
 

Convex Optimization of Resource Allocation in 
Asymmetric and Heterogeneous SoC 

Amir Morad 

Dept. of Electrical Engineering, 
Technion, Haifa 32000, Israel 

amirm@tx.technion.ac.il  

Leonid Yavits 

Dept. of Electrical Engineering, 
Technion, Haifa 32000, Israel 

yavits@tx.technion.ac.il 

Ran Ginosar 

Dept. of Electrical Engineering, 
Technion, Haifa 32000, Israel 

ran@ee.technion.ac.il  

Abstract—Chip area, power consumption, execution time, off-
chip memory bandwidth, overall cache miss rate and Network on 
Chip (NoC) capacity are limiting the scalability of SoCs. Consider 
a workload comprising a sequential and multiple concurrent tasks 
and asymmetric or heterogeneous SoC architecture. A convex 
optimization framework is proposed, for selecting the optimal set 
of processing cores and allocating area and power resources 
among them, the NoC and the last level cache, under constrained 
total area, total average power, total execution time and off-chip 
bandwidth. The framework relies on analytical performance and 
power models of the processing cores, NoC and last level cache as 
a function of their allocated resources. Due to practical 
implementation of the cores, the optimal architecture under 
constraints may exclude several of the cores. Several asymmetric 
and heterogeneous configurations are explored. Convex 
optimization is shown to extend optimizations based on Lagrange 
multipliers. We find that our framework obtains the optimal chip 
resources allocation over a wide spectrum of parameters and 
constraints, and thus can automate complex architectural design, 
analysis and verification. 

Keywords—Chip Multiprocessors, Modeling of computer 
architecture, Convex Optimization. 

I. INTRODUCTION 

With the growth of the number of transistors that can be 
integrated into a single silicon die, coupled with the growth of 
the available number heterogeneous building blocks available 
to the chip architect, finding the optimal architecture of a large 
scale SoC under rigid physical constraints such as area, power 
and available off-chip bandwidth, is extremely complex and 
time consuming. The chip architect must select, for example, 
the optimal number of integrated processing cores, the task 
allocation among the cores, the cache hierarchy configuration, 
the Network on a Chip (NoC) topology, and the resource 
allocation (e.g., area, power) among the hardware building 
blocks. In doing so, the chip architect must take into account 
the performance of each of the building blocks, as a function of 
the resources it consumes. To that end, analytical models for 
most building blocks of modern ICs (e.g., caches, NoC, 
processing units) have been researched, enabling the 
exploration of the chip design space in a reasonable timeframe. 

This work utilizes Convex Optimization [32] to optimize  
comprehensive SoC architecture for a given workload under 
constrained resources. The contributions of this work are: (a) 
Formulation and solution of execution time optimization under 
total area, total average power and off-chip bandwidth 
constraints; and discussion of (1) average power optimization 

under total area, execution time and off-chip bandwidth 
constraints; and (2) chip area optimization under execution 
time, total average power and off-chip bandwidth constraints, 
and (b) Extending the framework defined by [38] [8] and [7] 
by: 

 Considering several SoC building blocks, not just the 
processing elements; and,  

 Considering a workload containing both sequential and 
concurrent sections, as opposed to a series of either 
sequential or concurrent tasks; and, 

 Detailing the optimal allocation, rather than merely 
providing the necessary condition for optimality. 

The rest of this paper is organized as follows: Section II 
presents and discusses relevant related work. Section III 
proposes and investigates analytical models for common SoC 
building blocks. Section IV describes a convex optimization 
framework, and exemplifies it by deriving the optimal 
execution time of a resource constrained asymmetric and 
heterogeneous SoC. Section VI summarizes and concludes the 
paper. 

II. RELATED WORK 

Analytical models of common SoC building blocks of have 
been thoroughly studied. Polack [14] modeled the performance 
of modern CPUs as a square root function of the resource 
assigned to them. Liwei et al. [39] presented an analytical 
access time model for on-chip cache memories. Wilton et 
al. [34] described an analytical model for the access and cycle 
times of direct-mapped and set-associative caches. Tsai et 
al. [41] explored the architectural design of cache memories 
using 3D circuits. Muralimanohar et al. [27], [28] modeled non-
uniform cache access (NUCA). Krishna et al. [5] researched the 
optimal area allocation between cores and cache. Yavits et 
al. [19] developed an analytical model for cache hierarchy 
levels.  

A substantial body of literature explores NoC topologies and 
optimization. W. Liwei et al. proposed NoC buffer allocation 
algorithm. Ben-Itzhak et al. [40] modeled the delay of a 
wormhole routing based. Z. Guz et al. [43] introduce Nahalal, 
a non-uniform cache topology that enables fast access to shared 
data for all processors. 

Optimization framework consolidating common SoC 
building blocks have been extensively studied: Cassidy et 
al. [3] have optimized processor area, L2 cache area and the 
number of cores using Lagrange multipliers [29]. Oh et al. [35] 
presented an analytical model to study the trade-off of the core 
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count and the cache capacity in a CMP under area constraint. 
Alameldeen et al. [2] used analytical modeling to study the 
number of CMP cores vs. cache size. Wentzlaff et al. [13] 
introduced an analytic model analyzing larger caches vs. more 
cores. Huh et al. [17] compared the area and performance trade-
offs for CMP. Zhao et al. [21] analyzed considering total chip 
area and bandwidth limitations. Morad et al. [37] and Hill et 
al [22] augmented Amdahl’s law with a corollary to multicore 
architecture. S. Natarajan et al [33] evaluated the execution 
time of the serial and the parallel part of the application.  

