

Convex Optimization of Resource Allocation in
Asymmetric and Heterogeneous SoC

Amir Morad

Dept. of Electrical Engineering,
Technion, Haifa 32000, Israel

amirm@tx.technion.ac.il

Leonid Yavits

Dept. of Electrical Engineering,
Technion, Haifa 32000, Israel

yavits@tx.technion.ac.il

Ran Ginosar

Dept. of Electrical Engineering,
Technion, Haifa 32000, Israel

ran@ee.technion.ac.il

Abstract—Chip area, power consumption, execution time, off-
chip memory bandwidth, overall cache miss rate and Network on
Chip (NoC) capacity are limiting the scalability of SoCs. Consider
a workload comprising a sequential and multiple concurrent tasks
and asymmetric or heterogeneous SoC architecture. A convex
optimization framework is proposed, for selecting the optimal set
of processing cores and allocating area and power resources
among them, the NoC and the last level cache, under constrained
total area, total average power, total execution time and off-chip
bandwidth. The framework relies on analytical performance and
power models of the processing cores, NoC and last level cache as
a function of their allocated resources. Due to practical
implementation of the cores, the optimal architecture under
constraints may exclude several of the cores. Several asymmetric
and heterogeneous configurations are explored. Convex
optimization is shown to extend optimizations based on Lagrange
multipliers. We find that our framework obtains the optimal chip
resources allocation over a wide spectrum of parameters and
constraints, and thus can automate complex architectural design,
analysis and verification.

Keywords—Chip Multiprocessors, Modeling of computer
architecture, Convex Optimization.

I. INTRODUCTION

With the growth of the number of transistors that can be
integrated into a single silicon die, coupled with the growth of
the available number heterogeneous building blocks available
to the chip architect, finding the optimal architecture of a large
scale SoC under rigid physical constraints such as area, power
and available off-chip bandwidth, is extremely complex and
time consuming. The chip architect must select, for example,
the optimal number of integrated processing cores, the task
allocation among the cores, the cache hierarchy configuration,
the Network on a Chip (NoC) topology, and the resource
allocation (e.g., area, power) among the hardware building
blocks. In doing so, the chip architect must take into account
the performance of each of the building blocks, as a function of
the resources it consumes. To that end, analytical models for
most building blocks of modern ICs (e.g., caches, NoC,
processing units) have been researched, enabling the
exploration of the chip design space in a reasonable timeframe.

This work utilizes Convex Optimization [32] to optimize
comprehensive SoC architecture for a given workload under
constrained resources. The contributions of this work are: (a)
Formulation and solution of execution time optimization under
total area, total average power and off-chip bandwidth
constraints; and discussion of (1) average power optimization

under total area, execution time and off-chip bandwidth
constraints; and (2) chip area optimization under execution
time, total average power and off-chip bandwidth constraints,
and (b) Extending the framework defined by [38] [8] and [7]
by:

 Considering several SoC building blocks, not just the
processing elements; and,

 Considering a workload containing both sequential and
concurrent sections, as opposed to a series of either
sequential or concurrent tasks; and,

 Detailing the optimal allocation, rather than merely
providing the necessary condition for optimality.

The rest of this paper is organized as follows: Section II
presents and discusses relevant related work. Section III
proposes and investigates analytical models for common SoC
building blocks. Section IV describes a convex optimization
framework, and exemplifies it by deriving the optimal
execution time of a resource constrained asymmetric and
heterogeneous SoC. Section VI summarizes and concludes the
paper.

II. RELATED WORK

Analytical models of common SoC building blocks of have
been thoroughly studied. Polack [14] modeled the performance
of modern CPUs as a square root function of the resource
assigned to them. Liwei et al. [39] presented an analytical
access time model for on-chip cache memories. Wilton et
al. [34] described an analytical model for the access and cycle
times of direct-mapped and set-associative caches. Tsai et
al. [41] explored the architectural design of cache memories
using 3D circuits. Muralimanohar et al. [27], [28] modeled non-
uniform cache access (NUCA). Krishna et al. [5] researched the
optimal area allocation between cores and cache. Yavits et
al. [19] developed an analytical model for cache hierarchy
levels.

A substantial body of literature explores NoC topologies and
optimization. W. Liwei et al. proposed NoC buffer allocation
algorithm. Ben-Itzhak et al. [40] modeled the delay of a
wormhole routing based. Z. Guz et al. [43] introduce Nahalal,
a non-uniform cache topology that enables fast access to shared
data for all processors.

Optimization framework consolidating common SoC
building blocks have been extensively studied: Cassidy et
al. [3] have optimized processor area, L2 cache area and the
number of cores using Lagrange multipliers [29]. Oh et al. [35]
presented an analytical model to study the trade-off of the core

mailto:amirm@tx.technion.ac.il
mailto:yavits@tx.technion.ac.il
mailto:ran@ee.technion.ac.il

count and the cache capacity in a CMP under area constraint.
Alameldeen et al. [2] used analytical modeling to study the
number of CMP cores vs. cache size. Wentzlaff et al. [13]
introduced an analytic model analyzing larger caches vs. more
cores. Huh et al. [17] compared the area and performance trade-
offs for CMP. Zhao et al. [21] analyzed considering total chip
area and bandwidth limitations. Morad et al. [37] and Hill et
al [22] augmented Amdahl’s law with a corollary to multicore
architecture. S. Natarajan et al [33] evaluated the execution
time of the serial and the parallel part of the application.

Analytical models for power/energy optimization is well
studied: Elyada et al. [4] minimized multicore execution time
under energy criterion. Rotem et al. [4] studied the energy of a
computing platform.

The interactions between multiple parallel processors incur
performance overheads. These overheads are a result of
synchronization, communication and coherence costs. Morad et
al. [37] modeled the synchronization, communication and
coherence as a time penalty on Amdahl law. Yavits et al. [20]
studied the overheads and proposed several workload-
dependent architecture insights. Lau et al. [15] introduced an
extension to Hill and Marty’s model.

Zaidenberg et al. [38] studied a resource constrained
optimization framework for CMP. Morad et al. [7][8] proposed
models that minimized sequential and concurrent execution
time of heterogeneous and asymmetric SoC processing cores.
The limitations of the frameworks presented in [38], [8] and [7]
are: (a) modeling the processing cores, but not addressing
common building blocks such as NoC and LLC; (a) modeling
workloads containing either a sequence of sequential
heterogeneous tasks [38] [8], or modeling workloads
containing a sequence of concurrent sections [5], but not both
together; (c) utilizing Lagrange multipliers thus identifying the
necessary condition for optimality, but not the optimal point;
and (d) modeling constrained area [38] [8], or constrained
area/power designs [5], but not addressing off-chip bandwidth;
and (e) solving for optimal execution time under area/power
constraints, but not addressing optimization of power or area
under constraints.

