core and at an intermediate 

frequency points. For a heterogeneous core, we observe 

that the small, low power core is not always the most 

energy efficient selection for total platform energy man-

agement as suggested in prior studies. The right core 

that minimizes energy consumption for performing a 

computational task is platform and workload depend-

ent. There is no single policy that can meet all condi-

tions. The H-EARtH algorithm is designed as a runtime 

tool to calculate this optimal frequency point and select 

 

 

Figure 4a: Modeled platform energy for different SCA 

values 

 

 
 
Figure 4b: Modeled platform energy for different CPR 

values 
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the right core to perform the computational task at min-

imum energy consumption. It performs this selection on 

the fly, and can change voltage, frequency and core se-

lection every time interval, in order to meet changes in 

execution phases.  

 

Figure 5a: Platform energy for asymmetric CPU platform 

for different CPR values with SCA=1 

 

Figure 5b: Platform energy for asymmetric CPU platform 

for different SCA values with CPR = 0.15 

5. MEASUREMENTS AND SIMULATIONS 

In this section we implement the H-EARtH algo-

rithm on a real system with two core types and also sim-

ulate a third core type. The measurements and simula-

tions validate our predictions. In the real system, we im-

plemented a software driver that collected parameters at 

run time and performed voltage and frequency scaling. 

We show the accuracy of CPR and SCA. We achieve 

the minimum energy working point and show signifi-

cant platform energy savings.  

We first describe our measurement system and val-

idate SCA computations and minimum energy predic-

tions in Sect. 5.1. We then describe the measurements 

in Sect. 5.2 and 5.3, and add simulations in Sect. 5.4. 

5.1 Real System Validation 

We validate the predictions of the EARtH algorithm 

on platforms employing state-of-the-art 45nm (Intel® 

Core™ 2 Duo T9900), 32nm (Intel® Core™ 2 Duo 

2860QM) and 22nm (Intel® Core™ 2 Duo 3840QM) 

processors. Fig. 6 [18] describes measured energy of 

one workload in a real system that demonstrates the ex-

istence of a minimum total energy point in an interme-

diate frequency. 

 

 

Figure 6: Energy consumption of the CPU, platform and 

total energy measured on a 32nm Intel® Core™ 2 duo, 

running SPEC2006. The measurements demonstrate the 

existence of minimum energy consumption at an interme-

diate frequency point [18] 

We present our measurements on two types of pro-

cessors: a standard voltage Intel® Core™ 2 Duo 

2860QM (measured α~2.4) and an Ultra-Low Voltage 

Intel® Core™ 2 Duo 2677M (measured α~1.5) in-

tended for Ultrabook computers. The platforms were 

instrumented to measure the CPU power, various plat-

form components and the total platform power. We used 

a set of 37 components of Spec-2000, Spec-2006 and 

SYSmark [16] at two different case temperatures 45C, 

60C, on the two CPUs at 8 different frequencies. 

 

Validating SCA: We have developed a scalability 

predictor using a set of micro architectural event coun-

ters and collected the scalability value of the selected 

set of workloads. The actual scalability value is calcu-

lated from the workload run time at different frequen-

cies. Fig. 7 compares the predicted and actually meas-

ured scalability values. It does not include the training 

set, used for calibrating the scalability predictor. The ac-

curacy of prediction vs. actual value in Fig. 7 is 5.3%. 

 

 Platform Energy: The actual measured minimum 

energy achieved (per workload, temperature and over 

all frequencies) served as our reference.  The H-EARtH 

algorithm suggested an optimal frequency, and the sug-

gestions resulted in energies that were within 2.2% of 
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our reference. 

 

Figure 7: scalability predictor vs. measured scalability 

5.2 Symmetric CPU 

The symmetric core study was done [18] using the 

run time implementation of the earlier EARtH algo-

rithm. A software driver collected power and scalability 

metrics and performed DVFS on the system at real time. 

Data was collected every 1mSec and frequency changes 

were limited to a single change every 10mSec. The 

measurements where repeated for each CPU type. Fig. 

