This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Using Scan Side Channel to Detect IP Theft

Leonid Azriel, Student Member, IEEE, Ran Ginosar, Senior Member, IEEE, Shay Gueron,
and Avi Mendelson, Senior Member, IEEE

Abstract—In the growing heterogeneous Internet of Things
market, which embraces a plurality of vendors and service
providers, IP protection plays a central role. This paper proposes
a process for the detection of IP theft in VLSI devices that
exploits the internal test scan chains, designed for production
test automation. The scan chains supply direct access to the
internal registers in the device, enabling combinational analysis
of the device logic. By using Boolean function learning methods,
the learner creates a partial dependence graph of the internal flip-
flops. The graph is further partitioned using the shared nearest
neighbors graph clustering method, and individual blocks of
combinational logic are isolated. These blocks can be matched
with known building blocks that compose the original function.
This enables reconstruction of the function implementation to
the level of pipeline structure. The IP owner can compare
the resulting structure with his own implementation to con-
firm whether an IP violation has occurred. We demonstrate
the power of the presented approach with a test case of an
open source Bitcoin SHA-256 accelerator, containing more than
80000 registers. With the presented method, we discover the
microarchitecture of the module, locate all the main components
of the SHA-256 algorithm, and learn the module’s flow control.
In addition to the direct recognition of the IP content, we also
demonstrate a combination of reverse engineering and water-
mark methods. We define a new watermark structure—pipeline-
associated watermark (PAW), combined with pipeline stages that
can be detected with the scan-based reverse engineering method.

Index Terms— Hardware security, intellectual property protec-
tion, reverse engineering, scan side channel, side channel attacks.

I. INTRODUCTION

N THE highly distributed horizontal model of semiconduc-

tor development, which involves multiple parties all over
the globe, IP piracy has become a significant concern [1].
Various legal means are available for the IP owner’s use.
They include patents, copyrights, contracts, trademarks, and
trade secrets [2]. Legal means are accompanied by technical
methods of securing the hardware design IP. Vast research has
been devoted to finding an efficient method for IP protection,
either by preventing the theft or by detecting IP violation.

In prevention, various obfuscation methods hinder IP piracy.
Among them are encryption and scrambling of the design
data at all the development stages, including RTL, gate

Manuscript received January 22, 2017; revised April 19, 2017; accepted
May 25, 2017. (Corresponding author: Leonid Azriel.)

L. Azriel, R. Ginosar, and A. Mendelson are with the Andrew and
Erna Viterbi Faculty of Electrical Engineering, Technion—Israel Insti-
tute of Technology, Haifa 32000, Israel (e-mail: leonida@tx.technion.ac.il;
ran@ee.technion.ac.il; avi.mendelson@technion.ac.il).

S. Gueron is with the Department of Mathematics, University of Haifa,
Haifa 3498838, Israel, and also with Amazon Web Services, Seattle 98108,
WA, USA (e-mail: shay@math.haifa.ac.il).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSL.2017.2715188

level netlist, or physical layout. Unfortunately, with sufficient
effort and motivation, obfuscation methods can be defeated.
Griffin et al. [3] propose an IC locking methodology that
utilizes process variations and insert sensors during synthesis
to generate unique keys that will be used for the activation
of the device. This and similar active protection methods that
involve activation usually require special implementation flow;
they also put additional burden on vendor and user. Moreover,
they do not address RTL level IP theft.

In detection, the IC metering technique, in which every
IC instance is uniquely marked [4], [5], has been proposed.
Among other detection methods, watermarking techniques
have been extensively studied. Watermarks alter the design
of the device without harming its main function. For exam-
ple, constraint-based watermarks [6], [7] introduce addi-
tional constraints to the design, such as specific encoding of
state machine states, adding hidden transitions to the state
machines [8], or assigning specific values to the don’t care
conditions. In [7], watermark techniques based on physical
design topology have been proposed. The watermarking tech-
niques equip the IP owner with evidence that will serve her if
the theft case goes to court.

Constraint-based watermarking is probabilistic [2], [9].
Namely, there is some probability that even without explicit
setting of the watermark-specific constraints, the original
design will comply with them. For example, random selection
of the state encoding may accidentally match the encoding
selected by the watermark. Also, the aforementioned meth-
ods require notable effort at the design stage. In addition,
the detection of the watermarks or similar structures remains
a challenge [10]. In any case, the target of IP protection and
the watermark are two distinct objects; therefore, the detection
of a watermark does not automatically infer IP violation. It is
on the IP owner to prove the connection.

Fan [11] proposes to combine watermarks and testing
techniques by embedding watermarks in test paths, includ-
ing scan test. The proposed technique is invoked as a
post-RTL process and involves additional back-end stages.
As such, it can be bypassed by avoiding these addi-
tional stages for a soft macro or making small incremental
changes to a hard macro IP. In general, inserting water-
marks at the earliest possible stage provides better protection
against their removal by tweaking the design implementation
process.

In contrast to the watermarking methods, forensic tech-
niques aim to detect the IP violation directly by detecting
the specific constructs in the target designs. Wong et al. [12]
discuss algorithms that potentially detect the synthesis tool
used to generate the design by property matching of functions.

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
external inputs: external outputs: o
Combinational Function: F/
State register:
shift mode
Fig. 1. Scan Design. Scan insertion adds multiplexers to each flip-flop in

the chip, so that when shift mode is on, all the flip-flops are accessible from
off-chip via a serial channel. The combinational function F represents the
collection of combinational logic cones connecting flip-flops to one another
and with primary inputs/outputs.

A similar approach can also be used to match the RTL level
by comparing relevant properties.

In this paper, we propose a forensic method for IP theft
detection effective in both finding watermarks and direct
detection of the theft. The proposed method is based on
full reverse engineering that enables extracting special struc-
tures or patented implementation details from the target design.
The new technique belongs to the class of side channel
analysis for reverse engineering that has been discussed in
several publications [13]-[15], where power analysis was used.
We demonstrate how reverse engineering is possible thanks to
the test scan chains embedded in digital VLSI devices.

Scan insertion is a well-known design-for-test (DFT) tech-
nique that allows for the automatic generation of test vectors
for production test of a VLSI device. Thanks to its efficiency
and ability to achieve high coverage, it has become a de facto
standard for testing digital circuits. However, this technique
also introduces a security breach. This security breach, usually
called a scan side channel, has been investigated by several
research groups [16]-[21]. So far, most of the attacks that
exploit the scan side channel target cryptographic keys or other
secrets held in the device. Recently, an additional threat was
reported: the possibility of reverse engineering using the scan
side channel [22]-[24]. In this attack mode, the entire device
logic can be discovered with the help of the test scan interface.

Azriel et al. [22] give a detailed description of how to
perform reverse engineering with scan. We summarize it here
for completeness. The scan insertion algorithm runs at the
design stage and adds to the circuit a special shift mode,
which arranges all the internal registers in one or a few shift
registers, called scan chains (see Fig. 1), and connects both
sides of the chain to the chip interface. During manufacturing,
the production tester switches the chip to the shift mode
and uses the scan chains both to place the chip in the
desired state (ShiftIn operation) and to sample its current state
(ShiftOut operation). The ShiftIn and ShiftOut operations can
be combined with a single functional (Capture) cycle to learn
(Probe) the output of the combinational function F for a
given input. The function F aggregates all the combinational
logic of the chip. It receives the circuit’s primary inputs and
register outputs as an input vector, and it returns the primary
outputs and register inputs as an output vector. Heuristic algo-
rithms can then be used to find a good approximation of the
function F, from which the learner can conjecture the circuit
functionality.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

While scan-based side channel can be considered as a
threat [22], the same method can also serve constructive
purposes [25]. For example, if the learner has a reference
model of the design, she can compare the learned struc-
ture with the model to find discrepancies that may lead to
the detection of maliciously implanted or Trojan hardware.
Alternatively, the learner can use the reverse engineering for
matching with the model to discover IP protection violations.

In this paper, we make the following assumptions.

1) The learner has access to the scan interface of the
integrated circuit and is capable of operating it. Security-
oriented devices usually contain protection of the
test interfaces. In the absence of security concerns,
such measures are not common. We discuss the scan
access and protection methods more comprehensively
in Section II.