When optimizing a modern SoC, the chip architect may need
to optimize workloads containing both sequential and
concurrent sections, and take into account additional building
blocks such as caches and NoC while adhering to off-chip
bandwidth limitations. Thus, the contribution of this paper is
addressing a comprehensive research question: given (a) a SoC
architecture consisting of last level cache (LLC), processing
cores and a NoC interconnecting the cores and the LLC (see

Figure 1); (b) workloads consisting of sequential and

concurrent tasks (see Figure 2); and (c) physical resource

constraints (area, power, execution time, off-chip bandwidth),
what is the optimal selection of a subset of the available
processing cores and what is the optimal resource allocation
among all blocks. Further, the presented optimization
methodology enables the SoC architect optimally select subset
of the cores and allocate resources among the cores, LLC and
NoC, without having to explore the design space in an iterative
ad-hoc fashion.

Figure 1. Typical SoC architecture
containing several processing cores,

LLC, NoC and Memory I/F.

Figure 2. Typical workload
consisting of seq. and

concurrent tasks

III. ANALYTICAL MODELS

In this section, we propose and investigate an analytical
model for common building blocks of modern multi-
processors. For each block, we model the delay (e.g., execution
time, access time) and power, as a function of the resources it
uses (e.g., area).

A. Workload

Consider a typical workload consisting of sequential as well
as M concurrent tasks, as depicted in Figure 2. Further, consider
a SoC comprising N cores, each capable of executing the
following:

 Sequential (un-parallelizable) section: The sequential
portion of the workload cannot break into a finer
granularity concurrent sub-tasks, and thus it is executed on
a single core. The sequential section of the workload
requires 𝑡0 seconds to execute on a reference processor of
IPS=1 (Inst. Per Second). Any one of N available cores can
accelerate the sequential section. The performance of core

j is 𝑃𝑒𝑟𝑓𝑗(𝑎𝑗), relative to the performance on the reference

processor, and is a function of its area 𝑎𝑗. The acceleration

function 𝑓𝑗(𝑎𝑗) represents the inverted performance of

core j :

𝑓𝑗(𝑎𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗)
 (1)

The runtime of the sequential task running on core j having

area 𝑎𝑗 is thus 𝑓𝑗(𝑎𝑗) ∙ 𝑡0.

 Concurrent section: We assume that the concurrent portion
of the workload is composed of M tasks, and each task may
run on any core. In a similar manner to sequential
processing, each concurrent task i of the workload requires
time 𝑡𝑖 to execute on a reference processor of IPS=1. The
runtime of the ith task running on core j having area 𝑎𝑗 is

thus 𝑓𝑗(𝑎𝑗) ∙ 𝑡𝑖.

 Sequential - parallel synchronization: Concurrency incurs
data exchange between the sequential (first) core and the
other cores at the beginning and the end of each concurrent
section of the workload for subsequent processing. The
data exchange entails transferring data from the LLC
through the NoC into the private caches of the cores.

The performance of a core increases when additional area

resources are assigned to it. Therefore, the acceleration
functions 𝑓𝑗(𝑎𝑗) are strictly decreasing. We assume that the

acceleration functions 𝑓𝑗(𝑎𝑗) are convex and are continuously

differentiable.
This paper studies the optimal resource allocation of a

specific workload executing on application specific SoC,
assuming that each task’s runtime on a reference processor is
known in advance. Further, we assume that tasks runtime
depends only on core’s speedup function at its designated area,
power (in a similar manner to [14][3][37][22][38][8]). Our
model, however, does account for microarchitecture differences
as each core may have its own area- and power-to- performance
model. Our model may be utilized to perform early stage
exploration of a suitable architecture. Early architecture
exploration based on theoretical abstracted model, can
eliminate many design cycles and iterations and expand the
choice of alternatives that are too numerous for actual design
explorations. Early exploration does not utilize simulation, and
thus saves design time.

B. Processing Core

Following [14] and [37], the core’s inverted performance
may be written as follows (coefficients translating from area to
performance units are scaled to unity):

𝑓𝐶𝑜𝑟𝑒(𝑎𝐶𝑜𝑟𝑒) =
1

𝑎𝐶𝑜𝑟𝑒
𝛽

 (2)

The exponent 𝛽 typically varies from 0.3 to 0.7 [31]. The
higher the 𝛽, the stronger the core is. For the purpose of our
optimization framework, following [7], we modify the
acceleration function (1) of core j to depend on both its area 𝑎𝑗

and its dynamic power 𝑝𝑗, as follows:

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
 (3)

Note that 𝑝𝑗 represents actual power dissipated in core j

rather than the maximum power that can be consumed by that
core, as determined by its area, maximum voltage, maximum
frequency and other physical constraints; for instance, it is
possible that at some optimum point for the entire chip, a
particular core is operated at 𝑝𝑗 < 𝑃max 𝑗.

Area is a static resource, i.e., it does not change during
execution. Static power depends on temperature [18], and
temperature, in turn, depends on power density (related to
dynamic power). We shall separate the static power
consumption of the core into two components, idle static power,
and temperature induced static power. Assume that the SoC
employs Dynamic Voltage and Frequency Scaling (DVFS).
The idle static power is annotated as a manufacturing
technology related constant 𝑠1 multiplied by the core’s
allocated area 𝑎𝑗 representing the static power when: (a) gate

temperature is at the low end of the operating conditions range;
(b) core voltage is at the low end of the DVFS voltage range;
and, (c) core frequency is at the low end of the DVFS frequency
range. Within the normal operating temperature range (say,
55°C–85°C), leakage power consumption may be estimated
using a linear function of temperature [42]. We can thus express
the temperature induced static power as a manufacturing
technology related constant 𝑠2 times its dynamic power 𝑝𝑗.

