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Abstract—Packet reordering has now become one of the most
significant bottlenecks in next-generation switch designs. In this
paper, we argue that current packet order requirements for
switches are too stringent, with little or no reason. Instead of
requiring all packets sharing the same switch input and switch
output to be ordered, we only require packets that share the
same source and destination IP addresses to be ordered. We
then exploit this new definition by suggesting several hash-based
counter schemes that prevent inter-flow blocking and reduce
reordering delay. The schemes are transparent to the routing
scheme. We further suggest schemes based on network coding
to protect against rare events with high queueing delay. We
also point out an inherent reordering delay unfairness between
elephants and mice, and introduce several mechanisms to correct
this unfairness. Last, we demonstrate using both analysis and
simulations that the use of these solutions can indeed reduce the
resequencing delay. For instance, resequencing delays are reduced
by up to a factor of 10 using real-life traces and a real hashing
function.

I. Introduction

A. Flow Blocking

Packet reordering is one of the most significant previously-
overlooked problems that now feature among the main bottle-
necks to high-end next-generation switch designs.

Today, switches guarantee that packets belonging to the same
switch flow, i.e. arriving at the same switch input and departing
from the same switch output, will depart in the same order as
they arrived. For switch vendors as well as for their customers,
breaking this switch-flow order guarantee is not an option. To
the best of our knowledge, all current switch designers provide
this guarantee (e.g. [1]–[3]), even though no standard requires
it, and in fact the IPv4 router standard does not even forbid
packet reordering (section 2.2.2 in [4]).

However, this guarantee has been increasingly hard to ad-
dress in high-end multi-stage switches because of the com-
plex and often-overlooked flow blocking interactions. Within
a switch flow, let a flow be the set of all packets that also
share the same (source, destination) IP address pair. Then flow
blocking happens when in order to satisfy the switch-flow order
guarantee, packets from one flow wait for late packets from
another flow within the same switch flow.

Figure 1 illustrates this flow blocking phenomenon in a
typical N × N multi-stage switch architecture. The first stage
of the switch consists of N input ports. The input ports
are connected using a first mesh to the second stage of M

Fig. 1. Switch flow blocking in the switch architecture.

middle elements. Then, these middle elements are connected
using a second mesh to the third and last stage of N output
ports. Whenever a packet arrives to a switch input port, it
first increments its switch-flow counter and copies the counter
value it in its header. The packet is then load-balanced (either
uniformly-at-random or using round-robin) to one of the M
departure queues, before leaving for the corresponding middle
element. Likewise, in the middle element, it is placed in the
departure queue that corresponds to its output port destination,
and then forwarded to its output port. Last, in its output port, it
first waits in its resequencing structure to be resequenced based
on its switch-flow counter value, and then joins the departure
queue to depart the switch.

Let us now illustrate flow blocking. As shown in Figure 1,
consider an incoming stream of packets A through F that
belong to the same switch flow (from input 1 to output i).
Within this switch flow, packets A, B belong to flow x (shown
with a circle), packet C belongs to flow y (shown with a
pentagon), packet D belongs to flow z (shown with a triangle).
Likewise, packet E belongs to flow u and packet F belongs
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to flow v. Assume that the routing algorithm will let the six
packets use different middle switch elements, and that packets
B and C are blocked in the queue of their middle switch
elements which are temporarily congested. Then packet A,
which arrived to the switch before B and C can depart in order.
However, packets D, E and F are out of switch-flow order, and
therefore need to wait for packets B, C at the output. They can
only depart the switch when B and C arrive, and are blocked
meanwhile. In particular, note that these packets are blocked
by a late packet from a different flow: this is flow blocking.

B. Scaling Bottlenecks

More generally, assume that some middle element experi-
ences a temporary delay of T . For instance, this could be due
to temporary congestion (following the sudden arrival of many
unicast or a few high-fanout multicast packets), or to different
flow-control message propagation latencies on different links,
or to a periodic maintenance algorithm. Then due to the input
round-robin load-balancing across middle elements, all switch
flows with at least N packets will have at least one packet
that will go through this middle element and be delayed. In
addition, because of flow blocking, this delayed packet will
block all the later packets of its switch flow that wait for it
at the output, even though they went through different middle
elements. Therefore, the switch will nearly behave as if all
the middle elements experienced this delay of T . Instead of
affecting only 1

M
th of the traffic, it potentially affects all the

traffic. As seldom noticed previously, the switch practically
experiences a spreading of the worst-case delay due to the
switch-flow order guarantee.

This worst-case delay spreading caused by the switch-flow
order guarantee is at the source of three bottlenecks to scala-
bility: delay, buffer size, and implementation complexity.

First, it clearly increases switch delays. It could be argued
that high-end switches like Internet backbone switches can
allow for reasonable delays, especially when compared to the
large backbone link propagation latencies. However, following
the recent emergence of the data center switch market, even
backbone switch designers design their switches so they could
later be easily modified to enter the data center market as well.
But data center switches have stringent delay requirements.
For instance, a recent benchmark study favored two switches
over a third because of a few µs of delay [5]. Designers of
next-generation high-end switches are currently adopting these
stringent delay requirements. While reasonable resequencing
delays were acceptable, they have now become prohibitive.

In addition, even if high resequencing delays are allowed,
they can make the designer tasks much harder. For instance,
in the example above, assume that the delay of the middle
element is T = 1 ms. Then the resequencing buffer size should
allow for about 1 ms of blocked traffic. At next-generation
rates of 100 Gbps, the buffer size should be at least 12 MB,
which is beyond the buffer sizes of commodity SRAM. This
forces designers to use either off-chip DRAM, which limits
chip pin bandwidth, or on-chip eDRAM (embedded DRAM)
or 1T-SRAM, which can make on-die integration difficult and
therefore raise production costs.

Finally, the large buffer size also causes implementation
complexity issues. The output resequencing structures (shown
in Figure 1) are conceptually implemented as linked lists.
Longer resequencing buffers imply that designers need to
insert cells into longer linked lists at a small constant average
time. For instance, assuming 128-Byte cells at 100 Gbps and
T = 1 ms yields an average insertion time of 10 ns for a worst-
case linked list size of 100, 000 cells.

C. Our Contributions

In this paper, we propose to redefine the ordering constraint
in the resequencing buffer. Instead of providing a switch-flow
order guarantee, we only provide a flow order guarantee, so
that packets of the same flow are still maintained in order, but
are not constrained with respect to packets of different flows.
As mentioned previously, this is compatible with all known
standards.

We then suggest schemes that use this new order definition to
reduce resequencing delays in the output resequencing buffers,
while keeping packet paths inside the switch unchanged. In
other words, our resequencing schemes are end-to-end in
the switch, in the sense that they only affect the input and
output buffers, and not any element in-between, so as to be
transparent to the switch designer internal routing and flow-
control algorithms. To our knowledge, these are the first end-
to-end schemes in the literature that can leverage the flow order
guarantee definition.

Our schemes use various methods to increasingly distinguish
between flows and decrease flow blocking. Our first scheme,
Hashed-Counter, uses a hash-based counter algorithm. It re-
places each single flow counter with m hashed flow counters,
and therefore effectively replaces flow blocking within large
switch flows by reducing it to flow blocking within smaller
flow aggregates.

Then, our second scheme, Multiple-Counter, uses the same
counter structure, but replaces the single hash function by k
hash functions to distinguish even better between flows and
therefore reduce flow blocking.

Finally, our last scheme, Bh Multiple-Counter, attempts to
reduce flow blocking even further by using variable-increment
counters, based on Bh sequences.