2) The method obtains logical functionality of combina-
tional blocks in the circuit. Hence, the target of the
IP protection should be visible at this level. Particular
implementations of the same combinational function are
out of the scope of this paper.

3) The objective of the learner is to find a particular IP
within a bigger SoC context. This is different from
reverse engineering of the entire SoC. This paper covers
only the context of the IP, while methods for isolating
the IP from the rest of the SoC are out of the scope of
this paper.

In this paper, we present a case study, in which the
SHA-256 [26] accelerator implementation details are revealed
with the help of a scan-based reverse engineering technique.
The case study makes use of Boolean function analysis
techniques, in particular junta learning, to build a partial
dependence graph of the function, graph clustering algorithms
to isolate individual blocks, and property-based sorting to
complete the dependence graph. Finally, it uses hypotheses
to fully reconstruct the function.

We also propose a new watermark type, the pipelined-
associated watermark (PAW), with three unique properties:
1) it changes the logical function, and therefore can be used
to detect RTL level theft; 2) it changes the logical function in
a nonobvious way, so its removal requires substantial effort;
and 3) it is detectable by the scan-based reverse engineering
method. The PAW watermark alters logic functions of some
pipeline stages and reconstructs the original functionality in
the subsequent stages.

In summary, the main contributions of this paper are as
follows.

1) Proposal of a new forensic method that exploits embed-

ded test scan chains to detect IP violation.

2) Combining Boolean functional analysis and graph clus-
tering methods to learn combinational logic struc-
tures and reconstruct digital circuits by exploiting prior
knowledge of the building blocks of the design.

3) Proposal of a new type of watermark (PAW) inserted at
the RTL stage that can be detected with the aforemen-
tioned forensic method.

The remainder of this paper is organized as follows.

Section II discusses assumptions and countermeasures against

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZRIEL et al.: USING SCAN SIDE CHANNEL TO DETECT IP THEFT

scan side channel. Section III presents the details of the
SHA-256 algorithm implementation. Section IV introduces
the learning flow. Section V defines the watermark designed
for detection by the scan-based reverse engineering method.
Section VI presents the results of the test case evaluation.
Finally, Section VII summarizes and discusses directions for
future work.

II. ASSUMPTIONS AND COUNTERMEASURES

We assume, in this paper, that the scan test interface is
present and accessible in the target device. This assumption
is reasonable for a typical device that does not target security
applications. Vendors of secure VLSI devices often protect
their scan interface with authentication, obfuscation, or other
mechanisms. This publication may also motivate the IP vio-
lators to employ protection to conceal the event of theft. The
scan-based reverse engineering method may overcome some
protection mechanisms, especially when combined with other
methods. The violator may also decide to exclude the entire
IP from scan. The fact of exclusion may raise suspicion that
the IP has been intentionally stolen. Moreover, leaving large
modules disconnected from the scan may lead to unacceptable
reduction in production test coverage and therefore product
quality.

A number of papers discuss countermeasures against the
scan-based side channel analysis. Da Rolt ef al. [27] present
their comprehensive classification, which divides the counter-
measures to the following groups: advanced DFT structures,
built-in self-test (BIST), secure wrappers, unbounding, scram-
bling, access restrictions, secret-free test, modified scan chain,
and countermeasures against microprobing. In the following,
we use Da Rolt’s classification to show that some of the
countermeasures are ineffective against the scan-based reverse
engineering attack. For example, Da Rolt shows that the
advanced DFT structure is insecure against scan side channel
attack in general. Another countermeasure, the BIST structure
resists any scan-based attack, including ours, by disabling
external access to the scan chains. For this, BIST should
not provide any bypass modes, which complicates debug
and field failure diagnostics. In addition, fault coverage of
BIST is typically insufficient. Hence, pure BIST solutions
are rarely selected by vendors. The scrambling and modified
scan chain types present an additional countermeasure, but
they are inefficient against the scan-based reverse engineering
technique. The reason is that the reverse engineering is still
possible in the presence of the aforementioned structures, but
the output of the reverse engineering process will include both
the functional and the protection circuits. At the next stage,
the learner can separate between the two. Finally, the secret-
free test solution prevents volatile secret data from being
exposed. However, it does not prevent reverse engineering of
the design data. Solutions of the types access restriction and
secure wrapper prevent unauthorized access to scan chains.
Therefore, they are also efficient against reverse engineering.
Nevertheless, combined attacks are still possible. These attacks
may target the authorization mechanism at the first step, for
example using differential power analysis [28]. Often, such
mechanisms use global secrets; hence, it is sufficient to break a

single unit to gain access to all the other units of the same
product.

Previous work usually relies on the circuit’s ability to switch
dynamically from mission mode to scan mode and back to
retrieve runtime information. As a result, one of the popu-
lar countermeasures against scan-based attacks is enforcing
reset when switching between the modes [21]. The reverse
engineering method that we propose retrieves static design
information from the scan chains, and, therefore, is immune
to this protection mechanism.

IT1I. SHA-256 ALGORITHM

SHA-2 is a widely used family of cryptographic hash
functions. The family comprises six members distinguished
by the size of the hash value. In this paper, we examine
one member of the family, namely, SHA-256. The SHA-256
algorithm receives a message of an arbitrary length and
produces a 256-bit-long digest [Fig. 2(a)]. At the first stage,
the original message is padded, which makes its length an
integer number of 512-bit chunks. The subsequent processing
runs for each chunk sequentially. The processing comprises a
message schedule and 64 stages, called compression stages.
The message schedule takes the 512-bit input and prepares
64 32-bit words, one for every compression stage. The first
16 words are a copy of the input chunk, and for the remaining
48 words, the schedule operation involves bit permutations,
XOR operations, and a four-input 32-bit adder. The compres-
sion stage receives an 8 x 32 bit hash value and produces an
input to the next stage, in which six out of the eight words
are a mere permutation of the input, and the remaining two
words are the result of a five-element and a seven-element
adder, respectively. The inputs to the adder are the words from
the input of the stage, while some of them pass additional
transformations, which include permutations, XOR, selectors,
and a majority function.

For the case of IP theft detection, we assume that the
exact function of the circuit is known, and the target is to
discover the implementation details. Namely, the majority of
combinational building blocks are known, and the objective
is to learn how they are combined, what the structure of the
pipeline is, and what the differences from the original function
are, if they exist. Hence, the learning method is built around
recognition of the known structures.

The SHA-256 algorithm can be seen as an acyclic data
flow graph with many repetitive stages along the way. The
implementer can decide on a number of pipeline stages by
dividing the stages of the algorithm. Fig. 2(b) shows two stages
of the SHA-256 inner loop. If the implementation dedicates
one pipeline stage for one compression stage, the combina-
tional logic between the corresponding flip-flops will include
six 32-bit pass-through connections, and two 32-bit arithmetic
sums: one of seven and the other of five elements. However,
if two compression stages of the algorithm comprise one
pipeline stage, the combinational logic for one pipeline
stage will include four 32-bit pass-through paths, and four
32-bit arithmetic sums: of 5, 7, 11, and 17 elements. Alter-
natively, if the main constraint is power or silicon real estate,
even a single compression stage can be divided, and the same

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Message ot

Pre-processing

512-bit chunk
L 2

Compression
stage 1

Compression
stage 2

M

Schedule |

Compression
stage 64

Hash

\ L

(a)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

from extension

c[o]E[R][G]H]

(Al W
‘ %\\m :
L™
- N
— \\.

— K
constant

\ from extenswn

Bis1 | Cis1 | Diva | Eivt | Fisa | Gina

| R

Y

[Kin
constant

\&\\\\\.

IA.+2I Birz I Cirz I Duzl Eiry I Firz I Guzl szl

—_— =
I
|
|
I
I
I
|
|
|
I
I
|
|
|
I
I
I
|
|
I
I
I
|
|
I
I
|

(b)

Fig. 2. SHA-256 algorithm block diagram. (a) SHA-256 execution flow, including preprocessing stage, message schedule, which outputs 64 x 32 bit words,
and 64 compression stages. (b) Detailed diagram of two 256-bit-wide compression stages. Each includes 6 x 32 pass-through connections, two 32-bit adders,
one five-element, and one seven-element. In addition, the compression stage includes permutations, selectors, and majority functions.