𝑃𝑃𝑟𝑜𝑐−𝑆𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑠1𝑎𝑗 + 𝑠2𝑝𝑗

𝑗=𝑁

𝑗=1
 (4)

Note that in our analysis we choose to ignore floorplan-
induced leakage power, that is, temperature increase due to the
heat generated by adjacent cores. Given that the cores have
large enough radial shape, floorplan induced leakage is limited
to the boundary and hence is a second order effect on total
leakage. Note however that this assumption may not always
hold. Given that the SoC employs DVFS, each core’s frequency
corresponds to its power budget, 𝑝𝑗 , enabling clocking at a

range of frequencies, from zero (when the core is idle) to 𝐹𝑚𝑎𝑥
(maximal frequency possible by the operating conditions and
the physical constraints of the design). The maximal dynamic
power of core j can be written as follows:

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗𝑉𝑚𝑎𝑥
2 (5)

where 𝛼1 is the activity factor. Voltage is inversely
proportional to gate delay, and thus it is proportional to
frequency 𝑉max 𝑗 = 𝛼2𝐹max 𝑗, where 𝛼2 is a constant translating

Hz to Volts. Capacitance 𝐶𝑗 is proportional to area 𝑎𝑗 , 𝐶𝑗 =
𝛼3𝑎j . Assume that all cores are subject to the same activity

factor 𝛼1. Assume further that all cores are driven by the same
voltage range (∀𝑗, 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥). We can write (5) as:

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗(𝛼2𝐹max 𝑗)
2

= 𝛼𝑎𝑗𝐹max 𝑗
3 (6)

where 𝛼 is a constant absorbing 𝛼1, 𝛼2 and 𝛼3 . We can also

model 𝑃𝑚𝑎𝑥 𝑗 = 𝑐𝑗𝑎𝑗 , where 𝑐𝑗 = 𝛼𝐹max 𝑗
3 is a constant

translating units of area to power, in agreement with [1]
and [25]. Next, assume that each core is driven at some
operating frequency, 𝐹oper 𝑗 , dissipating dynamic power 𝑝𝑗 .

Following (6):

𝑝𝑗 = 𝛼𝑎𝑗𝐹oper 𝑗
3 (7)

Equation (7) complements [30] who noted through an
empirical study that a typical CPU power is a polynomial
function of frequency 𝑝𝑐𝑜𝑟𝑒 ∝ 𝑓𝜂 where 𝜂 typically ranges
from 1.5 (in a low power manufacturing technology) to 2.4 (in
a high performance manufacturing technology). The present
theoretical analysis leads to 𝜂 = 3 instead, but any other
number will do and will not significantly change our results.
We annotate the normalized frequency of the core as 𝐹𝑛𝑜𝑟𝑚 𝑗,

ranging from 0 (core is idle) to 1 (core is driven at maximal
frequency corresponding to operating conditions and physical
constraints of the design). Thus:

𝐹𝑛𝑜𝑟𝑚 𝑗 =
𝐹𝑜𝑝𝑒𝑟 𝑗

𝐹𝑚𝑎𝑥 𝑗

= (
𝑝𝑗

𝑃𝑚𝑎𝑥 𝑗

)

1/3

= (
𝑝𝑗

𝑐𝑗𝑎𝑗

)

1/3

 (8)

Even when assigned with infinite power budget, the core’s
operating frequency cannot exceed its maximum frequency
determined by the physical constraints of the design, thus (8) is
revised as follows:

𝐹𝑛𝑜𝑟𝑚 𝑗 = min ((
𝑝𝑗

𝑐𝑗𝑎𝑗

)

1/3

, 1) (9)

Since the core’s inverted performance is modeled as a power
law with respect to its allocated area, we can write the
acceleration function of a core as follows:

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑎𝑗
𝛽𝑗

1

𝐹𝑛𝑜𝑟𝑚 𝑗

=
1

𝑎𝑗
𝛽𝑗

𝑚𝑎𝑥 ((
𝑐𝑗𝑎𝑗

𝑝𝑗

)

1/3

, 1) (10)

Note that if core j is assigned with null power (𝑝𝑗 = 0), 𝑓𝑗 →
∞. Conversely, if core j is assigned with infinite power (𝑝𝑗 →

∞), 𝑓𝑗 → 𝑎𝑗
−𝛽𝑗 . While considering asymmetric architectures,

we focus on homogenous tasks and exclude task heterogeneity
(for example, certain tasks may benefit from larger cache sizes,
others may benefit from larger branch prediction buffer, etc.).
Thus, we assume that tasks runtime depends only on the core’s
speedup function at its designated area. Given the core areas
𝐴𝐶𝑜𝑟𝑒 = {𝑎1, … , 𝑎𝑁} , and power allocation 𝑃𝐶𝑜𝑟𝑒 =
{𝑝1, … , 𝑝𝑁}, the execution time 𝑡0 of the sequential portion of
the workload is determined by the fastest available core, thus:

𝑇𝑆𝑒𝑞 ≜ ∑ 𝑓𝑗(𝑎𝑗 , 𝑃𝑆𝑒𝑞)

𝑁

𝑗=1

𝑏0,𝑗𝑡0 (11)

where, at the optimal point:

𝑏𝑖,𝑗 = {1 ∶ 𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ 𝑐𝑜𝑟𝑒
0 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12)

Note that when the sequential portion of the workload is
executed on some core, the dynamic power that is assigned to
all other cores becomes available to it (up to its maximum
possible power 𝑐𝑗𝑎𝑗), thus:

𝑃𝑆𝑒𝑞 = 𝑃𝑃𝑟𝑜𝑐−𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑝𝑖

𝑁

𝑖=1

Note further that a task is assigned to a single core. The area
and power of core j, namely (𝑎𝑗 , 𝑝𝑗) , may be 0 or positive,

respectively. Core j execution time of the concurrent tasks
assigned to it is:

𝑇𝑗 ≜ ∑ 𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
𝑖=𝑀

𝑖=1
𝑏𝑖,𝑗𝑡𝑖 = 𝑓𝑗(𝑎𝑗 , 𝑝𝑗) ∑ 𝑏𝑖,𝑗𝑡𝑖

𝑖=𝑀

𝑖=1
 (13)

The total execution time of the concurrent section of the
workload 𝑇𝐶𝑜𝑛 , is determined by the last core to finish
executing its allocated tasks, thus

𝑇𝐶𝑜𝑛 ≜ 𝑚𝑎𝑥 (𝑇1, 𝑇2, … , 𝑇𝑁) (14)

The total execution time is:

𝑇𝑃𝑟𝑜𝑐 = 𝑇𝑆𝑒𝑞 + 𝑇𝐶𝑜𝑛 (15)

Thus, the total average power dissipated by the cores is:

𝑃𝑃𝑟𝑜𝑐 = 𝑃𝑃𝑟𝑜𝑐−𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑃𝑟𝑜𝑐−𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (16)

C. Last Level Cache (LLC)

We follow the circuit diagrams detailed in [34] and [36], and
conduct design space exploration using CACTI-6 [27], [28].
The LLC static and dynamic power simulated for 45nm by

