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Abstract

This paper considers the problem of minimizing the energy used in transmitting a given
sequence of packets with specified completion deadlines from a node in a wireless packet network.
The packets have to to be transmitted in first-in-first-out order. Packets can be destined to
different receivers. The channel conditions to each receiver (and so the energy per bit needed)
can be different and assumed to be known. An offline algorithm for the case where all the packets
have a common completion deadline was presented in [3, 4], and was used as the basis for an
online scheduling algorithm. In this paper, we present a faster offline algorithm for the more
general case of different packet completion deadlines. The presented algorithm has a running
time of O(M2), where M is the length of the given packet sequence, provided the inverse of
the derivative of the energy function is invertible in closed form. Otherwise, the running time
depends on the number of receivers as well.

1 Introduction

The need for extending lifetimes in sensor networks and the operating time before recharging in
wireless devices has led to energy efficiency of protocols and battery management becoming impor-
tant issues in sensor and wireless networking research. Several recent papers have considered the
issue of extending lifetimes of sensor networks by energy efficient routing [5, 7]. Transmission power
control schemes have been extensively studied. Here the objective is mostly to maximize the amount
of information sent subject to specified average power use constraints. Energy efficiency, the ratio of
total data delivered to total energy used, was considered in [6] where the energy efficiency of MAC
protocols was studied. The problem of energy efficiency in the transmission of a sequence of packets
has been receiving increasing attention [2, 3, 4].

Minimizing the total amount of energy consumed for transmitting, in first-in-first-out order, a
given sequence of packets subject to a common deadline was studied in [3, 4]. The problem was
formulated as a convex optimization problem and an iterative algorithm that converges to the optimal
solution, but is not polynomially bounded in the length of the packet sequence to be transmitted,
was presented.

In this paper, we formulate and solve the more general problem of minimum energy transmission
of packets with individual packet deadlines, as a convex optimization problem over a linear polyhe-
dron with a special structure. We exploit this structure, to develop polynomial time algorithms for
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solving the problem for a fairly general class of energy functions. We also outline how the algorithms
can be used in the case where the energy functions do not fall in this class. The algorithms are al-
most greedy and are very simple to implement. The approach can be adapted to the case where
the objective is not the total energy consumed but is to minimize the maximum power used during
transmissions.

2 Problem Formulation

Here, we outline the general problem of minimizing the energy with deadlines on the individual
packets. The problem is an offline problem in the sense that all the packet arrival times and the
packet deadlines are assumed to be known ahead of time. These can form the basis for on-line
algorithms with good performance.

2.1 Notations and Assumptions

Most notations follow that used in [3, 4]. Consider a wireless channel with a single transmitter node
and multiple receivers. Assume that M packets arrive to the transmitter node at times ti in the
interval [0, T ], with 0 = t1 < t2 < ... < tM < T . After receiving each packet i and buffering it, the
node starts transmitting it at time si for a duration of τi, until finish time fi = si + τi.

We assume four constraints on the packet transmission times. First, since the transmitter node
needs to receive a packet before sending it, ti ≤ si. Second, the start time of any transmission needs
to precede its finish time, and thus si ≤ fi. Third, for each packet i, we introduce a deadline time
di ∈ [0, T ] on the finish time of the packet transmission, such that fi ≤ di. This deadline time will
be used in order to model such constraints as a finite buffer size and real-time traffic requirements.
Finally, we assume that the queue is FIFO (First In First Out), and hence that packets are sent
in the order in which they were received, with at most one packet sent at any given time. As a
summary of these constraints, we thus assume that for each packet i:

0 ≤ ti ≤ si ≤ fi ≤ di ≤ T, (1)

and that the transmitter schedule satisfies:

0 ≤ s1 ≤ f1 ≤ s2 ≤ f2 ≤ ... ≤ sM ≤ fM ≤ T. (2)

