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Palette: Distributing Tables
in Software-Defined Networks

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—In software-defined networks (SDNs), the network
controller first formulates abstract network-wide policies, and
then implements them in the forwarding tables of network
switches. However, fast SDN tables often cannot scale beyond
a few hundred entries. This is because they typically include
wildcards, and therefore are implemented using either expensive
and power-hungry TCAMs, or complex and slow data structures.

This paper presents the Palette distribution framework for
decomposing large SDN tables into small ones and then dis-
tributing them across the network, while preserving the overall
SDN policy semantics. Palette helps balance the sizes of the tables
across the network, as well as reduce the total number of entries
by sharing resources among different connections. It copes with
two NP-hard optimization problems: Decomposing a large SDN
table into equivalent subtables, anddistributing the subtables such
that each connection traverses each type of subtable at least once.
To implement the Palette distribution framework, we introduce
graph-theoretical formulations and algorithms, and show that
they achieve close-to-optimal results in practice.

I. I NTRODUCTION

A. Background

Software-defined networking(SDN) in general, and Open-
Flow [1], [2] in particular, provide an abstraction of network
devices and operations. This abstraction eases the development
of new network protocols and policies. These protocols are im-
plemented through the networkcontroller, a single centralized
device with a global view of the entire network. The network
controller can be seen as a compiler that translates the abstract
policies provided by network designers into specific rules in
the table of each network switch.

Previous works typically assumed that the table of each
switch can hold an infinite number of rules, which makes the
compiler easy to design. In practice, however, this assumption
does not hold, and the switch table sizes can become a
significant bottleneck to scaling SDN networks. We note that
many of these tables are implemented using ternary content-
addressable memory (TCAM), which is extremely power-
hungry and therefore of limited size. Typical implementations
of OpenFlow, for example, limit the number of entries in
each such table to only 750 [3], while handling about 100,000
concurrent flows.

This paper introduces the Palette framework for distributing
these rules into a network of heterogeneous switches with
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Fig. 1. (a) A common setting in which tables are installed at thenetwork
ingress nodes; (b) The result of applying Palette. Tables are decomposed into
smaller subtables of different types (a.k.a. colors), whichare then distributed
across the network. A packet along each path meets each type ofsubtable at
least once.

tables of limited size, while preserving the semantics of the
SDN policy. The Palette distribution framework is generic
in the sense that it does not rely on the exact meaning of
the rules, as long as the rules do not determine the routing
of the packet. More specifically, the controller application
should only specify whether the policy is routing/forwarding-
agnostic or not, and should not deal with the implementation
complexity of the distribution across the network switches.
This is especially useful when the network topology changes,
or equipment is replaced.

B. The Palette Framework

We turn now to describing our proposed Palette distribution
framework. We define an SDN policy as a collection of rules.
Each rule consists of a(pattern, action)pair, i.e. a pattern
of specific bits in the packet header along with an action to
take upon a pattern match (e.g. drop the packet or increment
a counter of some measurement). For aggregation purposes,
don’t-care bits, denoted by “*”, are allowed in the pattern.
Therefore, a given packet header may match more than one
rule, and in that case an action is taken according to the
highest-priority rule. Typically, the SDN tables evolve over
time (that is, new rules are added and some rules are deleted).
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In addition, occasionally a switch can send notifications (e.g.,
measurements taken in one of its built-in counters) to the
controller.

Palette takes advantage of the fact that the controller has
a global view of the network, and therefore, knows the paths
taken by all packets. This allows us to share resources among
different paths in an efficient way, by using the same rules for
different paths in any common switch.

Fig. 1 illustrates our approach in a common setting used
for access control. Access control consists of determining
whether a given packet is permitted in the network or should
be dropped. It is usually made by a switch, a router, or
a designated Network Intrusion Detection/Prevention System
(NIDS/NIPS) middleboxat the edge of the network. Specif-
ically, as illustrated in Fig. 1(a), some access control is
performed on all ingress nodes of the network. In an SDN
setting, this typically translates into installing a tablewith all
access control rules in all ingress nodes. However, as shown
in Fig. 1(b), using our Palette framework, the rules can be
distributed across the network switches.

Note that an orthogonal approach based on cSamp [4] would
have been to divide the traffic among switches (that is, each
switch deals only with part of the packets), by applying at
each switch a hash function on certain packet header fields.
Then, each switch handles a different range of hash values.
This approach improves the data forwarding, as it reduces the
load on each switch. However, it does not solve our problem,
since each switch should still store the entire table, as the
partitioning of the traffic does not take the rules into account.

C. Our Contributions

In this paper, we show how to split the rules across the
network, such that each switch will have a smaller SDN table.
Our basic approach is to divide this problem into two separate
subproblems.

The first subproblemis to decompose a large table that
contains all rules into a predetermined number of smaller
tables. We denote each smaller table by a different color.
Our decomposition ensures thatthe Palette implementation
preserves the overall network behavior. In particular, it has
the following two properties.

• Order-oblivious: The order in which the smaller tables
are accessed does not change the global action of the
network.

• Semantically-invariant:This global action of the network
is the same as the one taken when using the initial single
large table.

Naturally, this implies that not all actions can be decomposed
and distributed: for example, a forwarding or a routing action
(e.g., “send the packet through porti”) must be taken in
its original switch. We assume that the controller application
specifies whether the action is safe to decompose or not. Inci-
dentally, this subproblem is also useful in other contexts,such
as achieving parallelism and power-efficiency in TCAMs [5],
[6].

After obtaining a set of small tables (or colors), thesecond
subproblemis to ensure thateach packettraverses all the types

of small tables (i.e. all colors), so that the resulting setting
would be semantically equivalent to a single lookup in the
large table.

We model this second problem in a graph-theoretic manner,
in which the switches are nodes and the links are edges. We
assume that all the possible end-to-end paths are known to the
controller. Thus, our goal is to assign colors to the nodes such
that each path is arainbow path—a path whose nodes include
all the colors. The objective is to maximize the number of
colors that we can use, and therefore, to minimize the table
size residing at each node.

Although constructing an optimal assignment is NP-hard,
we show that when the network is a tree (which corresponds
to datacenters) the problem is tractable. We then propose and
evaluate sub-optimal greedy algorithms, and show that they
achieve close-to-optimal results in practice.

In addition, we also study the multicolored node case where
more than one type of subtable can reside in a single node;
we show how this additional degree of freedom enhances the
flexibility of our Palette distribution framework.

Finally, we evaluate the performance of our greedy algo-
rithms, both in dividing TCAMs and in distributing tables
across the network.

We note that dividing the problem into these two sub-
problems is done since both problems are fundamental and
may be used in other contexts. In addition, we believe that
it simplifies the presentation and evaluation of our Palette
distribution framework. However, a joint optimization may
yield better (yet more complex) results. We leave this joint
optimization to future research.