Algorithm 1 Probe(Circuit S and Vector v)

Lor|i=v > Set registers and inputs state to v
2: 0—1 =0 > Sample outputs of S
3: Capture

4: return rjo;— > New register values and outputs

adder reused several times during calculation of this stage.
Performance-hungry applications will use deep pipelines, and
latency-oriented designs will strive to combine as many cal-
culations as possible in a single pipeline stage.

Despite the countless configurations, clearly distinguishable
structures can be found in most of them. For example, even
without knowing the exact configuration, such as the number
of inputs or additional logic, multiple bit adder structures have
a distinct pattern of dependencies between input and result
bits (as we show in detail in Section IV-A). Adders constitute
the majority of SHA-256 complex building blocks; therefore,
detecting adder-like structures is helpful for both partitioning
the data into hierarchical structures and learning the exact
function of these blocks.

IV. LEARNING FLOW FOR IP THEFT DETECTION

Discovering IP theft means detecting patterns in the target
design that match elements of the owner’s IP. The instru-
ment available to the learner is the operation Probe(S,v)
over circuit S, defined in Algorithm 1. In the description
of the algorithm, r designates the circuit’s internal register
vector, i the input vector, and o the circuit’s output vector.
If we view the circuit as a state machine, then the probe
operation receives the current state of the circuit and returns
its next state. The constant n designates the length of the
register vector, or, in other words, the number of registers
in the circuit S. For convenience, we assume that the number
of registers is significantly greater than the number of circuit
inputs or outputs. A rule of thumb says that the number of
pins of an integrated circuit can be approximated as the square

root of the number of cells. Thus, for large integrated circuits,
the number of pins is relatively negligible. We will, therefore,
use the notation n also to indicate the length of concatenated
vectors r || i and r || o.

Obviously, running probes for all possible values of v gives
an accurate description of the circuit. Since the number of
values is exponential, this method is not practical. Thus,
the objective of the learner is to find the minimal set of
probes that supply maximum information about the design.
The learner possesses a priori knowledge about the overall
function, and hence about its specific components. For exam-
ple, an advance encryption standard implementation will have
specific SBoxes or a 32-bit CPU will contain a 32-bit adder
for address calculation. This knowledge helps to detect the
sought elements from a partial set of probes.

The Boolean function analysis field [29] studies algorithms
for learning Boolean functions that belong to certain classes.
In particular, the junta learning method [30], [31] works
for functions with the number of inputs limited by some
constant K. This paper introduces an innovative way of
applying Boolean function analysis techniques to learn digital
circuits with the goal of IP theft detection. We employ the
junta method to find the partial dependence graph, which is
further processed to identify the required structures. Following
are the steps of the learning flow.

1) Find the partial dependence graph using probes and the
junta algorithm.

Partition the graph using the shared nearest neigh-
bors (SNNs) clustering algorithm.

Find missing dependence links with the help of the
algorithm VertexSort.

Reconstruct functions within the clusters and beyond.
Return to sequential circuit representation by folding the
graph.

2)
3)

4)
5)

A. Creating a Dependence Graph With k-Junta Learning
The probe operation abstracts away the stateful behavior
of the circuit and represents it as a combinational multibit

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZRIEL et al.: USING SCAN SIDE CHANNEL TO DETECT IP THEFT

(a) (b)

Fig. 3.
completing missing dependencies (bold lines indicate newly added edges).

Boolean function F. As shown in Fig. 1, primary inputs and
register outputs of the circuit serve as inputs to F, and primary
outputs with register inputs of the circuit serve as outputs of F.
We can depict this Boolean function as a directed bipartite
graph (Fig. 3), where the edges between the nodes designate
dependence relations between input and output bits. For an
output bit y; = f(x1,x2,...,Xxy), input node x; and output
node y; are connected if and only if there exists an input
vector x¥ such that f(xx; = 0) # f(x°|x; = 1).

The k-junta learning flow starts with a dependence graph
that contains no edges. The input nodes are located at the left
side, and the output nodes at the right side of the graph. The
algorithm described in the following adds edges to the graph
by finding input—output dependence relations of the function.

Junta Algorithm: In computational learning theory, a func-
tion f: {0,1}* — {0,1} is called a k-junta for k € N
if it depends on at most k of its input coordinates; that is,
fx) = gxi,...,x;) for some g: {0,1}" — {0,1} and
i1,...,ik € [n] [32]. Hence, algorithms for learning junta
functions from queries can be leveraged for reconstructing
combinational circuits (or logic cones) with a transitive fan-
in bounded by a constant k. We take the adaptive algorithm
from [33]. We use the first stage of the algorithm, the stage
that finds dependencies. It is formally defined in Algorithm 2.
The algorithm runs separately for every output bit. It starts
by generating a set of random input vectors. For each input
vector in the set, it stores the corresponding probe results of the
function F. These results are used to find input bits that affect
the output (relevant variables or RV) by comparing input
vectors that generate different probe results. For intuition,
consider two input vectors » and o from the random vector set,
such that Probe(S,v) # Probe(S,0). The vectors v and 0
differ in some bits. If we start swapping the discriminating
bits in » one by one, repeating the Probe operation after each
swap, there will be a step at which the probe result will change.
The variable that caused this change is a relevant variable. This
operation is repeated for all the vectors in the set in order to
find more relevant variables, while the variables already known
as relevant do not swap. In our implementation, we set one of
the vectors (D) to constant 0 (all the bits except those already
proven as relevant) and change only one vector (v). Namely,
the algorithm “walks” from » to 0 by setting (swapping)

- he) - k) - ©
C c C
c v © un c v © un c B T
o3 @25 o3 o5 o2 a5
s 2 5 a 22 5 a s e 5 a
=] ' o C 3 > Y o C =] o C
[- — L] - — - —
Q o HI = Q 9 Voo = [SH) b=
c [S o c oo S o c S o
= a b o0 = a b o0 = a 0 0
220 HE o & L2 I o & 220 v &
S S o 5 S o S S o
T o = T o = T Qo =
= i g« = 8= = 8=
E P £ = P £ E £

P P

:n. :ln

[LI

Directed bipartite partial dependence graph. (a) After the run of the junta algorithm. (b) After SNN clustering (colors designate clusters). (c) After

Algorithm 2 Junta Learning(Circuit S, k)

1: init RV[i] = 0 for all i from 1 to n

2: Stage 1: Generate random probes

3: loop k-2F times

4: v := random(1,...,2" — 1)

5: P := Probe(S,v)

6: add(Probes, (v,P))

7: end loop

8: Stage 2: Find dependencies

9: for i from 1 to n do > Each output bit separately

10: for all (v,P) in Probes do

11 V={P,....,0n} =V

12: For all j from 1 to n: ¥; = 0 if (v; ¢RV[i])

13: P := Probe(S,9)

14: if P, # P. then

15: Binary search for relevant variable

16: pos:=n/2

17: for step =n/4 ; step > 1 ; step = step/2 do

18: u:.=v

19: Set bits ug to upeys excluding bits in RV/[i]
to 0

20: if Probe(S,u); # P; then

21: pos 1= pos — step

22: else

23: pos := pos + step

24: end if

25: end for

26: add(RV[i], RV)

27: end if

28: end for

29: end for

bits in v to 0. In addition, the variable swapping is done in
groups using the binary search principle. During the binary
search, the vector v is recursively halved and one of the halves
filled with Os until a single variable that makes the difference
between P; and ﬁi is found. This results in a logarithmic
search time in contrast to the linear time for the one by one
swapping example.