Analytical models for power/energy optimization is well 
studied: Elyada et al. [4] minimized multicore execution time 
under energy criterion. Rotem et al. [4] studied the energy of a 
computing platform.  

The interactions between multiple parallel processors incur 
performance overheads. These overheads are a result of 
synchronization, communication and coherence costs. Morad et 
al. [37] modeled the synchronization, communication and 
coherence as a time penalty on Amdahl law. Yavits et al. [20] 
studied the overheads and proposed several workload-
dependent architecture insights. Lau et al. [15] introduced an 
extension to Hill and Marty’s model.  

Zaidenberg et al. [38] studied a resource constrained 
optimization framework for CMP. Morad et al. [7][8] proposed 
models that minimized sequential and concurrent execution 
time of heterogeneous and asymmetric SoC processing cores. 
The limitations of the frameworks presented in [38], [8] and [7] 
are: (a) modeling the processing cores, but not addressing 
common building blocks such as NoC and LLC; (a) modeling 
workloads containing either a sequence of  sequential 
heterogeneous tasks [38] [8], or modeling workloads 
containing a sequence of  concurrent sections [5], but not both 
together; (c) utilizing Lagrange multipliers thus identifying the 
necessary condition for optimality, but not the optimal point; 
and (d) modeling constrained area [38] [8], or constrained 
area/power designs [5], but not addressing off-chip bandwidth; 
and (e) solving for optimal execution time under area/power 
constraints, but not addressing optimization of power or area 
under constraints.  

When optimizing a modern SoC, the chip architect may need 
to optimize workloads containing both sequential and 
concurrent sections, and take into account additional building 
blocks such as caches and NoC while adhering to off-chip 
bandwidth limitations. Thus, the contribution of this paper is 
addressing a comprehensive research question: given (a) a SoC 
architecture consisting of last level cache (LLC), processing 
cores and a NoC interconnecting the cores and the LLC (see 

Figure 1); (b) workloads consisting of sequential and 

concurrent tasks (see Figure 2); and (c) physical resource 

constraints (area, power, execution time, off-chip bandwidth), 
what is the optimal selection of a subset of the available 
processing cores and what is the optimal resource allocation 
among all blocks. Further, the presented optimization 
methodology enables the SoC architect optimally select subset 
of the cores and allocate resources among the cores, LLC and 
NoC, without having to explore the design space in an iterative 
ad-hoc fashion. 
 

 

 

Figure 1. Typical SoC architecture 
containing several processing cores, 

LLC, NoC and Memory I/F. 

Figure 2. Typical workload 
consisting of seq. and 

concurrent tasks 

III. ANALYTICAL MODELS 

In this section, we propose and investigate an analytical 
model for common building blocks of modern multi-
processors. For each block, we model the delay (e.g., execution 
time, access time) and power, as a function of the resources it 
uses (e.g., area). 

A. Workload 

Consider a typical workload consisting of sequential as well 
as M concurrent tasks, as depicted in Figure 2. Further, consider 
a SoC comprising N cores, each capable of executing the 
following: 

 Sequential (un-parallelizable) section: The sequential 
portion of the workload cannot break into a finer 
granularity concurrent sub-tasks, and thus it is executed on 
a single core. The sequential section of the workload 
requires 𝑡0 seconds to execute on a reference processor of 
IPS=1 (Inst. Per Second). Any one of N available cores can 
accelerate the sequential section. The performance of core 

j is 𝑃𝑒𝑟𝑓𝑗(𝑎𝑗), relative to the performance on the reference 

processor, and is a function of its area 𝑎𝑗. The acceleration 

function 𝑓𝑗(𝑎𝑗)  represents the inverted performance of 

core j : 

𝑓𝑗(𝑎𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗)
 (1) 

The runtime of the sequential task running on core j having 

area 𝑎𝑗 is thus 𝑓𝑗(𝑎𝑗) ∙ 𝑡0.  

 Concurrent section: We assume that the concurrent portion 
of the workload is composed of M tasks, and each task may 
run on any core. In a similar manner to sequential 
processing, each concurrent task i of the workload requires 
time 𝑡𝑖 to execute on a reference processor of IPS=1. The 
runtime of the ith task running on core j having area 𝑎𝑗 is 

thus 𝑓𝑗(𝑎𝑗) ∙ 𝑡𝑖.  

 Sequential - parallel synchronization: Concurrency incurs 
data exchange between the sequential (first) core and the 
other cores at the beginning and the end of each concurrent 
section of the workload for subsequent processing. The 
data exchange entails transferring data from the LLC 
through the NoC into the private caches of the cores. 

The performance of a core increases when additional area 



 

 

resources are assigned to it. Therefore, the acceleration 
functions 𝑓𝑗(𝑎𝑗)  are strictly decreasing. We assume that the 

acceleration functions 𝑓𝑗(𝑎𝑗) are convex and are continuously 

differentiable. 
This paper studies the optimal resource allocation of a 

specific workload executing on application specific SoC, 
assuming that each task’s runtime on a reference processor is 
known in advance. Further, we assume that tasks runtime 
depends only on core’s speedup function at its designated area, 
power (in a similar manner to [14][3][37][22][38][8]). Our 
model, however, does account for microarchitecture differences 
as each core may have its own area- and power-to- performance 
model. Our model may be utilized to perform early stage 
exploration of a suitable architecture. Early architecture 
exploration based on theoretical abstracted model, can 
eliminate many design cycles and iterations and expand the 
choice of alternatives that are too numerous for actual design 
explorations. Early exploration does not utilize simulation, and 
thus saves design time. 