D. Paper Organization

We start with the background on related work in Section II.
Then, in Section III, we deal with our first subproblem, that
is, we show how the large TCAM classifier can be divided
into smaller TCAMs. In Section IV, we give the formulation
of the second subproblem, which is NP-hard, analyze some
special cases that can be solved efficiently, and present efficient
greedy algorithms for approximating the general case. In
Section V, we consider cases where more than one color
can be assigned to each of the switches. Finally, Section VI
provides experimental results.

II. RELATED WORK

Software Defined Networking (SDN) has become an impor-
tant paradigm in contemporary networks. Its key concept lies
in the management of the entire network as a unified abstrac-
tion (e.g., in a network controller), and the remote controlof
the network devices (namely, its switches and routers) through
open protocols (such as OpenFlow) [7]. In recent years, SDN
technology has been widely deployed in real-life large-scale
networks, e.g. Google’s G-scale network [8]. Switches and
routers that support SDN/OpenFlow are now offered by a large
number of vendors (e.g., [3], [9], [10]).

One of the major challenges in SDN is to develop a
programming language for its software development. On one



TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 3

hand, this programming language should be sufficiently flex-
ible and rich to allow new network applications, but on the
other hand, it should be simple and modular to reduce devel-
opment and debugging times. Frenetic [11] is a prime example
of such a network programming language that gives high-level
abstractions to the network programmer. For example, it allows
systematic updates [12] and task composition [11]. Perhaps
the most closely-related work to ours is the extension of
Frenetic to allow policy transformation of rules across thenet-
works [13]. The authors developed a complete and sound set
of axioms to allow semantically-preserving rule-rewriting in a
single switch or in a chain of switches. Our paper complements
this work by providing a specific algorithmic framework in
which such a rewriting system can work, and also shows how
to spread the resulting rules across the network. An additional
key aspect of our paper that can be useful for Frenetic
is our order-oblivious decomposition, which facilitates the
distribution of subtables across the network.

Another approach for distributing table rules across the
network is DIFANE [14]. In DIFANE, non-overlapping flow
ranges are allocated using a decision-tree based algorithm.
Then, each such range is assigned to a different predetermined
subset of the switches, called authority switches. Following
that, rules are installed to these authority switches according
to the corresponding flow range.

To assure that each packet is matched against all relevant
rules, ingress switches redirect the packets to the correspond-
ing authority rule. If some rule is matched, a cache rule
is generated using a technique described in [15], and then
installed in the ingress switch, such that future packets from
the same flow can be managed instantly in the ingress router.

Our approach avoids the management and redirection over-
head by assuring that each packet is matched against all
possible rule in the path it traverses. Further, it avoids du-
plications of the rules to the ingress routers, exploiting better
the available space in the switches.

While both DIFANE and our approach do all rule processing
in the data plane, a recent paper proposes to combine the rule
processing both in the data plane and control plane [16]. The
main approach is to partition the rules into non-overlapping
sets of rules, and then to distribute it to both the switches (i.e.,
data plane) and the hypervisors (i.e., control plane), suchthat
the volume of flows need to be redirected from the data plane
to the control plane is minimized.

Finally, we note that splitting the workload between the
switches in a coordinated network has been proposed in the
past in many contexts. Such contexts includes traffic engineer-
ing [17], network diagnosis [18], [19], intrusion detection [20],
and traffic monitoring [4], [21]–[26]. However, these solutions
are not directly applicable to our case. For example, cSamp [4]
is a generic framework for network measurement, where each
flow is monitored only in one of the network routers. It uses
a hash function with a certain distribution at each router
to determine whether the current router has to perform the
measurement. Since the hash functions are orthogonal to the
monitoring rules, it implies that each such router should hold
the entire monitoring table (but only access the table on a
subset of the packets).

III. O RDER-OBLIVIOUS TABLE DECOMPOSITION

This section analyzes two approaches to dividing a large
table intoc subtables: thePivot Bit Decomposition(PBD) and
the Cut-Based Decomposition(CBD).

A. Decomposition Rules

Before starting, note that we only divide rules that corre-
spond to policies which aremarked as safe to divide. The
rest of the rules remain in the corresponding sub-table, and
will be re-composed with the rules assigned to that table
after decomposition. There is a large body of work of how to
compose several policies in one table (e.g., using a Cartesian
product of the rules [27], [28]).

Hence, we are left with an arbitrary table that is safe to
divide. We assume that this table must be able to match all
possible strings. For this, we distinguish betweendefault and
non-defaultrules. The default rule consists ofdon’t-carebits
only, and it uses a default blank action (e.g., apermitaction in
ACLs). The non-default rules are all other rules in the table.
Clearly, if a default rule exists in the original table, it may be
placed only at the end of the table. To follow our convention,
after the decomposition we add a default rule automaticallyto
each of the resulting tables.

We further note that after decomposing the original table,
the resulting tables may not be optimal. Therefore, it is pos-
sible to applylogic minimizationon the resulting tables using
off-the-shelf solutions developed in the context of TCAMs
(e.g. [29]–[31]).

The correctness of the decomposition implies that each
string that matches a non-default rule in the original table,
must match a non-default rule in exactly one of the subtables
(and the default rule in the other resulting tables). Moreover,
strings that match the default rule in the original table, must
also match the default rule in all subtables.

B. Pivot Bit Decomposition

The first method, calledPivot Bit Decomposition (PBD),
works by iteratively decomposing one table into two equivalent
tables, thus increasing the total number of tables by1.

This iterative decomposition is done by selecting onepivot
bit (equivalently, one column) in the table, and splitting the
rules into two sets: the first table holds all rules in which the
pivot bit is 0, while the second table holds all rules in which
the pivot bit is1. Rules in which the pivot bit is “don’t care”
(“*”) are rewritten as two complementary rules: one in which
the pivot bit is replaced by0 (and therefore, is part of the first
table) and another in which it is replaced by1 (and therefore,
is part of the second table).

Note that while PBD decomposes the table along certain
bits like previously-known methods [5], [6], it does not pre-
determine someP pivot bits and then decomposes the table
into the corresponding2P tables. On the contrary, it adds a
single new subtable at each iteration. Therefore, the different
subtables may have resulted from different sets of pivot bits.

Naturally, the efficiency of the decomposition depends on
the joint selection of the table and of the pivot bit at each
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0 1 2 3 4 5 6
ϕ1 * 0 1 0 * 0 0
ϕ2 0 * 1 * * * 0
ϕ3 * 1 * * 1 0 1
ϕ4 1 1 1 * 1 * *
ϕ5 1 1 * 0 * * *
ϕ6 1 0 0 1 0 1 *
ϕ7 * * * * * * *

Fig. 2. An example rule-set of an SDN table.

iteration. Our goal is to greedily minimize the maximum
table size among all the small tables. Therefore, we always
decompose the largest table. The pivot bit is then selected to
minimize the size of the largest table among the two resulting
subtables.

