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Hash Tables With Finite Buckets
Are Less Resistant to Deletions

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—We show that when memory is bounded, i.e. buckets
are finite, dynamic hash tables that allow insertions and deletions
behave significantly worse than their static counterparts that
only allow insertions. This behavior differs from previous results
in which, when memory is unbounded, the two models behave
similarly.

We show the decrease in performance in dynamic hash
tables using several hash-table schemes. We also provide tight
upper and lower bounds on the achievable overflow fractions in
these schemes. Finally, we propose an architecture with content-
addressable memory (CAM), which mitigates this decrease in
performance.

I. I NTRODUCTION

A. Background

Networking devices often usedynamichash tables, in which
elements keep arriving and departing, and notstatic ones that
are built only once. However, for simplicity, device designers
typically model the performance of the dynamic hash tables
using models of the static hash tables. This paper shows that
these static models can lead to a significantunder-estimation
of the drop ratein the dynamic case.

This under-estimation of the drop rate can potentially affect
the performance of networking devices. Hash tables form the
core building block of many networking device operations,
such as flow counter management, flow state keeping, ele-
phant traps, virus signature scanning, and IP address lookup
algorithms. If memory is allocated to the dynamic hash tables
according to the static model, many more elements might need
to be dropped from the hash tables than initially estimated.

Using the static model seems natural. In fact, dynamic hash
tables are known for beingtypically harder to modelthan static
ones, sometimes even lacking any mathematical analysis [1].
Therefore, the static model appears to be a simpler and more
accessible option to the network designer.

More significantly, past studies have also found thesame
asymptotic behaviorin dynamic and in static hash tables, in
at least three cases:
(a) In the static case in whichn elements are uniformly hashed
into n infinite buckets, the maximum bucket size is known to
be approximatelylog n/ log log n with high probability [2],
[3]. The dynamic case yields the same result, assuming alter-
nate departures and arrivals of random elements while keeping
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(a) d-random with a stash
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(b) Cuckoo hashing with a stash

Fig. 1. Overflow fraction with2 hash functions and bucket size1, using
both the static and the dynamic model.

n elements in the hash table after each arrival.
(b) Likewise, when inserting each element in the least-loaded
of two random buckets (d-random algorithm withd = 2), the
maximum bucket size islog log n/ log 2 + O(1) in the static
case; and again, the dynamic case yields the same result [3],
[4].
(c) Similarly, using the asymmetricd-left algorithm, the static
case and the dynamic case yield again the same bound on the
maximum bucket size [5].
Therefore, as illustrated in these three cases, given a large
number of elements, it appears that the network designer could
use the simpler static model for the dynamic case.

In this paper, we focus on the realistic scenario in which
buckets are finite, as used in networking devices, contrarily
to the infinite-bucket case assumed above. We show that the
dynamic hash table can exhibit asignificantly worsedrop rate
than its static counterpart.

B. Intuitive Example

Fig. 1 plots the system overflow fraction as a function of
the load, i.e. the fraction of elements not placed in the buckets
as a function of the average number of elements per bucket.
It shows the overflow fraction for both a static system, where
there are only insertions, and a dynamic system, where we
alternate between deletions and insertions while a fixed load is
maintained [4], [6]. To measure the overflow fraction, it relies
on an overflow list, calledstash, to which new elements are
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Fig. 2. An example demonstrating the degradation of performance in dynamic
hash tables.

moved when they cannot be inserted in the hash table. Fig. 1(a)
and 1(b) show the overflow fraction of thed-random algorithm
with a stash [4] and the cuckoo hashing with a stash [7], [8].
The overflow fractions are obtained in simulations using 2048
buckets,106 rounds with one random element deletion and one
element insertion in each round, and a standard pseudorandom
number generator to obtain hash values1.

Both figures clearly show a non-negligible degradation in
the overflow fraction of the dynamic system. For instance, the
cuckoo hashing scheme with load of 0.6 yields an overflow
fraction of 0.52% and 2.97% in the static and dynamic models,
respectively. Moreover, while for cuckoo hashing scheme with
load of 0.5 the overflow fraction in the static model goes to
0 [9], it does so more slowly in the dynamic case. For instance,
for m = 1024 we got an overflow fraction in the static and
dynamic models of 0.05% and 0.44%, where form = 16384
we got 0.0012% and 0.0606%, respectively.

The intuition behind this difference in behavior is that
if the bucket size is bounded, once an element is placed
in the overflow list it stays there regardless of whether the
corresponding bucket become available later upon deletion.
Therefore, the order of the insertion and deletion operations
directly affects the performance. This is typically not thecase
in the unbounded bucket case, and the difference can cause a
drastic degradation in the scheme performance.

Fig. 2 illustrates this degradation in performance, using the
same scenario both for the finite and the infinite bucket sizes.
For the case of finite buckets, we assume bucket sizes of1,
an overflow list, and an insertion algorithm that uses only one
hash function. We consider the following scenario: Lett be
the time when a new elementx1 is hashed to a full bucketj
that already stores elementx0 (step (i) in both Fig. 2(a) and
Fig. 2(b)). If a finite bucket is used, thenx1 is moved to the
overflow list (step (ii) in Fig. 2(a)), while in the infinite-bucket
case,x1 is simply stored in bucketj (step (ii) in Fig. 2(b)).
Let t′ > t be the time when elementx0 is deleted. Assuming
that elementx1 is not deleted beforet′, it stays in the overflow
list in the finite-bucket case, while in the infinite-bucket case
it is stored in bucketj (step (iii)).

Therefore, in the dynamic case with finite bucket sizes,
elementx1 is in the overflow list, even though its correspond-

1Simulations with ten times more buckets or rounds yielded near-identical
results.

ing bucketj is empty. This could never happen in the static
case (elements are stored in the overflow list only after their
corresponding buckets are full, and full buckets cannot become
empty). It also could never happen in the dynamic case with
infinite buckets (there is no overflow list).

C. Our Contributions

In this paper, we show that dynamic hash tables with finite
buckets behave worse than static ones.