B. Processing Core 

Following [14] and [37], the core’s inverted performance 
may be written as follows (coefficients translating from area to 
performance units are scaled to unity): 

𝑓𝐶𝑜𝑟𝑒(𝑎𝐶𝑜𝑟𝑒) =
1

𝑎𝐶𝑜𝑟𝑒
𝛽

 (2) 

The exponent 𝛽  typically varies from 0.3 to 0.7 [31]. The 
higher the 𝛽, the stronger the core is. For the purpose of our 
optimization framework, following [7], we modify the 
acceleration function (1) of core j to depend on both its area 𝑎𝑗 

and its dynamic power 𝑝𝑗, as follows: 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
 (3) 

Note that 𝑝𝑗  represents actual power dissipated in core j 

rather than the maximum power that can be consumed by that 
core, as determined by its area, maximum voltage, maximum 
frequency and other physical constraints; for instance, it is 
possible that at some optimum point for the entire chip, a 
particular core is operated at 𝑝𝑗 < 𝑃max 𝑗.  

Area is a static resource, i.e., it does not change during 
execution. Static power depends on temperature [18], and 
temperature, in turn, depends on power density (related to 
dynamic power). We shall separate the static power 
consumption of the core into two components, idle static power, 
and temperature induced static power. Assume that the SoC 
employs Dynamic Voltage and Frequency Scaling (DVFS). 
The idle static power is annotated as a manufacturing 
technology related constant 𝑠1  multiplied by the core’s 
allocated area 𝑎𝑗 representing the static power when: (a) gate 

temperature is at the low end of the operating conditions range; 
(b) core voltage is at the low end of the DVFS voltage range; 
and, (c) core frequency is at the low end of the DVFS frequency 
range. Within the normal operating temperature range (say, 
55°C–85°C), leakage power consumption may be estimated 
using a linear function of temperature [42]. We can thus express 
the temperature induced static power as a manufacturing 
technology related constant 𝑠2 times its dynamic power 𝑝𝑗. 

𝑃𝑃𝑟𝑜𝑐−𝑆𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑠1𝑎𝑗 + 𝑠2𝑝𝑗

𝑗=𝑁

𝑗=1
 (4) 

Note that in our analysis we choose to ignore floorplan-
induced leakage power, that is, temperature increase due to the 
heat generated by adjacent cores. Given that the cores have 
large enough radial shape, floorplan induced leakage is limited 
to the boundary and hence is a second order effect on total 
leakage. Note however that this assumption may not always 
hold. Given that the SoC employs DVFS, each core’s frequency 
corresponds to its power budget, 𝑝𝑗 , enabling clocking at a 

range of frequencies, from zero (when the core is idle) to 𝐹𝑚𝑎𝑥 
(maximal frequency possible by the operating conditions and 
the physical constraints of the design). The maximal dynamic 
power of core j can be written as follows: 

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗𝑉𝑚𝑎𝑥
2  (5) 

where 𝛼1  is the activity factor. Voltage is inversely 
proportional to gate delay, and thus it is proportional to 
frequency 𝑉max 𝑗 = 𝛼2𝐹max 𝑗, where 𝛼2 is a constant translating 

Hz to Volts. Capacitance 𝐶𝑗  is proportional to area 𝑎𝑗 , 𝐶𝑗 =
𝛼3𝑎j . Assume that all cores are subject to the same activity 

factor 𝛼1. Assume further that all cores are driven by the same 
voltage range (∀𝑗, 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥). We can write (5) as: 

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗(𝛼2𝐹max 𝑗)
2

= 𝛼𝑎𝑗𝐹max 𝑗
3  (6) 

where 𝛼  is a constant absorbing 𝛼1, 𝛼2  and 𝛼3 . We can also 

model 𝑃𝑚𝑎𝑥 𝑗 = 𝑐𝑗𝑎𝑗 , where 𝑐𝑗 = 𝛼𝐹max 𝑗
3  is a constant 

translating units of area to power, in agreement with [1] 
and [25]. Next, assume that each core is driven at some 
operating frequency, 𝐹oper 𝑗 , dissipating dynamic power 𝑝𝑗 . 

Following (6): 

𝑝𝑗 = 𝛼𝑎𝑗𝐹oper 𝑗
3  (7) 

Equation (7) complements [30] who noted through an 
empirical study that a typical CPU power is a polynomial 
function of frequency 𝑝𝑐𝑜𝑟𝑒 ∝ 𝑓𝜂  where 𝜂  typically ranges 
from 1.5 (in a low power manufacturing technology) to 2.4 (in 
a high performance manufacturing technology). The present 
theoretical analysis leads to 𝜂 = 3  instead, but any other 
number will do and will not significantly change our results. 
We annotate the normalized frequency of the core as 𝐹𝑛𝑜𝑟𝑚 𝑗, 

ranging from 0 (core is idle) to 1 (core is driven at maximal 
frequency corresponding to operating conditions and physical 
constraints of the design). Thus: 

𝐹𝑛𝑜𝑟𝑚 𝑗 =
𝐹𝑜𝑝𝑒𝑟 𝑗

𝐹𝑚𝑎𝑥 𝑗

= (
𝑝𝑗

𝑃𝑚𝑎𝑥 𝑗

)

1/3

= (
𝑝𝑗

𝑐𝑗𝑎𝑗

)

1/3

 (8) 