Specifically, forb ∈ {0, 1,*}, let ni(b) be the number of
bits with valueb in the i-th column (that is, the number of
rules whosei-th bit is b). Then, the pivot bit is:

pivot = argmin
i

(max {ni(0) + ni(*), ni(1) + ni(*)})

= argmin
i

(ni(*) + max {ni(0), ni(1)}) (1)

Finally, note that if after the decomposition and possibly the
logic minimization, the maximum table size is not reduced, we
refrain from decomposing the table and move to the next table.
The process ends either when we reachc tables, or when all
possible decompositions do not result in table size reduction.

Example 1. We demonstrate our decomposition using the
example table depicted in Fig. 2. Assume we want to divide the
table intoc = 2 partitions. We disregard the default rule (ϕ7),
and choose bit number 1 as the pivot bit, since it minimizes
the expression in Equation (1). Ruleϕ2 has * in bit 1,
and therefore it is duplicated to ruleϕ′

2 = 001***0 and
ϕ′′
2 = 011***0. After the division, the rulesϕ1, ϕ′

2, andϕ6

are assigned to the first sub-table, while the rulesϕ′′
2 , ϕ3, ϕ4,

and ϕ5 are assigned to the second sub-table. We also need
to add default ruleϕ7 to both of the resulting sub-tables, so
their final sizes would be 4 and 5, respectively.

We next show the correctness of our decomposition and the
fact that it is order-oblivious.

Lemma 1. If a non-default rule is returned when applying a
packet headerh on the original table, then, after the PBD is
applied, there is exactly one table that returns a non-default
rule for h; all the other tables will return the default rule.

Proof: Recall that packet headers are binary strings (that
is, they do not contain*’s). In addition, notice that our decom-
position procedure induces a binary tree structure among the
tables, where each node in the tree represents a table, whose
two descendants are the tables resulting in the decomposition;
the root of the tree is the original table, while the leaves of
the tree are thec subtables.

Suppose that two non-default rules are returned from two
different tablesT0, T1, and let T ′ be the deepest common
ancestor of the tables. Leti be the pivot bit selected in
decomposingT ′. Thus, all rules (but the default rule) ofT0

differ from the rules inT1 by the pivot bit. LetTb be the table
with value b in the i-th bit of the non-default rule. Letb′ be
the value of thei-th bit of h, thereforeh cannot match any
non-default rule inT1−b′ and hence a contradiction.

We next show that at least one table returns a non-default
rule for h. Such a table can be found by traversing the
decomposition tree according to the value of the pivot bits
in h. At each nodeT , whose pivot isi, we check thei-th bit
in h and go to eitherT0 or T1 according to this value; the
process is stopped when reaching a leafT ′. Let I be the set
of pivot indices along the path betweenT ′ and the root of
the decomposition tree. Note that by construction, the value
of these|I| bits in h and in all non-default rules ofT ′ is
the same. Assume thath matches some ruleϕ in the original
table, letI∗ be the set of indices in this rule that are*, and
let I01 be the set of indices in this rule that are either0 or
1. Sinceh matches this rule,h was carried on toT ′ for all
pivots in I ∩ I01, and was duplicated (with the same action)
for all pivots in I ∩ I∗. Thush matches the rule also inT ′.

Note that since this claim is about the semantics of the
rules, the claim still holds even when considering the logic
minimization at each decomposition step, since logic mini-
mization must preserve the semantic of each table.

The next lemma complements Lemma 1 and shows that
correctness is maintained when matching the default rule:

Lemma 2. If the default rule is returned when applying a
packet headerh on the original table, then all tables return
the default rule.

Proof: It is straightforward since no rule matches the
packet headerh in the original table,

The next theorem establishing the correctness of PBD
follows immediately from Lemma 1 and Lemma 2:

Theorem 1. The PBD scheme preserves the semantics of the
original table, no matter the order in which the tables are
accessed.

We point out two main drawbacks in the basic PBD scheme.
First, the basic PBD scheme divides the table at each iteration
so that the maximum size of the resulting two subtable sizes is
minimized. Therefore, the sizes of the resulting two subtables
after each iteration tend to be almost equal. As a result, when
c is not a power of two, it is expected that the partition sizes
would be imbalanced.

To solve this problem, we generalize the PBD scheme in
the following way: Given the target number of subtablesc,
we first find the largest integerp such that2p < c. Then, we
find a pivot bit that attempts to divide the table such that the
ratio between the resulting table sizes will be2p:(c−2p). 1

We recursively use this generalization of PBD on each of the
two subtables, aiming to decompose the first subtable into2p

smaller subtables, and the second subtable intoc− 2p ones.
Another potential drawback of PBD is reflected in the

following result, which exhibits an example in which the

1For example, forc = 7, the goal is to have two tables, one holding
approximately 4/7 of the entries and the other 3/7. Thus the ratio between the
tables is 4:3, while the basic PBD scheme aims to achieve a ratio1:1 between
the tables.
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largest resulting subtable is of sizeN−c+1, while the optimal
decomposition would have resulted inc tables of sizeN/c.

Theorem 2. PBD may result in a decomposition whose largest
subtable is asymptoticallyc times larger than the largest
subtable in the optimal decomposition.

Proof: Our counterexample is based on rules that do not
contain* bits at all. Since there is no dependency between
the rules (each rule matches exactly one key), any partitioning
of the rules intoc sets of sizeN/c is a valid decomposition.

On the other hand, consider the set of rules{ϕi =
1i01W−1−i | i ∈ {0, . . . ,W − 1}}, whereW is the width of
the table. Namely,ϕi is a rule whose all bits are 1 except the
i-th bit, which is set to 0. Assume our PBD chooses the bits
{i1, . . . , ic−1} during its execution. The resulting subtables
will be c − 1 singleton tables:{{ϕi1}, . . . , {ϕic−1

}}, while
the rest of theN − c+ 1 rules will reside in one table.

C. Cut-Based Decomposition

We now offer a second approach to decomposing the table,
calledcut-based decomposition(CBD). This decomposition is
based on representing the set of rules in adirecteddependency
graph.

As illustrated in Fig. 3, which shows the dependency graph
of the table in Fig. 2, the nodes in this graph represent the
rules. Moreover, there is an edge from nodeu to nodev if
and only if ruleu has higher priority than rulev, and there is
at least one key that matches both rules. Namely, the edges of
the graph representdependenciesbetween the rules. Our goal
is to decompose the graph, which corresponds to the original
table, into component subgraphs, which will correspond to
the resulting subtables, such that there are no edges between
the components. That is, no key matches rules in different
components.