To evaluate the time complexity of the algorithm, we count
the probe operations. The probes are “expensive,” since

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

400 100

0
=}
& o
>

(®)]
° 175 &
° c
= ©
@© 3]
» o
@ o
B 200 150 o
= 2
o ©
= >
S)
3 125 g
€
=]
z

0 %
0 50 100 150 200 250 30

Fan In

Fig. 4. Transitive fan-in histogram for flip-flop inputs and primary outputs in
the ITC’99 benchmark circuits. About 50% of them have fan-in of 50 or less.
Peaks can be seen at fan-ins that are multiples of 32, hinting about processor
registers and arithmetic circuits.

their runtime depends on n, the size of the register vector.
Moreover, the probes run serially. The processing, in contrast,
can run in parallel to the probes, and also can be parallelized.
Hence, the number of probes determines the algorithm time
complexity.

At the first stage, the k-junta algorithm generates k - 2K
probes. At the next stage, the binary search invokes logn
probes once for every relevant variable. Hence, the number
of probes required for a single output bit is limited by
(k-2F +k-logn). Taking into account that the time complexity
of the probe operation itself is O(n), the cumulative time
complexity of k-junta with scan for all the outputs can be
written as

Junta learning time complexity = O(n - k - (n - logn + 2%)).
(1)

The nonadaptive version of the junta algorithm provides addi-
tional speedup by using the set of probes from stage 1 also for
the search stage [33]. Hence, it can be used for very large-scale
designs, in which the impact of n logn is dominant. We chose
the adaptive version for its simplicity.

Typically, due to the exponential growth, dependence on
the transitive fan-in is dominant. Fig. 4 shows a histogram
of transitive fan-ins of the logic cones from the circuits in
the ITC’99 benchmark set [34]. About half of the nodes have
fan-in of 32 and lower, which can still be feasibly handled by
the k-junta algorithm. The functionality of these nodes can be
found directly by exhaustive search. Clearly, the algorithm will
not be able to handle all the higher fan-in nodes within feasible
time. Since finding all the dependencies directly with k-junta
for high fan-out nodes is not practical, we take a heuristic
approach, the key to which is in the a priori knowledge of
the components of the target circuit. Thus, at the beginning,
we choose a value of k that will make the algorithm complete
in a feasible time. If this value is lower than the highest
transitive fan-in in the circuit, the algorithm will discover
only a subset of the dependencies. The chance to discover
dependence on a certain variable depends on how strongly
this variable affects the output. To formalize this phenomenon,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

we use the notation of Influence, which measures the extent
to which certain input affects the function [29]. Namely,
the influence of variable x; on function f: {0, 1} — {0, 1} is
defined to be a probability that for a random input x, inverting
the variable x; changes the output of the function

Ifi(fl= Pr (f(i....

9-xi9"'9-xn)

flxn, ... S Xn). (D)

The influence of the variable determines the probability to
find the corresponding link by the k-junta algorithm. The worst
case influence of a variable on a function with support size
(number of variables affecting the function) of k is 1/2*. The
k-junta algorithm finds all the dependencies for this function
with high probability. For a function with support size greater
than k, the k-junta algorithm will find relevant variables with
influence of 1/2% or higher with high probability. Consider an
example of a 32-bit adder of two elements. The influence of the
i’th bit of the result is 1/2¢, and its support size is 2-i. Hence,
choosing k =i for k-junta should be sufficient for finding all
the relevant variables. There is a practical limitation on the
size of the parameter k. Therefore, for higher order bits, only
some of the relevant variables will be found. For example,
the probability of finding within reasonable run time that bit 0
of the adder input affects bit 31 of its output is very low.
The k-junta learning stage thus creates a partial dependence
graph, which consists mainly of links with influence of 1/2%
and higher [Fig. 3(a)].

s X, ..

B. Partitioning by SNN Clustering

Learning for the purpose of IP theft detection assumes that
the building blocks, such as the 32-bit adders for SHA-256,
are approximately known. The dependence graph includes sub-
graphs that represent these building blocks, and the learner’s
goal is to find the matching function. As the first step, it is
essential to isolate subgraphs that include nodes potentially
belonging to the same building block (such as a pipeline
stage or an arithmetic function). The criterion we use for
partitioning the graph is edge density. This is the guiding
criterion of certain graph clustering algorithms.

In particular, the adder structure has a distinct dependence
pattern, where bit i of the result depends on bits 0 to i of
the input operands. The same input bits will also affect all the
higher order bits of the result. In practice, the dependence
graph received by the k-junta algorithm run reveals only
a partial set of dependencies. Since the influence of input
operand’s bit j on the result bit i decreases exponentially with
the distance i — j (see Section IV-A), the majority of edges
entering the result bit i in the dependence graph will originate
from input bits i to i —I, where [is a function of k in k-junta,
and it is bounded from below by k divided by the number of
operands. Hence, result bits i and i + 1 will share on average
min(l,i)-d neighbors in the graph,! where d is the number of
the operands of the adder [Fig. 3(a)]. Thus, the adder structure
can be isolated using the SNNs algorithm [35]. The SNN

n the SHA-256 implementation, adders are combined with more functions,
and hence, the number of edges will be slightly different.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZRIEL et al.: USING SCAN SIDE CHANNEL TO DETECT IP THEFT

algorithm assigns any two nodes that have some predefined
number of shared neighbors to the same cluster.

Our clustering groups only right-side vertices of the bipartite
graph [Fig. 3(b)] according to the following principle: two
vertices belong to the same cluster if and only if the number
of neighbors they share is greater than the threshold ¢. The
choice of ¢ is important, and may vary for different designs.
A value that is too high will cause underfitting, i.e., some of the
relevant vertices will not be part of the cluster, while a value
that is too low may group in the same cluster loosely connected
vertices (for example, vertices that share some global control
signals). Different values can be tried for ¢ until a satisfactory
partition is found.

The clustering serves two purposes: 1) it allows the hierar-
chical structure of the circuit to be seen at an early stage,
before logical functionality is discovered and 2) it groups
together nodes from the same building block, thus enabling a
hypothesis to be made on the basis of the projections between
different members of the cluster.

C. Completing the Graph With Missing Dependencies

At this stage, we assume that the clustering has success-
fully isolated individual building blocks, such as adder-like
circuits in SHA-256. To complete the picture, we need to
reveal the dependencies that the k-junta algorithm failed to
discover. Considering the adder example, we take advantage
again of its distinctive structure: the transitive fan-in numbers
of the adder output bits grow with the position of the bit in
the vector. For example, the least significant bit (bit 0) of the
adder output depends only on the least significant bits of the
operands. Hence, its fan-in is equal to the number of operands.
The fan-in of the next bit (bit 1) is equal to twice the number of
operands. This arithmetic progression continues until the MSB
(see an example in Fig. 7). This allows us to sort the cluster
members according to their estimated bit position in the output
vector of the adder. The transitive fan-in parameter (equivalent
to the number of incoming edges) serves as a classifier.

As discussed in Section IV-B, the number of bits for which
the k-junta algorithm finds all the dependencies is limited
by [, where [is derived fom k in k-junta. Therefore, only
bits 0 to [— 1 can be sorted directly based on the partial
dependence graph. The remaining bits will have an approxi-
mately equal number of edges in the graph. Bit [of the output
is not guaranteed to have all the dependencies on operand bits
0 to I. However, if we remove the bits of the operands that
affect lower bits of the output, the only bits affecting output
bit / that will remain are bits / of the operands. Bit / 4 1, for
example, depends on bits / and / + 1 of the operands, bit [42
also on bits / 4 2, and so on. Therefore, output bit / has the
smallest number of dependencies after removing operand bits
0 to I + 1. After recording bit [of the result, we can remove
bits [of the operand and proceed to bit /+ 1. This way, we can
sort all the bits of the adder output. Algorithm 3 estimates the
order of all the variables in the cluster. It does this recursively,
at every stage, removing a vertex with the lowest number of
edges and removing all the left-side vertices connected to this
vertex. The order in which the vertices are removed is the final
sorted order.

Algorithm 3 ClusterSort(Cluster {Vertices V, Edges E'})

1: I = Left side vertices connected to the edges in E
2V=V

nf=1

4. repeat

5: v; = vertex with lowest number of edges connected to
I

6: I; = Left side vertices connected to the edges leading
to v;

7: i=1- I;

8: ‘7 = V -V

9 until V = 0

After the sorting, the missing links are added by connecting
every vertex to all the left-side vertices connected to lower bits
in the sorted list [Fig. 3(c)].