We later provide an overview of the implementation tradeoffs
for our suggested schemes.

All these schemes effectively attempt to reduce hashing
collisions between different flows within the same switch flow.
Note that in the worst case, even if all hashes collide, all these
scheme guarantee that they will not perform worse than the
currently common scheme, which uses the same counter for
all flows and therefore has the worst flow blocking within any
switch flow.

However, if a packet is delayed in a long queue, these
counter-based schemes cannot prevent it from affecting many
packets in its flow. Therefore, we suggest to use network
coding to reduce reordering delay. We introduce several pos-
sible network coding schemes and discuss their effects on
reordering delays. In particular, we show the existence of a
time-constrained network coding that is not necessarily related
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to channel capacity optimality, as well as the possibility of
space coding within the switch fabric elements.

Later, we point out that delay-sensitive large and bursty
flows suffer more from reordering delay, hence incurring some
reordering unfairness. We suggest several schemes that favor
these flows to correct this unfairness.

We then provide analytical models of the performance of our
suggested schemes. These models provide more intuition and
help evaluate the tradeoff of reordering delay and unfairness
vs. the overhead and complexity of the algorithms.

Finally, using simulations, we show how the schemes can
significantly reduce the total resequencing delay, and analyze
the impact of architectural variables on the switch performance.
For instance, resequencing delays are reduced by up to a factor
of 10 using real-life traces and a real hashing function.

Note that since they do not affect routing, our suggested
schemes are general and can apply to a variety of previously-
studied multi-stage switch architectures, including Clos, PPS,
and load-balanced switch architectures [6]–[9]. They can also
apply to fat-tree data center topologies with seven stages [10]–
[12], and more generally to any network topology with inputs,
outputs, and load-balancing with reordering in-between. While
we do not expand on these for lack of space, we believe
that our schemes can decrease resequencing delay in all these
potential architectures. (For instance, to avoid reordering, data
center links are currently oversubscribed by factors of 1:5
or more [10]–[12]. If reordering did not incur such a high
resequencing delay, it might be easier to efficiently load-
balance packets and fully utilize link capacities.)

D. Related Work

Resequencing schemes for switches are usually divided into
two main categories. First, counter-based schemes, which rely
on sequence numbers. For instance, Turner [13] describes an
implementation of a counter-based scheme that corresponds to
our Baseline scheme.

Second, timestamp-based schemes, which rely on timestamps
deriving from a common clock. Henrion [14] introduces such
a scheme with a fixed time threshold. Turner [15] presents
an adaptive timestamp-based scheme with congestion-based
dyamic thresholds. However, we restrict this paper to counter-
based schemes. While timestamp-based schemes can be simpler
to implement, their delays can become prohibitive in switches
with stringent delay requirements.

Several schemes for load-balanced switches [7], [8] attempt
to prevent any reordering within the switch. [9], [16] provide
an overview of such schemes. In particular, AFBR forwards
packets belonging to the same hashed flow through the same
route, thus preventing resequencing but also changing the flow
paths and obtaining low throughputs in the worst case. Also,
UFS groups packets by frames of M packets before slicing
them across all middle elements. However, it can also incur
high delays to form envelopes. Additional schemes like FOFF
only limit the amount of reordering, and can be combined with
our suggested schemes [9], [16], [17].

Resequencing schemes have also been considered in network
processors. Wu et al. [18] describe a hardware mechanism in

each flow gets its own counter. The mechanism remembers all
previous flows and sequentially adds new flows to the list of
chains. It then matches a packet from an existing flow with the
right SRAM entry using a TCAM lookup. Further, Meitinger
et al. [19] suggest the use of hash functions to map flows
to counters, using a scheme that is related to the Multiple-
Counter scheme. They further discuss the tradeoff between the
large number of counters and the possible collisions. However,
all these works on network processors only consider a single
input and a single output, and therefore do not discuss the
complexity introduced by the N2 switch flows. In addition, the
load-balancing might be contrained in network processors with
stateful algorithms, while it is not in switches.

Packet reordering is of course also studied in many additional
networking contexts, such as the parallel download of multiple
parts of a given file [20], [21], or in ARQ protocols [22].

E. Dependence Among Flows

Using the new definition of order preservation, two packets
sharing the same switch input and output, yet belonging to
different flows, might be reordered.

However, this might be a problem if the two flows are
actually interdependent. For instance, we could imagine that
a given client first sends a write packet to some data center
server. Then, it could send a second read packet for the same
chunk of data to a different server of the same data center, or
to a different IP address of the same server.

We believe that such examples are extremely rare and can be
neglected. In fact, if these flows were to go through different
switch inputs or outputs, they would belong to different switch
flows, and therefore their order would already not be preserved
under the current definition of switch-flow order preservation.

Nevertheless, if a network administrator wants to keep the
dependence among such flows, a simple solution would be to
add a small TCAM (Ternary Content Addressable Memory)
in each input port. Then, all packets belonging to any of
these dependent flows would be simply marked as belonging
to the same flow. For instance, all packets belonging to flow
(SrcIP 1, DstIP 1) and flow (SrcIP 2, DstIP 2) would be
marked as belonging to the first flow (SrcIP 1, DstIP 1). As
a consequence, any flow-order-preserving switch would also
preserve the order of these dependent flows.

II. The Hashed-Counter Scheme

A. Background

A commonly used scheme for preserving switch flow order
is to keep a sequence-number counter for each switch flow.
In this scheme, denoted as the Baseline scheme, each packet
arriving at a switch input and destined to a switch output is
assigned the corresponding sequence number. Then, the switch
output simply sends packets from this switch input according
to their sequence number. Referring to the example of Figure 1,
all the six packets share the same counter as they belong to the
same switch flow. Assume that packet A get sequence number
1, B gets number 2, ..., and F gets number 6. Then packet A
can depart without waiting because its sequence number is the
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smallest. Packet D, E and F need to wait for packets B and C.
In the end, the departure order is A, B, C, D, E, F.

It would seem natural to similarly preserve flow order by
keeping a counter for each flow. However, the potential number
of 232+32 (source, destination) IPv4 flows going through a high-
performance switch is too large to keep a counter for each.

We could also devise a solution in which counters would
only be kept for the most recent flows. But such a solution
might be complex to maintain and not worth this cost and
complexity. For instance, a 10 Gbps line with an average 400 B
packet size would have to keep up to 3 million flows for the
last second. If each flow takes 32+32 bits to store the (source,
destination) IPv4 addresses and 10 bits for the counter, we
would need more than 200 Mb of memory, thus requiring
expensive off-chip DRAM.

Instead, the following algorithms rely on hashing to reduce
the number of needed counters by several orders of magnitude,
in exchange for a small collision probability.

B. Scheme Description
Figure 3(a) illustrates how the Hashed-Counter scheme is

implemented in the input port. There are N arrays of packet
counters exist in each input port. For a given output port, the
Hashed-Counter scheme uses an array of m counters, instead
of a single counter for the Baseline scheme.

As shown in Figure 3(b), each incoming packet is hashed
to a specific counter based on its flow source and destination
IP addresses. The counter value is then incremented, and the
packet is assigned this value as its sequence number. For
instance, a packet A belonging to flow x is hashed to counter
i = h(x), and it is assigned sequence number 8 + 1 = 9. This
sequence number 9 is inserted into A, which is forwarded to
the middle switch element.

At the output resequencing buffer, the same hash function is
also used. Therefore, it will yield the same counter index. All
packets hashing to the same counter will then leave in order,
as indicated by their sequence numbers.

Since the hash function is kept constant, all packets of the
same flow always use the same counter. Therefore, the switch
is flow order preserving.