First, since all rules match the default rule, and it is allowed
to match the default rule in all subtables, we omit the node
corresponding to this default rule in the graph.

Second, we assign a weight to each edge. The weight
corresponds to the cost ofbreakingthis edge: an edge can be
broken by changing the rules in such a way that no dependency
remains between the rules, and the semantic is preserved.

Specifically, letbui denote thei-th bit of nodeu. For any
nodev, define the following set of dependency bits:Cu,v =
{i | bvi = * andbui 6= *}. The weight of the edge between
node u and nodev, denoted byw(u, v), is |Cu,v|−1. The
weight w(u, v) corresponds to a possible way of resolving
the dependency betweenu andv by addingw(u, v) nodes to
the graph: for each biti in Cu,v, we can write a rule that is
identical tov, except thei-th bit that is replaced by1 − bui .
These rules do not have a dependency withu. In addition,
each key that matchesv in the original rule-set will match
at least one of these rules. Note that when removing a single
edge from the graph, we create a new graph: edges that touch
nodev in the original graph might be duplicated to the new
|Cu,v|−1 nodes; the weight of these duplicated edges can only
decrease.

Another operation that we also allow in this scheme is a
node expansion, that is, given a set oft * bits in some rule,

ϕ
1

ϕ
2

ϕ
6

2

ϕ
3

ϕ
4

1 2

1
ϕ

5

Fig. 3. The dependency graph and cut of the table in Fig. 2.

we replace the rule with2t new rules by replacing the* bits
with a binary enumeration of possible combinations of 0s and
1s. By definition, this operation does not change the semantics
of the original table. However, it reduces the connectivityof
the dependency graph, facilitating the graph partitioning.

The next theorem shows that CBD is in fact a generalization
of PBD:

Theorem 3. Using the above-mentioned edge breaking and
node expansion operations, CBD can exactly emulate PBD.

Proof: When PBD partitions a table into two tables
using some pivot bit, it duplicates the rules with adon’t-
care (*) value in the corresponding bit into the two resulting
subtables, and replaces the corresponding* value by 0 and
1, respectively. This corresponds to a rule expansion in the
CBD. This way, CBD can mimic the exact steps of PBD.
Since at each step in PBD, no packet header matches two
rules from different subtables, CBD can partition the large
table into exactly the same resulting tables as the PBD.

We next discuss how we practically cut the graph into
components. First, the problem of partitioning a graph intotwo
equal-size components and minimizing the weights of edges
among these components is known to be NP-hard [32]. Our
problem is even more general, in the sense that in some cases
we need to consider the sum of weights (for edges in the cut
that are destined for different nodes) and in some cases we
need to consider the product of weights (for edges that are
destined for the same nodes). Moreover, we may want to first
expand some of the rules.

In practice, we propose a greedy algorithm that solves this
problem iteratively. At each iteration, we first try to partition
the dependency graph intoc equal-sized components, and
minimize the weights of edges among these components. For
this task, we use METIS [32], a tool to approximately partition
graphs. Then, given the resulting partitioning, we evaluate it,
and decide whether to expand one of the rules, and then go
to the next iteration, or to finish by breaking all cut-edges.
For instance, the wavy line in Fig. 3 depicts the cut of the
dependency graph. After adding a default rule to each subtable,
it results into two subtables of size 4 rules each (comparing
to size 4 and size 5 in Example 1).

The decision whether to expand one of the rules or to
finish by breaking all cut-edges depends on the quality of
the partitioning. Namely, in case that the total weight of the
edges in the cut exceeds some parameterw0, we look at
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Fig. 4. Illustration of the model. NetworkG = 〈V,E〉 has vertex set
V = {v1, . . . , v4} for the switches, and an edge setE = {e1, . . . , e5} for
the links. There are three paths in the path setP = {p1, p2, p3}, and, for
example,S (p1) = {v1, v2} andL (p1) = {e1}. Finally, G|P is the same
asG but without the linke3, which does not belong to any of the paths.

the destinations of the edges in the cut, and pick a vertex
whose sum of incoming cut-edges’ weight is the largest.
Then, we expand the rule corresponding to this vertex, thus
eliminating all dependencies. Furthermore, since METIS does
not necessarily return a perfectly balanced partition, we look
at the ratio between the size of the largest component and
the target size (that is, if a perfectly balanced partition would
have been produced). If this ratio exceeds a certain parameter
r0 (namely, the partition is poorly balanced), we will try to
break the largest component by expanding a rule within that
component. Naturally, a good candidate for such an expansion
is a rule that has few* bits (e.g., up to three) and many
intra-component incoming edges (e.g., the one with the largest
number of incoming edges).

Theorem 4. The CBD algorithm stops.

Proof: At each iteration, one rule is expanded using at
least one bit, that is, in the resulting table there is at least
one* less. A table with not even one* has a corresponding
dependency graph with no edges. Therefore, it can be easily
partitioned intoc equally-sized partitions with cut edge of
weight 0.

IV. T HE RAINBOW PATH COLORING PROBLEM

After showing how to decompose the initial table into
subtables, we now turn to showhow to spread the subtables
in the network.

We model the network as a directed graphG = 〈V,E〉 with
a vertex setV and an edge setE, whereV = {v1, . . . , vn}
represents the set ofn switches andE = {e1, . . . , em} the
set ofm links. As a first step, we consider an homogeneous
network where all switches are identical, and therefore have
identical constraints on the table size. We will relax this
assumption in Section V.

Let P = {p1, . . . , pf} be the set of all flow paths in
the network. For each flow pathpi, S(pi) denotes its set of
switches andL(pi) denotes its set of links.

Finally, given a graphG and a set of pathsP , we de-
note by G|P the projection of G over P , namely G|P =
〈

⋃

p∈P S(p),
⋃

p∈P L(p)
〉

is the subgraph ofG that contains

only the switches and links that belong to at least one path in
P . Fig. 4 illustrates the above definitions.

Recall that we aim to maintain full coverage of the original
table semantics when dividing the work among switches.
Informally, we would want tocolor each switch in one ofc
possible colors (or with no color), subject to the constraint
that each path must contain allc colors. This would help
us to divide the table among switches, so that each switch
would need approximately1

c
of the entire table. Formally, the

problem is defined as follows.

Definition 1. Given a networkG = 〈V,E〉, a flow path set
P , and a number of colorsc, the 〈G,P, c〉 RAINBOW PATH

PROBLEM is to decide whether there exists an assignmentγ :
V → {⊥, 1, . . . , c}, where⊥ corresponds tono color, such
that each pathp ∈ P has at least one node of each color.2

While the 〈G,P, c〉 RAINBOW PATH PROBLEM is defined
as adecision problem, in practice,our goal is to maximize
c. Notice that the number of colorsc is clearly at most the
length of the shortest path inP , which is in turn bounded by
n. Thus, the maximum number of colors can be obtained by
applying the decision problem with any number of colorsc
up to the shortest relevant path size.