Although the ClusterSort algorithm is explained here in
the context of the adder example, it fits many other arith-
metic functions with carry propagation, such as multiplier,
subtractor, as well as more complex arithmetic and logic
unit modules. The same algorithm may also work when an
arithmetic function is combined with other logic, as in the
case of the SHA-256 compression stage. In general, functions
with high transitive fan-in on the one hand and complexity
low enough to be implementable on an SoC on the other
hand must have some regular pattern. Otherwise, due to the
Shannon effect, the function’s complexity will be too high to
be realizable on an integrated circuit [22]. This regularity can
be potentially exploited for ordering within a cluster, similar
to Algorithm 3.

D. Function Reconstruction

The next stage after completing the dependence graph for
nodes allocated to clusters is finding the logic function for
each right-side vertex. Due to the high transitive fan-in of
the adder result bits, a brute-force approach with exhaustive
search is possible only for a few lower bits. Hence, we start
by finding the exact function of the lower bits in the list. The
resulting function is then matched against known functions
from the building blocks of the original function. If a match
is found, a hypothesis will be made for the whole cluster. For
example, if the lower bits of the cluster match the lower bits
of a seven-element adder, we try to extrapolate this finding to
the higher bits of the cluster. The higher bits will be verified
for compliance with the hypothesis. For this purpose, all the
lower bit dependencies will be assigned values that should
affect the higher bits in a certain way. This is done instead of
checking all their value combinations. Taking again the adder
example, the impact of operand bits 0 to i — 1 on bit i of the
result is expressed in the carry-in value. Therefore, only two
assignments of these bits will be made, one yielding a carry-in
of 0 and the other yielding 1. The verification of the hypothesis
is statistical, based on random queries. Formal proof of the
hypothesis is computationally hard. Algorithm 4 shows the
required steps for arithmetic functions. The algorithm works
on a graph sorted by the previous stage.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 4 ClusterRecon(Cluster {Sorted Right-Side
Vertices V, Left-Side Vertices /, Edges E})

1: G = Candidate functions from the IP building blocks based
on the cluster size and structure with bits sorted by their
fan-in

2: Vi 1V, = [bottom vertices from V

3: T(V; :V;) = Truth tables of the bits that correspond to V;
4: for function g € G do

5: g1: g = [bottom bits in g

6: if T(Vl : Vl) = g1 : g then

7: H=g

8: break

9: end if

10: end for

—_
—_

: for v; :i from [+1 to |V| do
12: E; = edges of v;— edges of v : v;_j

13: I; = Left side vertices connected to E;

14: licarry = Remaining left side vertices connected to
edges of v;

15: Represent bit H; as f (1, fearry(licarry))

16: for c: all possible values of ficqry do

17: Find assignment A. on ficarry S-t. fearry(Ac) =c¢

18: for A —i: all assignemnts on / —i do

19: if query on v; with A;,A. # gi(A;,A;) then

20: go to 4

21: end if

22: end for

23: end for

24: end for

25: return H

In addition to the nodes that belong to clusters, there are
stand-alone nodes. The majority of these nodes have fan-in
small enough so that their function can be learned exactly by
exhaustive search. Nodes with high fan-in that have sparse
shared connectivity are unlikely (see Section IV-C).

E. Returning to Circuit Representation

The first stage of the learning flow unfolded the circuit
to turn it into a Boolean function, which we presented as
a bipartite graph, shown in Fig. 3. The last stage performs
a reverse transformation by merging back pairs of nodes
that correspond to the same register. This effectively gives
a sequential circuit representation, similar to the one shown
in Fig. 2(b). The resulting picture gives additional information
about the structure of the circuit and may give answers about
the parts that were not fully understood at the preceding stages.
For example, with the circuit representation, the primary inputs
of the module can be traced through the pipeline stages in
order to understand the data flow.

V. PIPELINE-ASSOCIATED WATERMARK

The advantage of scan-based learning presented in this paper
is in its ability to detect the original IP content. As such,
it presents an alternative approach to passive protection solu-
tions, such as watermarks. From the legal side of IP protection,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

pipe stage g,

pipe stage g,

Fig. 5. Embedding the PAW watermark in pipeline stages. (a) First-order
watermark comprises the encoder w, which encodes the pipe stage register
inputs and the decoder w~!, which is attached to the pipe register output and
implements the inverse transformation. (b) Second-order watermark in which
the decoder is attached to the next pipeline stage. The decoder performs a
more complex transformation that includes the function of the pipeline stage.

the IP owner’s objective is to provide convincing evidence
of the theft. The violator’s defense line could be that of a
reasonable coincidence. In this case, a watermark can provide
stronger evidence. Fortunately, it is possible to combine the
watermarks with the scan-based methods. The IP owner may
choose to amend the design with a watermark detectable by
scan. Such watermarks must possess the following properties.

1) The watermark must be inserted at a front end stage,
such as algorithmic or RTL coding.

2) The watermark must affect a logical function of at least
one of the pipeline registers.

3) The watermark must keep the overall function unaltered.

The scan side channel exposes terminal points (inputs and
outputs) of combinational logical cones of the integrated
circuit. Hence, we look for watermark structures that either
add dedicated terminal points or alter a logical function
of the existing points. Fan [11] proposes adding dedicated
registers to the scan path. These registers contain a direct
representation of the watermark value. Hence, the scan side
channel can be used for reading out the values. Fan’s method
uses post-RTL processing to insert the watermark structures
and combines them with the regular scan chains inserted by
electronic design automation tools. Therefore, the RTL is not
protected, which means that an adversary, who possesses the
RTL, may bypass the protection mechanism. Moreover, since
the special structures are separate from the functional design,
it is relatively easy to remove or modify them.

We introduce the pipeline-associated watermark (PAW),
a new watermark structure that modifies the logic of individual
pipeline stages, but keeps the functionality of the module
unaltered. Fig. 5(a) shows a first-order PAW structure. The
watermark is applied to a subset of the pipeline stage registers.
It comprises of two parts: the encoding transformation w,
which applies to the inputs of the registers, and the inverse

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZRIEL et al.: USING SCAN SIDE CHANNEL TO DETECT IP THEFT

decoding transformation w~!, which applies to the outputs
of the registers. The transformation w has the following

properties that ensure correctness and quality.

1) w is invertible, i.e., there exists a transformation w1

such that Vx : y = w(x) = x = w~'(y).

2) w is not trivial so that its identification and removal by
an adversary will require substantial effort.

3) Synthesis tools cannot accidentally implement the trans-
formation w.

4) If y = w(x), the number of bits in y (and, therefore,
the number of registers after applying the watermark) is
greater or equal to the number of bits in x.

Property 2 is rather qualitative. It reflects the quality of
the watermark with respect to the ability of the adversary to
remove it. The simplest transformation that can be applied is
an XOR function with a constant; then, w = w~!. However,
this watermark is not efficient. Since it is just a selective
inversion of individual variables, it can be easily removed.
Moreover, some scan insertion tools may use direct or inverted
outputs of the registers alternatingly when connecting them to
the scan chains; hence, the XOR transformation contradicts
Property 3. Also, in this case, user inserted inversions are not
detectable. Good candidates for the function w are arithmetic
functions. On the one hand, simple arithmetic functions (such
as increment by 1) can be selected to minimize the overhead.
On the other hand, the arithmetic functions produce complex
dependence maps, and thus, their removal from a synthesized
gate level netlist is not trivial. However, an adversary, who
has access to the RTL representation, even not knowledgeable
in the field of the IP, may detect and remove the first-order
watermarks thanks to their simple structure.

Higher order watermarks provide further obfuscation by
increasing the distance between the inverse transformation
w~! and the direct transformation w. In the second-order
watermarks, the inverse transformation wg’1 connects to the
outputs of registers of the next pipeline stage [see Fig. 5(b)].
Higher order watermarks require stronger constraints on the
inverse function. The inverse transformation for the second-
order PAW watermark is

z = g(w(xw), (x \ xp)) = wy~ ' (2) = g(x). ©)

Here, x is a pipeline stage register, x,, is part of x, on which
w is applied, and g is the pipeline stage logical function.