Note that the Baseline scheme is a private case of the
Hashed-Counter scheme for m = 1. Intuitively, the Hashed-
Counter scheme splits all the flows that are part of a switch
flow into m sets of flows, and keeps the order within each set.
Therefore, a late packet will only delay packets within its set,
and not affect the packets of the other m− 1 sets. Consider the
example in Figure 1 again, and assume m = 4. Packet A, B,
E of flows x, u, and packet C, F of flows y, v are hashed to
two different counters, the forth and the second, respectively.
Likewise, packet D of flow z is hashed to the third counter.
At the output, packet E still needs to be buffered to wait for
packet B and packet F for packet C, as in the Baseline scheme.
However, packet D which is the first packet which uses the third
counter, does not necessarily need to be buffered till any other
packets’s arrival. Thus, it can departure the switch right after
packet A. Therefore, the packet departure order is different of
their arrival order and only packets E, F are blocked by the
delayed packets B and C.

C. Output Resequencing Buffer
We now want to illustrate the operation of the output

resequencing buffer in the two schemes, i.e., Baseline and
Hashed-Counter scheme, by considering the example above.

1) Baseline Scheme: As shown in Figure 2(c), the Baseline
scheme is easy to implement in our example. All packets are
kept in a single linked list. When a packet arrives and is the first
one of the linked list, it is ready to depart. Since packet A has
departed, the next expected packet B has a counter value of 2.
Placeholders are used in the linked list for the missing packets
B and C. (Of course, real implementations might be optimized
by mixing linked lists and arrays and skipping placeholders,
but this is beyond the scope of this paper.)

2) Hashed-Counter Scheme: Figure 3(c) illustrates how the
Hashed-Counter scheme is implemented using m separate
linked lists. Each packet is hashed into its corresponding linked
list depending on its flow. When a packet arrives and is the first
of its linked list, it is ready to depart.

In this example, flows y and z hash to the second linked list,
with a placeholder for delayed packet C and with packets F.
Flows z hashes to the third linked list. As the counter value of
D is the expected, D leaves immediately. Finally, flows x and
u hash to the last linked list, with a placeholder for delayed
packet B and with packet E.

III. The Multiple-Counter Scheme

A. Scheme Description
While the Hashed-Counter scheme splits the flows into m

sets using m counters, we would like to use these counters
even more efficiently and split the flows into more sets. We
suggest to use several hash functions, while making sure that
the order is still preserved.

The implementation of the Multiple-Counter scheme is il-
lustrated in Figure 4(a), it is schematically the same as that
of the Hashed-Counter scheme. As shown in Figure 4(b), the
Multiple-Counter scheme also keeps an array of m counters for
each pair of input and output ports. However, each incoming
packet is now hashed into k different counters using k different
hash functions of the flow ID (the case k = 1 corresponds
of course to the previous Hashed-Counter scheme). All the k
counter values are incremented and sent with the packet. In
this example, in the input port, the packet A belonging to flow
x is hashed to counters i1, i2, i3 using hash functions h1, h2, h3
and is assigned the sequence numbers 3, 9, 4, respectively. The
sequence numbers are inserted to A, which then is forwarded
to the middle switch element.

When packet A arrives at the output resequencing buffer, it
now needs to check the same k counters. In the case that its
counter value is the next expected one in at least one of its k
counters, we can deduce that P is the earliest packet of its flow,
and therefore that it can be released. This is because any earlier
packet P′ of the same flow would have hashed to the same k
counters, and therefore would have had smaller counter values
in all counters. If the counter value of P is the next expected
one, it necessarily implies that P′ has already departed.

The Multiple-Counter scheme ensures that the switch is
flow order preserving. We now describe in greater detail the
resequencing buffer implementation.
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(a) Input port structure, closeup view of
Figure 1.

(b) Counter illustration for packet A from flow
x.

(c) Output resequencing structure.

Fig. 2. Baseline scheme

(a) Input port structure, closeup view of
Figure 1.

(b) Counter illustration for packet A from flow x. (c) Output resequencing struc-
ture.

Fig. 3. Hashed-Counter scheme

(a) Input port structure, closeup view of
Figure 1.

(b) Counter illustration for packet A from flow x. (c) Output resequencing structure.

Fig. 4. Multiple-Counter scheme

B. Output Resequencing Buffer

As shown in Figure 4(c), the implementation of the Multiple-
Counter scheme is similar to that of the Hashed-Counter
scheme. However, there is a small tweak: each packet actually
belongs to several linked lists. Therefore, we only represent
packet pointers, while the real packets sit in the packet buffer.
Each arriving packet is hashed into its k corresponding linked
lists and places pointers in each. When a packet arrives and is
the first of at least one of its linked lists, it is ready to depart.

In this example, we use k = 2. Specifically, we assume that
flow x (with A and B) uses counters {C2,C4}, flow y (with C)
uses {C2,C3}, flow z (with D) uses {C1,C4}, flow u (with E)
uses also {C1,C4}, and finally flow v (with F) uses {C2,C3}.
Since D is the first packet in the linked list of C1, it can leave
immediately after its arrival. Later, when E arrives, its counter
value for C1 is the next expected and therefore it can also
leave immediately. However, in the list of C4, D and E are
temporally kept, however, they are marked. When the missing
packet B in the list departures, the link will be updated and the
expected counter value then would be set to 5. When F arrives,
its counter value for C2,C3 are 4 and 2 while they expect a
packet of counter value 2 and 1, respectively. Therefore, it is
not the first of any of the two linked lists. It is placed in each,
and a placeholder is added before for the missing packets of
counter. In addition, the real packet F is inserted in the packet
buffer.

Note that this implementation could be readily optimized
by using doubly-linked lists, and by pointing directly to the
packets instead of using copies. Thus, each packet would
contain 2k pointers, i.e. two pointers per linked list. It could
also be optimized by skipping departed packets in the linked
list. All these considerations, however, are beyond the scope of
this paper.

IV. The Bh Multiple-Counter Scheme

A. Bh sequences

Fig. 5. Bh Multiple-Counter scheme in the input, packet A from flow x.

While all previous schemes (Baseline, Hashed-Counter and
Multiple-Counter) increment their counters by one upon packet
arrival, we now want to introduce flow-based variable incre-
ments to distinguish between flows even further.
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Note how schemes increasingly distinguish between flows
and prevent inter-flow blocking: starting from the Baseline
scheme, we replace a single flow counter by m hashed flow
counters to obtain the Hashed-Counter Scheme. Then we
replace a single hash function by k hash functions to obtain the
Multiple-Counter Scheme. Last, we now distinguish between
flows by changing the counter increments, as described below.

To do so, we introduce the Bh Multiple-Counter scheme. In
this scheme, we keep an array of m pairs of counters in each
input for each output, as illustrated in Figure 5. The scheme is
based on Bh sequences [23].

Definition 1 (Bh Sequence): Let (A,+) be an abelian (com-
mutative) group. Let D = {v1, v2, ..., v`} ⊆ A be a sequence of
elements of A. Then D is a Bh sequence over A iff all the
sums vi1 + vi2 + · · · + vih with 1 ≤ i1 ≤ · · · ≤ ih ≤ ` are distinct.
It is easy to see that a Bh sequence has the following property:

Observation 1: If D = {v1, v2, ..., v`} is a Bh sequence then
all the sums vi1 + vi2 + · · · + vih′ with 1 ≤ i1 ≤ · · · ≤ ih′ ≤ ` for
h′ ∈ [1, h] are distinct as well.