In the appendix, we show that for general graphs, the
decision problem isNP-hard even for two colors. We now
obtain efficient solutions for special graph topologies, aswell
as heuristics for the general case.

A. The Rainbow Path Coloring in Trees

Nowadays, OpenFlow-equipped networks are often de-
ployed in data centers, where the network itself has a regular
structure. A prime example of such a topology is atree: a
fully connected graph that has no cycles.3

In some cases, there is also a restriction on the relevant paths
that should be considered; e.g., assuming all paths originate
from or are destined to a single node.

In this section, we first tackle these single-source (equiva-
lently, single-sink) trees. Our results are slightly more general,
as they require that only the projection of the paths on the
original topology is a tree. For example, if all paths are the
shortest possible, a single-source (single-sink) settingalways
forms a tree (a.k.a. the shortest-paths tree). We show a simple
valid coloring of sizes+ 1, wheres is the shortest path size.
In this coloring, the color is simply given by the distance to
the single ingress (or egress) switch.

Theorem 5. Given a networkG, and a flow path setP such
that all paths originate from or are destined to a single node
and follow the shortest-path scheme, then there is a valid color
assignmentγ with s+1 colors to the〈G,P, c〉 RAINBOW PATH

PROBLEM, wheres is the shortest path size inP . Furthermore,
γ can be computed inO (m+ n) time.

2This last condition on the paths can be formally written as follows. Let
γ : 2V → 2{⊥,1,...,c} denote the extension ofγ to a set of nodes:γ(V ′) =
{c | v ∈ V ′, γ(v) = c}. A valid assignmentγ implies that for all pathsp ∈
P , {1, . . . , c} ⊆ γ(S(p)).

3Some datacenters have afat-treetopology. Extending our results to fat-tree
is part of our future research.
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Proof: Without loss of generality, assume that all paths in
P originate from a single sourcex, and denote byd(x, y) the
distance in edges between nodex and some nodey. Let γ be
the following assignment function: for eachy ∈

⋃

p∈P S(p),

γ(y) =

{

d(x, y) + 1 d(x, y) ≤ s
⊥ otherwise

where ⊥ indicates that no color is given to the node, and
therefore, no table should be installed at that node. Noticethat
γ can be computed inO(m+ n) time using the Breadth-first
search (BFS) algorithm [33] originating fromx.

Consider a pathp ∈ P , which starts atx and follows a
shortest-path scheme. Thus,S(p) contains nodes of increasing
distances until the length ofp, which is at leasts. Thus,
γ(S(p)) = {1, . . . , s+ 1}, and the claim follows.

Next, we deal with the more general case in whichG|P is
a tree. In such a case, we show a valid coloring with⌈ s

2
+1⌉

colors, wheres is the shortest path size inP .

Theorem 6. Given a networkG and a flow path setP with
a shortest path of lengths, if G|P is a tree, then there is a
valid color assignment with⌈ s

2
+ 1⌉ colors to the〈G,P, c〉

RAINBOW PATH PROBLEM. It can be computed inO (m+ n)
time.

Proof: Let c = ⌈ s
2
+ 1⌉, and pick an arbitrary nodex ∈

S(P ). Consider the following color assignmentγ:

γ (y) = (d (x, y)− 1 mod c) + 1.

Note that, by definition, the values ofγ are in {1, . . . , c}. γ
can be computed using a BFS from nodex in O(n+m) time.

We next show that each path contains all the colors. Con-
sider a pathp ∈ P , and let y ∈ S(p) be the node with
minimal distance tox. SinceG|P is a tree, for each other
node y′ ∈ S(p), d(y′, x) = d(x, y) + d(y, y′) (otherwise,
there is a path betweeny′ and x that does not go through
y, implying that there is a cycle inG|P ). Let p1, p2 be the
division of pathp into two paths:p1 starts in the first node
of path p and ends iny, p2 starts in y and ends in the
last node of pathp. Without loss of generality, assume that
p1 is longer thanp2; thus the length ofp1 is at least⌈ s

2
⌉

edges, implying that|S(p1)| ≥ ⌈ s
2
+ 1⌉. Furthermore, since

there is only a single simple path between each two nodes in
the tree, the set of distances between nodes inS(p1) and y
is {0, . . . , |S(p1)|}, immediately implying thatγ(S(p1)) =
{(i+ d (x, y)− 1 mod c) + 1 | i ∈ {0, . . . , |S(p1)|} =
{1, . . . , c}, and the claim follows.

Another special case where all paths are of length 2 is
considered in the appendix.

B. The Rainbow Path Coloring in General Graphs

Since the 〈G,P, c〉 RAINBOW PATH PROBLEM is not
tractable in general graphs, we present a greedy heuristic that
might yield a suboptimal solution. Yet, our simulations show
that in practice the margin of error is on average within2%
(see Section VI).

More specifically, ourGREEDY algorithm (see Algorithm 1
for pseudo-code) works in iterations. At each iteration, which

Algorithm 1: Pseudo-code for theq-GREEDY algorithm
Input : node setV , path setP
Output : a valid color assignmentγ, number of colorsc

1 c = 0 ;
2 setγ (v) = ⊥ for all v ∈ V ;
3 while V 6= ∅ do
4 P ′ = P ; V ′ = ∅ ;
5 Search = TRUE ;
6 while Search do
7 V 0 = argmax

Ṽ⊆V ′,|Ṽ |≤q
{∣

∣

∣

{

p|Ṽ ∩ S (p) 6= ∅, p ∈ P ′
}∣

∣

∣

}

;

8 P 0 =
{

p|Ṽ ∩ S (p) 6= ∅, p ∈ P ′
}

;

9 V = V \ V 0 ; V ′ = V ′ ∪
{

V 0
}

; P ′ = P ′ \ P 0 ;
10 Search = (P ′ 6= ∅) and

(

V 0 6= ∅
)

;

11 if P ′ = ∅ then
12 c = c+ 1 ;
13 setγ (v) = c for all v ∈ V ′ ;
14 V = V \ V ′ ;
15 else
16 V = ∅;

corresponds to a new color,GREEDY continuously picks
uncolored nodes one by one, until each path contains at least
one of the picked nodes in this iteration. In such a case, the
nodes picked are colored with a new color, and the algorithm
continues to the next iteration. If at some iteration, even after
picking all uncolored nodes, there is at least one path that does
not contain any of the picked nodes, then those nodes remain
uncolored (⊥), and the algorithm stops. Note that, in any case,
the algorithm never stops in the first iteration, that is, it always
succeeds to color the nodes using at least one color.