8.a, 8.b and Tab. I [18] show the potential energy sav-

ings of EARtH algorithm compared to two static fre-

quency policies. The horizontal axis lists all benchmark 

runs, sorted in each chart according to the energy sav-

ings level. Evidently, RtH is the better static policy for 

the low voltage CPU because the power cost of higher 

frequency is low compared to the rest of the platform. 

On the other hand, for the standard voltage CPU, LFM 

rather than RtH is the better static policy, because the 

CPU consumes higher power. For comparison, a policy 

that randomly selects the frequency is also shown. 

While the random frequency policy may save energy 

relative to one static frequency policy or another, 

EARtH algorithm outperforms all three policies. 

 

5.3 Asymmetric CPU 

In this study, we constructed a model of a CPU con-

sisting of quad high power high frequency cores and 

quad low power slow cores. Both types of cores have 

the same microarchitecture and are equal in area. Not 

having a real CPU with asymmetric cores, the study was 

performed separately on two CPUs and the results were 

combined by an offline model. The energy for each of 

the workloads was measures at 8 different frequencies 

that were held fixed for the entire workload run. CPU 

and platform energy were collected and compared with 

the different policies offline. For each workload, we se-

lected the lowest energy run from all frequencies and 

cores, referred to as the “optimal point”. First, we verify 

the claim that the asymmetric CPU offers better energy 

efficiency than a symmetric CPU with big cores only. 

For each workload we compare the global minimum en-

ergy consumption point (on either the fast or the slow 

cores) to the optimum operating point of the fast core. 

Fig. 9 plots this energy savings for all workloads sorted. 

Zero in this chart indicates that the optimal operation 

point is achieved on the fast core and therefore does not 

benefit from asymmetric CPU. The asymmetric core 

achieves up to 31% platform energy savings with an av-

erage of 13% over the entire workload set. 
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Figure 8: energy savings of EARtH algorithm for (a) low 

voltage CPU and (b) standard voltage CPU compared to 

LFM, RtH and random frequency policies [18] 

 
Table I: Average and maximum energy savings of earth 

compared to a static policy [18] 

ENERGY SAVINGS STANDARD 

CPU (FAST) 

LOW VOLTAGE 

CPU (SLOW) 

AVERAGE OVER RTH 15.9% 1.6% 

MAX OVER RTH 33.1% 15.2% 

AVERAGE OVER LFM 4.8% 18.4% 

MAX OVER LFM 17.0% 43.6% 
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Figure 9: Energy savings of Asymmetric core compared to 

a CPU consisting fast cores only 

 Fig. 10 plots the energy savings of the optimal point 

compared to fixed policies LFM and RtH on each core 

type. Energy saving is sorted low to high, individually 

for each core. S in the chart legend and in Tab. II stands 

for Slow core while F stands for Fast core.  

 

Figure 10: Energy savings of the optimal point compared 

to fixed policies LFM and RtH on each core type.  

Tab. II summarizes the best policy occurrences, i.e., the 

ratio of workloads achieve minimum platform energy at 

each policy. H-EARtH in the table indicates an interme-

diate frequency other than RtH or LFM.   

Table II: The number of best policy occurrences that 

achieve minimum platform energy at each policy 

Policy Occurrences 

S-H-EARtH 28% 

S-RtH 63% 

F-LFM 4% 

F-H-EARtH 5% 

It can be seen in Fig. 9 and Tab. II that the best fixed 

policy in most of the workloads is running the small 

core at its maximum frequency (63% of the workloads). 

Using this fixed policy, however, results in more than 

one third of the workloads running at sub-optimal fre-

quency. The H-EARtH algorithm accurately identifies 

these occurrences and can save up to 16% platform en-

ergy (the highest point on the S-RtH chart in Fig. 10). 