Even when assigned with infinite power budget, the core’s 
operating frequency cannot exceed its maximum frequency 
determined by the physical constraints of the design, thus (8) is 
revised as follows: 

𝐹𝑛𝑜𝑟𝑚 𝑗 = min ((
𝑝𝑗

𝑐𝑗𝑎𝑗

)

1/3

, 1) (9) 



 

 

Since the core’s inverted performance is modeled as a power 
law with respect to its allocated area, we can write the 
acceleration function of a core as follows: 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑎𝑗
𝛽𝑗

1

𝐹𝑛𝑜𝑟𝑚 𝑗

=
1

𝑎𝑗
𝛽𝑗

𝑚𝑎𝑥 ((
𝑐𝑗𝑎𝑗

𝑝𝑗

)

1/3

, 1) (10) 

Note that if core j is assigned with null power (𝑝𝑗 = 0), 𝑓𝑗 →
∞. Conversely, if core j is assigned with infinite power (𝑝𝑗 →

∞), 𝑓𝑗 → 𝑎𝑗
−𝛽𝑗 . While considering asymmetric architectures, 

we focus on homogenous tasks and exclude task heterogeneity 
(for example, certain tasks may benefit from larger cache sizes, 
others may benefit from larger branch prediction buffer, etc.). 
Thus, we assume that tasks runtime depends only on the core’s 
speedup function at its designated area. Given the core areas 
𝐴𝐶𝑜𝑟𝑒 = {𝑎1, … , 𝑎𝑁} , and power allocation 𝑃𝐶𝑜𝑟𝑒 =
{𝑝1, … , 𝑝𝑁}, the execution time 𝑡0 of the sequential portion of 
the workload is determined by the fastest available core, thus: 

𝑇𝑆𝑒𝑞 ≜ ∑ 𝑓𝑗(𝑎𝑗 , 𝑃𝑆𝑒𝑞)

𝑁

𝑗=1

𝑏0,𝑗𝑡0 (11) 

where, at the optimal point: 

𝑏𝑖,𝑗 = {1 ∶    𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ  𝑐𝑜𝑟𝑒
0 ∶                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

Note that when the sequential portion of the workload is 
executed on some core, the dynamic power that is assigned to 
all other cores becomes available to it (up to its maximum 
possible power 𝑐𝑗𝑎𝑗), thus: 

𝑃𝑆𝑒𝑞 = 𝑃𝑃𝑟𝑜𝑐−𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑝𝑖

𝑁

𝑖=1

 

Note further that a task is assigned to a single core. The area 
and power of core j, namely (𝑎𝑗 , 𝑝𝑗) , may be 0 or positive, 

respectively. Core j execution time of the concurrent tasks 
assigned to it is: 

𝑇𝑗 ≜ ∑ 𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
𝑖=𝑀

𝑖=1
𝑏𝑖,𝑗𝑡𝑖 = 𝑓𝑗(𝑎𝑗 , 𝑝𝑗) ∑ 𝑏𝑖,𝑗𝑡𝑖

𝑖=𝑀

𝑖=1
 (13) 

The total execution time of the concurrent section of the 
workload 𝑇𝐶𝑜𝑛  , is determined by the last core to finish 
executing its allocated tasks, thus 

𝑇𝐶𝑜𝑛 ≜ 𝑚𝑎𝑥 (𝑇1, 𝑇2, … , 𝑇𝑁) (14) 

The total execution time is: 

𝑇𝑃𝑟𝑜𝑐 = 𝑇𝑆𝑒𝑞 + 𝑇𝐶𝑜𝑛 (15) 

Thus, the total average power dissipated by the cores is: 

𝑃𝑃𝑟𝑜𝑐 = 𝑃𝑃𝑟𝑜𝑐−𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑃𝑟𝑜𝑐−𝐷𝑦𝑛𝑎𝑚𝑖𝑐  (16) 

C. Last Level Cache (LLC) 

We follow the circuit diagrams detailed in [34] and [36], and 
conduct design space exploration using CACTI-6 [27], [28]. 
The LLC static and dynamic power simulated for 45nm by 

CACTI-6 are shown in Figure 3, plotted as the red and green 
graph, respectively. While varying the cache size, the per-
access dynamic power of a cache can be approximated by 
power-law model:    

𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐(𝑆𝐿𝐿𝐶) = 𝑐1 + 𝑐2𝑆𝐿𝐿𝐶
𝛾 (17) 

where 𝑆𝐿𝐿𝐶   is the LLC size and is equal to Block Size × 
Associativity × Number of Sets. With the aid of numerical 
approximation tools [26], the constant 𝑐1, 𝑐2, and the exponent 
𝛾 are found by fitting the power law (17) curve to the cache 

dynamic power data generated by CACTI-6 (see Figure 3’s 
blue dotted curve). Note that the technology node and the 
selection of the internal cache architecture (e.g., block size, 
associativity, number of sets) affect these constants. Hence, we 
have fixed the technology node and cache architecture, and 
varied the cache size while recording the area, static and 
dynamic power of each step. Further design space exploration 
with CACTI-6, shows that cache size can be approximated by 
power-law model: 

𝑆𝐿𝐿𝐶 = 𝑐3 + 𝑐4𝐴𝐿𝐿𝐶
𝜗 (18) 

where 𝐴𝐿𝐿𝐶  is the cache’s total allocated area. Our analysis 
shows that 𝜗 is very close to 1 thus (17) is re-written: 

𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐(𝐴𝐿𝐿𝐶) = 𝑐1 + 𝑐2(𝑐3 + 𝑐4𝐴𝐿𝐿𝐶)𝛾 (19) 

The analysis further shows that the static power of the cache 
can be approximated as a linear function of the cache size, and 

hence cache area (see the black dotted fitted function in Figure 
3): 

𝑃𝐿𝐿𝐶−𝑆𝑡𝑎𝑡𝑖𝑐(𝐴𝐿𝐿𝐶) = 𝑐5 + 𝑐6(𝑐3 + 𝑐4𝐴𝐿𝐿𝐶) (20) 

The total power allocated to the LLC is thus: 

𝑃𝐿𝐿𝐶 = 𝑃𝐿𝐿𝐶−𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐  (21) 

Figure 3 demonstrate that the power-law, (17) and (18), 
approximates CACTI simulations over a wide range of cache 
sizes (from 4Kbytes to 16Mbytes) to within 5%. Note that 
equation (17) is approximately in agreement with [3] who 
modeled the cache dynamic power as a square root of its 
assigned size. 

 
Figure 3. Cache dynamic read energy/access vs. cache size (CACTI-6). 

 
We assume a typical hierarchical cache configuration, in 
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which each processing core contains a single private cache 
level, and all cores share the LLC. This framework can be 
extended to any number of private, shared or hybrid levels. 
Following [19], we assume that the access time of the LLC is 
approximated by power-law model:  

𝐴𝑐𝑐𝑒𝑠𝑠𝐿𝐿𝐶(𝑆𝐿𝐿𝐶) = 𝜏𝑆𝐿𝐿𝐶
𝜌 (22) 

Both 𝜏 and the exponent 𝜌 are found by fitting the power law 
(22) curve to the cache access time data generated by CACTI. 
For caches having several shared clients, the access time can be 
written as follows: 

𝑡𝐿𝐿𝐶 = 𝑇𝑁𝑜𝐶 + 𝜏 (
𝑆𝐿𝐿𝐶

𝑁𝑃𝑟𝑜𝑐

)
𝜌

 

𝑇𝑁𝑜𝐶 = 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 + 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 

(23) 

where 𝑁𝑃𝑟𝑜𝑐  is the number of shared cache clients (in our 
framework, the number of processing cores) and the LLC is 
fragmented, so that the more the processors, the smaller each 
fragment is and the shorter its access time. NoC delay 𝑇𝑁𝑜𝐶  is a 
sum of transfer delay, 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  , blocking delay, 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔  and 

queuing (congestion) delay, 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 .  We adopt the 

analytical models for 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔  and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛   proposed 

by [39] and [40]. 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛  depend on a variety 

of parameters including the shared cache access rate 𝑅𝐿𝐿𝐶, the 
network capacity, the number of cores etc. Those parameters 
except for 𝑅𝐿𝐿𝐶  and the number of cores, are not part of our 
optimization framework. Therefore we model both 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 

and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛   as function of 𝑅𝐿𝐿𝐶 , assuming the rest of 

parameters are constant. Transfer delay, 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  , is  𝑂(√𝑛) , 

assuming 2-D mesh NoC [13]. The average memory delay is 
written as follows:    

𝑇𝐿𝐿𝐶 = (1 − 𝑀𝑅LLC)𝑡LLC + 𝑀𝑅𝐿𝐿𝐶(𝑑𝐴𝑐𝑐𝑒𝑠𝑠 + 𝑑𝑄𝑢𝑒𝑢𝑒) (24) 

where 𝑑𝐴𝑐𝑐𝑒𝑠𝑠  is the DRAM access penalty and 𝑑𝑄𝑢𝑒𝑢𝑒   is the 

interconnect queuing delay. The LLC miss-rate, 𝑀𝑅𝐿𝐿𝐶, can be 
written as follows: 

𝑀𝑅𝐿𝐿𝐶

=  𝑚𝐶𝑜𝑚𝑝 + (1 − 𝑚𝐶𝑜𝑚𝑝)𝐶𝑆ℎ𝑎𝑟𝑖𝑛𝑔 √𝑆𝐿𝐿𝐶/𝑁𝑃𝑟𝑜𝑐⁄  
(25) 

where 𝐶𝑆ℎ𝑎𝑟𝑖𝑛𝑔 is the data sharing factor [3], and 𝑚𝐶𝑜𝑚𝑝 is the 

compulsory miss component reflecting access to data 
originated in remote (rather than in local) core [17]. Note that 
𝑚𝐶𝑜𝑚𝑝  does not depend on the size of the processing cores’ 

local cache. DRAM interconnect queuing delay 𝑑𝑄𝑢𝑒𝑢𝑒 can be 

presented as a function of the rate of access to off-chip 𝑀𝑅𝐿𝐿𝐶, 
the off-chip memory bandwidth, the number of processing 
cores etc. [5]. Those parameters except for 𝑀𝑅𝐿𝐿𝐶  and the 
number of processing cores are not part of our framework. 
Hence we model 𝑑𝑄𝑢𝑒𝑢𝑒  as a function of 𝑀𝑅𝐿𝐿𝐶, assuming the 

rest of the parameters are constant. The off-chip bandwidth can 
be written as: 

𝐵𝑊𝐿𝐿𝐶 = 𝑅𝐿𝐿𝐶𝑀𝑅𝐿𝐿𝐶 (26) 

In real life, cache performance is affected by a combination 
of constrained chip resources. When LLC area budget is 
limited, the elevated miss rate causes the off-chip memory 
traffic to intensify, thus enlarging the total chip power. As a 

result, the average memory delay is affected by longer DRAM 
queuing delays. When LLC area budget is substantial, LLC 
power consumption becomes the primary constraint as it 
becomes too large to power, while on the other hand, the 
decreased bandwidth reduces the total chip power. To that end, 
the optimal cache size should be obtained only within the 
framework of the entire chip. We thus include the DRAM 
pinout power dissipation into the optimization framework as 
follows: 

𝑃𝐷𝐷𝑅 = 𝑐𝐷𝐷𝑅𝐵𝑊𝐿𝐿𝐶  (27) 

where 𝑐𝐷𝐷𝑅 is a constant translating bandwidth (bit/second) to 
average power dissipated at SoC pinout. 