Example 1: Let A = Z and D = {v1, v2, v3, v4} =

{1, 2, 5, 7} ⊆ A.
We can see that all the 10 sums of 2 elements of D are

distinct: 1+1 = 2, 1+2 = 3, 1+5 = 6, 1+7 = 8, 2+2 = 4, 2+5 =

7, 2 + 7 = 9, 5 + 5 = 10, 5 + 7 = 12, 7 + 7 = 14. Therefore, D is
a B2 sequence. However, since 1 + 1 + 7 = 9 = 2 + 2 + 5, D is
not a B3 sequence.

B. Scheme Description
As illustrated in Figure 5, the scheme uses two sets of

k hash functions based on the flow ID: {h1, . . . , hk}, with
range {1, . . . ,m}, and {g1, . . . , gk}, with range {1, . . . , `}. At each
switch input, each incoming packet P is hashed again into k
different array entries. using the hash functions h1(P), . . . , hk(P)
of the flow ID. At each array entry hi(P), there is a pair
of counters. The first counter with fixed increments, denoted
by c1(i), is incremented by one. The second counter, c2(i), is
incremented by the element vgi(P) of the Bh sequence D. The
values of the k pairs of counters are then sent with the packet.

When this packet P arrives at the output resequencing buffer,
it now needs to check the same k pairs of counters. For each
pair of counters in hi(P), let d1(i) be the difference between the
first counter of this packet and its expected value at the output.
We also denote by d2(i) the same difference for the second
counter minus vgi(P).

As in the Multiple-Counter scheme, if for at least array entry
d1(i) = 0, i.e. the first counter of the packet is the next expected
one, we can deduce that P is the earliest packet of its flow,
and therefore that it can be released. If d1(i) ∈ [1, h], we also
consider the value of d2(i). This difference d2(i) equals the sum
of the variable increments of the earlier delayed packets from
the current pair of input and output ports. Since these variable
increments are based on the Bh sequence D, by definition of
the Bh sequence, we can determine whether d2(i) is composed
of vgi(P). If this is not the case, we can release P even though
there are d1(i) > 0 earlier delayed packets that used this array
entry. This is because any earlier packet P′ of the same flow
would have hashed to this pair of counters, and would have
incremented this second counter by the same value vgi(P).

Fig. 6. Output resequencing structure for Bh Multiple-Counter scheme.

We now consider again the previously suggested example
with additional assumptions on the variable increments. Now,
each of C1, . . . ,C4 is a pair of counters. Specifically, we
are concentrating at C2 and assume that flow x (with A, B)
increments its variable increment counter of by 2. Flow y (with
C) increments it by 7 and flow v (with F) increments it by 5.
As in the previous scheme, when F arrives, its counter value
for C2,C3 are 4 and 2 while they expect a packet of counter
value 2 and 1, respectively. Therefore, F is not the first of any
of the two linked lists. We now consider the values of the pair
of counters C2. Due to the missing packets B ∈ x,C ∈ y (with
the variable increment 2 and 7), we have that d1(2) = 2 and
d2(2) = 2 + 7 + 5− 5 = 14− 5 = 9. Since d1(2) = 2 ≤ h, we can
determine that the sum d2(2) = 9 must be composed of exactly
two elements of D which are 2 + 7. Since the relevant variable
increment of the flow v is 5, we can deduce that there are
not any missing packets of the flow v and the packet F is the
earliest packet of its flow and can be released. Since otherwise,
we must have that d2(2) is composed of 5. Similarly, we can
release F based on C3.

C. Output Resequencing Buffer

The implementation of the output resequencing buffer in
this scheme is similar to the implementation of the Multiple-
Counter scheme, besides one change. The decision whether a
packet P can be released is based on the values of d1(i), d2(i)
and vgi(P). To implement this scheme, we suggest the use of
a predetermined two-dimensional binary table based on the
Bh sequence D. The value of the table in entry (i, j) equals
one iff a sum j can be composed of exactly i elements of D.
We can see that the sum d2(i) can be composed of vgi(P) and
other d1(i) − 1 elements of D iff the sum d2(i) − vgi(P) can be
composed of exactly d1(i) − 1 elements of D. Therefore, in
order to determine if P can be released we access the table
at entry (d1(i) − 1, d2(i) − vgi(P)). Since (d1(i) − 1) ≤ (h − 1)
we must have that (d2(i) − vgi(P)) ≤ (h − 1) · max(D) =

(h − 1) · v`. Thus, the size of this table can be at most
max(d1(i) − 1) · max(d2(i) − vgi(P)) ≤ (h − 1)2 · v`. For h = 2
and the Bh sequence D = {v1, v2, . . . , v`} = {1, 2, 5, 7}, we have
a total number of (h − 1)2 · v` = 12 · 7 = 7 memory bits. As
illustrated in Figure 6, in order to determine whether we can
release packet F in the example above, we access the table
at entry (d1(i) − 1, d2(i) − vg1(F)) = (2 − 1, 9 − 5) = (1, 4). The
bit value of zero means that the value of 9 − 5 = 4 cannot be
composed of one element equals of D and therefore F can be
released.

V. Performance Trade-Off Overview

Table I provides an overview of the properties of the four
schemes. It is to give some intuition on the trade-offs involved.
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TABLE I
Scheme Comparison

Scheme Collision
Probability

Memory
Size/input
(coun-
ters)

Packet
overhead
Size
(counters)

Packet processing
complexity in re-
sequencing buffer

Baseline 1 N 1 1 list
Hashed-
Counter

1/m m · N 1 1 hash, 1 list

Multiple-
Counter

(
m
k

)−1
m · N k k parallel × { 1

hash, 1 list}
Bh
Multiple-
Counter

(
m
k

)−1
`−k 2m · N 2k k parallel × {1

hash, 1 list, 1 table
lookup}

It first shows the collision probability, i.e. the probability
that two arbitrary packets of a given switch flow use the exact
same counters. For simplicity, it assumes that each switch flow
consists of an infinity of flows of negligible size and uses
uniformly-distributed hash functions. While two packets of a
switch flow necessarily collide in the Baseline scheme, since
they all share the same counter, their collision probability drops
down to 1/m in the Hashed-Counter scheme, because they
choose uniformly at random among m counters. In the Multiple-
Counter scheme, there are

(
m
k

)
different choices of the subset

of k counters, and therefore a collision probability of
(

m
k

)−1
.

Thus, the collision probability is significantly smaller. For the
Bh Multiple-Counter scheme, collision happens when all the k
choices form the Bh sequencing are the same. Consequently,
the collision probability is further reduced to

(
m
k

)−1
`−k.

On the other hand, the second column shows that the
Hashed-Counter, Multiple-Counter and Bh Multiple-Counter
schemes incur an increase in the number of counters by factors
of either m or 2m. Also, the third column shows that the
Multiple-Counter and Bh Multiple-Counter schemes increase
packet overheard. For instance, for k = 2, a cell size of 128B
and a counter size of 2B. The Multiple-Counter scheme adds
4 − 2 = 2B = 1.6% overheard, and the Bh Multiple-Counter
scheme adds 8 − 2 = 6B = 4.7% overheard.

The last column illustrates schematically the processing
complexity needed to insert a packet in the resequencing buffer.
The Baseline scheme only needs to search through one list to
find the packet position. Likewise, the Hashed-Counter scheme
finds the correct list using a single hash function, then goes
through the list. However, the Multiple-Counter scheme needs
to do so for k lists accessed in parallel. In addition, the Bh

Multiple-Counter scheme also needs k parallel table lookups
to understand the variable-increment information.