Compared to other fixed policies, H-EARtH algorithm 

can save up to 44% of platform energy (the highest level 

in Fig. 10). The slow core is integrated on the CPU in 

order to save energy and, in most cases, it does. In our 

study, however, we observed that in 9% of the cases the 

fast core is more energy efficient than using the slow 

core (the F- rows in Tab. II). 

5.4 Heterogeneous CPU 

The heterogeneous core study was performed using a 

full SoC cycle accurate simulator with power modeling. 

The model consisted of two 3rd generation Intel® 

Core™ as the big cores and four ATOM™ small cores 

(Bay Trail) sharing the same interconnect. We assumed 

that the area of two small cores equal to the area of one 

big core. At any one time, either the big cores or the 

small cores are active (but not both), while the non-ac-

tive cores are turned off and do not consume power. We 

simulated a set of multi-threaded SPEC components at 

the 8 different frequencies and collected power and per-

formance scores. The small cores can run four threads 

simultaneously while the big cores run two threads. The 

impact on power and performance for each workload is 

extracted using the simulator. We use the H-EARtH al-

gorithm to find the optimal frequency that minimizes 

energy consumption of the entire platform for each 

workload and for each core type independently. While 

in the asymmetric CPU study of Sect. 5.3 we allowed 

changing the frequency every 10mSec, in this simulated 

study we use a single frequency for the entire run of a 

workload, as determined by the H-EARtH algorithm 

using parameter averages. Since the simulator simulates 

only the CPU, the Pl parameter for the rest of the plat-

form was adopted from the real system study of Sect. 

5.3. We compare the minimum possible energy that can 

be achieved on any core of the heterogeneous CPU (ei-

ther the big or the small core) compared to the minimum 

energy that is achieved on a homogeneous CPU consist-

ing of only big cores. Fig. 11 plots the energy savings 

of the heterogeneous CPU compared to a homogeneous 

CPU for all 37 workloads at the two temperatures, 

sorted in increasing order.  The left most 9% of the ap-

plications achieve the lowest energy by using the big 

core (yielding no energy savings on the heterogeneous 

CPU). The remaining 91% of the applications benefit 

from the heterogeneous architecture and 31% of them 

achieve the maximum of 33% energy savings by using 
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the small cores of the heterogeneous CPU.  The average 

energy savings of the heterogeneous CPU over the big 

core CPU in our system is 21%. 

 

Figure 11: Energy savings of the heterogeneous CPU com-

pared to a big core homogeneous CPU running H-EARtH 

algorithm 

Figure 12 plots the sensitivity of the energy savings to 

platform power Pl. While in the simulated study we em-

ployed specific values of Pl, 

Figure 12 presents other scenarios that may be relevant 

in other types of platforms. We modified the platform 

power ratio from 35% to 90% of total power and plot 

the number of workloads that benefit from heterogene-

ous CPU compared to big core only. Our real machine 

platform power is highlights in the chart (70%). As ex-

pected, high power platforms benefit more from big 

core because running fast and going idle minimizes the 

relatively high energy consumption of the platform. 

Note: the power of our platform may seem high; this is 

because the ratio is given at the reference point, with 

minimum frequency and voltage. Our platform runtime 

power is only 15% out of the entire power while run-

ning the CPU at its highest voltage and frequency, a 

typical value for Core™ platforms [19].   

Single threaded applications utilize only part of the 

available cores. As a result, the power of fewer cores is 

smaller compared to the rest of the platform. Further-

more, having several small cores at the same area as a 

big core benefits only multi-threaded applications. The 

big core has better single threaded performance than the 

small core. In this study, all the single threaded applica-

tions we tested resulted with lower energy consumption 

on the big core than the small core. The small core is 

beneficial only in very low power platforms (Figure 

13). Furthermore, Single-threaded workloads achieve 

the minimum platform energy at a higher frequencies 

then multi-threaded workloads (Figure 14).  