D. Network on a Chip (NoC) 

We assume a 2-D mesh NoC [13], with a transfer delay 

𝑂(√𝑛) . We assume that NoC hub blocks are identical and 
consume a fixed area, 𝑎𝑁𝑜𝐶 . Thus, the total NoC area is: 

𝐴𝑁𝑜𝐶 = (𝑁𝑃𝑟𝑜𝑐 + 1𝐿𝐿𝐶)𝑎𝑁𝑜𝐶  (28) 

where 𝑁𝑃𝑟𝑜𝑐 is the number of integrated processing cores (that 
is, the sum of processing cores which have been allocated area 
larger than 0). We further assume that the NoC blocks are 
constantly active and thus consume a fixed power, relative to 
the area: 

𝑃𝑁𝑜𝐶 = 𝐶𝐴𝑃𝐴𝑁𝑜𝐶  (29) 

where 𝐶𝐴𝑃  is a constant translating units of area to 
power [12], [25]. Note that other NoC topology may be 
considered, such as Nahalal [43] that enables fast access to 
shared data for all processors, while preserving the vicinity of 
private data to each processor. 

E. Total Resources 

The combined area, power (static and dynamic) and 
execution time is a summary of all resources allocated to the 
processing cores, NoC and the LLC, respectively: 

𝐴𝑇𝑜𝑡𝑎𝑙 = 𝐴𝐿𝐿𝐶 + 𝐴𝑁𝑜𝐶 + 𝐴𝑃𝑟𝑜𝑐 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  
𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐿𝐿𝐶 + 𝑃𝐷𝐷𝑅 + 𝑃𝑁𝑜𝐶 + 𝑃𝑃𝑟𝑜𝑐

≤ 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  
𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐿𝐿𝐶 + 𝑇𝑁𝑜𝐶 + 𝑇𝑃𝑟𝑜𝑐 ≤ 𝑇𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 = 𝐵𝑊𝐿𝐿𝐶 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  

(30) 

Note that the network delay, 𝑇𝑁𝑜𝐶 , is modeled as a part of the 
LLC’s delay. 

IV. CONVEX OPTIMIZATION 

A convex function satisfies the inequality 𝑓(𝛼𝑥 + 𝛽𝑦) ≤
𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) [32]. An optimization problem of finding some 
𝑥∗ ∈ 𝑋  such that 𝑓(𝑥∗) = 𝑚𝑖𝑛{𝑓(𝑥): 𝑥 ∈ 𝑋}  where 𝑋 ⊂ ℝ𝑛  is 
the feasible set and 𝑓(𝑥): ℝ𝑛 → ℝ  is the objective, is called 
convex if 𝑋  is a closed convex set and 𝑓(𝑥)  is convex on 
ℝ𝑛 [16][9]. We extend the analysis of [7] by considering: (a) 
comprehensive SoC architecture having NoC and LLC; and (b) 
workload containing sequential and concurrent tasks, in four 
types of SoC architectures, each containing two cores, for the 
simplicity of exposition. 

 Asymmetric, unbalanced β (cf. (2)): the workload may be 
distributed across up to two distinct cores, having 



 

 

unbalanced exponent β = {0.6, 0.4}, respectively.  

 Asymmetric, balanced β: the workload may be distributed 
across up to two distinct cores, having balanced exponent 
β = {0.5, 0.5}, respectively.  

 Heterogeneous, unbalanced β : the workload should be 
distributed across exactly two distinct cores, having 
unbalanced exponent β = {0.6, 0.4}, respectively.  

 Heterogeneous, balanced β : the workload should be 
distributed across exactly two distinct cores, having 
balanced exponent β = {0.5, 0.5}, respectively.  

We further assume that each processing core contains a private 
L1 cache. Each workload task is characterized by miss rates 
defined in [5] using PARSEC [10] and NAS [11], 
corresponding to the sequential-parallel synchronization data 
exchange. Further, we have applied assumptions similar to 
those used in [5], [20] and [35] for the constants described in 
(23) - (25). Our framework finds the optimal resource allocation 
in a broad spectrum of constraints. While we only exemplify 
execution time under constraints optimization, our 
methodology can also be utilized for optimizing power under 
constraints and area under constraints [6]. 