In a third-order PAW watermark, direct and inverse trans-
formations will be distanced by two stages, in a fourth order
by three stages, and so on. The higher the order of the
watermark, the less trivial the connection between the two
transformations. Therefore, removing these watermarks from
RTL will require from the adversary deep understanding of
the relevant technology.

VI. TEST CASE: BITCOIN SHA-256 ACCELERATOR

The Bitcoin bookkeeping system requires a heavy min-
ing process [36], which involves numerous SHA-256 hash
operations. To make this process energy efficient and eco-
nomical, specialized hardware was developed. For example,
the Bitcoin SHA-256 accelerator design from the OpenCores

repository [37] allows for high throughput mining work.
To achieve this, the design incorporates deep pipeline, thus
reaching a decent size, with more than 80000 flip-flops.
This example presents an interesting test case for testing the
capability of the learning flow when dealing with large-scale
designs.

A. Experimental Setup

To test the flow, we built a software simulator that models
the functionality of the digital circuits under test with the
Probe operation. The simulator abstracts away the underlying
scan protocol that implements the probe (Algorithm 1). The
RTL of the target circuit is synthesized using the Synopsys
Design Compiler tool. An automatic tool then converts the
gate level netlist to a C++4 function, which emulates the
probe operation by removing all the flip-flops and returning
the aggregate combinational logic function. This function
receives the flip-flop outputs and primary inputs and returns
flip-flop inputs and primary outputs. The function is then
plugged into the simulator, which implements the learning
algorithms, in particular, k-junta learning and SNN clustering.
The platform we used for the simulator is a high performance
server with four Intel Xeon E5-2690 four-core processors
running at 2.90 GHz. The simulation used 32 threads, each
handling one node (function output) at a time. The following
stages of the algorithm are performed manually by visually
inspecting the results and analyzing their distribution.

B. Results

The Bitcoin SHA-256 accelerator design was synthesized
and translated to C++. The partial dependence graph was
obtained by a k-junta run with k¥ = 8 in the simulator.
A higher k value will give higher accuracy (more discovered
dependencies); however, the number of required probes will
be unacceptable. The subsequent steps of the flow come to
compensate for the inaccuracy caused by the insufficient value
of k. With the setup outlined in Section VI-A, the k-junta run,
the longest step of the flow, takes approximately 2 h.

With a physical device, the first step of the learning process
is obtaining access to the scan and counting the number of flip-
flops in each chain. The latter can be done by driving some
pattern to the scan chain input and counting clock cycles until
this pattern appears at the scan chain output. In the simulation
environment, this stage is omitted, and we assume that all
the flip-flops can be accessed at once. However, the time
complexity of the simulated probe operation is comparable to
the complexity of the real-life probe operation, that is O (n),
where n is the number of registers. Hence, the simulation
provides a good indication of the time required to analyze
a physical device.

SNN clustering is the next stage of the flow. We tried this
stage with different threshold criteria and obtained a cluster
distribution histogram for each of them. In the histogram,
the clusters were grouped based on their size measured in
the number of vertices. Eventually, we selected the threshold
that gives the sharpest histogram, which has the smallest
number of cluster groups and largest group sizes. This was

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

140

120
100

80

60
40

Number of clusters

20

T T = I II
5 7 18 25 27 30 32 64 128
Cluster size (number of nodes)

i
1

3

Fig. 6. Histogram of cluster sizes in the Bitcoin SHA-256 accelerator.
The biggest group includes clusters with 64 nodes; hence, it matches the
compression stages. The second biggest group includes clusters with 32 nodes;
hence, it matches the message schedule stages.

achieved with the threshold of 5. The resulting histogram
is shown in Fig. 6. There are more than 70000 vertices
with the number of incoming edges (or transitive fan-in)
smaller than the threshold. These vertices do not belong to
any cluster, and they are not shown in the histogram. A cluster
of size 1 contains vertices with transitive fan-in greater than
the threshold, which the SNN algorithm did not combine
with other vertices. Besides this, two cluster groups stand
out: a group of 64-sized clusters containing 126 members,
and a group of 32-sized clusters containing 71 members.
Having prior knowledge of the function components and the
sizes of the clusters, we can hypothesize that the 64-sized
clusters correspond to two 32-bit adders and the 32-sized
clusters correspond to one 32-bit adder. This implies that:
1) the 64-sized clusters correspond to the compression stage
and 2) the 32-sized clusters correspond to the message sched-
ule stage. The number 126 then corresponds to 126 compres-
sion stages. A reasonable assumption is that their number is
in fact 128, and the remaining two stages have either been
split or merged with other vertices due to underfitting or over-
fitting. The message schedule contains 64 stages, only 48 of
which contain adders. Therefore, our hypothesis is that the
actual number of adders in the message schedule is 96, which
also matches the number of compression stages. To check our
hypotheses, we proceed to the next stage—completing missing
dependencies.

This stage works separately with every cluster. First, the ver-
tices in the cluster are sorted on the basis of their detected
fan-in. Fig. 7 shows the fan-in map of a sample 64-sized
cluster. In the same chart, a fan-in map of the original
SHA-256 compression stage is shown. For lower fan-in num-
bers, the detected fan-in curve follows the reference curve, and
then saturates at some point. This is the expected behavior for
an adder, as explained in Section IV-C. Note that the knee
in the curve appears, because two adders (one five-element and
the other seven-element) compose the cluster. We then apply
the ClusterSort algorithm to guess the correct bit order.

We start the function reconstruction in the cluster from the
node with the lowest fan-in. For the 64-sized clusters, since we

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

300
250 | e After junta L
= == Original ’/
200 —-Z
c PP
- ”I
& 150 —
L ‘,l’ <
100 e z y =
50 /4
0
1 11 21 31 41 51 61
Node in the sorted list
Fig. 7. Sample cluster fan-in map. The nodes in the cluster were sorted by

fan-in. The lower curve is the result of dependence finding by junta. The upper
curve is the calculated fan-in map from the SHA-256 compression stage.

Fig. 8. Histogram of fan-outs for the left-side nodes connecting to the sample
cluster of the right-side nodes. Eight groups, corresponding to the eight 32-bit
stage input words, can be clearly seen. The fan-out can be used to associate
the groups with specific words.

70

@
8

f,g,h,w

Left-side (input) nodes of the cluster

N
8

a

@
8

b,c,d

Fan-Out

8

5

°

estimate that this cluster contains the logic of the compression
stage, we match this bit with bit 0 of the output word e
[Fig. 2(b)]. For the compression stage ¢, bit eg, is a result
of a nine-way XOR function

eo,r = ®ldo, ho, es, €11, €25, ko, wo, (eo A fo), (—eo A go)li—1.

“)

The fan-in of ep is 9, assuming that ko is a hardwired
constant. This number matches the fan-in of the node with the
lowest fan-in in the cluster. Thus, we hypothesized that this
node corresponds to bit ep and verified the hypothesis. The
stage index, and, therefore, the constant kp, are not known
at this stage. Thus, first we checked the value of kg by
testing the function with a 0 vector. Matching two Boolean
functions, though an NP-hard problem, in general, can be
done for a small number of variables. Note that the function is
invariant to permutations of 6 out of 9 variables. The variables
eo, fo, and go were identified by measuring influence (2). The
influence for these three variables is 1/2, while for all the
others it is equal to 1.