A packet transmission schedule is feasible if it satisfies these two constraint equations.
Given these scheduling constraints, the objective of the packet scheduler is to minimize the total

energy needed to transmit the M packets. Let wi(τi) be the energy needed to transmit the ith packet
in a duration of τi ≥ 0. We assume that wi is twice differentiable, with wi(τi) > 0, ẇi(τi) < 0 and
ẅi(τi) > 0. In other words, the energy needed to send packet i in time τi is positive, decreasing
with τi and strictly convex. These assumptions are justified in [3]. Then the objective of the packet
scheduler is to find a feasible schedule for the start and finish transmission times of each packet
such that the total energy

∑k

i=1
wi(τi) is minimized. Thus, the energy minimization problem can

be formulated as:

min

k
∑

i=1

wi(τi) (3)

s.t.: fi = si + τi ∀i, (4)

0 ≤ ti ≤ si ≤ fi ≤ di ≤ T ∀i, (5)

0 ≤ s1 ≤ f1 ≤ ... ≤ sM ≤ fM ≤ T. (6)



3 Scheduling with Common-Deadlines

When all packets share a common deadline T , the optimization problem in Equations (4)-(6) sim-
plifies into the following problem. Note that we do not assume that the objective functions wi() are
identical for all i. In other words, we assume that the packets are transmitted to different users with
different energy characteristics.

min
k

∑

i=1

wi(τi)

s.t.:

M
∑

j=i

τj ≤ T − ti i = M, M − 1, . . . , 2

M
∑

j=1

τj = T,

τi ≥ 0 ∀i.

We now outline the algorithm COMMON DEADLINE to solve this problem optimally. In the
description of the algorithm, we use ẇi

−1() to represent the inverse of the derivative function.

Theorem 1 Algorithm COMMON DEADLINE computes the optimal scheduling times for the pack-
ets for the common deadline problem.

Proof: (Outline)
We first note that the common deadline problem is a separable convex minimization problem. We
write the Karush-Kuhn-Tucker (KKT) conditions [1] for optimality. We associate dual multipliers
θM ≤ 0 with the first constraint, θM−1 ≤ 0 with the second constraint, and so on and θ1 with
the last constraint. Since the last constraint is an equality, θ1 is unrestricted in sign. The KKT
conditions are

ẇj
−1(τ∗

j ) =

k
∑

k=1

θk j = M, M − 1, . . . , 1

where τ∗
j represents the optimal primal solution. In addition, we have the complementary slackness

conditions that imply that if
∑M

j=k τ∗
j < T − tk then θk = 0. Since the objective function is convex,

the KKT conditions are necessary and sufficient for optimality. Let αj = mini≤j γi and let θ1 = α1

and θj = αj − αj−1. Note that by construction θj ≤ 0 and

ẇj
−1(τ∗

j ) =

j
∑

k=1

θk j = M, M − 1, . . . , 1.

Further note that complementary slackeness automatically holds. ♦
In the case where all the energy functions are identical, the algorithm reduces to the algorithm

given in [3]. The algorithm is substantially simpler than the move-to-right algorithm given in [4].



Initialize u = M + 1, A = 0 and γi = ∞ 1 ≤ i ≤ M .
While u > 1

For k = 1, 2, . . . , u − 1
Solve for λk in
∑u−1

j=k ẇj
−1(λk) = T − tk − A

end For

Let u′ = arg min1≤k≤u−1 λk

Let γu′ = min1≤k≤u−1λk .

Let A = T − τu′

τ∗
j = ẇj

−1(γ′
u) j = u + 1, u + 2, . . . , u′

Set u = u′.
end While

3.1 Some Implementation Details

The running time of the algorithm depends on determining the solution to

u−1
∑

j=k

ẇj
−1(λk) = T − tk − A

This depends on the functional form of ẇj
−1(). If the function is invertible in closed form, then the

overall running time of the algorithm is O(M 2). If the function is not invertible in closed form the
approximations can be used to solve the problem in closed form. For example, in the case of optimal
channel coding over an Additive White Gaussian Noise (AWGN) channel with noise power Ni and
packet length Li yields:

wi(τi) = τiNi(2
2Li

τi − 1).