We start by considering a simplistic dynamic scheme with
a single hash function. We model this hashing scheme ana-
lytically using three different models: a discrete-time Markov
chain, a continuous model with a birth-death chain, and a fluid
model with a continuous-time Markov process. We find that
this simplistic dynamic scheme performs notably worse than
its corresponding static scheme.

Then, we derive a lower bound on the overflow fraction
in the dynamic model ofany hash-table scheme that uses
uniform hash functions and does not move back elements once
they were placed in the overflow list. We prove that when the
averagenumber of memory accesses per insertiona increases,
the overflow fraction can decrease as slowly asΩ(1/a). This
indicates that the bad performance of dynamic schemes is
fundamental, and is hard to solve by simply using additional
memory accesses.

Next, we introduce an online multiple-choice scheme. We
demonstrate that this scheme reaches that lower bound and
therefore is optimal up to a certain rate of memory access,
which depends on the system parameters.

However, due to the slow decrease of the lower bound,
optimality may be insufficient for certain applications. There-
fore, we suggest changing the assumptions and moving back
elements from the overflow list when a bucket becomes
available upon deletion. We propose the M-B (Moving-Back)
scheme that uses a CAM (content-addressable memory) device
that stores the elements along with their hash values. A parallel
lookup operation is used once an element is deleted and its
bucket becomes non-full. This operation, supported by the
CAM, finds an element in the overflow list that can be moved
back to the bucket. This scheme is shown to beat the initial
lower bound without a CAM.

Finally, we evaluate in this paper all proposed schemes
using simulations as well as experiments with real hash
functions applied on real-life traces.

Paper Organization: We start with preliminary defini-
tions in Section II. Section III presents and analyzes the single-
choice SINGLE scheme, while Sections IV and V provide a
lower bound on the overflow fraction. Then, in Section VI we
present and analyze the multiple-choiceMULTIPLE scheme,
and in Section VII we present the CAM-based M-B scheme
which, upon deletion, moves back elements from the over-
flow list. Finally, we evaluate all the analytical results in
Section VIII.

Note that, for the sake of readability, some proofs are
presented in the appendices of this paper.
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II. PROBLEM STATEMENT

A. Terminology and Notations

This paper considerssingle- and multiple-choice hash
schemes with a stash[10], [11]. Such schemes consist of two
data structures:(i) A hash tableof total memory sizem · h,
partitioned intom buckets of sizeh; (ii) An overflow list,
usually stored in an expensive CAM. Note that the overflow
list can also be absent, in which case overflow elements are
simply dropped.

As in traditional hash tables, the schemes should support
three basic operations: element insertions, element deletions,
and lookups. We call the (infinitely long) sequence of these
operations thearrival sequenceof the scheme. In the paper,
we focus mostly on a specific arrival sequence, alternating
between departures of a random element (picked uniformly at
random) and insertions of a new element [4], [6].

Multiple-choice hashing schemes employ up tod probability
distributions over the set of buckets; these distributionsare
then used to generate ahash-function setH = {H1, . . . , Hd}
of d independent hash functions. For each elementx and
each operation, the scheme can consider only the buckets
{H1(x), . . . , Hd(x)} (and the overflow list). In addition, we
assume that the scheme must access a bucket to obtain any
information on it (thus, if the hashing scheme tries to insert
an element in a full bucket, it must access the bucket first).

Our goal is to minimize theexpected overflow fractionof
the scheme, i.e. the fraction of elements that are placed in
the overflow list, subject to the (total and average) number of
memory accesses. We count as one memory access reading and
updating all the elements of a single bucket (this corresponds
to the common practice of sizing the bucket size by the width
of the memory word) and we do not count accesses to the
overflow list. We further assume that up tod buckets can be
read in parallel before deciding which one to update, requiring
a total ofd memory accesses.

Formally, the hashing scheme and the optimization problem
are captured by the following two definitions, where the load
c is the ratio of the total number of elementsn by the total
memory sizemh: c = n

mh
.

Definition 1: When the load isc and the bucket size ish,
an 〈a, d, c, h〉 hashing schemeis a scheme with an expected
(respectively, maximum) number of memory accesses per
element of at mosta (respectively,d).

Definition 2: The OPTIMAL DYNAMIC HASH TABLE PROB-
LEM is to find an〈a, d, c, h〉 hashing scheme that minimizes
the expected overflow fractionγ as the number of elementsn
goes to infinity. Whenever defined, letγOPT denote this optimal
expected limit overflow fraction.

B. Arrival Models

Throughout the paper, we will use three different models for
the arrivals and departures of elements: adiscrete modelwith
a finite number of elements; acontinuous modelwith a finite
number of elements; and afluid modelbased on differential
equations with an infinite number of elements. Our objectiveis
to model a constant load, i.e. a constant number of elements in

the system, so that departing elements are replaced by arriving
elements.

Discrete Model — In the discrete model, we assume that
time is divided into time-slots of unit duration, and start at
time t = 0 with n elements in the overflow list. At the start
of each time-slott > 0, an element is chosen uniformly at
random among alln elements in the system to depart. Next,
at the end of time-slott, a new element arrives and is inserted
according to the hashing scheme into either a non-full bucket
or the overflow list. Therefore, by the end of each time-slott,
there are alwaysn elements in the system, either in the hash
table or in the overflow list.

Continuous Model — The second model is acontinuous-
time model, starting again at timet = 0 with n elements
in the overflow list. In this model, each element stays in the
system for an exponentially-distributed duration of average 1.
Therefore, at each infinitesimal time-interval[t, t+ δt], the
probability that a given element departs isn · δt + o(δt).
For each element departure, another element is automatically
generated and inserted in the system according to the hashing
algorithm into either a non-full bucket or the overflow list.
Again, there are alwaysn elements in the system at each time
t, ensuring a constant load.

Since there aren departures per time-unit on average instead
of a single one, the continuous system can be seen as a
speeded-up version of the discrete system. In fact, when only
looking at the system during the discrete element departure
times, which follow exponentially-distributed inter-departure
times,we obtain the discrete model again.

Incidentally, although each element departure triggers the
arrival of another element with different hashed buckets, we
will sometimes refer by simplicity to the departed element as
if it was reinserted.