We next present two variants of this algorithm, which differ
in the way the nodes are selected at each iteration. In the first
variant, which we call1-GREEDY, at each choice, we pick the
nodev that maximizes the number of paths that containv but
do not contain the new color. The following theorem captures
the time complexity of this algorithm:

Theorem 7. 1-GREEDY runs in O
(

n2 · f
)

time complexity,
wheren is the number of nodes andf is the number of paths.

Proof: When we pick a node to color, we first need to
consider all other remaining nodes to ensure that this node is
the one which belongs to the largest number of paths; each
such comparison takes at mostf steps (counting all the paths).
Hence, the total number of steps required to choose alln
nodes, isf · ((n− 1) + (n− 2) + . . .+ 1) = O(n2 · f).

The second variant,q-GREEDY, generalizes the1-GREEDY

algorithm by considering, at each step, a set of up toq nodes
(instead of a single node). It chooses the set of nodes that
maximizes the number of paths for which there is at least one
node in the set.

The next example shows an execution of1-GREEDY and
an execution of2-GREEDY that differ in their outcome. This
demonstrates the tradeoffs in fixing the parameterq.
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Example 2. Consider the example in Fig. 4. We first run1-
GREEDY. At the first iteration, nodesv1, v2, andv3 belong to
two paths; assume that1-GREEDY first picksv1 and colors it
in the first color. Then, in order to colorp3, it picks v2 and
colors it in the first color as well. Note that all nodes of the
first path p1 are now colored, implying that any additional
iteration will fail, resulting in a valid coloring of only one
color.

In contrast,q-GREEDY with q = 2 first picks nodesv2 and
v3, since all three paths traverse through either one of these
nodes. Then,v1 and v4 can be colored with an additional
color, resulting in a valid coloring with 2 colors.

The following theorem is a simple generalization of Theo-
rem 7:

Theorem 8. q-GREEDY runs inO
(

nq+1 · f
)

time complexity,
wheren is the switch set size andf is the path set size.

C. An Optimal Solver

Although the 〈G,P, c〉 RAINBOW PATH PROBLEM is NP-
hard, it is possible to compute the optimal solution for small
instances of the problem. In this section, we present an
algorithm, based on dynamic-programming, that practically
solves the〈G,P, c〉 RAINBOW PATH PROBLEM with projected
graphs of up to 17 nodes. Note that each (isomorphic) coloring
corresponds to a specific partition of a set ofn labeled
elements [34]. The number of possible partitions ofn elements
is then-th Bell number, whose value forn = 16 is approxi-
mately1010. Thus, a näıve approach of testing all possibilities
is intractable in a reasonable time. The main motivation is
two-folded. First, it may be satisfactory for some real-life
instances of the〈G,P, c〉 RAINBOW PATH PROBLEM. Second,
this algorithm is used in Section VI as a baseline for evaluating
the performance of the1-GREEDY andq-GREEDY.

Our algorithm works in two phases. In the first phase, we
find a setS of all subsets of the switch set that have the
following property: Given a subsets ∈ S, coloring all switches
in s with a specific color results in coloring all paths in the
path set. We also make sure that for alls ∈ S, the subsets is
minimal in the sense that there is no subset ofs that has the
same property.

To find the setS, we start with a set ofn singletons. Then,
at each step, for each of the subsets so far, we try to add a
new switch with index larger than the largest switch index
of this subset. If adding a new switch makes the number of
paths that are colored larger, then the new subset is saved for
the next iteration, otherwise it is dismissed. Also, if the new
subset covers all paths, then it is added toS.

Next, after having computed the setS, we go to the second
phase of our algorithm, where we find the maximum size
set of disjoint subsets inS, whose size corresponds to the
optimal number of colors that can be used in the original
〈G,P, c〉 RAINBOW PATH PROBLEM. We note that the second
phase is essentially an instance of themaximum set packing
problem, and can also be solved using a dynamic programming
technique.
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Fig. 5. A network with no valid coloring to the〈G,P, c〉 RAINBOW PATH

PROBLEM with c = 2

V. M ULTICOLORED SWITCHES

Up until now, we have considered the〈G,P, c〉 RAINBOW

PATH PROBLEM where a single color is assigned to each
switch. However, in practice,we may want to assign more
than one color to each switch.

The motivation for such an assignment is three-folded.
First, this would facilitate the implementation of aheteroge-

neous software-defined network, in which nodes with a larger-
capacity table can be assigned multiple colors.

Second, there is additional degree of freedom in the prob-
lem, implying that there are more feasible colors assignments.
To see this, consider Fig. 5, which shows a ring graph of size
3 in which each path consists of a single edge. The only valid
solution of the〈G,P, c〉 RAINBOW PATH PROBLEM is when all
switches are colored with the same color. However, the graph
can be colored in three colors, when each switch is allowed to
be colored with two colors (namely,γ(v1) = {1, 2} ; γ(v2) =
{2, 3} ; γ(v3) = {3, 1}). Specifically, we are interested in the
ratio of the number of colors in each switch to the total number
of colors. In this example, the ratio is2

3
, implying that each

switch should hold approximately two thirds of the table (as
opposed to the entire table in the〈G,P, c〉 RAINBOW PATH

PROBLEM solution).
The third motivation for assigning multiple colors to a node

is in cases where the graphG contains onlyfew very short
paths, while other paths are relatively long. This is because
in the 〈G,P, c〉 RAINBOW PATH PROBLEM, the length of the
shortest path is an upper bound on the number of colors that
can be used. Therefore, it also determines a lower bound
on the size of the table stored in the switches. This implies
that switches on longer paths, which can potentially share
their table with more switches, will still need to store a large
table. In that case, it is appealing to assign multiple colors to
switches on shorter paths (resulting in relatively large tables),
while the rest of the switches are assigned only with few
colors, which correspond to smaller tables.

We now formally define the multicolored problem.

Definition 2. Given a networkG = 〈V,E〉, a set of pathsP , a
number of colorsc, and for each nodevi a maximum number
di of colors that it can accept, the〈G,P, c, d〉 RAINBOW PATH

PROBLEM is to decide whether there exists an assignmentγ :
V → 2{1,...,c}, such that each pathp ∈ P has at least one
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node of each color, and no nodevi has more thandi colors.4

Note that the fraction of the original table that is stored in
node vi is approximately|γ(vi)|/c, assuming that the table
decomposition algorithms (Section III) are efficient.