Consider a synthetic workload consisting of a sequential task 
incurring execution time 𝑡0 = 40 , and two concurrent tasks, 
incurring execution times 𝑡𝑐 = {50,10}  on a reference 
processor, respectively. We wish to minimize the total 
execution time of a SoC consisting of processing cores, NoC 
and LLC, under total area, total average power and off-chip 
bandwidth constraints. We thus write our optimization problem 
as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑇𝑜𝑡𝑎𝑙  {𝐴𝐿𝐿𝐶, 𝐴𝑁𝑜𝐶,𝑎1, … , 𝑎𝑁 , 𝑝1 , … , 𝑝𝑁} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑇𝑜𝑡𝑎𝑙 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 
                       𝑃𝑇𝑜𝑡𝑎𝑙 ≤ 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  
                       𝐵𝑊𝑇𝑜𝑡𝑎𝑙 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  

(31) 

Solving the above optimization problem is tantamount to 
finding an optimal solution. To solve problem (31) we used 
CVX, a package for specifying and solving convex 
programs [23] [24], replacing the objective functions and the 
constraints with their convex counterparts. We optimize the 

four SoC architectures, as detailed in  Figure 4-Figure 6. Each 

part of the sub-figures depicts three sets of bars corresponding 
to increasing areas, 𝐴𝑇𝑜𝑡𝑎𝑙−𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =
{5mm2, 40mm2, 320mm2} , respectively. Within each set, 
there are two levels of power budget, high power for the first 
bar and lower power for the second bar, as follows:  

 The optimal area allocation under elevated power 
constraint (first bar of each set of Figure 4’s sub-figures).  

 The optimal area allocation under limited power constraint 
(second bar of each set of Figure 4’s sub-figures). Some of 
the SoC components are power-limited, hence the optimal 
area allocation is different from areas in the first bar of each 
set. 

 The optimal power allocation under elevated power 
constraint (first bar of each set of Figure 5’s sub-figures).  

 The optimal power allocation under limited power 
constraint (second bar of each set of Figure 5’s sub-
figures). Several SoC components are power-limited, 
hence the optimal power allocation is different from the 
first bar of each set. 

 The red stars in Figure 6’s sub-figures depict the optimal 
execution time corresponding to the higher/lower 
constrained power scenarios. 

The optimal (actually utilized) total area 𝐴𝑇𝑜𝑡𝑎𝑙 , total power 
𝑃𝑇𝑜𝑡𝑎𝑙  , total execution time 𝑇𝑇𝑜𝑡𝑎𝑙  , and total bandwidth 
𝐵𝑊𝑇𝑜𝑡𝑎𝑙  are specified at the bottom of each subfigure. Note that 
for some configurations, the optimal (actually utilized) value 
may be smaller than its corresponding constraint. TABLE 1 
Summarizes the constraints used for execution time 
optimization, where SxBy corresponds to set x, bar y in Figure 

4-Figure 6. 
TABLE 1 

EXECUTION TIME OPTIMIZATION CONSTRAINTS 

Constraint S1B1 S1B2 S2B1 S2B2 S3B1 S3B2 

𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 5.0 5.0 40.0 40.0 320.0 320.0 
𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1.35 1.08 10.8 8.64 86.40 69.12 

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1.9 1.9 1.6 1.6 1.1 1.1 

Power constraints are specified in Watt, Execution time constraints in seconds, 
and Bandwidth constraints in MB/sec. 

 
Figure 4. SoC area partitioning following optimization of execution time, 
subject to three scenarios of constrained resources. 

 
Figure 5. SoC power partitioning following optimization of execution time, 
subject to three scenarios of constrained resources. 

Optimizing Execution Time, Subject to Constrained Area, Power, Bandwidth

0  

25 

50 

75 

100

S1B1|S1B2

5.0mm2|4.6mm2

1.3W|1.1W

58.3s|80.2s

1.7MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
A

re
a

(a) Asymmetric, Unbalanced 

 

 

L2 Cache

C1 =0.6

C2 =0.4

0  

25 

50 

75 

100

S1B1|S1B2

5.0mm2|3.9mm2

1.3W|1.1W

65.9s|88.0s

1.6MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
A

re
a

(b) Asymmetric, Balanced 

 

 

L2 Cache

C1 =0.5

C2 =0.5

0  

25 

50 

75 

100

S1B1|S1B2

5.0mm2|3.1mm2

1.3W|1.1W

`67.5s|138.3s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
A

re
a

(c) Heterogeneous, Unbalanced 

 

 

L2 Cache

C1 =0.6

C2 =0.4

0  

25 

50 

75 

100

S1B1|S1B2

4.7mm2|2.8mm2

1.3W|1.1W

`75.0s|137.4s

1.9MB|1.9MB

        

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
A

re
a

(d) Heterogeneous, Balanced 

 

 

L2 Cache

C1 =0.5

C2 =0.5

Optimizing Execution Time, Subject to Constrained Area, Power, Bandwidth

0  

25 

50 

75 

100

S1B1|S1B2

5.0mm2|4.6mm2

1.3W|1.1W

58.3s|80.2s

1.7MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
P

o
w

er

(a) Asymmetric, Unbalanced 

 

 

L2 Cache

C1 =0.6

C2 =0.4

0  

25 

50 

75 

100

S1B1|S1B2

5.0mm2|3.9mm2

1.3W|1.1W

65.9s|88.0s

1.6MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
P

o
w

er

(b) Asymmetric, Balanced 

 

 

L2 Cache

C1 =0.5

C2 =0.5

0  

25 

50 

75 

100

S1B1|S1B2

5.0mm2|3.1mm2

1.3W|1.1W

`67.5s|138.3s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
P

o
w

er

(c) Heterogeneous, Unbalanced 

 

 

L2 Cache

C1 =0.6

C2 =0.4

0  

25 

50 

75 

100

S1B1|S1B2

4.7mm2|2.8mm2

1.3W|1.1W

`75.0s|137.4s

1.9MB|1.9MB

     

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f 
T

o
ta

l 
P

o
w

er

(d) Heterogeneous, Balanced 

 

 

L2 Cache

C1 =0.5

C2 =0.5



 

 

 

 
Figure 6. SoC optimization of execution time, subject to three scenarios of 
constrained resources. 