Fluid Model — The last model is thefluid model, which
attempts to model the behavior of the continuous system as
the number of elementsn and the number of bucketsm go
to infinity with a constant limit ratioch = limn→∞

n
m

. In the
fluid model, we will often analyze the system using differential
equations, and will be mainly interested in their fixed-point
solutions. Again, we will assume that att = 0, all elements
are in the overflow list.

In the fluid model, as in the finite continuous-time model,
elements stay in the system for an exponentially-distributed
duration of average1, and therefore the departure rate from
each bucket is proportional to the bucket size.

In addition, as in the other models, element departures
trigger element arrivals. Note that in the continuous model,
the average arrival rate per bucket isn

m
, since the arrival

rate is n and there arem buckets. Therefore, in the fluid
model, we model a constant average arrival rate per bucket of
ch = limn→∞

n
m

. Likewise, in the continuous model, when
arriving elements use a uniformly-distributed hash function,
they hash into each bucket at a rate equal to the average rate
of n

m
. In the fluid model, since we consider an infinite number

of buckets, auniformly-distributed hash functionis not well
defined. By extension, and for simplicity, we will define such
a function as one that enables the same arrival rate ofch to
all buckets.
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Furthermore, we will define the average hashing rate per
elementa such that it is valid at any timet. We will also
assume that elements may not use hash functions that pick with
higher probability buckets with lower occupancy, i.e. thatthe
average hashing rate limit ofa is valid given any bucket size.
Thus, if one tenth of the buckets are empty, a uniform hash
will find one tenth of its buckets empty as well. Of course,
an element might still decide to enter a bucket with lower
occupancy with higher probability.

Model Alternatives — In general, to model system scaling,
we would be interested in using either the discrete or contin-
uous finite models, and then in studying how their solution
scales withn. However, given the complex interactions be-
tween then elements, these models often prove intractable.
Therefore, we will use the fluid model in these cases, and will
most oftennot be ableto prove convergence of the discrete or
continuous models to the fluid model. Likewise, we will not
always prove convergence of the differential equations to the
fixed-point solutions. This is, of course, a limit of our analysis.

On the other hand, for the single-choice hashing scheme
(Section III), we provide a full analysis with the three models,
and prove that the limit of the discrete and continuous finite
models behaves indeed like in the fluid model. In simulations,
we will also show that the scaled systems converge fast to their
fluid model. We refer to [12] for a more complete discussion of
the sufficient conditions for the convergence to the fluid-limit
fixed-point solution.

III. A S INGLE-CHOICE HASHING SCHEME

We start by analyzing a simplistic hashing scheme, which
uses only a single uniformly-distributed hash functionH to
insert elements in the hash table. Each elementx is stored in
bucketH (x), if it is not full, and in the overflow list otherwise.
Since an element uses exactly one hash function, its average
number of memory accesses per element isa = 1. Of course,
this simplistic scheme would probably not be implemented in
advanced networking devices. However, it provides a better
intuition on the reasons behind the performance degradation
in dynamic hash-table schemes.

Discrete Model —We first develop an analytical model for
the scheme within the discrete framework presented in Sec-
tion II. Let pk(t) denote the fraction of buckets that havek el-
ements at the end of time-slott, andp(t) = (p1(t), . . . , ph(t)).
Using this discrete model, we obtain the following result on
the limits of the distribution ofp and of the overflow fraction.
The full proof appears in Appendix A-A and is based on a
birth-death Markov chain that models the occupancy of an
arbitrary bucket over time.

Theorem 1:Let C =
∑h

ℓ=0

(

n
ℓ

)

( 1
m−1 )

ℓ. In the discrete
model,
(i) the distribution ofp(t) converges to the Engset distribution
πn [13], [14]; namely,

πn
k =

1

C
·

(

n

k

)

·

(

1

m− 1

)k

. (1)

(ii) the overflow fraction converges to

1

C
·

(

n

h

)

·

(

1

m− 1

)h

·

(

1−
h

n

)

. (2)

It is interesting to note that Equation (1) can be rewritten
as a truncated binomial expression

πn
k =

(

n

k

)(

1

m

)k (

1−
1

m

)n−k

h
∑

l=0

(

n

l

)(

1

m

)l(

1−
1

m

)n−l
, (3)

which hints at the following interesting equivalent system: the
bucket occupancy is distributed as if then elements were
assigned uniformly at random among them buckets, and
then the buckets with more thanh elements were completely
cleared out and hadall their elements put in the overflow
list. This is in contrast with the static system in which only
elements exceeding the bucket capacity ofh are placed in
the overflow list. Therefore, it nicely illustrates the difference
between the static and dynamic cases.

A detailed example of the behavior of the scheme in
the dynamic and static setting appears in Appendix B-A,
which shows a simplistic setting where, as the number of
buckets increases (with fixed load), the dynamic case yieldsan
overflow fraction of50%, while the static case has an overflow
fraction of onlye−1 ≈ 36.79%.

Continuous Model — We now turn to the continu-
ous model in which elements stay in the system for an
exponentially-distributed duration of average1. It turns out
that the continuous model yields similar results to those of
the discrete model (Theorem 1).

Theorem 2:In the continuous model, the single-choice
hashing scheme has the same stationary distribution and
overflow fraction as in the discrete model.

Fluid Model — We now analyze theinfinite system using
a fluid model. In the fluid model, as in the finite continuous-
time model, elements stay in the system for an exponentially-
distributed duration of average1, and therefore the departure
rate from each bucket is proportional to the bucket size. In
addition, when an element departs, a new element in inserted
into the hash table (or in the overflow list if the corresponding
bucket is full). As explained in Section II, the arrival rateto
each bucket is thereforech = limn→∞

n
m

.
The following theorem, which is based on the M/M/h/h

continuous-time Markov process [14], shows the performance
of the scheme under the fluid model. (The full proof is in
Appendix A-C).

Theorem 3:In the fluid model,
(i) the distribution ofp(t) converges to the stationary distri-
bution π∞, where

π∞
k =

(ch)
k

k!