Clearly, as the〈G,P, c〉 RAINBOW PATH PROBLEM is NP-
hard, so is the〈G,P, c, d〉 RAINBOW PATH PROBLEM. How-
ever, we can reuse our results on the〈G,P, c〉 RAINBOW PATH

PROBLEM using the following reduction: Given the instance
of the 〈G,P, c, d〉 RAINBOW PATH PROBLEM, we split each
nodevi into a chain ofdi nodes, and make each path that goes
throughvi to go through the whole corresponding chain. Then,
we get an instance of the〈G,P, c〉 RAINBOW PATH PROB-
LEM that corresponds to the original〈G,P, c, d〉 RAINBOW

PATH PROBLEM. Note that in the〈G,P, c〉 RAINBOW PATH

PROBLEM, it is possible that a node remains uncolored. This
corresponds to the case where, in the original problem, the
number of colors assigned to some nodevi is lower thandi.

VI. EXPERIMENTAL RESULTS

We now turn to evaluating our algorithms. We first check
the decomposition algorithms (Section III) and then the table
distribution algorithms (Sections IV–V).

A. Table Decomposition

We first consider the PBD and CBD algorithms for decom-
posing tables, as presented in Section III.

We define thequality of a table decomposition algorithm
as the ratio between the number of rules in the original table,
and the product of the largest resulting subtable size by the
number of subtablesc. The quality is therefore between 0 and
1, where higher quality values implies a better decomposition.
Specifically, a quality of 1 means that the largest subtable
size has exactly an ideal fraction1/c of the number of the
original rules. Note that this quality can only be used to
compare among different algorithms for the same value of
c. Furthermore, it is most likely that the quality is decreased
whenc is increased.

We compare PBD and CBD algorithms with abit groups
algorithm based on [6]. Through an exhaustive search, this
algorithm selects thelog2 c pivot bits that maximize the
quality. Thus, it only works for values ofc that are powers of
2.

Fig. 6 shows the quality of the three algorithms as the
numberc of partitions grows. For the simulations, we have
created 100 random logically-minimized rule-sets with 12 bits
and 30 rules each. PBD slightly outperformsbit groups, except
when c = 2, where they perform similarly. CBD clearly
outperforms both over the entire range.

We also evaluated PBD and CBD with the twelve standard
classification benchmark rule-sets of ClassBench [28], [35].

When the dependency graph of CBD is relatively sparse,
PBD and CBD usually display a quality between 0.7 to 0.99
for various values ofc. Note that forc that is not a power

4Formally, in this case,γ(V ′) = {c | v ∈ V ′, c ∈ γ(v)}. A valid assign-
mentγ implies that for all pathsp ∈ P , {1, . . . , c} ⊆ γ(S(p)) and for each
vi ∈ V , |γ(vi)| ≤ di.
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PBD
CBD
bit groups

Fig. 6. Evaluation of the quality metric of the PBD, CBD, and a non-iterative
algorithm that selects all pivot bits at once [5], [6]. The input is a synthetic
rule set.

2 3 4 5 6 7 8
0.7

0.8

0.9

1

number of partitions (c)

qu
al

ity

 

 

PBD
CBD

Fig. 7. Quality of partitioning of the PBD and CBD using a benchmark rule
set

of 2, the quality of PBD may drop significantly, while CBD
remains stable. Such a case is shown in Fig. 7.

However, when the dependency graph of CBD is dense,
CBD may show poor results. This is due to an instability of
METIS; namely, expanding one rule in the input may result
in significantly worse partitioning (where we would expect
to have a partitioning at least as good as before the rule
expansion). In future, we aim to overcome this problem by
implementing our own graph partitioning mechanism.

B. Table Distribution

In this section, we evaluate the greedy algorithms for the
single-color case, as introduced in Section IV.

To analyze their performance, we produce random instances
of the 〈G,P, c〉 RAINBOW PATH PROBLEM in the following
manner: given a number of switchesn and a number of
pathsf , we add each switch to each path with probability
pn independently of the other switches or paths. Note that
for a given path, the actual order of switches within the path
and how they are connected to each other (namely, the exact
network topology) is irrelevant to the〈G,P, c〉 RAINBOW

PATH PROBLEM. The number of switches in each path of our
instances follows a Binomial distribution with parametersn
and pn. Also note that the length of the shortest path is an
upper bound on the size of a valid coloring. We note that these
random instances assume, among other things, independence
between paths, which is not the case in real-life networks. Our
future research includes evaluating the networks under real-life
network topologies.

Fig. 8 shows the average size of the valid coloring obtained
by our 1-GREEDY, 2-GREEDY, and3-GREEDY algorithms, as
a function of the shortest path in the random instance of the
problem. We ran 10,000 random instances of the problem.
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(a) n = 10, f = 10, pn = 0.8
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(b) n = 20, f = 10, pn = 0.4

Fig. 8. Evaluation of1-GREEDY, 2-GREEDY, and3-GREEDY, for various
values ofn, f , andPn.
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Fig. 9. Fraction of the optimal valid coloring size that can beachieved by
the1-GREEDY, 2-GREEDY, and3-GREEDY algorithms. Parameters aren = 7,
f = 7 andpn = 5

7
.

Fig. 8(a) illustrates the average size of the valid coloringsize
obtained by our algorithms forn = 10, f = 10, andpn = 0.8,
while Fig. 8(b) shows it forn = 20, f = 10, andpn = 0.4.
Note that for a shortest path size5 andn = 10 switches, the
maximum valid coloring size is5, and indeed, our algorithms
achieve on average a valid coloring of size 4.3043, 4.7572
and 4.7573 forq = 1, q = 2, andq = 3, respectively. Clearly,
a larger value ofq results in a larger number of colors, on
average.

We further study the our algorithms on smaller networks,
where we are able to compute theoptimal valid coloring
size. Fig. 9 shows the number of colors found by the greedy
approach in terms of percentage of the optimal solution. The
parameters in this case aren = 7, f = 7 andpn = 5

7
, and we

ran the simulation 1000 times. Our results yield that, in these
cases, that the greedy approach finds a valid coloring whose
size exceeds (on average) 98% of the optimal solution.

C. Greedy Approach Evaluation - Multiple Color case

In this section we evaluate our solution to the〈G,P, c, d〉
RAINBOW PATH PROBLEM. To compare the algorithm per-
formance with various values ofd, we normalize the valid
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(a) n = 10, f = 10, pn = 0.8
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(b) n = 20, f = 10, pn = 0.4

Fig. 10. Evaluation of1-GREEDY, 2-GREEDY, and 3-GREEDY for the
multicolored switch case, with various values ofn, f , andPn.

coloring size found byd. This corresponds to theshareof the
work-load that each switch gets in the worst case.

Fig. 10 shows thenormalized valid coloring size as a
function of the shortest path in random instances of the
problem. We ran 10,000 random instances of the problem. In
Fig. 10(a) the parameters aren = 10, f = 10 andpn = 0.8,
while in Fig. 10(b) they aren = 20, f = 10 andpn = 0.4.