Incidentally, note that these complexity measures might be
misleading. For instance, the size of the Baseline scheme list
is on average more than m times larger than the lists of the
Hashed-Counter, Multiple-Counter and Bh Multiple-Counter
schemes, since their total resequencing buffer size is smaller
and they have m lists. Even though finding the largest of k
elements on k parallel lists takes more time on average than
finding a single one, in practice, the factor m actually makes
it significantly easier to reach high access speeds with the
Hashed-Counter than with the Baseline scheme.

Fig. 7. Network coding example

VI. Buffer Cost Optimization

In each of the three suggested schemes, the packet rese-
quencing delay is a function of the number of counters m.
As less time a packet stays in a resequencing buffer, smaller
resequencing buffers are required. However, more counters
means more cost for the memory size in the input port, as
indicates in second column of Table I. Due to this trade-off,
we tend to properly choose the number of counters in each
scheme to minimize the overall memory cost.

Consider a specific pair of input and output, its cost consists
of two parts: the cost of the input memory size and the
resequencing buffer in the output. Hence, it is a function of
m and can be measured as

C(m) = α · m + β · L · B(m), (1)

where B(m) is the average resequencing buffer size, L is the
packet size in bytes, and α, β are the memory cost coefficients
per an input memory counter and a resequencing buffer byte,
respectively. The total cost for all the input and output pairs is
of course N2 ·C(m). B(m) can be calculated by Little’s Law as

B(m) = λ ·W(m), (2)

where λ is the packet arrival rate for each input and output pair
and W(m) is the average time a packet stays in the resequencing
buffer. Given the distribution of the total delay of a packet
TT (m) (e.g., Equations (12), (13)), and the queueing delay
TQ, W(t) can be presented as E(TT (m)) − E(TQ), where E()
is the expected value function of a random variable. Finally,
we rewrite Equation (1) as

C(m) = α · m + β · L · λ · (E(TT (m)) − E(TQ)
)
. (3)

We can compare the first order derivative of C(m) to zero to
get the optimal value of m.

VII. Network Coding

A. Coding Against Rare Events

While the counter schemes above can reduce reordering
delay, the total packet delay is necessarily lower-bounded by
the worst-case queueing delay. For instance, if the first packet
in a flow of 100 packets is delayed in an extremely long queue,
then all the other packets will have to wait for it and suffer as
well. Therefore, reordering delay is vulnerable to rare events.

To solve this problem, we suggest to consider an intriguing
idea: using network coding to reduce reordering delay. While
network coding has been often used in the past, it has mainly
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been destined to address packet losses, and reordering has often
only been a minor side effect [24], [25]. We suggest here to
use it exclusively to reduce reordering delay by addressing the
vulnerability to rare events. Interestingly, we will show that in
some sense, the total delay of a packet can be smaller than its
queueing delay — because network coding enabled the switch
output to reconstruct and send it before it actually arrived to
the output.

Consider the switch architecture, as shown in Figure 1, and
assume for simplicity that all packets have the same size.
To implement network coding, in each input port, we add
one packet buffer per switch flow, i.e. a total of N2 packet
buffers in all input ports. Then, for each switch flow, we
keep computing the running XOR (exclusive or) function of
the previous packets. After a given number of slots, we send
a redundant protection packet that contains this XOR of the
previous packets, and re-initialize the XOR computation.

Figure 7 illustrates an example of use of the protection XOR
packet. In the input port, the XOR packet X is generated using
the previous three packets A, B and C, i.e. X = A⊕B⊕C. Packet
A is delayed by a relatively long time so that it arrives to the
output port last. Without XOR packet, packets B and C should
wait for A to arrive in order to depart the switch. However,
when using network coding, packet A is simply recovered by
taking the XOR function of B, C and X, because of the simple
identity

B ⊕C ⊕ X = B ⊕C ⊕ A ⊕ B ⊕C = A.

As we can see, packets A, B and C can depart the switch before
the original packet A even arrives at the output. Thus, in this
example, the XOR packet mainly helps reducing A’s queueing
delay — and we do not really care about its impact on channel
capacity, as in typical network-coding examples.

To further reduce the total delay, more XOR packets can be
generated. However, there is no free lunch. The XOR packets
will increase the traffic load in the switch, which will result in
higher packet queueing delay in the central stage. Therefore,
there should exist an optimal point beyond which XORs no
longer help.

B. Network Coding Schemes

There are several possible network coding schemes to decide
when the protection XOR packets should be sent. First, as
shown in Figure 8(b), a simple coding scheme is to generate
the XOR packets every L slots by taking the XOR of the last
L packets, where L = 3 in the figure. The XOR packet is then
inserted following the last of the L slots, and covers the L slots.
These L + 1 resulting slots make up a frame. In its header, the
protection XOR packet contains the sequence numbers of the
first and last packets in the frame, so that the output will be
able to know what packet it is supposed to protect. The scheme
overhead is clearly L+1

L = 1 + 1
L .

The scheme is simple to analyze, and we will model it in the
remainder of the paper. However, it can practically be further
improved in two directions. First, if the traffic load of the flow
is light, the number of packets in a frame could be low, and
the frame could even be empty. Therefore, the contribution of
XOR packets does not justify the high relative overhead and

(a) Coding every 3 slots

(b) Coding every 2 packets

(c) Cumulative coding every 3 slots in mega-frames of 12 slots

Fig. 8. Network coding schemes

additional delay caused by these XORs. It would make more
sense to insert protection XOR packets every H packets instead
of every L slots. Figure 8(a) illustrates such a scheme with
H = 2, where the blank boxes stands for the regular packets
and dark boxes for protection XOR packets.

Interestingly, another possible improvement to the first
scheme could be to use XORs that protect a variable number of
slots, e.g. with cumulative coding. For instance, frames could
be grouped into large mega-frames. Within each mega-frame,
every L slots, the protection XOR packet cumulatively covers
not only the last L slots, but the whole time since the start of
the mega-frame, excluding other XOR packets. Therefore, there
is a global coding instead of a mere local coding. Figure 8(c)
illustrates this cumulative coding scheme with a mega-frame
consisting of three frames, each frame having L = 3 regular
slots and one protection slot.

This last scheme is interesting in that it illustrates an
interesting coding tradeoff. On the one hand, we would like
the coding to be efficient, so in some sense we could like to
wait as much as possible until the end of the mega-frame and
then use several protection packets, e.g. using a simple Reed-
Solomon or Hamming code with fixed packet dependencies.
However, if we only release the protection packets at the end
of the mega-frame, the coding becomes useless, because the
protected packets will probably have already arrived at the
output. Therefore, the protection scheme needs some form
of time-constrained coding, in the sense that the protection
packets need to be close to the packets they protect. That’s why
the schemes displayed above are more effective for reordering
delay than more complex schemes that might be closer to the
Shannon capacity bounds.

C. Space Coding

Like all the schemes proposed in this paper, network coding
can also be applied in more complex switch architectures, with
more than the three stages illustrated in Figure 1. For instance,
it could apply to multi-stage switches with five stages [9]. It
could likewise apply to fat-tree data center topologies with
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seven stages [10]–[12]. In all these other architectures, the
proposed schemes would essentially remain unchanged.

However, there is an interesting improvement to make in
architectures in which the second-stage consists of multiplexing
switches that get all the traffic sent by several first-stage inputs.
In particular, the data center topologies displayed in [10]–[12]
satisfy this property, with the multiplexing switches alterna-
tively called ToR (Top-of-Rack) and Edge Switches.