CACTI-6 are shown in Figure 3, plotted as the red and green
graph, respectively. While varying the cache size, the per-
access dynamic power of a cache can be approximated by
power-law model:

𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐(𝑆𝐿𝐿𝐶) = 𝑐1 + 𝑐2𝑆𝐿𝐿𝐶
𝛾 (17)

where 𝑆𝐿𝐿𝐶 is the LLC size and is equal to Block Size ×
Associativity × Number of Sets. With the aid of numerical
approximation tools [26], the constant 𝑐1, 𝑐2, and the exponent
𝛾 are found by fitting the power law (17) curve to the cache

dynamic power data generated by CACTI-6 (see Figure 3’s
blue dotted curve). Note that the technology node and the
selection of the internal cache architecture (e.g., block size,
associativity, number of sets) affect these constants. Hence, we
have fixed the technology node and cache architecture, and
varied the cache size while recording the area, static and
dynamic power of each step. Further design space exploration
with CACTI-6, shows that cache size can be approximated by
power-law model:

𝑆𝐿𝐿𝐶 = 𝑐3 + 𝑐4𝐴𝐿𝐿𝐶
𝜗 (18)

where 𝐴𝐿𝐿𝐶 is the cache’s total allocated area. Our analysis
shows that 𝜗 is very close to 1 thus (17) is re-written:

𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐(𝐴𝐿𝐿𝐶) = 𝑐1 + 𝑐2(𝑐3 + 𝑐4𝐴𝐿𝐿𝐶)𝛾 (19)

The analysis further shows that the static power of the cache
can be approximated as a linear function of the cache size, and

hence cache area (see the black dotted fitted function in Figure
3):

𝑃𝐿𝐿𝐶−𝑆𝑡𝑎𝑡𝑖𝑐(𝐴𝐿𝐿𝐶) = 𝑐5 + 𝑐6(𝑐3 + 𝑐4𝐴𝐿𝐿𝐶) (20)

The total power allocated to the LLC is thus:

𝑃𝐿𝐿𝐶 = 𝑃𝐿𝐿𝐶−𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (21)

Figure 3 demonstrate that the power-law, (17) and (18),
approximates CACTI simulations over a wide range of cache
sizes (from 4Kbytes to 16Mbytes) to within 5%. Note that
equation (17) is approximately in agreement with [3] who
modeled the cache dynamic power as a square root of its
assigned size.

Figure 3. Cache dynamic read energy/access vs. cache size (CACTI-6).

We assume a typical hierarchical cache configuration, in

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Cache Size (S), MB

E
n

e
rg

y
D

y
n

a
m

ic
/A

c
c

e
s

s
,
n

J

Cache energy per access, and leakage power

L
e

a
k

a
g

e
 p

o
w

e
r,

 m
W

0

1000

2000

3000

4000

5000

6000

7000

8000

Energy
Dynamic

/Access, nJ

Fitted function: Pd(S)=0.168+0.158*S0.318

Leakage power, mW

Fitted function: Ps(S)=70.1+7.63*S0.985

which each processing core contains a single private cache
level, and all cores share the LLC. This framework can be
extended to any number of private, shared or hybrid levels.
Following [19], we assume that the access time of the LLC is
approximated by power-law model:

𝐴𝑐𝑐𝑒𝑠𝑠𝐿𝐿𝐶(𝑆𝐿𝐿𝐶) = 𝜏𝑆𝐿𝐿𝐶
𝜌 (22)

Both 𝜏 and the exponent 𝜌 are found by fitting the power law
(22) curve to the cache access time data generated by CACTI.
For caches having several shared clients, the access time can be
written as follows:

𝑡𝐿𝐿𝐶 = 𝑇𝑁𝑜𝐶 + 𝜏 (
𝑆𝐿𝐿𝐶

𝑁𝑃𝑟𝑜𝑐

)
𝜌

𝑇𝑁𝑜𝐶 = 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 + 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

(23)

where 𝑁𝑃𝑟𝑜𝑐 is the number of shared cache clients (in our
framework, the number of processing cores) and the LLC is
fragmented, so that the more the processors, the smaller each
fragment is and the shorter its access time. NoC delay 𝑇𝑁𝑜𝐶 is a
sum of transfer delay, 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 , blocking delay, 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and

queuing (congestion) delay, 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 . We adopt the

analytical models for 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 proposed

by [39] and [40]. 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 depend on a variety

of parameters including the shared cache access rate 𝑅𝐿𝐿𝐶, the
network capacity, the number of cores etc. Those parameters
except for 𝑅𝐿𝐿𝐶 and the number of cores, are not part of our
optimization framework. Therefore we model both 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔

and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 as function of 𝑅𝐿𝐿𝐶 , assuming the rest of

parameters are constant. Transfer delay, 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 , is 𝑂(√𝑛) ,

assuming 2-D mesh NoC [13]. The average memory delay is
written as follows:

𝑇𝐿𝐿𝐶 = (1 − 𝑀𝑅LLC)𝑡LLC + 𝑀𝑅𝐿𝐿𝐶(𝑑𝐴𝑐𝑐𝑒𝑠𝑠 + 𝑑𝑄𝑢𝑒𝑢𝑒) (24)

where 𝑑𝐴𝑐𝑐𝑒𝑠𝑠 is the DRAM access penalty and 𝑑𝑄𝑢𝑒𝑢𝑒 is the

interconnect queuing delay. The LLC miss-rate, 𝑀𝑅𝐿𝐿𝐶, can be
written as follows:

𝑀𝑅𝐿𝐿𝐶

= 𝑚𝐶𝑜𝑚𝑝 + (1 − 𝑚𝐶𝑜𝑚𝑝)𝐶𝑆ℎ𝑎𝑟𝑖𝑛𝑔 √𝑆𝐿𝐿𝐶/𝑁𝑃𝑟𝑜𝑐⁄
(25)

where 𝐶𝑆ℎ𝑎𝑟𝑖𝑛𝑔 is the data sharing factor [3], and 𝑚𝐶𝑜𝑚𝑝 is the

compulsory miss component reflecting access to data
originated in remote (rather than in local) core [17]. Note that
𝑚𝐶𝑜𝑚𝑝 does not depend on the size of the processing cores’

local cache. DRAM interconnect queuing delay 𝑑𝑄𝑢𝑒𝑢𝑒 can be

presented as a function of the rate of access to off-chip 𝑀𝑅𝐿𝐿𝐶,
the off-chip memory bandwidth, the number of processing
cores etc. [5]. Those parameters except for 𝑀𝑅𝐿𝐿𝐶 and the
number of processing cores are not part of our framework.
Hence we model 𝑑𝑄𝑢𝑒𝑢𝑒 as a function of 𝑀𝑅𝐿𝐿𝐶, assuming the

rest of the parameters are constant. The off-chip bandwidth can
be written as:

𝐵𝑊𝐿𝐿𝐶 = 𝑅𝐿𝐿𝐶𝑀𝑅𝐿𝐿𝐶 (26)

In real life, cache performance is affected by a combination
of constrained chip resources. When LLC area budget is
limited, the elevated miss rate causes the off-chip memory
traffic to intensify, thus enlarging the total chip power. As a

result, the average memory delay is affected by longer DRAM
queuing delays. When LLC area budget is substantial, LLC
power consumption becomes the primary constraint as it
becomes too large to power, while on the other hand, the
decreased bandwidth reduces the total chip power. To that end,
the optimal cache size should be obtained only within the
framework of the entire chip. We thus include the DRAM
pinout power dissipation into the optimization framework as
follows:

𝑃𝐷𝐷𝑅 = 𝑐𝐷𝐷𝑅𝐵𝑊𝐿𝐿𝐶 (27)

where 𝑐𝐷𝐷𝑅 is a constant translating bandwidth (bit/second) to
average power dissipated at SoC pinout.

D. Network on a Chip (NoC)

We assume a 2-D mesh NoC [13], with a transfer delay

𝑂(√𝑛) . We assume that NoC hub blocks are identical and
consume a fixed area, 𝑎𝑁𝑜𝐶 . Thus, the total NoC area is:

𝐴𝑁𝑜𝐶 = (𝑁𝑃𝑟𝑜𝑐 + 1𝐿𝐿𝐶)𝑎𝑁𝑜𝐶 (28)

where 𝑁𝑃𝑟𝑜𝑐 is the number of integrated processing cores (that
is, the sum of processing cores which have been allocated area
larger than 0). We further assume that the NoC blocks are
constantly active and thus consume a fixed power, relative to
the area:

𝑃𝑁𝑜𝐶 = 𝐶𝐴𝑃𝐴𝑁𝑜𝐶 (29)

where 𝐶𝐴𝑃 is a constant translating units of area to
power [12], [25]. Note that other NoC topology may be
considered, such as Nahalal [43] that enables fast access to
shared data for all processors, while preserving the vicinity of
private data to each processor.

E. Total Resources

The combined area, power (static and dynamic) and
execution time is a summary of all resources allocated to the
processing cores, NoC and the LLC, respectively:

𝐴𝑇𝑜𝑡𝑎𝑙 = 𝐴𝐿𝐿𝐶 + 𝐴𝑁𝑜𝐶 + 𝐴𝑃𝑟𝑜𝑐 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐿𝐿𝐶 + 𝑃𝐷𝐷𝑅 + 𝑃𝑁𝑜𝐶 + 𝑃𝑃𝑟𝑜𝑐

≤ 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐿𝐿𝐶 + 𝑇𝑁𝑜𝐶 + 𝑇𝑃𝑟𝑜𝑐 ≤ 𝑇𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 = 𝐵𝑊𝐿𝐿𝐶 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

(30)

Note that the network delay, 𝑇𝑁𝑜𝐶 , is modeled as a part of the
LLC’s delay.

IV. CONVEX OPTIMIZATION

A convex function satisfies the inequality 𝑓(𝛼𝑥 + 𝛽𝑦) ≤
𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) [32]. An optimization problem of finding some
𝑥∗ ∈ 𝑋 such that 𝑓(𝑥∗) = 𝑚𝑖𝑛{𝑓(𝑥): 𝑥 ∈ 𝑋} where 𝑋 ⊂ ℝ𝑛 is
the feasible set and 𝑓(𝑥): ℝ𝑛 → ℝ is the objective, is called
convex if 𝑋 is a closed convex set and 𝑓(𝑥) is convex on
ℝ𝑛 [16][9]. We extend the analysis of [7] by considering: (a)
comprehensive SoC architecture having NoC and LLC; and (b)
workload containing sequential and concurrent tasks, in four
types of SoC architectures, each containing two cores, for the
simplicity of exposition.

 Asymmetric, unbalanced β (cf. (2)): the workload may be
distributed across up to two distinct cores, having

unbalanced exponent β = {0.6, 0.4}, respectively.

 Asymmetric, balanced β: the workload may be distributed
across up to two distinct cores, having balanced exponent
β = {0.5, 0.5}, respectively.

 Heterogeneous, unbalanced β : the workload should be
distributed across exactly two distinct cores, having
unbalanced exponent β = {0.6, 0.4}, respectively.

 Heterogeneous, balanced β : the workload should be
distributed across exactly two distinct cores, having
balanced exponent β = {0.5, 0.5}, respectively.

We further assume that each processing core contains a private
L1 cache. Each workload task is characterized by miss rates
defined in [5] using PARSEC [10] and NAS [11],
corresponding to the sequential-parallel synchronization data
exchange. Further, we have applied assumptions similar to
those used in [5], [20] and [35] for the constants described in
(23) - (25). Our framework finds the optimal resource allocation
in a broad spectrum of constraints. While we only exemplify
execution time under constraints optimization, our
methodology can also be utilized for optimizing power under
constraints and area under constraints [6].

Consider a synthetic workload consisting of a sequential task
incurring execution time 𝑡0 = 40 , and two concurrent tasks,
incurring execution times 𝑡𝑐 = {50,10} on a reference
processor, respectively. We wish to minimize the total
execution time of a SoC consisting of processing cores, NoC
and LLC, under total area, total average power and off-chip
bandwidth constraints. We thus write our optimization problem
as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑇𝑜𝑡𝑎𝑙 {𝐴𝐿𝐿𝐶, 𝐴𝑁𝑜𝐶,𝑎1, … , 𝑎𝑁 , 𝑝1 , … , 𝑝𝑁}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑇𝑜𝑡𝑎𝑙 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
 𝑃𝑇𝑜𝑡𝑎𝑙 ≤ 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

(31)

Solving the above optimization problem is tantamount to
finding an optimal solution. To solve problem (31) we used
CVX, a package for specifying and solving convex
programs [23] [24], replacing the objective functions and the
constraints with their convex counterparts. We optimize the

four SoC architectures, as detailed in Figure 4-Figure 6. Each

part of the sub-figures depicts three sets of bars corresponding
to increasing areas, 𝐴𝑇𝑜𝑡𝑎𝑙−𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =
{5mm2, 40mm2, 320mm2} , respectively. Within each set,
there are two levels of power budget, high power for the first
bar and lower power for the second bar, as follows:

 The optimal area allocation under elevated power
constraint (first bar of each set of Figure 4’s sub-figures).