 

Figure 12: Portion of multi-threaded workload that 

achieves lower energy on big or small cores, as a function 
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of platform power  

 
Figure 13: Portion of single-threaded workload that 

achieves lower energy on big or small cores, as a function 

of platform power 

 

 
Figure 14: Single- and multi-threaded optimal frequen-

cies. On average, optimal single-threaded frequency is 

28% higher than multi-threaded 

 

Extracting SCA of the idle core from the running 

core: We tested the accuracy of Equation (4) using the 

simulator. We ran 8 workloads at the 8 different fre-

quencies and measured the SCA for both big and small 

cores. In our simulation, k=1.31. We compared the 

measured SCA value to the calculated vale. The results 

are shown in Figure 15. The prediction accuracy aver-

age is 0.62% with standard deviation of 0.52%. 

 

 
Figure 15: predicted vs. measures SCA from the active 

core type to the idle core and vice versa 

6. RELATED WORK 

We survey related work in the following four do-

mains. Sect. 6.1 describes previous research on CPU 

energy conservation methods. Adapting voltage and 

frequency to minimize platform (rather than mere CPU) 

power or energy is discussed in Sect. 6.2, and papers on 

characterizing various parameters on-line are studied in 

Sect. 6.3. Finally, Sect. 6.4 surveys asymmetric cores. 

6.1 CPU energy conservation methods 

Prior research considered on-chip vs. off-chip activ-

ity in the context of DVFS.  Hsu & Feng [10] proposed 

the β adaptive algorithm for effective energy perfor-

mance tradeoffs. The β value represented on- vs. off- 

chip time. It was used to reduce DVFS frequency at off-

chip time intervals in order to trade energy for perfor-

mance. Kihwan et al. [9] presented a similar concept 

where off-chip to on-chip ratio was used for fine grain 

DVFS aiming at optimizing a similar metric of energy 

to performance tradeoff. Isci et al. [11] proposed a 

method to predict memory bound phases and reduce 

voltage and frequency. That method is extended in our 

study, adding additional micro architectural counters 

for better prediction of scalability. Furthermore, we 

show that CPU power (CPR in particular) also needs to 

be accounted for.     

Elyada et al. [20] considered also quality of service 

considerations in energy-performance tradeoff of  

DVFS, and proposed a method for energy savings using 

DVFS while meeting QoS requirement.  

Ogras et al. [21] evaluated DVFS in the context of 

multiple voltage and clock domains in GALS architec-

ture and used the lower voltage and frequency as a 

means to reduce energy.  

Meisner et al. [17] proposed PowerNap method for 

platform energy savings using RtH policy, finish the 

work and bring the power of the platform to a very low 

power as fast as possible. They concluded that in some 
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workload profiles, PowerNap outperforms DVFS meth-

ods. In their study, the system idle power was 60%. 

Modern server platforms such as Intel® Romley have 

reduced this idle power to as low as 20% [19]. Further-

more, applying the EARtH algorithm to the active por-

tions of such method further improves energy efficiency 

of the platform [18].  

6.2 Voltage and frequency for platform 
optimal working point 

Dhiman at al. [7] evaluated the platform energy con-

sumption at different DVFS policies of a 4 core AMD 

platform. They also showed that memory access profile 

of an application affected the energy and performance 

impacts of DVFS. They showed diminishing energy 

savings potential of DVFS for the total platform. Daw-

son-Haggerty et al. [22] evaluated total platform energy 

of Atom 330 and Intel ® Core 2 Duo and reached a sim-

ilar conclusion, that the best policy for minimizing en-

ergy is ‘Hurry to Sleep.’ The conclusion is based on the 

observation that there is a fixed component of high plat-

form power.  

Each of the above studies considered either one of 

the two extreme scenarios: a platform that benefits from 

low frequency or a platform that benefit from a race to 

halt. Furthermore, no metric has been proposed to con-

clude which policy is better for a given platform and 

none of them considered intermediate frequency values. 

In contrast, this research considers the continuum in be-

tween these two extremes, and demonstrates that inter-

mediate scenarios exist. We further evaluate asymmet-

ric cores that extend the CPU power range and provide 

criteria for selecting the optimal core. 