If we write a Taylor series expansion for the function, we get:

wi(τi) = τiNi

(

2Li ln 2

τi

+
4Li

2(ln 2)2

τi
2

+ O

(

1

τi
3

))

= 2LiNi ln 2 +
4Li

2Ni(ln 2)2

τi

+ O

(

1

τi
2

)

= Ai +
Bi

τi

+ O

(

1

τi
2

)

,

where Ai and Bi are two positive factors depending only on i. With this approximation, note that
the inverse can be computed in closed form and hence the overall running time of the algorithm is
O(M2). In the case where approximations are not possible, it is easy to show that the solution of
each equation can be determined by one dimensional searches. The complexity grows as a function
of the number of receivers.



Packet i Ni ti Ai Bi

1 1 0.0 0.0138 0.0002
2 6 0.2 0.0832 0.00114
3 2 0.3 0.0277 0.0004
4 4 0.8 0.0555 0.0008

Table 1: Problem Parameters

3.2 Numerical Example

We now illustrate the algorithm for the common deadline case using a numerical example. The
objective of the example is to give a slightly different and intuitive interpretation of the algorithm.
Assume that we have a system with 4 packets that have to be transmitted. We use one of the energy
functions used in [4]. We assume that the packets are transmitted to four different receivers with
different noise powers. (One can equivalently assume that different receivers have different channel
gains). We assume that the channels are AWGN with a symbol rate of 106 transmissions/s with
noise power Ni to receiver i (or equivalently for transmission of packet i since for this example we
assume that each packet is transmitted to a different receiver). Packet sizes are taken to be 10kB.
The energy function for each packet i’s transmission is then given by

w(τi) = 106Niτi

(

20.02τi
−1 − 1

)

.

The noise level Ni for the different packets is shown in Table 1. The arrival time ti of the packets
is shown in Table 1 and we assume that T = 1. The problem can now be written as

min

4
∑

i=1

wi(τi)

τ4 ≤ 1− 0.8 = 0.2

τ3 + τ4 ≤ 1− 0.3 = 0.7

τ2 + τ3 + τ4 ≤ 1− 0.2 = 0.8

τ1 + τ2 + τ3 + τ4 = 1

Associating dual multipliers of θ1, θ2, θ3 ≤ 0 with the first three inequalities respectively and θ4 with
the last equation, the KKT conditions are given by

ẇ1
−1(τ∗

1 ) = θ1

ẇ2
−1(τ∗

2 ) = θ1 + θ2

ẇ3
−1(τ∗

3 ) = θ1 + θ2 + θ3

ẇ4
−1(τ∗

4 ) = θ1 + θ2 + θ3 + θ4

In addition, we have the following complementary slackness conditions

θ4 (τ4 − 0.2) = 0

θ3 (τ3 + τ4 − 0.7) = 0

θ2 (τ2 + τ3 + τ4 − 0.8) = 0

θ1 (τ1 + τ2 + τ3 + τ4 − 1) = 0



We use the approximation to the AWGN channel described in the last section and we determine
the parameters Ai and Bi in Table 1. For simplicity, we ignore the factor 106 in the illustrative
example. Recall that Ai = Ni(0.02 ln 2), Bi = Ni(0.02 ln 2)

2
, and

w(τi) = Ai +
Bi

τi

i = 1, 2, 3, 4

therefore

ẇi =
−Bi

τ2
i

i = 1, 2, 3, 4.

τ4
τ1 τ3 τ2

w(τ )

4
3

2

1

λ

τ

.

Increase λ

Figure 1: Algorithm COMMON DEADLINE : Illustration

Figure 1, shows the plot of ẇ(τ) with respect to τ . In Figure 1, λ represents the parameter that
we vary during the course of the algorithm. The value of λ represents the value of the derivative of
the objective function. Since the functional form is invertible, if ˙wi() = λ then

τi =

√

−Bi

λ
.

The algorithm starts of by setting the value of λ = −∞ and hence the value of all the τi = 0. We
now increase the value of λ until exactly one of the constraints is binding. This can be computed



easily since the value of τi is known as a function of λ. The smallest value of λ at which one of the
constraints becomes binding can be computed as follows: (Recall here that λ is negative due to the
class of energy functions considered.)