 The optimal area allocation under limited power constraint
(second bar of each set of Figure 4’s sub-figures). Some of
the SoC components are power-limited, hence the optimal
area allocation is different from areas in the first bar of each
set.

 The optimal power allocation under elevated power
constraint (first bar of each set of Figure 5’s sub-figures).

 The optimal power allocation under limited power
constraint (second bar of each set of Figure 5’s sub-
figures). Several SoC components are power-limited,
hence the optimal power allocation is different from the
first bar of each set.

 The red stars in Figure 6’s sub-figures depict the optimal
execution time corresponding to the higher/lower
constrained power scenarios.

The optimal (actually utilized) total area 𝐴𝑇𝑜𝑡𝑎𝑙 , total power
𝑃𝑇𝑜𝑡𝑎𝑙 , total execution time 𝑇𝑇𝑜𝑡𝑎𝑙 , and total bandwidth
𝐵𝑊𝑇𝑜𝑡𝑎𝑙 are specified at the bottom of each subfigure. Note that
for some configurations, the optimal (actually utilized) value
may be smaller than its corresponding constraint. TABLE 1
Summarizes the constraints used for execution time
optimization, where SxBy corresponds to set x, bar y in Figure

4-Figure 6.
TABLE 1

EXECUTION TIME OPTIMIZATION CONSTRAINTS

Constraint S1B1 S1B2 S2B1 S2B2 S3B1 S3B2

𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 5.0 5.0 40.0 40.0 320.0 320.0
𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1.35 1.08 10.8 8.64 86.40 69.12

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1.9 1.9 1.6 1.6 1.1 1.1

Power constraints are specified in Watt, Execution time constraints in seconds,
and Bandwidth constraints in MB/sec.

Figure 4. SoC area partitioning following optimization of execution time,
subject to three scenarios of constrained resources.

Figure 5. SoC power partitioning following optimization of execution time,
subject to three scenarios of constrained resources.

Optimizing Execution Time, Subject to Constrained Area, Power, Bandwidth

0

25

50

75

100

S1B1|S1B2

5.0mm2|4.6mm2

1.3W|1.1W

58.3s|80.2s

1.7MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
A

re
a

(a) Asymmetric, Unbalanced 

L2 Cache

C1 =0.6

C2 =0.4

0

25

50

75

100

S1B1|S1B2

5.0mm2|3.9mm2

1.3W|1.1W

65.9s|88.0s

1.6MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
A

re
a

(b) Asymmetric, Balanced 

L2 Cache

C1 =0.5

C2 =0.5

0

25

50

75

100

S1B1|S1B2

5.0mm2|3.1mm2

1.3W|1.1W

`67.5s|138.3s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
A

re
a

(c) Heterogeneous, Unbalanced 

L2 Cache

C1 =0.6

C2 =0.4

0

25

50

75

100

S1B1|S1B2

4.7mm2|2.8mm2

1.3W|1.1W

`75.0s|137.4s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
A

re
a

(d) Heterogeneous, Balanced 

L2 Cache

C1 =0.5

C2 =0.5

Optimizing Execution Time, Subject to Constrained Area, Power, Bandwidth

0

25

50

75

100

S1B1|S1B2

5.0mm2|4.6mm2

1.3W|1.1W

58.3s|80.2s

1.7MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
P

o
w

er

(a) Asymmetric, Unbalanced 

L2 Cache

C1 =0.6

C2 =0.4

0

25

50

75

100

S1B1|S1B2

5.0mm2|3.9mm2

1.3W|1.1W

65.9s|88.0s

1.6MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
P

o
w

er

(b) Asymmetric, Balanced 

L2 Cache

C1 =0.5

C2 =0.5

0

25

50

75

100

S1B1|S1B2

5.0mm2|3.1mm2

1.3W|1.1W

`67.5s|138.3s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
P

o
w

er

(c) Heterogeneous, Unbalanced 

L2 Cache

C1 =0.6

C2 =0.4

0

25

50

75

100

S1B1|S1B2

4.7mm2|2.8mm2

1.3W|1.1W

`75.0s|137.4s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

%
 o

f
T

o
ta

l
P

o
w

er

(d) Heterogeneous, Balanced 

L2 Cache

C1 =0.5

C2 =0.5

Figure 6. SoC optimization of execution time, subject to three scenarios of
constrained resources.

As shown in Figure 4(a)-Figure 6(a), we consider an
asymmetric dual-core architecture where each core has a
distinct exponent, 𝛽𝑗 = {0.6, 0.4}. Initially, due to constrained

area, only a single core is allocated. As the total SoC area
increases, the weaker core is assigned with the shorter task, and
provided with growing portion of the total average area and
power. When power is constrained the weaker core is provided
with smaller area portion. On the other hand, the weaker core is
provided with larger portion of the total average power at the
expense of the stronger cores. We thus find that in a power
limited architecture, the optimum is found when additional area
is assigned to the stronger cores at the expense of the weaker
cores, while additional power is assigned in the opposite
direction, to the weaker cores at the expense of the stronger
cores.

Next, in Figure 4(b)-Figure 6(b) we consider an asymmetric
dual-core architecture where all core share the same exponent,

𝛽𝑗 = 0.5. In contrast with the previous set, Figure 4(b)-Figure
6(b) shows that when sufficient area is provided to the SoC such
that both cores are allocated, tasks, area and average power
allocation do not shift from one core to another even if the area
resources increases indefinitely; rather, partitioning among the
cores remains constant. Note that although both cores are of the
same strength (same 𝛽), resources (e.g., area and power)
allocation is not equal due to the serial and two concurrent tasks
having different execution times.

Next, in Figure 4(c)-Figure 6(c) we consider a

heterogeneous dual-core having unbalanced exponents 𝛽𝑗 =
{0.6, 0.4}, respectively. As the total SoC area gets larger, area
resources shift from the stronger core to the weaker core having
lower 𝛽. Note that in the heterogeneous case all cores must be
retained while in the asymmetric SoC some cores may be

eliminated. When power is constrained, the stronger core is
provided with even larger portion of the total area, at the
expense of the weaker core. On the other hand, the weaker core
is provided with even larger portion of the total average power.
We thus find that in a power-limited architecture, the optimum
is found when additional area is assigned to the stronger cores
at the expense of the weaker cores, while additional power is
assigned in the opposite direction, to the weaker cores at the
expense of the stronger cores

Lastly, in Figure 4(d)-Figure 6(d) we consider a
heterogeneous dual-core architecture where all core share the
same exponent, 𝛽𝑗 = 0.5 . In contrast with the unbalanced

heterogeneous SoC, Figure 4(d)-Figure 6(d) show that when
sufficient area is provided to the SoC, tasks, area and power
allocations do not shift even if the area resources increases
indefinitely, similarly to the balanced asymmetric SoC of

Figure 4(b)-Figure 6(b).