/ h
∑

l=0

(ch)
l

l!
, k = 0, . . . , h. (4)

(ii) the overflow fraction converges toπ∞
h and follows the

Erlang-B formula.
We have seen that the discrete and continuous models with

n elements yield a stationary distributionπn, while the fluid
model yields a fixed-point distributionπ∞. We will now show
that as expected, when scalingn to infinity, πn converges to
π∞, and so does the associated overflow fraction. (Proof in
Appendix A-D.)
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Corollary 4: Whenn → ∞ with n
m

→ ch,
(i) the stationary distribution converges to the fixed-point
distribution of the fluid model:πn → π∞; and
(ii) the overflow fraction of the discrete (continous) model
converges to the overflow fraction of the fluid model.

Finally, we generalize the scheme to deal withprobabilistic
insertions. Namely, there exists someα ∈ [0, 1] such that
each arriving element is either hashed into a bucket as before
with probabilityα, or placed directly in the overflow list with
probability 1 − α, yielding an average number of memory
accessesα (or equivalently, a total number of memory accesses
αn ≤ n, less than the number of elements). Using the fluid
model for simplicity, we obtain the following result. While this
probabilistic scheme is probably not useful in practice (since
the average memory access rate is seldom less than1), we will
later demonstrate that it isoptimal under specific conditions.

Theorem 5:In the fluid model, given the single-choice
hashing scheme with an insertion probabilityα, we obtain
a = α ≤ 1, and
(i) the distribution ofp(t) converges to the stationary distri-
bution π∞, where

π∞
k =

(αch)
k

k!

/ h
∑

ℓ=0

(αch)
ℓ

ℓ!
, k = 0, . . . , h. (5)

(ii) the overflow fraction converges to(1− α) + α · π∞
h .

Proof: The differential equations are the same as in the
proof of Theorem 3 when replacingch by αch, since α
simply changes the arrival rate. The distribution results are
then immediate. In addition, in the fixed-point equations, an
arriving element either overflows immediately with probability
1− α, or checks with probabilityα a bucket that can be full
with probability π∞

h , hence the overflow equation follows as
well.

IV. OVERFLOW LOWER BOUND

Our objective is to find a lower bound on the optimal
expected limit overflow fractionγOPT in the OPTIMAL DY-
NAMIC HASH TABLE PROBLEM, and therefore on the expected
overflow fractionγ of any 〈a, d, c, h〉 hashing scheme, when
assuming a fluid model. We will study the simpler case with
a single uniformly-distributed hash function, as defined in
Section II. The more general case with several hash func-
tions using different subtable-based distributions appears in
Section V.

The proof relies on the following result from [15]. Consider
an Erlang blocking model withN servers, and suppose that the
arrival rate depends on the system. Letλk be the arrival rate
when there arek transmissions in progress,k = 0, 1, . . . , N−
1. Then we have:

Lemma 1 (Theorem 4.2 in [15]):For all increasing map-
pings f : R → R and for all t > 0, Ef(X) is concave
increasing as a function ofλk, for k = 0, 1, . . . , N − 1.

We use this lemma to prove the lower-bound result.
Theorem 6:In the fluid model, under the assumptions

above where all buckets have the same probability of being
hashed into, the optimal expected fixed-point overflow fraction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

a

γ

 

 
dynamic
static

Fig. 3. Overflow fraction as a function of the average memory access rate
a.

γOPT in the OPTIMAL DYNAMIC HASH TABLE PROBLEM is
lower-bounded by

γ∞
LB (a) = 1− a+ a ·

rh

h!

/ h
∑

l=0

rl

l!
, (6)

wherer = ach.
Note again that the Erlang-B formula appears in the lower-
bound on the overflow. This yields the following optimality
result:

Theorem 7:In the fluid model, the single-choice hashing
scheme is optimal for every average number of memory
accessesa in [0, 1] (and in particular fora = 1).

Proof: For theSINGLE scheme, there is a single hashed
bucket per element, and it is accessed with probabilityα,
thereforea = α. For a ≤ 1, we get

γ∞
LB (a)

(a)
= (1− α) + α ·

(αch)h

h!

/ h
∑

l=0

(αch)l

l!

(b)
= γ∞

SINGLE

where (a) comes from Equation (6),r = ach anda = α, and
(b) from Theorem 5.

Example 1:We illustrate the significance of the lower
bound by considering a simple system with buckets of size
h = 1, implying γ∞

LB (a) = 1− a+ a · c·a
1+c·a = 1− a

1+c·a .
In particular, for a loadc = 1, corresponding to the scaling
case where the number of buckets is kept equal to the
number of elements and thereforelimn→∞

n
m

= 1, we get
γ∞

LB (a) = 1 − a
1+a

= 1
1+a

, which shows that the lower-
bound decreases slowly asΘ(1/a) when the average number
of memory accesses per insertiona increases.
For instance, to get a1% drop rate we need each element to
access an average of at leasta = 99 buckets. Of course, this
is impossible to implement in high-speed networking devices.
Thus, this lower bound is essentially animpossibility result,
which shows that it is not easy to obtain efficient hash tables
with deletions.

Fig. 3 compares this drop rate lower-bound with the drop
rate lower-bound in the static case, which is equal toe−a [11].
As a is increased, the figure shows how dynamic hash tables
are significantly less efficient than their static counterparts.

V. L OWER BOUND WITH MULTIPLE HASH-FUNCTION

DISTRIBUTIONS

We now consider a setting with a setI of I = |I| subtables,
where subtablei ∈ I uses a fractionαi of all buckets. We
will allow for the d hash functions to use up tod different
distributions {fj}1≤j≤d

over the I subtables, where each
distribution fj assigns a probabilityf i

j to subtablei ∈ I,
with

∑

i∈I f i
j = 1, and then uniformly picks buckets within
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each subtable (as defined in Section II). We also assume that
each distributionfj is used by a fractionκj of the total
memory accesses. Therefore, subtablei is accessed with a total
probability of βi =

∑d
j=1 κj · f i

j , with
∑

i∈I βi = 1. The
following result establishes that the lower-bound is reached
when the hash table is used in a uniform way, i.e. the
probability βi of accessing a subtable is equal to its fraction
αi in the table, and therefore the lower-bound is the same as
established previously in Theorem 6.

Theorem 8:In the fluid model with multiple distributions
as defined above, the lower-boundγ∞

LB (a) on the fixed-point
overflow fraction is the same as with a unique uniform hash
function, and is reached iff for alli ∈ [1, I], βi = αi, i.e. the
weighted average of all distributions is uniform.