In such architectures, the multiplexing switches could take
the XOR of all the packets sent by the diverse inputs to the
same output, thereby coding over space in addition to coding
over time. In other words, this coding would treat all flows from
all inputs towards a given output as a single flow. However,
the output would then need to use the information provided
by the XOR packet across more than one reordering-buffer
linked list, and therefore cannot see all these flows as a single
flow. Therefore, such a scheme is expected to slightly increase
the decoding complexity, yet decrease the expected reordering
delay.

Such network coding can be generalized to any switch that
receives packets from different inputs towards a given output,
such that the packets are to take again multiple paths afterwards
— for instance, the third stage of a seven-stage data center
topology. However, since coding would be realized on packets
coming from different inputs with previous variable queueing
delays, such coding would need to include their IDs, which
would greatly reduce the appeal of this generalized scheme.

VIII. Fair Reordering

A. Unfairness in Reordering Delay
In the switch, the heavy and bursty flows will tend to suffer

more from reordering delays. This is because two packets in
the same flow are reordered when the difference between their
queueing times exceeds their inter-arrival time — and heavy
and bursty flows have a higher probability of small inter-arrival
times.

Therefore, there is an inherent unfairness in reordering delay
among flows. The heavy and bursty flows (called elephants
for simplicity) will experience higher delays than smaller and
smoother flows (called mice).

This unfairness, apparently unnoticed previously, can have
two detrimental consequences. First, a scheme that keeps flow
order would typically cause higher delays for elephants, even
those that are delay-sensitive. Even worse, in the Baseline
scheme that preserves switch-flow order, elephant flows can
also significantly impact mice that happen to share the same
input and output.

Therefore, our goal will be to provide schemes that can
decrease the unfairness between elephants and mice and make
all packets experience similar reordering delay. In all schemes,
we will assume that there already exists a mechanism to
distinguish between elephants and mice at the input ports, and
focus on providing fairness. We will show how we trade off

the delay of elephants against the delay of mice using three
schemes: priority queueing, variable numbers of counters, and
variable network coding.

Incidentally, note that we might question why we would
even want to not favor mice. After all, mice are typically

Fig. 9. Priority scheme implementation

seen as delay-sensitive UDP flows, while elephants would
be delay-insensitive TCP flows. In fact, in a typical switch
implementation, delay-sensitive flows would be given the same
higher strict priority, and delay-insensitive flows would be
assigned a lower priority. Therefore, our mechanisms would
typically aim at reducing the unfairness between delay-sensitive
flows — say, videoconferencing elephant flows vs. simpler
VoIP mice.

B. Priority Queueing

In this scheme, we simply change the switch architecture to
provide different priorities for elephants and mice. Elephants
are assigned a higher priority, while mice get lower priority.
We then provide more scheduling opportunities to elephants
than to mice. Therefore, we make the queueing delay unfair in
order to make the total delay fair.

Consider Figure 9, which illustrates a middle element, as
part of the general switch architecture previously shown in
Figure 1. The middle element includes 2N queues instead of N
queues, i.e. high-priority elephant queues and low-priority mice
queues.For instance, packet A belongs to a low-priority flow,
while packet B belongs to a high-priority flow. They are both
heading to the Nth output port. Then packet B is inserted into
the high-priority queue, while A joins the low-priority queue.

The schedule of high-priority and low-priority queues would
rely on Weighted Fair Queueing, providing a higher weight
to the high-priority queue. It could then dynamically change
the weights depending on the total delay experienced by the
two types of traffic, as provided in feedback from the output
ports. Therefore, this scheme could readily converge to a fair
equilibrium, albeit at the cost of architectural changes and
feedback-based fairness mechanisms.

C. Variable Number of Counters

The Multiple-Counter scheme can also be altered to become
more fair. To do so, flows with higher priority can be assigned
more counters. Then, the probability that high-priority packets
will experience collision on all of their counters would de-
crease, because they have more counter. On the contrary, lower-
priority packets would actually experience more collisions,
because of the increased number of counters used by the high-
priority packets.

Figure 10 illustrates an example for the counter assignment
of two flows: flow x with high priority and flow y with low
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Fig. 10. Variable number of counters.

priority. The packets of flow x are assigned counters by the
Multiple-Counter scheme with k = 2, while packets of flow
y only use k = 1 counter, as in the simpler Hashed-Counter
scheme. In this way, the variable number of counters enables
the switch to get closer to a fair result by altering the resulting
reordering delay, which was expected to be higher for flow x if
the number of counters were equal for x and y. However, note
that this scheme does not enable a smooth continuous transition
to fairness, since the number of counters is both discrete
and hard to change in the middle of the switch operation
without incurring a higher complexity on the reordering buffer
management scheme.

D. Variable Network Coding

In the same way as we provided more counters to high-
priority flows, we could also envision providing more pro-
tection packets to these high-priority flows. For instance, we
could distinguish high-priority and low-priority flows at the
inputs, and provide schemes with different frame sizes for each
type of flow. Even better, we could decide to only provide
protection packets to bursts of a given size. In this way, we
do not need to categorize flows, and can reserve protection
packets to temporary bursts that are expected to generate a
high reordering delay.

IX. Performance Analysis

A. Delay Models

We now want to model the performance of the schemes
under different delay models. We assume a simple Bernoulli
i.i.d. in a slotted time, so that the probability of having a packet
arrival for a given switch flow at a given slot is equal to p.
We analyze the performance of the schemes based on several
delay models for the queueing delay TQ, which is experienced
by each packet in the middle switch elements.

First, we will consider a Rare-Event delay model in which
TQ is either some large delay T with probability ε, or 0 with
probability 1 − ε. This delay distribution models the impact
of low-probability events in which some packets experience
very large delays, and these delays impact other packets. For
instance, this could be the case of a middle element with a

significant temporary congestion. It could also model a failure
probability of ε for middle elements, with a timeout value T
at the output resequencing buffer and a negligible queueing
time. After time T , an absent packet is declared lost, and the
following packets can be released.

We then consider a General delay model with an arbitrary
cumulative distribution function F of the queueing delay TQ,
so that FQ(i) = Pr(TQ ≤ i). Then, we apply the analysis to a
Geometric delay model such that the delay is geometrically
distributed, i.e. FQ(i) = Pr(TQ ≤ i) = 1 − (1 − ρ)(i+1). The
Geometric delay model will help us get some intuition on the
reordering delay in a switch with load ρ.

In these models, we only take into account the queueing
delay TQ in the middle elements and the resequencing delay
TRS in the resequencing buffer. Therefore, the total delay is
TT = TQ + TRS . We neglect the propagation delays, as well as
the additional queueing delays in the inputs and outputs. We
also assume uniformly-distributed hash functions. Due to space
constrains the model of the performance of the Bh Multiple-
Counter scheme is not brought here.

B. Delay Distributions

We now want to analyze the Baseline, Hashed-Counter, and
Multiple-Counter schemes. Note that the performances of the
Hashed-Counter scheme and Multiple-Counter scheme depend
on the flow size distribution. For instance, if a switch flow
consists of a single large flow, then there is no point in adding
counters to distinguish between flows. We have also developed
a full model based on the flow sizes. Its results are brought
with brief proofs right after the following three theorems.

The first theorem is about the Rare-Event delay model. Note
that in this delay model, the worst-case delay is T , and therefore
we always have Pr(TT ≤ T ) = 1.

Theorem 1 (Rare-Event delay model): (i) Using the
Baseline scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) · (1 − pε)(T−i−1). (4)

(ii) Using the Hashed-Counter scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) · (1 − p
m
· ε)(T−i−1). (5)

(iii) Using the Multiple-Counter scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) ·
(
1 − (1 − pT−i−1

k )k
)

(6)

with pk = (1 − p · ε · k
m ).