V. DISCUSSION

Several SoC configurations having large number of cores
and tasks, and power under constraints and area under
constraints optimization targets were simulated using the
framework of Section IV [6]. The framework leads to consistent
results, in spite of parameter and constraint variability. There is
no coherent hand-rule conclusion that can guide architects on
how to manually partition the chip given a workload and a set
of constraints. The reason is that the processing cores, the
network, last-level cache and off-chip bandwidth are so
intertwined and dependent on each other, that taking some area
(or power) from one block and allocating it to the other is likely
to impact the allocation of all other blocks. On the other hand,
we argue that our framework does find the optimal partitioning
over a wide spectrum of parameters and constraints and thus
can automate complex architectural design, analysis and
verification. We thus conclude that in the multi-core era, when
the number of transistors (and thus the number and complexity
of functional blocks) grows exponentially, chip architects
should embrace automated frameworks for partitioning chip
resources, instead of conventional manual methods.

VI. CONCLUSIONS

This paper describes a multi-core optimization framework
that, given (a) workload consisting of sequential and concurrent
parts, (b) SoC building blocks models such as processing cores,
LLC and NoC, (c) constrained area and average power budget,
(d) limited off-chip memory bandwidth, and (e) limited NoC
capacity, utilizes convex optimization to find an optimal subset
of the processing cores and allocates area and power resources
among all, whether optimizing for, e.g., area, power or
execution time. The framework relies on modeling the
performance of each core as a function of its area and power.
To that end, models are provided and analyzed for core power
and performance, NoC power and delay, cache miss rate and
power and off-chip bandwidth, all as functions of area.

Our framework finds the optimal partitioning over a wide
spectrum of parameters and constraints offering an automated
means for partitioning resources in the SoC, complementing

Optimizing Execution Time, Subject to Constrained Area, Power, Bandwidth

0

37.5

75

112.5

150

S1B1|S1B2

5.0mm2|4.6mm2

1.3W|1.1W

58.3s|80.2s

1.7MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

E
x
e
c
u

ti
o

n
 t

im
e
,

S
e
c
.

(a) Asymmetric, Unbalanced 

Time

0

37.5

75

112.5

150

S1B1|S1B2

5.0mm2|3.9mm2

1.3W|1.1W

65.9s|88.0s

1.6MB|1.6MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

E
x
e
c
u

ti
o

n
 t

im
e
,

S
e
c
.

(b) Asymmetric, Balanced 

Time

0

37.5

75

112.5

150

S1B1|S1B2

5.0mm2|3.1mm2

1.3W|1.1W

`67.5s|138.3s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

12.0s|13.0s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.0W|69.1W

4.0s|4.2s

1.1MB|1.1MB

E
x
e
c
u

ti
o

n
 t

im
e
,

S
e
c
.

(c) Heterogeneous, Unbalanced 

Time

0

37.5

75

112.5

150

S1B1|S1B2

4.7mm2|2.8mm2

1.3W|1.1W

`75.0s|137.4s

1.9MB|1.9MB

S2B1|S2B2

40.0mm2|40.0mm2

10.8W|8.6W`

16.2s|17.8s

1.6MB|1.6MB

S3B1|S3B2

320.0mm2|320.0mm2

85.2W|69.1W

6.0s|6.5s

1.1MB|1.1MB

E
x
e
c
u

ti
o

n
 t

im
e
,

S
e
c
.

(d) Heterogeneous, Balanced 

Time

conventional manual methods.
This paper extends and generalizes previous Lagrange based

optimization frameworks [38][8] and [7]. One of the potential
applications of this framework is optimizing the average power
or energy of a given workload, executing on a fabricated
semiconductor SoC (where area resources have been already
partitioned). In such a case, for example, a real-time workload
is given with known execution time upper bounds, and the
average power budget is optimally partitioned so as to minimize
total average power or energy. Our framework offers an
efficient alternative to iterative ad-hoc methods for exploring
the design space.

ACKNOWLEDGMENT

This research was funded in part by the Intel Collaborative
Research Institute for Computational Intelligence (ICRI-CI)
and by Hasso-Plattner Institute (HPI).

REFERENCES

[1] A. Agarwal et al. "Core Count vs. Cache Size for Manycore Architectures in the
Cloud." (2010).

[2] A. Alameldeen, “Using compression to improve chip multiprocessor performance”,
PhD thesis, University of Wisconsin, Madison, WI, 2006.

[3] A. Cassidy and A. Andreou, “Beyond Amdahl Law - An objective function that
links performance gains to delay and energy”, IEEE Transactions on Computers,
vol. 61, no. 8, pp. 1110-1126, Aug 2012.

[4] A. Elyada, R. Ginosar, U. Weiser, “Low-Complexity Policies for Energy-
Performance Tradeoff in Chip-Multi-Processors,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Volume: 16, Issue: 9, 2008, Page(s): 1243
- 1248.

[5] A. Krishna, A. Samih, and Y. Solihin. "Data sharing in multi-threaded applications
and its impact on chip design", ISPASS, 2012.

[6] A. Morad, L. Yavits and R. Ginosar, “Convex Optimization of Resource Allocation
in Asymmetric and Heterogeneous Multicore,” 2014

[7] A. Morad, T. Morad, L. Yavits and R. Ginosar, “Optimization of Asymmetric and
Heterogeneous MultiCore,” 2013

[8] A. Morad, T. Morad, L. Yavits, R. Ginosar, U. C. Weiser. "Generalized
MultiAmdahl: Optimization of Heterogeneous Multi-Accelerator SoC," IEEE
Computer Architecture Letters, 2012.

[9] Ben-Tal, Aharon; Nemirovskiĭ, Arkadiĭ Semenovich (2001). Lectures on modern
convex optimization: analysis, algorithms, and engineering applications. pp. 335–
336.

[10] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization and
Architectural Implications”, PACT 2008..