VI. A M ULTIPLE-CHOICE HASHING SCHEME

We now introduce a natural extension to the single-choice
hashing scheme that uses an ordered set ofd hash func-
tions H = {H1, . . . , Hd}, such that all the hash functions
are independent and uniformly distributed. Upon inserting
an elementx, the scheme successively reads the buckets
H1(x), H2(x), . . . Hd(x) and placesx in the first non-full
bucket. If all these buckets are full,x is placed in the overflow
list. To keep an average number of memory accesses per
element of at mosta, the algorithm attempts to insertx into
the hash table with a probabilityα, otherwise it is directly
placed in the overflow list. A detailed example appears in
Appendix B-B.

We evaluate the performance of this scheme analytically
using the fluid model. (Proof in Appendix A-G).

Theorem 9:Assume the multiple-choice hashing scheme
with a hashing probabilityα. Using the fluid-model fixed-
point distributionπ∞,

(i) π∞ satisfiesπ∞
k (a) =

(ach)k

k!
h
∑

l=0

(ach)l

l!

, for eachk = 0, . . . , h;

(ii) the average bucket access ratea satisfies the fixed-point
equationa = α ·

1−π∞

h (a)d

1−π∞

h
(a) ;

(iii) the overflow fraction is equal to the lower-bound, and
is thereforeoptimal, for a ∈ [0, aco], whereaco satisfies the

fixed-point equationaco =
1−π∞

h (aco)d

1−π∞

h
(aco) .

The following example illustrates our results.
Example 2:For the case whereh = 1, solving the fixed-

point equation yieldsaco = 2c−1+
√
1+4c2

2c . Therefore, for a
load of one element per bucket, i.e.c = limn→∞

n
m

= 1,
we getaco = 1+

√
5

2 ≈ 1.62, and the corresponding overflow
fraction is γ∞

LB (aco) = 1.5 −
√
5
2 ≈ 38.2%. Likewise, for a

load of c = 0.1, we getaco = −0.8+
√
1+0.04

0.2 ≈ 1.099, with
the corresponding overflow fractionγ∞

LB (aco) ≈ 0.98%.

VII. M OVING BACK ELEMENTS

So far, we have found optimal schemes for a range of values
of a, the average number of memory accesses per element.
However, although optimal, the expected overflow fraction
may still be too large.

In the literature, several solutions exist to reduce the drop
rate (or collision probability) in a dynamic system. One such
solution uses limited hash functions in order to be able to
rebalance the hash table in case of deletion [16]. However, this
approach gives up randomness, and the efficiency of a similar
approach appears limited [6]. Another solution, based on the
second-chancescheme [10], moves elements from one bucket
to another by storing hints at each bucket [6]. However, we
found in simulations that this solution was less effective than
our suggested scheme presented below for higher loads, while
it was more effective for lower loads. Detailed simulation
results are found in Section VIII.

To reduce the overflow fraction, we suggest a scheme
that allows moving elements back from the overflow list to
the buckets upon adeletionoperation2. This scheme can be
combined with any insertion scheme.

A. Description

Our scheme, called the moving-back scheme (M-B), relies
on a (binary) CAM. In general, a CAM stores keys in entries.
Given some keyk, a parallel lookup is performed over all
entries and the index of the first (that is, highest priority)entry
that containsk is returned from the CAM. In many cases, this
index is later used in order to access in regular memory a
direct-access array that contains the value associated with k.
CAMs enable constant-time operations, however they are more
expensive and consume more power than regular memory. It
is a common practice to implement the overflow list in a
CAM [1], [10], [11], relying on the fact that the number of
elements in the overflow list is small.

Our scheme uses an auxiliary CAM, besides the primary
CAM used to store the element of the overflow list: For each
elementx that is stored in thei-th entry of the primary CAM,
we store the values{H1(x), H2(x), . . . , Hd(x)} in entriesd ·
i, d · i+ 1, . . . , d · i+ (d− 1) of the auxiliary CAM.

When an element is deleted from a bucketj that was
previously full, we need to move an elementx from the
overflow list to bucketj such thatj is the result of applying
at least one of the hash-functions onx. We can locate such
an element in constant time by querying the auxiliary CAM
with key j. Suppose the entry returned by the auxiliary CAM
is ℓ, thenx is located in entry⌊ℓ/d⌋ of the primary CAM.

We note that upon moving an element back to the hash table,
one should update the corresponding entries of the primary
and auxiliary CAMs. An efficient way to update is to write
the valuem+1 in these entries, such that when a new element
is inserted into the overflow list, one can query the auxiliary
CAM with the valuem + 1 to decide in which entry (of the
primary CAM) to put the new element.

B. Analysis

We first derive the exact overflow fraction in the case of the
SINGLE scheme, and later provide an approximate model for
the MULTIPLE scheme, which is confirmed by simulations.

2We also consider a scheme that works uponinsertion, however the details
are omitted due to lack of space; moving back elements upon deletion
performs better in general.
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Theorem 10:Consider theSINGLE scheme with M-B for
moving back elements from the TCAM and a symmetric
insertion algorithm. The overflow fraction is given by:

γLB (a) = 1−
1

c
+

1

ch
e−ach

h
∑

k=0

(h− k)
(ach)

k

k!
,

Proof: Whenever a deletion occurs, the CAM device
performs a lookup operation for any element that can be moved
back to the bucket. Since every element has only one hash
value, all elements that are corresponding to some bucket can
be viewed as its own pending list. Since the element we pick
to delete follows a random process that is independent of any
other random process in our system, and also the load is fixed,
we get that the overflow fraction follows the static case exactly,
which is given in [11].