(iv) Using the Bh Multiple-Counter scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) ·
(
1 − (1 − pT−i−1

h,k )k
)

(7)

with ph,k =
∑h

j=0

(
T−i−1

j

)
(pε k

m · `−1
`

) j(1 − pε k
m )(T−i− j−1).

Proof: (i) The probability for a given packet not to
experience a queueing delay of T is 1 − ε. In that case, its
reordering delay will be at most i if it doesn’t need to wait
for earlier delayed packets beyond i slots. Assume that our
packet arrived at time t. An earlier packet that arrives at time
t − (T − i) + 1 and is delayed by T slots will arrive at time
t − (T − i) + 1 + T = t + (i + 1), causing our packet to wait for
i+1 slots and therefore miss the time constraint of i. Therefore,
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to reach this time constraint, any of the T − i− 1 slots between
time t − (T − i) + 1 and time t − 1 (included) should either not
receive a packet, or not encounter delay. The probability of this
event occurring is (1 − pε)(T−i−1).
(ii) This is the same result as above, given a uniformly-
distributed hash function and therefore a probability 1/m of
having another packet share the same counter.
(iii) In the Multiple-Counter scheme, a packet can leave the
switch if at least one of its counters is in order. Therefore,
the reordering delay exceeds i if the reordering delay in all
counters exceeds i, hence the exponent of k. Further, a given
counter is shared with a given other packet with a probability
of k/m, since this other packet uses k counters out of m. The
remainder of the formula is then the same as above.
(iv) In the Bh Multiple-Counter scheme, a packet can leave
the switch if in at least one of its counters there are at most
h earlier missing packets and each of them does not use the
same value from the Bh sequence D as the current packet. As
explained in the previous scheme, in a time slot we have a
delayed packet that uses a specific counter w.p. pε k

m . Since
|D| = `, a specific element of D is not used w.p. `−1

`
as above.

The next two theorems provide exact models of the per-
formance of schemes given a General delay model and a
Geometric delay model.

Theorem 2 (General delay model): (i) Using the Baseline
scheme,

Pr(TT ≤ i) = FQ(i) ·
∞∏

j=1

(
1 − p · (1 − FQ(i + j)

))
. (8)

(ii) Using the Hashed-Counter scheme,

Pr(TT ≤ i) = FQ(i) ·
∞∏

j=1

(
1 − p

m
· (1 − FQ(i + j)

))
. (9)

(iii) Using the Multiple-Counter scheme,

Pr(TT ≤ i) = FQ(i) · (1 − (1 − pk,i)k). (10)

with pk,i =
∏∞

j=1

(
1 − p · k

m · (1 − FQ(i + j))
)
.

Proof: (i) In the General delay model, a packet arrived
at time t experiences a total delay of at most i iff it satisfies
two independent conditions. First, its queueing delay is at most
i, w.p. (with probability) FQ(i). Second, none of the previous
packets have been delayed beyond time t + i, and therefore
no earlier packets prevent it from leaving. Since an earlier
packet arrives at slot (t − j) w.p. p, and in that case is only
delayed beyond t + i w.p.

(
1 − FQ(i + j)

)
, the result follows

by multiplying all the probabilities that there is no late packet
from slot (t − j) over all such possible slots.
(ii) The result follows again directly from above when consid-
ering a single counter out of m.
(iii) The proof is again exactly the same as in the previous
theorem, and follows from the previous result.

Theorem 3 (Geometric delay model): (i) Using the Base-
line scheme,

Pr(TT ≤ i) = (1 − (1 − ρ)(i+1)) ·
∞∏

j=1

(
1 − p · (1 − ρ)(i+ j+1)

)
. (11)

(ii) Using the Hashed-Counter scheme,

Pr(TT ≤ i) = (1 − (1 − ρ)(i+1))
∞∏

j=1

(
1 − p

m
· (1 − ρ)(i+ j+1)

)
. (12)

(iii) Using the Multiple-Counter scheme,

Pr(TT ≤ i) = (1 − (1 − ρ)(i+1)) · (1 − (1 − pk,i)k). (13)

Proof: The results follow from the previous theorem using
the expression of the geometrically-distributed delay model.

We now want to generalize the last results to a more general
model in which the flow sizes are not necessarily negligible,
and as a consequence the probability that two different packets
share the same flow has to be considered. For simplicity, we
assume that in the recent time slots the probability for an
arrival of a packet of the same flow as the current packet is
independent in the time difference of these two packets. We
denote this probability by ps. Since the total arrival rate for
this pair is Bernoulli distributed with probability p, we deduce
that the probability of an arrival of a packet of a different flow
is pd = p− ps. We again consider a delayed packet that enters
its input port in time t = t0.

With these assumptions, we now present a new version of
Theorems 1, 2.

We start again with the Rare-Event delay model.
Theorem 4 (Extended Rare-Event delay model): (i) Us-

ing the Baseline scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) · (1 − pε)(T−i−1). (14)

(ii) Using the Hashed-Counter scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) · (1 − (ps +
pd

m
) · ε)(T−i−1). (15)

(iii) Using the Multiple-Counter scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) ·
(
1 − (1 − pT−i−1

k )k
)

(16)

with pk = 1 − (ps + pd · k
m ) · ε.

(iv) Using the Bh Multiple-Counter scheme, for i ∈ [0,T − 1],

Pr(TT ≤ i) = (1 − ε) ·
(
1 − (1 − pT−i−1

h,k )k
)

(17)

with ph,k =
∑h

j=0

(
T−i−1

j

)
(pdε

k
m · `−1

`
) j(1 − pdε

k
m − psε)

(T−i− j−1).
Proof: (i) The probability is the same as in the original

model since in this scheme, we cannot distinguish between
packets of different flows that share the same pair of input and
output nodes.
(ii) The total delay is at most i, if the packet is not delayed
(w.p. (1− ε)) and its counter was not used by a delayed packet
in (T − i− 1) time slots. Since a packet of the same flow must
use the same counter while a packet of a different flow use this
counter w.p. 1

m , the results follows.
(iii) In the Multiple-Counter scheme, a packet can leave the
switch if at least one of its counters k is in order. In a given
time slot, a counter is used by a delayed packet w.p. pk =

1− (ps + pd · k
m ) · ε. It is used by a delayed packet at least once

in T−i−1 time slots w.p. (1−pT−i−1
k ). Therefore, the probability

of at least one counter is in order counter is
(
1 − (1 − pT−i−1

k )k
)
.

(iv) We remind that in the Bh Multiple-Counter scheme, a
packet can leave the switch if in at least one of its counters
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Fig. 11. PDF of the total delay for the geometric delay model.

there are at most h earlier missing packets and each of them
does not use the same value from the Bh sequence D as the
current packet. In each time slot, each of the k counters is not
used by a delayed packet w.p. (1− pdε

k
m − psε). If this counter

is used, the specific value of D is not used w.p. `−1
`

only if it
is a packet of a different flow.

We continue to the General delay model.
Theorem 5 (Extended General delay model): (i) Using

the Baseline scheme,

Pr(TT ≤ i) = FQ(i) ·
∞∏

j=1

(
1 − p · (1 − FQ(i + j)

))
. (18)

(ii) Using the Hashed-Counter scheme,

Pr(TT ≤ i) = FQ(i) ·
∞∏

j=1

(
1 − (ps +

pd

m
) · (1 − FQ(i + j)

))
. (19)

(iii) Using the Multiple-Counter scheme,

Pr(TT ≤ i) = FQ(i) · (1 − (1 − pk,i)k). (20)

with pk,i =
∏∞

j=1

(
1 − (ps + pd · k

m ) · (1 − FQ(i + j))
)
.