6.3 On line parameters characterization 

This paper uses the run time power consumption of 

the workload and the frequency scalability that is 

caused by memory access patterns. Various studies have 

demonstrated the ability to track CPU power at run 

time. Bellosa [12] demonstrated the capability to pre-

dict CPU and DDR memory power at run time by using 

micro-architectural counters. Contreras & Mar-

tonosi [13] performed similar method on a X-Scale plat-

form. Joseph & Martonosi [15] and Isci & Mar-

tonosi [23] evaluated power of high performance CPU 

at runtime. Li et al. [24] studied total platform power. 

State of the art CPUs such as the Intel® Core™ 2 duo 

(Sandy Bridge) implement an internal energy monitor 

that reports accumulated energy and can be accessed at 

run-time by software [14]. Memory access patterns 

have been collected and used for power and energy con-

trol as described in section 2.1 above. High-end CPUs 

offer online activity profiling of memory activity and 

frequency scalability characteristics at run time [14].  

Both power characteristics and the memory access 

profile of the CPU determine the DVFS policy and are 

used as an input to the EARtH algorithm in this re-

search.  We used in this study both offline characteri-

zation and online monitoring and compared the results.

  

6.4 Asymmetric cores 

Heterogeneous cores have been studied as means to 

conserve energy. Kumar et al. [25] have proposed a 

same ISA, different micro architectures - EV4,5,6 and 

8 core. Workloads are scheduled to the different cores 

according to the workload characteristics and demon-

strate significant power savings for small performance 

penalty. The focus of their work is CPU power and en-

ergy with less focus on platform energy.  Recently two 

new asymmetric cores have been introduced. Marvell 

Armada 628 [4] integrates dual core built with high fre-

quency high leakage process together with a single core 

manufactured on a low leakage slower technology pro-

cess. NVIDIA presented Kal-El [3], five ARM Cortex 

A9 cores, four of which were manufactured on TSMC 

40nm general purpose (G) process and operate at 

1.4GHz and one core uses low power (LP) process and 

operates at 500MHz. Arm is offering heterogeneous 

“big little” core – two micro-architectures with the same 

architecture as a building block for heterogeneous CPU 

[3].  Both asymmetric and heterogeneous cores are 

evaluated in this study.  

7. CONCLUSIONS 

The paper showed that Asymmetric and Heteroge-

neous CPUs can perform a computational task at lower 

platform energy than a CPU with only big cores. We 

demonstrated average energy savings of 21% on all 

workloads with up to 33% savings on some workloads. 

The use of small cores, however, is not always energy 

efficient and an optimal use of the cores depends on 

platform and workload characteristics. Using the core 

that is not best suited for the workload and operating it 

at fixed frequency policy, results in up to 44% platform 

energy losses. The heterogeneous H-EARtH algorithm 

achieves the lowest platform energy required to com-

plete a computational task by selecting the right core 

type and controlling voltage and frequency of that core.  

We described an analytical model for finding the mini-

mum energy point, based on a small number of physical 

parameters, collected at production time and at runtime. 

The analytical model also allows the cross-prediction of 

non-active cores from the running core. The paper de-

scribed how to practically implement the analytical 

model on a real system and extract the required param-

eters on real platforms. We validated the H-EARtH al-

gorithm by measurements conducted on real platforms 
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with high and low power Intel® Core i7 CPUs manu-

factured on 45, 32 and 22nm processes. Energy con-

sumption of 37 benchmarks of the SPEC2000, 

SPEC2006 and SYSmark, at different ambient temper-

atures, was measured. The heterogeneous CPU was val-

idated using a cycle accurate simulator of ATOM™. We 

demonstrated the existence of minimum energy con-

sumption point of heterogeneous CPU platforms, and 

the ability to calculate that point at runtime with accu-

racy of 2.2%. In conclusion, the H-EARtH algorithm 

enhances energy-efficient usage of heterogeneous 

CPUs by enabling runtime core selection and energy 

management. 
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