To extrapolate to higher bits of the cluster, we reduced
the learning problem to one similar to (4) by collapsing all

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZRIEL et al.: USING SCAN SIDE CHANNEL TO DETECT IP THEFT 11

H— l

(alslalofe]r]
I
|

[Aisa] Biss [Cia | Disa | Eia | Fisa [Gisa [Hisa|

-

«— O
<« m

|Ai|Bi|Ci|Di|Ei|FilGilHil |Ai|Bi|Ci|Di|EilFilGiIHil

e b
I I

l— T

«—

(a) (b) ()

Fig. 9. PAW structures in the SHA-256 implementation. (a) Simple first-order watermark constructed by incrementing word H by 1 followed by subtraction.
(b) Compound first-order watermark constructed by linear combination of words D and H (this watermark adds bits in the pipeline stage for the carry-out bit).
(c) Second-order watermark constructed by incrementing word H by 1, letting the change propagate through one pipeline stage and removing the effect of

the change after that (the change in a single word affects three words in the next stage).

the lower bits of the operands into the carry-in indicator. For
example, to learn the function of the bit e; |, we select assign-
ment {bg, do, €0, €6, €11, €25, fo, &0, wo} = {0,0,0,0,0, 0, 0}
to test the bit function with the carry-in of 0 and assignment
{bo, do, e, €6, €11, €25, fo, g0, wo} = {1,1,0,0,0,0, 0} to test
it with the carry-in of 1. To eliminate contentions between
input assignments for the carry-in and assignments for
the inputs of the relevant bit, we had to identify the
vectors (a and e) that enter into the adder more than once.
This was done by checking the fan-out map of the cluster
and comparing with the expected fan-outs of the inputs to the
compression stage. Fig. 8 shows the fan-out map of all the
left-side nodes connected to the nodes in the cluster. Eight
groups, suggesting eight 32-bit words, can be clearly seen
on the map. The group with the highest fan-out presumably
contains the bits from the word e. The group with the second
highest fan-out presumably contains the bits of a. Using this
iterative process, we were able to reconstruct the entire adder
structure.

Finally, after reconstruction of the big structures,
we returned to the sequential circuit representation, where
the architecture with 32 pipeline stages and two message
schedules is identified. All in all, we were able to learn the
following details about the given implementation of SHA-256:
1) the module contains two SHA-256 function instances,
as follows from the number of stages; 2) the module has
a deep pipeline: one pipeline stage per compression stage,
which means it is capable of calculating one hash function
per cycle; and 3) the pipeline has no flow control, which
means that the calculation never stops. Additional details may
be extracted in accordance with the objective of the learner.

C. Embedding the PAW Structure

In this experiment, we embedded watermarks according
to the PAW methodology, as defined in Section V, into the
BitCoin SHA-256 accelerator. The following configurations
were tested.

1) Simple first-order watermark [Fig. 9(a)]: Constructed by
incrementing the word 4 (Fig. 2) by 1 before sampling
into the pipe registers and subtracting 1 immediately
after the sampling.

TABLE I

COMPARISON BETWEEN DIFFERENT TYPES OF PAW WATERMARKS
APPLIED TO THE BITCOIN SHA-256 ACCELERATOR

PAW type || Area overhead | Complexity of removal
Simple first-order 3% easy
Compound first-order 10% moderate
Second-order 16% hard

2) Compound first-order watermark [Fig. 9(b)]: Con-
structed by a linear combination of words d and & and
inverse combination immediately after the sampling.

3) Second-order watermark [Fig. 9(c)]: Similar to configu-
ration 1, the word 4 is incremented by 1 before sampling
into the pipe registers. The inverse transformation is
placed two stages after. Hence, the inverse transforma-
tion must subtract the nonlinear function CH and add
it back with the corrected value of 4.

All three configurations were synthesized using the
Synopsys Design Compiler. Table I shows the area overhead
for each of the configurations.

The learning strategy of the PAW watermarks is similar
to the strategy for learning the original functionality pre-
sented earlier. The building blocks of the original function
are amended with the watermark function. For watermark 1,
the incrementer circuit is added up to the two existing adders
in the compression stage, thus increasing the size of the
compression stage cluster to 96. The subtraction by 1 does
not affect the cluster distribution, but slightly changes the
dependence map within the clusters. In watermark 2, two more
adders join the compression stage, making the corresponding
cluster grow to the size of 128. Watermark 3, similar to 1,
includes the incrementer, which increases the size of the
cluster by 32. However, in this case, the recovery function adds
much complexity and increases the size of the cluster further
by an additional 64 members. In all the cases, the learning
stages of dependence graph creation, clustering, and complet-
ing the dependence graph are identical. The final stages of the
function discovery depend on the exact function searched by
the learner. Rejection of watermark presence can be done at
earlier stages, for example, by getting a distribution of clusters
that does not match the watermark function.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a novel method for detecting
IP theft. It exploits the embedded test scan chains and com-
bines Boolean function learning methods with graph-based
algorithms. The learning algorithm detects structures in the
design by taking advantage of prior knowledge of the design
components. This prior knowledge allows for accurate recon-
struction of the design implementation details, which may
supply sufficient evidence of the IP violation event. The
comparison is done at the logic level at the boundaries of
logic cones between sequential elements. Hence, our method
works for both soft and hard IPs. The detectability of the IP
theft depends on the ability to observe IP-specific elements at
the logic cone boundaries. Notably, since the technique detects
inherent elements of the implemented function, it is powerful
enough to detect deviations from the original design aimed
to obfuscate the theft. The method was built specifically to
analyze SHA-256 implementations. With small modifications,
the method can be used to analyze other components contain-
ing arithmetic functions, and with additional target specific
modifications to handle other components containing regular
structures.

We demonstrated the power of this approach by using
the learning algorithm to reconstruct the design of a Bitcoin
SHA-256 accelerator, a module with more than 80000 inter-
nal registers containing complex combinational structures.
We were able to obtain the module’s internal pipeline structure
and locate all the main components of the SHA-256 algorithm
implementation.

We introduced a new watermark structure, pipeline-
associated watermark (PAW), designed for detection by the
scan-based reverse engineering method. Thus, the proposed IP
theft detection technique can be combined with watermarks for
stronger protection. We believe that these techniques can sig-
nificantly contribute to protecting IP owners against violation
of their rights, by easing the process of violation detection
in general and in the Internet of Things device market in
particular.

Future research related to this paper can study harnessing
the flow for additional applications. One important application
that we are exploring is the detection of deviation of the design
from the original function, which may indicate the presence
of Trojan hardware.

REFERENCES

[1] M. Pecht and S. Tiku, “Bogus!” IEEE Spectrum, vol. 43, no. 5,
pp. 37-46, May 2006.

[2] G. Qu and M. Potkonjak, Intellectual Property Protection in VLSI
Designs. Boston, MA, USA: Kluwer, 2004.

[3] W. P. Griffin, A. Raghunathan, and K. Roy, “CLIP: Circuit level IC
protection through direct injection of process variations,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 5, pp. 791-803,
May 2012.

[4] F. Koushanfar and G. Qu, “Hardware metering,” in Proc. Design Autom.
Conf., 2001, pp. 490-493.

[5] F. Koushanfar, “Provably secure active IC metering techniques for piracy
avoidance and digital rights management,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 51-63, Feb. 2012.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[6] T. Guneysu, B. Moller, and C. Paar, “New protection mechanisms for

intellectual property in reconfigurable logic,” in Proc. 15th Annu. IEEE

Symp. Field-Programm. Custom Comput. Mach. (FCCM), Apr. 2007,

pp. 287-288.

I. Torunoglu and E. Charbon, “Watermarking-based copyright protection

of sequential functions,” IEEE J. Solid-State Circuits, vol. 35, no. 3,

pp. 434-440, Mar. 2000.

[8] M. Lewandowski, R. Meana, M. Morrison, and S. Katkoori, “A novel
method for watermarking sequential circuits,” in Proc. IEEE Int. Symp.
Hardware-Oriented Security Trust, Jun. 2012, pp. 21-24.

[9] E. Charbon, “Hierarchical watermarking in IC design,” in Proc. IEEE
Custom Integr. Circuits Conf., May 1998, pp. 295-298.

[10] G. T. Becker, M. Kasper, A. Moradi, and C. Paar, “Side-channel based
watermarks for integrated circuits,” in Proc. IEEE Int. Symp. Hardware-
Oriented Security Trust (HOST), Jun. 2010, pp. 30-35.

[11] Y.-C. Fan, “Testing-based watermarking techniques for intellectual-
property identification in SoC design,” IEEE Trans. Instrum. Meas.,
vol. 57, no. 3, pp. 467-479, Mar. 2008.

[12] J. L. Wong, D. Kirovski, and M. Potkonjak, “Computational forensic
techniques for intellectual property protection,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 6, pp. 987-994, Jun.
2004.