Theorem 11:Consider theMULTIPLE scheme with M-B
for moving back elements from the CAM and a symmetric
insertion algorithm. LetXi

t is the occupancy of bucketi at
stept andP0, . . . , Ph be the equilibrium probabilities of the
occupancy of each buffer. The probabilities can be modeled
by the following Markov chain:

P i
kj = Pr (Xt = j|Xt−1 = k)

=











g · 1
m

j = k + 1, k < h
k
n

j = k − 1, h > k > 0
k
n
· e

− γchd
Ph j = k − 1, k = h

whereg =
∑d

l=1 Ph
l−1 = 1−Ph

d

1−Ph
, and the overflow fraction

γ is given byγ = 1− 1
ch

·
∑h

i=0 i · Pi.
Proof: The Markov chain is the same as in the regular

MULTIPLE scheme, except when an element is deleted from a
full bucket. In this case, it is possible that one of the overflow
elements in the CAM is moved back to the bucket. It is
possible only in this case because all elements in the CAM
have hashes to full buckets.

We now approximate the probability that none of the
elements has an hash value to that bucket: The total number
of hashes isγ · n · d, where all the hashes are to full
buckets. The number of full buckets isPh ·m. The probability
that a single hash does not point to the specific bucket is
Ph·m−1
Ph·m = 1 − 1

Ph·m . And the probability that none of them
points to the specific bucket is given by

(

1−
1

Ph ·m

)γnd

≈ e
− γnd

Ph·m = e
− γchd

Ph .

Multiplying the above expression by the probability that one
of the elements is picked for deletions in case the bucket is
full yields the claimed Markov chain.

VIII. E XPERIMENTAL RESULTS

A. Simulations

Fig. 4 compares all the schemes. It was obtained withd = 4
choices, bucket sizeh = 4, n = 4,096 elements andm =
1,024 buckets, yielding a loadc = 1.

The solid line plots the overflow fraction lower-bound
γLB (a) from Theorem 6. Simulations show that the proposed

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

a

γ

 

 

lower bound
a

SINGLE
CO

a
MULTIPLE
CO

d−random
d−left
MULTIPLE M−B

Fig. 4. Overflow fraction as a function ofa with d = 4, h = 4, c = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

load

γ

 

 
model
simulation

Fig. 5. M-B with MULTIPLE scheme, forh = 4, d = 2 and different loads

M-B scheme beats the lower bound with an overflow fraction
of 4.6%, emphasizing the strength of this architecture. Of
course, the lower bound does not apply to this case, since
it moves back elements from the CAM.

As follows from Theorems 7 and 9, the overflow fractions
γSINGLE (a) and γMULTIPLE (a) of the single-choice (SINGLE)
and the multiple-choice (MULTIPLE) hashing schemes follow
the lower-bound line, respectively untilacoSINGLE = 1 with
γSINGLE = 31.1%, and acoMULTIPLE = 2.195 with γMULTIPLE =
13.5%. Therefore, they are clearly optimal up to a certain
point.

We also test our models from Section VII-B. Fig. 5 shows
the accuracy of our M-B model. We ran simulations with
m = 1024, h = 4, d = 2 and different loads. The
maximum gap is for loadc = 1 where our model predicts
an overflow fraction of9.20%, whereas simulations show an
overflow fraction of9.68%. For lower values ofc, the model
is much more accurate. For instance, for loadc = 0.5, our
model predicts an overflow fraction of0.19% compared to an
overflow fraction of0.18% found via simulations.

We further evaluate the performance of our proposed M-
B scheme. Quite surprisingly, when using theMULTIPLE

scheme (of Section VI), the M-B scheme outperforms the
staticcase of theMULTIPLE scheme (see Fig. 6), and performs
similarly to the staticd-random scheme (in the static case,
d-random performs better than our multiple-choice scheme,
albeit consuming significantly more energy [11]). This can
be explained intuitively as follows: our moving-back strategy
moves back an element to the only corresponding bucket
which is not full; this is equivalent to inserting the element to
the least occupied bucket as in thed-random hashing scheme.

Finally, we compare the performance of our proposed M-
B scheme with the performance of the hint-based scheme
proposed in [6]. Note that our M-B scheme can be used
with any insertion scheme. Thus, for fair comparison, since
the hint-based scheme uses the second-chance scheme [10]
for insertions, we also used the second-chance scheme for our
proposed M-B scheme. We ran simulations withm = 4096,
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Fig. 6. Overflow fraction of the proposed moving-back (M-B) scheme (via
simulations).
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Fig. 7. Experiment using real-life traces and hash functionswith SINGLE

and MULTIPLE (d=2).

h = 1, d = 4 and different loads. As proposed in [6], the
memory level sizes are exponentially decreasing with factor
2.

Fig. 8 shows that our M-B scheme is more effective than the
hints-based scheme for higher loads, while it is less effective
for lower loads. For instance, for a load of0.6, the M-B and
the hints-based schemes yield overflow fractions of1.08% and
0.78%, respectively. For a load of0.7, they yield3.88% and
4.59%.

B. Experiments Using Real-Life Traces

We have also conducted experiments using real-life traces
recorded on a single direction of an OC192 backbone link [17].
Our goal is to compare the average overflow fraction retrieved
using our models forSINGLE and MULTIPLE with the corre-
sponding overflow fraction when using a real hash function
on a real-life trace. We used a 64-bit mix function [18] to
implement two 16-bit hash functions. We usedm = 10,000
buckets, and set a number of elementsn as corresponding to
various values ofh and c. To keep a constant desired load,
we alternated100,000 times between an arrival (insertion) of
a new TCP packet according to the trace, and the departure
(deletion) of a random TCP packet. The hash functions were

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

load

γ

 

 
M−B
hints−based

Fig. 8. The M-B and the hints-based schemes, forh = 4, d = 1 and
different loads.
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Fig. 9. Marginal overflow fraction of 100 on-off flows withm = 500, h = 1
andd = 2

given the source and destination IP tuple as well as the
sequence and acknowledgment numbers of the TCP packets.
Therefore, the hash table stores the latest TCP packets, and
can retrieve any needed packet based on its header. It can be
used to monitor ongoing TCP flows, given a target number
n of packets that are stored at any time. Its objective in our
experiments was mainly to test the correctness of our model.

Fig. 7 shows that the results of our experiments are relatively
close to our model. The maximum gap is for theSINGLE

scheme withh = 1 and c = 0.3. Our model predicts an
overflow fraction of 23.08%, while the experiment yields
25.67%.