Proof: (i) Again, the probability is not changed since in
this scheme we do not distinguish between packets of different
flows.
(ii) Likewise, the probability that the current counter is used
by a different packet is (ps +

pd
m ).

(iii) A packet uses the same counter and is delayed for at least
(i + j) time slots w.p. (ps + pd · k

m ) · (1 − FQ(i + j))

X. Simulations

A simulator is developed for various use scenarios, including
geometric delay model, Clos switch and data center switch.
To better mimic the practical network behavior, we further
implement the feature to feed the flow source with real-life
traces [26]. Simulations for each scenario are conducted as
described below.

A. Geometric Delay Model Simulations

We run simulations for the geometric delay model discussed
in Section IX-B. In the simulation, the number of flows equals
227, so that the assumption that all flows are mice of negligible
size still holds. We generate the switch flow using Bernoulli
i.i.d traffic with arrival rate p = 0.98, the parameter of
geometric delay ρ = 0.4, and the number of total counters
m = 10. In the Multiple-Counter scheme and the Bh Multiple-
Counter scheme, we use k = 2 hash functions.

Figure 11 depicts the simulation results, compared with the
theoretical results from (11), (12) and (13). The simulation
results match the theoretical results quite well. Furthermore,
we can see that changing the definition of ordering from
switch flow ordering to flow ordering significantly decreases
the average and standard-deviation of both delays. Using the
Hashed-Counter scheme, the average total delay is drastically
reduced from 2.67 to 1.64 time slots. The improvement from
the Hashed-Counter scheme to the Multiple-Counter scheme
is not significant for the total delay. The reason is that here the
queueing delay and the internal resequencing delay contribute
most to the total delay, which are of the part that the Multiple-
Counter scheme cannot help. However, more noticeable im-
provements can be observed in other network scenarios, which
will be shown later.

Figure 12(a) shows the average resequencing delay as a func-
tion of the number of total counters. The Hashed-Counter and
Multiple-Counter scheme significantly reduce the resequencing
delay. When m ≥ 20, the Multiple-Counter scheme makes the
resequencing delay very close to 0.

B. Switch Simulations

We now run simulations with the switch structure from
Figure 1. Therefore, the delay experienced in the middle switch
elements does not follow a specific delay model as above,
but is instead incurred by other packets. We always keep
N = 4 and M = 8, yielding N2 = 16 switch flows going
through MN2 = 128 different paths. We set the number of
total counters to m = 20 for the Hashed-Counter and Multiple-
Counter schemes. For the Bh Multiple-Counter scheme we set
m = 10 to account for the larger memory requirements. We
also assume a uniform traffic matrix.

We start by comparing the performance of hash-based
counter schemes by using 4096 flows per (input, output) pair,
i.e. a total of 4096 · 16 = 65, 536 flows. The total load is set to
p = 0.95. Each flow is generated using Bernoulli i.i.d. traffic of
parameter ρ/65, 536. In the Multiple-Counter and Bh Multiple-
Counter schemes, we have k = 2.

Figure 12(b) compares the results of the switch simulations
to the theoretical results from (11), (12) and (13), similarly to
Figure 11. For the Baseline scheme the optimal fit was reached
using ρ = 0.11, and for the Hashed-Counter scheme and
Multiple-Counter scheme using ρ = 0.091. The discrepancy
between the theory and the simulation can be explained when
we consider that for the switch simulations the assumption that
the flows are mice of negligible size does not hold.

Figure 12(c) plots the average resequencing delay in the
switch as a function of the traffic load ρ. As the load increases
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(a) Mean resequencing delay for the geometric
delay model as a function of the number of total
counters.
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(c) Mean resequencing delay for the switch as a
function of the traffic load.
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(e) CDF of the resequencing delay for a switch,
using a real-life trace.
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center, using a real-life trace.

Fig. 12. Simulation results

and the delays become large, the impact of the Hashed-Counter
scheme Multiple-Counter scheme and Bh Multiple-Counter
scheme becomes increasingly significant. The Bh Multiple-
Counter scheme results in a lower resequencing delay. For
instance, at high traffic load, p = 0.99, the Multiple-Counter
scheme achieves a 24.2% reduction of the resequencing de-
lay obtained by the Hashed-Counter scheme while the Bh

Multiple-Counter scheme further reduces it by 16%.
Figure 12(d) shows the PDF of the number of packets

which are blocked from exiting the resequencing buffers for the
Hashed-Counter, Multiple-Counter and Bh Multiple-Counter
schemes. The hash-based schemes vastly improve the average
number of waiting packets in the Baseline scheme i.e, the
Baseline scheme has an average of 22.47 packets per time slot,
while the Hashed-Counter scheme has approximately 5. The
Hashed-Counter scheme reduces this number to 4.6 packets
per time slot, and finally the Bh Multiple-Counter scheme has
only 4.07 packets per time slot.

C. Switch Simulations Using Real-Life Traces

We now conduct experiments using real-life traces recorded
on a single direction of an OC192 backbone link [26]. We use a
real hash function [27] to match each (source, destination) IP-
address flow with a given counter bin. In the Multiple-Counter
and Bh Multiple-Counter schemes, we have k = 2.

As expected, Figures 12(e) show how the Hashed-Counter
scheme drastically reduces the resequencing delay on this real-
life traffic, from 1 to 0.1. Again, the reduction in total delay is
more modest, from 2.4 to 1.5 time slots.

D. Data Center Simulations Using Real-Life Traces

Simulations are conducted with a 5-stage data center struc-
ture described in [12]. The input ports are fed with real-
life traces as Section X-C. The total number of counters in
the Hashed-Counter scheme and Multiple-Counter scheme is
m = 20. For the Bh Multiple-Counter scheme, m = 10. The
Multiple-Counter scheme and Bh Multiple-Counter scheme set
the multiple counters as k = 2.

Figure 12(f) illustrates the simulation results of the rese-
quencing delay. As expected, Hashed-Counter scheme notice-
ably reduces the resequencing delay, from 16.3 to 6.73 time
slots. More encouragingly, the improvement from the Hashed-
Counter scheme to the Multiple-Counter scheme is much more
satisfactory. The average resequencing delay is decreased from
6.73 to 3.30 time slots (a 51.0% improvement). The reason is
that as the packet goes through more stages of switch elements,
the reordering caused by other flows becomes more severe.
This can well be improved by the Multiple-Counter scheme.
However, the best results are obtained by using the Bh Multiple-
Counter scheme, for which the resequencing delay is only 1.84
time slots.

XI. Conclusion

In this paper, we provided schemes to deal with packet
reordering, an emerging key problem in next-generation switch
designs. We first argued that current packet order requirements
for switches are too stringent, and suggested only requiring
flow order preservation instead of switch-flow order preserva-
tion.
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We then suggested several schemes to reduce reordering.
We showed that hash-based counter schemes can help prevent
inter-flow blocking. Then, we also suggested schemes based
on network coding, which are useful against rare events with
high queueing delay, and identified a time-constrained coding
problem. We also pointed out an inherent reordering delay
unfairness between elephants and mice, and suggested several
mechanisms to correct this unfairness. We finally demonstrated
in simulations reordering delay gains by factors of up to 10.

In future work, we intend to further investigate the optimality
of our schemes. We intend to find whether there are fundamen-
tal lower bounds to the average delay caused by reordering in
a switch, given any possible scheme.
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