[13] S. Guilley, L. Sauvage, J. Micolod, D. Réal, and F. Valette, “Defeat-
ing any secret cryptography with SCARE attacks,” in Progress

[7

—

in Cryptology—LATINCRYPT. Berlin, Germany: Springer, 2010,
pp. 273-293.

[14] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
Mar. 1997.

[15] X. Wang, S. Narasimhan, A. Krishna, and S. Bhunia, “SCARE: Side-
channel analysis based reverse engineering for post-silicon validation,”
in Proc. 25th Int. Conf. VLSI Design, Jan. 2012, pp. 304-309.

[16] D. Hely, K. Rosenfeld, and R. Karri, “Security challenges during VLSI
test,” in Proc. IEEE 9th Int. New Circuits Syst. Conf., Jun. 2011,
pp. 486—489.

[17] J. D. Rolt, G. D. Natale, M.-L. Flottes, and B. Rouzeyre, “New security
threats against chips containing scan chain structures,” in Proc. IEEE
Int. Symp. Hardware-Oriented Security Trust, Jun. 2011, p. 110.

[18] J. D. Rolt, G. D. Natale, M.-L. Flottes, and B. Rouzeyre, “Thwarting
scan-based attacks on secure-ICs with on-chip comparison,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 4, pp. 947-951,
Apr. 2014.

[19] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs
against scan-based side-channel attacks,” IEEE Trans. Depend. Sec.
Comput., vol. 4, no. 4, pp. 325-336, Oct. 2007.

[20] A. Das, B. Ege, S. Ghosh, L. Batina, and 1. Verbauwhede, “Security
analysis of industrial test compression schemes,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 32, no. 12, pp. 1966-1977,
Dec. 2013.

[21] D. Hely, F. Bancel, M. L. Flottes, and B. Rouzeyre, “Test control
for secure scan designs,” in Proc. Eur. Test Symp. (ETS), May 2005,
pp- 190-195.

[22] L. Azriel, R. Ginosar, and A. Mendelson, “Exploiting the scan side
channel for reverse engineering of a VLSI device,” Techn., Israel Inst.
Technol., Haifa, Israel, Tech. Rep. CCIT #897, 2016.

[23] L. Azriel, R. Ginosar, and A. Mendelson, “Revealing on-chip proprietary
security functions with scan side channel based reverse engineering,” in
Proc. 27th Great Lakes Symp. (VLSI), 2017, pp. 233-238.

[24] D. G. Saab, V. Nagubadi, F. Kocan, and J. Abraham, “Extraction based
verification method for off the shelf integrated circuits,” in Proc. Ist
Asia Symp. Quality Electron. Design, Jul. 2009, pp. 396-400.

[25] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in Proc. Des., Auto. Test Eur. Conf. Exhibit. (DATE), 2013,
pp. 1277-1280.

[26] F. Pub, “Secure hash standard,” Public Law, Tech. Rep. 100, 1995,
p. 235.

[27] J. da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and
I. Verbauwhede, “Test versus security: Past and present,” IEEE Trans.
Emerg. Topics Comput., vol. 2, no. 1, pp. 5062, Mar. 2014.

[28] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discov-
ers backdoor in military chip,” in Proc. Int. Workshop Cryptogr. Hardw.
Embedded Syst., Sep. 2012, pp. 23-40.

[29] 1. Wegener, The Complexity of Boolean Functions. Hoboken, NJ, USA:
Wiley, 1987.

[30] P. Damaschke, “On parallel attribute-efficient learning,” J. Comput. Syst.
Sci., vol. 67, no. 1, pp. 46-62, Aug. 2003.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZRIEL et al.: USING SCAN SIDE CHANNEL TO DETECT IP THEFT

[31] E. Mossel, R. O’Donnell, and R. P. Servedio, “Learning juntas,” in Proc.
34th ACM Symp. Theory Comput. (STOC), New York, New York, USA,
Jun. 2003, pp. 206-212.

[32] R. O’Donnell, Analysis of Boolean Functions.
Cambridge Univ. Press, 2014.

[33] P. Damaschke, “Adaptive versus nonadaptive attribute-efficient learning,”
Mach. Learn., vol. 41, no. 2, pp. 197-215, 2000.

[34] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC 99 benchmarks
and first ATPG results,” IEEE Design Test Comput., vol. 17, no. 3,
pp- 44-53, Jul./Sep. 2000.

[35] R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure

Cambridge, U.K.:

based on shared near neighbors,” IEEE Trans. Comput., vol. C-22,
no. 11, pp. 1025-1034, Nov. 1973.
[36] (Mar. 2016). Developer Guide—Bitcoin. [Online]. Available:

https://bitcoin.org/en/developer-guide#mining
[37] Y. Peng. (Mar. 2016). Bitcoin Double SHA256 Project.
Available: http://opencores.org/project,btc_dsha256

[Online].

Leonid Azriel (S’17) received the B.Sc. and M.Sc.
degrees in electrical engineering from Technion—
Israel Institute of Technology, Haifa, Israel, where he
is currently pursuing the Ph.D. degree in electrical
engineering.

He served in different technical and managerial
positions with National Semiconductor, Winbond
Electronics, and Nuvoton Technologies companies,
Herzlia, Israel, where he was involved in the devel-
opment of the trusted platform module.

Ran Ginosar (S’79-M’82-SM’08) received the
B.Sc. (summa cum laude) degree in electrical and
computer engineering from Technion—Israel Insti-
tute of Technology, Haifa, Israel, in 1978, and the
Ph.D. degree in electrical and computer engineering
from Princeton University, Princeton, NJ, USA, in
1982.

He was with the AT&T Bell Laboratories from
1982 to 1983. He was a Visiting Associate Professor
with The University of Utah, Salt Lake City, UT,
- USA, from 1989 to 1990, and a Visiting Faculty
with the Intel Research Labs from 1997 to 1999. He is currently a Professor
of Electrical Engineering and the Head of the VLSI Systems Research
Center, Technion—Israel Institute of Technology. He has co-founded several
companies in various areas of VLSI systems. His current research interests
include VLSI architecture, manycore computers, asynchronous logic and
synchronization, networks on chip, and biologic implant chips.

13

Shay Gueron was a Senior Principal Engineer with
Intel, Santa Clara, CA, USA, serving as an Intel’s
Senior Cryptographer, until 2017. He was one of
the Intel Software Guard Extensions technology
architects in charge of its cryptographic definition
and implementation. He is responsible for some
of Intel processors’ instructions, such as AESNI,
PCLMULQDQ, and coming VPMADDS2, and for
various microarchitectural features that speed up
cryptographic algorithms. He contributed software to
open source libraries (OpenSSL, NSS), with signifi-
cant performance gains for symmetric encryption, public key algorithms, and
hashing. He is the Inventor of the Memory Encryption Engine. He is currently
an Associate Professor of Mathematics with the University of Haifa, Haifa,
Israel. He is also a Senior Principal Engineer with Amazon Web Services,
Seattle, WA, USA, serving as a Senior Cryptographer. His current research
interests include cryptography, security, and algorithms.

Avi Mendelson (M’10-SM’16) received the Ph.D.
degree in computer engineering from the University
of Massachusetts at Amherst, Amherst, MA, USA,
in 1990.

He has a blend of industrial and academic expe-
rience in several different areas, such as computer
architecture, operating systems, power management,
reliability, and high-performance computing. Among
his industrial jobs, he was a Senior Researcher and
a Principle Engineer with Intel, Santa Clara, CA,
USA, for 11 years. Among his achievements at Intel,
he was the Chief Architect of the CMP (multicore-on-chip) feature of the
first dual core processors Intel developed. He is currently a Professor with
Technion—Israel Institute of Technology, Haifa, Israel. He has authored or
co-authored over 130 papers in refereed journals, conferences, and
workshops.

Dr. Mendelson served as a Program Chair of different major conferences
and as the General Chair of the International Symposium on Computer
Architecture in 2013. He completed a full term as an Associate Editor of
the IEEE COMPUTER ARCHITECTURE LETTERS. He is currently serving as
an Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS.