C. Experiments Using an On-off Arrival Model

We also consider a queueing model where at each stepi, bi
elements arrive according tok independent on-off bursty flows
of elements [19]; then, after the arrival phase, one elementis
randomly deleted. Therefore, the number of elements in the
system keeps changing, contrarily to the previous models with
a constant load.

Fig. 9 shows the marginal overflow fraction under the above
queueing model withk = 100 on-off flows of elements.
Each flow has rateρ = 0.0095 and average burst size of 10
elements. The figure shows that, given the number of elements
currently in the system, the marginal overflow fraction is
approximately the one we found for the constant-load case,
both for SINGLE and MULTIPLE.

Moreover, by the distribution of the number of elements
in the system given by the queueing model, we are able
to heuristically approximate the overall expected number of
elements in the overflow list. More precisely, we take the sum-
product of the queue size distribution by the distribution of
the overflow fraction as a function of the load. In the case
of SINGLE this model gives an expected number of overflow
elements of 61.63, while simulations yield 61.41. Likewise, for
MULTIPLE, we obtain 40.17 and 40.26, respectively. Therefore,
this heuristic model proves quite accurate.
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IX. CONCLUSION

In this paper we demonstrated that when the memory is
bounded, dynamic schemes behave significantly worse than
their static counterparts. This decrease in performance is
inherent to the problem, as shown by our lower bounds.

Moreover, we considered two hashing schemes that we
proved to be optimal: a single-choice hashing scheme that
was used to demonstrate our approach and techniques, and
a multiple-choice scheme that inserts the elements greedily.

However, due to the slow decrease of the lower bound, opti-
mality may be insufficient for certain applications. Therefore,
we suggested moving back elements from the overflow list as
soon as a deletion occurs. We have shown through simulations
that this strategy beats the lower bound of the dynamic case
(where moving back elements is not allowed).

We also conducted an extensive experimental study to verify
the accuracy of our model, the behavior of the models under
realistic (rather than fully-random) hash functions, and under
variable-load arrival models.
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[5] B. Vöcking, “How asymmetry helps load balancing,” inIEEE FOCS,
1999, pp. 131–141.

[6] A. Kirsch and M. Mitzenmacher, “On the performance of multiple
choice hash tables with moves on deletes and inserts,” inAllerton, 2008,
pp. 1284–1290.

[7] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing:
Cuckoo hashing with a stash,”SIAM J. on Computing, vol. 39, no. 4,
p. 1543, 2009.

[8] R. Kutzelnigg, “A further analysis of cuckoo hashing with a stash and
random graphs of excessr,” Submitted for publication, 2009.

[9] M. Drmota and R. Kutzelnigg, “A precise analysis of cuckoohashing,”
Submitted for publication, 2009.

[10] A. Kirsch and M. Mitzenmacher, “The power of one move: Hashing
schemes for hardware,” inIEEE Infocom, 2008, pp. 565–573.

[11] Y. Kanizo, D. Hay, and I. Keslassy, “Optimal fast hashing,” in IEEE
Infocom, 2009, pp. 2500–2508.

[12] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” Ph.D. dissertation, Univ. of California at Berkley, 1996.

[13] R. B. Cooper,Introduction to Queueing Theory, 2nd ed. North Holland,
1981.

[14] L. Kleinrock, Queueing Systems. Wiley, 1975.
[15] P. Nain, “Qualitative properties of the Erlang blocking model with

heterogeneous user requirements,” INRIA, Tech. Rep. 1018, April 1989.
[16] S. Kumar, J. Turner, and P. Crowley, “Peacock hashing: Deterministic

and updatable hashing for high performance networking,” inIEEE
Infocom, 2008, pp. 556–564.

[17] C. Shannon, E. Aben, K. claffy, and D. E. Andersen, “CAIDA
Anonymized 2008 Internet Trace equinix-chicago 2008-03-1919:00-
20:00 UTC (DITL) (collection),” http://imdc.datcat.org/collection/.

[18] T. Wang, “Integer hash function,” http://www.concentric.net/∼Ttwang/
tech/inthash.htm.

[19] A. Adas, “Traffic models in broadband networks,”IEEE Communica-
tions Magazine, vol. 35, pp. 82–89, 1997.

[20] S. Asmussen,Applied Probabilities and Queues, 2nd ed. Springer,
2003.

[21] W. Grassmann, “The convexity of the mean queue size of theM/M/c
queue with respect to the traffic intensity,”Journal of Applied Probabil-
ity, vol. 20, pp. 916–919, 1983.

[22] K. R. Krishnan, “The convexity of loss rate in an Erlang loss system
and sojourn in an Erlang delay system with respect to arrivaland service
rates,” IEEE Trans. Commun., vol. 38, no. 9, pp. 1314–1316, 1990.

[23] A. Harel, “Convexity properties of the Erlang loss formula,” Operations
Research, vol. 38, no. 3, pp. 499–505, 1990.

APPENDIX A
PROOFS

A. Proof of Theorem 1

We model the hash table using adiscrete-time Markov chain
that represents the occupancyXi

t of an arbitrary bucketi at the
end of time-slott. We will see that this is possible because
the process is memoryless from time-slot to time-slot, and
because when conditioned on the occupancy of bucketi, its
arrival and departure probabilities are independent of thestates
of the other buckets or of the overflow list.

At the end of each time-slott− 1, there areXi
t−1 elements

in bucketi. Then, at the start of time-slott, the element that
departs is chosen uniformly at random out of then elements
in the system. Therefore, the probability that it belongs toone

of theXi
t−1 elements in bucketi is

Xi
t−1

n
.

The element is then reinserted into the system. The probabil-
ity that it is hashed by the uniformly-distributed hash function
H into bucketi out of m buckets is 1

m
.

We can now build the state transition matrix. The bucket
occupancy obviously increases iff there is no departure while
there is an arrival, while it decreases iff there is a departure
but no arrival. For1 ≤ j, k ≤ h, the transition probability
from occupancyj to occupancyk is

P i
jk = Pr

(

Xi
t = k|Xi

t−1 = j
)

=











1
m

·
(

1− j
n

)

k = j + 1, k ≥ 1,
j
n
·
(

1− 1
m

)

k = j − 1, k ≤ h− 1,
(

1− j
n

) (

1− 1
m

)

+ j
n

1
m

k = j.