 

As shown in Figure 4(a)-Figure 6(a), we consider an 
asymmetric dual-core architecture where each core has a 
distinct exponent, 𝛽𝑗 = {0.6, 0.4}. Initially, due to constrained 

area, only a single core is allocated. As the total SoC area 
increases, the weaker core is assigned with the shorter task, and 
provided with growing portion of the total average area and 
power. When power is constrained the weaker core is provided 
with smaller area portion. On the other hand, the weaker core is 
provided with larger portion of the total average power at the 
expense of the stronger cores. We thus find that in a power 
limited architecture, the optimum is found when additional area 
is assigned to the stronger cores at the expense of the weaker 
cores, while additional power is assigned in the opposite 
direction, to the weaker cores at the expense of the stronger 
cores. 

Next, in Figure 4(b)-Figure 6(b) we consider an asymmetric 
dual-core architecture where all core share the same exponent, 

𝛽𝑗 = 0.5. In contrast with the previous set, Figure 4(b)-Figure 
6(b) shows that when sufficient area is provided to the SoC such 
that both cores are allocated, tasks, area and average power 
allocation do not shift from one core to another even if the area 
resources increases indefinitely; rather, partitioning among the 
cores remains constant. Note that although both cores are of the 
same strength (same 𝛽 ), resources (e.g., area and power) 
allocation is not equal due to the serial and two concurrent tasks 
having different execution times. 

Next, in Figure 4(c)-Figure 6(c) we consider a 

heterogeneous dual-core having unbalanced exponents 𝛽𝑗 =
{0.6, 0.4}, respectively. As the total SoC area gets larger, area 
resources shift from the stronger core to the weaker core having 
lower 𝛽. Note that in the heterogeneous case all cores must be 
retained while in the asymmetric SoC some cores may be 

eliminated. When power is constrained, the stronger core is 
provided with even larger portion of the total area, at the 
expense of the weaker core. On the other hand, the weaker core 
is provided with even larger portion of the total average power. 
We thus find that in a power-limited architecture, the optimum 
is found when additional area is assigned to the stronger cores 
at the expense of the weaker cores, while additional power is 
assigned in the opposite direction, to the weaker cores at the 
expense of the stronger cores 

Lastly, in Figure 4(d)-Figure 6(d) we consider a 
heterogeneous dual-core architecture where all core share the 
same exponent, 𝛽𝑗 = 0.5 . In contrast with the unbalanced 

heterogeneous SoC, Figure 4(d)-Figure 6(d) show that when 
sufficient area is provided to the SoC, tasks, area and power 
allocations do not shift even if the area resources increases 
indefinitely, similarly to the balanced asymmetric SoC of 

Figure 4(b)-Figure 6(b). 

V. DISCUSSION 

Several SoC configurations having large number of cores 
and tasks, and power under constraints and area under 
constraints optimization targets were simulated using the 
framework of Section IV [6]. The framework leads to consistent 
results, in spite of parameter and constraint variability. There is 
no coherent hand-rule conclusion that can guide architects on 
how to manually partition the chip given a workload and a set 
of constraints. The reason is that the processing cores, the 
network, last-level cache and off-chip bandwidth are so 
intertwined and dependent on each other, that taking some area 
(or power) from one block and allocating it to the other is likely 
to impact the allocation of all other blocks. On the other hand, 
we argue that our framework does find the optimal partitioning 
over a wide spectrum of parameters and constraints and thus 
can automate complex architectural design, analysis and 
verification. We thus conclude that in the multi-core era, when 
the number of transistors (and thus the number and complexity 
of functional blocks) grows exponentially, chip architects 
should embrace automated frameworks for partitioning chip 
resources, instead of conventional manual methods. 

VI. CONCLUSIONS 

This paper describes a multi-core optimization framework 
that, given (a) workload consisting of sequential and concurrent 
parts, (b) SoC building blocks models such as processing cores, 
LLC and NoC, (c) constrained area and average power budget, 
(d) limited off-chip memory bandwidth, and (e) limited NoC 
capacity, utilizes convex optimization to find an optimal subset 
of the processing cores and allocates area and power resources 
among all, whether optimizing for, e.g., area, power or 
execution time. The framework relies on modeling the 
performance of each core as a function of its area and power. 
To that end, models are provided and analyzed for core power 
and performance, NoC power and delay, cache miss rate and 
power and off-chip bandwidth, all as functions of area.  

Our framework finds the optimal partitioning over a wide 
spectrum of parameters and constraints offering an automated 
means for partitioning resources in the SoC, complementing 

Optimizing Execution Time, Subject to Constrained Area, Power, Bandwidth
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(a) Asymmetric, Unbalanced 
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(b) Asymmetric, Balanced 
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(c) Heterogeneous, Unbalanced 
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(d) Heterogeneous, Balanced 
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conventional manual methods. 
This paper extends and generalizes previous Lagrange based 

optimization frameworks [38][8] and [7]. One of the potential 
applications of this framework is optimizing the average power 
or energy of a given workload, executing on a fabricated 
semiconductor SoC (where area resources have been already 
partitioned). In such a case, for example, a real-time workload 
is given with known execution time upper bounds, and the 
average power budget is optimally partitioned so as to minimize 
total average power or energy. Our framework offers an 
efficient alternative to iterative ad-hoc methods for exploring 
the design space.  
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