√
−λ = max{

√−B4

0.2
,

√−B4 +
√−B3

0.7
,

√−B4 +
√−B3 +

√−B2

0.8
,

√−B4 +
√−B3 +

√−B2 +
√−B1

1.0
}.

The constraint that is most binding is τ4 ≤ 0.2 at the value of λ = −0.0199. (This value is represented
by γ4 in the algorithm description). The value of τ4 is fixed at τ∗

4 = 0.2 and eliminated from the
problem leaving:

τ3 ≤ 0.5

τ2 + τ3 ≤ 0.6

τ1 + τ2 + τ3 = 0.8

We now continue to increase the value of λ. The constraint that is binding next is τ2 + τ3 ≤ 0.6
at λ = −0.008. This value is represented as γ2 in the algorithm description. The optimal values
for τ∗

3 = 0.22 and τ∗
2 = 0.38 and these two variables are eliminated from the problem leaving

only the constraint τ1 = 0.2. This constraint is binding at λ = γ1 = −0.005. Note that setting
θ1 = γ1, θ2 = γ2 − γ1, θ3 = 0 and θ4 = γ4 − γ2 verifies optimality. (Note that the KKT conditions
including complementary slackness are satisfied by the primal-dual pair). If the derivative of the
objective function is not invertible, the equations have to be solved numerically. Essentially the same
idea works in the case of individual packet deadlines as outlined in the next section. In that case,
instead of checking n equations and inequalities in each step, we have to check 2n−1 inequalities and
equation at each step of the algorithm. Though the description of the algorithm is more involved,
the key ideas behind the algorithm is the same as the algorithm for individual packet deadlines.

4 Scheduling with Individual Packet Deadlines

In this section, we consider the most general case, where each packet has its own deadline. We show
that an algorithm very similar in spirit to the problem with a common deadline solves the problem
optimally. The algorithm PACKET DEADLINE is shown below:



Initialize K = M , l = 0 , u = M + 1
N = {1, 2, . . . , n}, F = N , LS = 0, US = 0.
While F 6= ∅

For n = l + 1, l + 2, . . . , u − 2
Solve for λn in
∑n

j=l+1
ẇj

−1(λn) = dj − LS

For n = l + 2, l + 3, . . . , u − 1
Solve for δn in
∑u−1

j=n ẇj
−1(δn) = T − tn − US

Solve for φ in
∑u−1

j=l+1
ẇj

−1(φ) = T − LS − US

Let ω = min{minn{λn, θn}, φ}
If ω = λn for some n then

Set γn = ω

Set τ∗
j = ẇj

−1(ω) for l + 1 ≤ j ≤ n.
Update LS = LS +

∑n

i=l+1
τi

Set l = n and L = {1, 2, . . . n}
Set F = N\L\U .

If ω = δn for some n then
Set γn = ω.
Set τ∗

j = ẇj
−1(ω) for n ≤ j ≤ u − 1.

Update US = US +
∑u−1

i=n τi

Set u = n and U = {n, n + 1, . . .M}
Set F = N\L\U .

If ω = φ for some then
τ∗
j = ẇj

−1(ω) for l + 1 ≤ j ≤ u − 1.
Set F = ∅

end While

Uisng a proof technique similar to the COMMON DEADLINE algorithm, we can show the
following result.

Theorem 2 The algorithm PACKET DEADLINE computes the optimal scheduling times for the
packets for the individual packet deadline problem and the minimum energy transmission times are
given by the vector τ∗.

In the case where the objective is to minimize the maximum power consumed, the algorithm to solve
this problem is similar to PACKET DEADLINE where the energy function is used wherever the
derivative of the energy function is used in the PACKET DEADLINE algorithm.

5 Conclusions

We presented polynomial time offline algorithms for the minimum energy transmission of a sequence
of packets subject to deadlines. The algorithms are almost greedy in nature and can be adapted



easily to get heuristics for the solution of dynamic problems where the arrival of packets is random
and is not known ahead of time.
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