[11] D. Bailey, et al. “The NAS Parallel Benchmarks”, Intl. Journal of Supercomputer
Applications, 5(3):63–73, 1991

[12] D. H. Woo and H. H. S. Lee. “Extending Amdahl’s law for energy-efficient
computing in the many-core era.” Computer, 41(12):24–31, 2008.

[13] D. Wentzlaff, et al., “Core Count vs. Cache Size for Manycore Architectures in the
Cloud.” Tech. Rep. MIT-CSAIL-TR-2010-008, MIT, 2010.

[14] F. Pollack. "New Microarchitecture Challenges in the Coming Generations of
CMOS Process Technologies," Keynote, Micro 32, 1999,
www.intel.com/research/mrl/Library/micro32Keynote.pdf

[15] G. Loh, "The cost of uncore in throughput-oriented many-core processors",
Workshop on Architectures and Languages for Throughput Applications. 2008.

[16] Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1996). Convex analysis and
minimization algorithms: Fundamentals. p. 291.

[17] Huh et al., “Exploring the design space of future CMPs,” PACT, 2001.
[18] K. Banerjee et al., “A self-consistent junction temperature estimation methodology

for nanometer scale ICs with implications for performance and thermal
management,” IEEE IEDM, 2003, pp. 887-890.

[19] L. Yavits, A. Morad, R. Ginosar, "Cache Hierarchy Optimization," IEEE Computer
Architecture Letters, 2013

[20] L. Yavits, A. Morad, R. Ginosar, “The effect of communication and synchronization
on Amdahl’s law in multicore systems”, Technion TR,
http://webee.technion.ac.il/publication-link/index/id/611.

[21] L. Zhao and R. Iyer, et al., “Performance, Area, and Bandwidth Implications for
Large scale CMP Cache Design”, CMP-MSI, 2007.

[22] M. D. Hill and M. R. Marty. “Amdahl's Law in the Multicore Era,” IEEE Computer,
July 2008.

[23] M. Grant and S. Boyd. “CVX: Matlab software for disciplined convex
programming, version 2.0 beta.” http://cvxr.com/cvx, September 2013.

[24] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs,
Recent Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel,
S. Boyd, and H. Kimura, editors, pages 95-110, Lecture Notes in Control and
Information Sciences, Springer, 2008. http://stanford.edu/~boyd/graph_dcp.html.

[25] Mark Hempstead, Gu-Yeon Wei, and David Brooks. “Navigo: An early-stage
model to study power-constrained architectures and specialization,” ISCA
Workshop on Modeling, Benchmarking, and Simulations (MoBS). Austin TX.,
June 2009

[26] MATLAB Optimization Toolbox Release 2012b, The MathWorks, Inc., Natick,
Massachusetts, United States. “lsqcurvefit” solver,
http://www.mathworks.com/help/optim/ug/lsqcurvefit.html

[27] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, "Cacti 6.0: A tool to
understand large caches." University of Utah and Hewlett Packard Laboratories,
Tech. Rep (2009).

[28] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0”,
MICRO, pp. 3–14, 2007.

[29] R. T. Rockefellar. “Lagrange multipliers and optimality”, SIAM Review, vol. 35, pp.
183–283, 1993.

[30] Rotem, E.; Ginosar, R.; Weiser, U.; Mendelson, A., "Energy Aware Race to Halt: A
Down to EARtH Approach for Platform Energy Management," Computer
Architecture Letters, vol.PP, no.99, pp.1,1, 0. doi: 10.1109/L-CA.2012.32

[31] S. Borkar. “Thousand Core Chips: A Technology Perspective,” Proc. ACM/IEEE
44th Design Automation Conf. (DAC), 2007, pp. 746-749.

[32] S. Boyd, L. Vandenberghe, “Convex optimization”, Cambridge university press,
2004.

[33] S. Natarajan, S. Narayanan, B. Swamy, and A. Seznec. "Modeling multi-threaded
programs execution time in the many-core era." (2013).

[34] S. Wilton and N. Jouppi, “An Enhanced Access and Cycle Time Model for On-Chip
Caches “, WRL Research Report 93/5, 1994.

[35] T. Oh et al., “An Analytical Model to Study Optimal Area Breakdown between
Cores and Caches in a Chip Multiprocessor,” IEEE Computer Society Annual
Symposium on VLSI, 2009, pp. 181–186.

[36] T. Wada, S. Rajan, , S. Przybylski, “An Analytical Access Time Model for On-Chip
Cache Memories”, IEEE Journal of solid-state circuits, vol. 27. no. 8, August 1992.

[37] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero and E. Ayguadé. “Performance,
power efficiency, and scalability of asymmetric cluster chip multiprocessors,” IEEE
Computer Architecture Letters, vol. 4, 2005.

[38] T. Zidenberg, I. Keslassy and U. C. Weiser. "MultiAmdahl: How Should I Divide
My Heterogeneous Chip?," IEEE Computer Architecture Letters, 2012.

[39] W. Liwei et al. "Application specific buffer allocation for wormhole routing
Networks-on-Chip", Network on Chip Architectures, 2008, 37.

[40] Y. Ben-Itzhak, I. Cidon, A. Kolodny. "Delay analysis of wormhole based
heterogeneous NoC", Fifth IEEE/ACM International Symposium on Networks on
Chip, 2011.

[41] Y. Tsai, Y. Xie, V. Narayanan, and M. J. Irwin, “Three-Dimensional Cache Design
Exploration Using 3DCacti”, ICCD, pp. 519-524, 2005.

[42] Yongpan Liu et al., "Accurate Temperature-Dependent Integrated Circuit Leakage
Power Estimation is Easy," Design, Automation & Test in Europe Conference &
Exhibition, 2007. DATE '07 , vol., no., pp.1,6, 16-20 April 2007, doi:
10.1109/DATE.2007.364517

[43] Z. Guz, Keidar, Idit, Avinoam Kolodny, and Uri C. Weiser. “Nahalal: Memory
Organization for Chip Multiprocessors.” Technion-IIT, Department of Electrical
Engineering, 2006.

http://webee.technion.ac.il/people/ran/papers/MoradConvexOptimization.pdf
http://webee.technion.ac.il/people/ran/papers/MoradConvexOptimization.pdf
http://webee.technion.ac.il/~ran/papers/MoradOptimizationAsymmetricMultiCore.pdf
http://webee.technion.ac.il/~ran/papers/MoradOptimizationAsymmetricMultiCore.pdf
http://www.intel.com/research/mrl/Library/micro32Keynote.pdf
http://webee.technion.ac.il/publication-link/index/id/611
http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
http://www.mathworks.com/help/optim/ug/lsqcurvefit.html