The simulation results show that asd increases, the nor-
malized number of colors also increases. For example, for a
shortest path sizes = 5 andn = 10 switches, a normalized
valid coloring of size 4.3457, 4.5429 and 4.6101 was achieved
for d = 1, d = 2 andd = 3, respectively.

VII. C ONCLUSION

This paper proposed Palette, a framework to decompose and
distribute SDN tables across the network. Palette is especially
important as switch table sizes can become a bottleneck in
scaling SDNs. Moreover, it facilitates handling the heterogene-
ity of switches in the network and the changes of equipment.

We modeled the problem in a graph-theoretic manner, and
proposed several algorithms, both for decomposing one table
to semantically-equivalent subtables and for spreading these
subtables across the network. Our algorithms were evaluated
both under random and real-life instances.

As future work, we now plan to implement Palette over
OpenFlow controllers, thus providing an automatic tool to
decompose and distribute SDN tables. We note that a major
challenge in OpenFlow implementations is OpenFlow’s re-
strictions on the structure of patterns in the table (in OpenFlow
1.0, two fields are allowed to be prefixes, and the other fields
can be either exact or entirely*-bits [1]); this will require
adaptation of our decomposition algorithm accordingly. Fi-
nally, we plan to extend our optimal coloring algorithms to
handle additional network topologies (e.g., fat trees, which
are common in contemporary datacenters).
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APPENDIX A
NP-HARDNESSPROOF

In this section we show that the〈G,P, c〉 RAINBOW PATH

PROBLEM is NP-hard in the general case, even forc = 2
colors. The proof is based on reducing the 3-SAT problem [36]
to the 〈G,P, c〉 RAINBOW PATH PROBLEM.

Theorem 9. Given a general networkG, a path setP , and a
number of colorsc, the 〈G,P, c〉 RAINBOW PATH PROBLEM

is NP-hard.

Proof: Let the Boolean expressionB denote an instance
of the 3-SAT problem with variablesX1, X2, . . . , Xn. Thus,
B = C1 ∧ C2 ∧ . . . ∧ Ck, whereCi =

(

X1
i ∨X2

i ∨X3
i

)

.
We have to construct in polynomial time an instance of the
〈G,P, c〉 RAINBOW PATH PROBLEM so that it would have a
proper coloring if and only if the Boolean expressionB is
satisfiable. In practice, our proof needs two distinct construc-
tions, although with a slight variation. One construction holds
for the case where there exists an assignmentA such thatB is
satisfiable withA (X1) = 1, while the other construction holds
for the case whereB is satisfiable withA (X1) = 0. Since
there is only a slight variation between the two constructions,
we focus on the first case. An explanation on how to apply
the proof with the slight variation is found in the end of this
proof.

For each variableXi, we allocate two distinct switches
vi and v′i, where vi representsXi and v′i represents¬Xi.

Furthermore, letM
(

Xj
i

)

be the switch representingj-th
literal in thei-th clause. Finally, we add an additional baseline
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switch, denotedV a. So, that the constructed switch setV is

V =

(

n
⋃

i=1

{vi, v
′
i}

)

⋃

{va} .

We now skip to the construction of the path setP . First,
for each variableXi we construct the path〈vi, v′i〉. There
are n such paths in total. Then, for each clauseCi, we
construct the path

〈

va,M
(

X1
i

)

,M
(

X2
i

)

,M
(

X3
i

)〉

. For ex-
ample, for the clause(X2 ∨ ¬X4 ∨ ¬X5) we construct the
path 〈va, v2, v

′
4, v

′
5〉. Finally, we add the path〈va, v1〉 to the

path set. So the constructed path setP is

P =

(

n
⋃

i=1

{〈vi, v
′
i〉}

)

⋃

(

k
⋃

i=1

{〈

va,M
(

X1
i

)

,M
(

X2
i

)

,M
(

X3
i

)〉}

)

⋃

{〈va, v1〉} .

The construction of the link setE is easily deduced from
the construction of the path setP , where there is an edge
between two vertices if and only if this edge is within one of
the paths.

Overall, we construct2 ·n+1 switches andk+n+1 paths.
Therefore, the reduction is clearly polynomial.

Let c = 2, andG = 〈V,E〉. The Boolean expressionB is
satisfiable withX1 = 1 if and only if there is a proper coloring
that solves the constructed instance of the〈G,P, c〉 RAINBOW

PATH PROBLEM.
Given an assignmentA (with A (X1) = 1) that satisfiesB,

we color the switches inV as follows (i ∈ {1, . . . , n}): If
A(Xi) = 1 thenγ (vi) = 2 andγ (v′i) = 1, while in the case
whereA(Xi) = 0, γ (vi) = 1 and γ (v′i) = 2. γ(va) is set
to 1. This implies that for alli ∈ {1, . . . , n}, γ (vi) 6= γ (v′i),
and thus there are 2 distinct colors in the firstn paths inP .
SinceA satisfiesB, then for alli ∈ {1, . . . , k} it satisfies the
clauseCi. It implies that at least one of the literal inCi equals
1. Therefore, the corresponding path inP has the color 2 in
addition tova = 1. The last path, that is,〈va, v1〉, is easy to
verify.

On the other hand, assume an assignment of colorsγ to
the switches inV that satisfy the condition ofc colors per
path. Without loss of generality, due to the last path inP ,
we assume thatγ (va) = 1, and γ (v1) = 2. We build the
following variable assignmentA: A (Xi) = γ (vi) − 1. First,
we get thatA (X1) = 1. Second, from the definition of the
construction, for alli ∈ {1, . . . , k}, the clauseCi is satisfied
at least by one literal (whose corresponding switch color is2).

Finally, we may repeat the same proof with a slight variation
in the last path of the path set. Instead of〈va, v1〉, we add to
the path setP the path{va, v′1}. Following this variation, it is
possible to prove that the Boolean expressionB is satisfiable
with v1 = 0 if and only if there is a proper coloring that
solves the constructed instance of the〈G,P, c〉 RAINBOW

PATH PROBLEM, with c = 2.
Having covered the two cases, we get the claimed result.

APPENDIX B
SPECIAL CASE: ALL PATHS ARE OF LENGTH 2

In this section we consider the case where all paths inP
are of size 2. In this case, the problem is not NP-hard, and
in fact can be solved in linear time. This is reflected in the
following theorem.

Theorem 10. Given a general networkG, a path setP with
paths of size 2, andc = 2, the 〈G,P, c〉 RAINBOW PATH

PROBLEM can be solved inO (|V ′|+ |E′|) time, whereV ′

and E′ are the switch and link sets of the projectionG|P of
G overP ).

Proof: If all paths are of size 2, it clearly follows that
there exists a valid coloring if and only ifG|P is a bipartite
graph. To determine whether a given graph is bipartite, we
simply use the Breadth-first search (BFS) algorithm [33],
whose complexity isO (|V ′|+ |E′|).