The birth-death Markov chain is clearly irreducible, pos-
itive, recurrent and aperiodic. Therefore, it converges toits
stationary distributionπn. In addition, since the state transition
matrix does not depend oni, by ergodicity, the distribution of
p(t) converges toπn as well.πn satisfies:

π
n
k =

1
m

·
(

1− j

n

)

j+1
n

·
(

1− 1
m

) · π
n
k−1, k = 1, . . . , h,

with

h
∑

k=0

π
n
k = 1.
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For 0 ≤ k ≤ h,

π
n
k =

(

k−1
∏

j=0

1
m

·
(

1− j

n

)

j+1
n

·
(

1− 1
m

)

)

· π
n
0

=

(

k−1
∏

j=0

n− j

j + 1

)

·

(

1

m− 1

)k

· π
n
0

=

(

n

k

)

·

(

1

m− 1

)k

· π
n
0 =

(

n

k

)

·

(

1

m− 1

)k

h
∑

l=0

(

n

l

)

·

(

1

m− 1

)l
,

with
(

n
l

)

= 0 when l > n by convention.
Lastly, bucket i overflows in a given time-slott when

it containsh elements, no element leaves bucketi, and an
element arrives to bucketi. In addition, the probability that
the element arriving at timet is sent to the overflow list is the
sum of all individual bucket overflow probabilities. Therefore,
by ergodicity, the total overflow probability at time-slott
converges to

γn
SINGLE = m ·

(

πn
h ·

(

1−
h

n

)

·
1

m

)

= πn
h ·

(

1−
h

n

)

.

Note that when assuming that elements are chosen uniformly
at random at each time slot among alln elements to depart
and be reinserted in the system, independently of the system
state, then the probability for a given element to be in the
overflow list converges toγn

SINGLE as well; and therefore, the
expected size of the overflow list is(γn

SINGLE · n).

B. Proof of Theorem 2

As in the discrete model, we build a birth-death chain to
model the occupancyXi

t of an arbitrary bucketi at time t.
First, during any time interval[t, t+δt], the probability that

an element in bucketi of sizeXi
t is chosen to depart isXi

t ·δt+
o(δt), since each element stays for an exponentially-distributed
amount of time of average1 and there areXi

t such elements in
the bucket. However, sinceSINGLE uses a single uniformly-
distributed hash function to hash elements into the buckets,
a chosen element might be reinserted into the same bucketi
with probability 1

m
. The element thus departs the bucket with

probability 1 − 1
m

. Therefore, the departure probability from
bucketi during time interval[t, t+ δt] is Xi

t ·
(

1− 1
m

)

· δt+
o(δt).

Likewise, during any time interval[t, t + δt], an element
leaves the other buckets with probability

(

n−Xi
t

)

·δt+o(δt),
since they containn−Xi

t elements. Therefore, since the single-
choice hashing scheme (SINGLE) uses a single uniformly-
distributed hash function to hash elements into the buckets,
the probability that an element is hashed into bucketi during
time interval[t, t+ δt] is n−Xi

t

m
· δt+ o(δt).

Therefore, we obtain the following transition rate ma-
trix for the continuous-time birth-death Markov process: for
1 ≤ j, k ≤ h, the transition rateQi

jk from occupancyj to

occupancyk is

Qi
jk =











n−j
m

k = j + 1, k ≥ 1,

j ·
(

1− 1
m

)

k = j − 1, k ≤ h− 1,

−
(

n−j
m

+ j ·
(

1− 1
m

))

k = j.

{

Xi
t

}

t≥0
is ergodic (e.g., from Corollary 2.5 in p. 74 of [20]),

and therefore its distribution converges to the stationarydis-
tribution πn. By ergodicity, the distribution ofp(t) converges
to πn as well. Furthermore, since the transition rates from any
j to anyk 6= j in the continuous-time Markov process are a
scaled version of the transition probabilities in the discrete-
time Markov chain by a scaling factorn, the stationary
distributionπn is the same as in the discrete model.

Finally, since we assume instantaneous recirculation of
departing elements, a recirculated element is lost when it is
hashed into a bucket different from the one it just left, and this
bucket is full. In particular, during time interval[t, t+ δt], the
probability that an element is recirculated to a full bucketi of
sizeh from another bucket is

(

n−h
m

Pr
(

Xi
t = h

))

· δt+o(δt),
since there aren − h elements in the other buckets, each
recirculating at rate1 and then hashed into bucketi with
probability 1

m
. Since then elements are recirculated at a total

rate ofn, and in particular are recirculated into bucketi at rate
n
m

, the fraction of all such elements that overflow converges
to

n−h
m

· πn
h

n
m

= γn
SINGLE,

which concludes the proof.

C. Proof of Theorem 3

In the fluid model, the departures from buckets of sizek ≥ 1
cause the fractionpk(t) to decrease at ratek ·pk(t), since each
of thek elements departs at rate1, and therefore thek elements
depart at a total rate ofk. Since the buckets of sizek with a
departing element have a new sizek− 1, the departures from
such buckets increase in turnpk−1(t) at the same ratek ·pk(t).

Likewise, the arrivals to buckets of sizek < h, which occur
at ratech = limn→∞

n
m

, cause the fractionpk(t) to decrease
at ratech · pk(t), and the fractionpk+1(t) to increase at the
same rate.

Therefore, we obtain the following differential equation
which characterizes the birth-death process:

dpk(t)

dt
=



















ch · pk−1(t) + (k + 1)pk+1(t)

−(ch+ k)pk(t) for k ∈ [1, h− 1],

p1(t)− ch · p0(t) for k = 0,

ch · ph−1(t)− hph(t) for k = h,

with
∑h

k=0 pk = 1. Assume the system is initially empty, i.e.
pk(0) = 1k=0.

Consider a fixed pointπ∞ of the birth-death process,
i.e. assume that for anyk ∈ [0, h], dπ∞

k (t)
dt

= 0. Solving
the differential equation above yields the following balance
equations: fork ∈ [1, h],

ch · π∞
k−1 = k · π∞

k ,
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with
∑h

k=0 π
∞
k = 1. Therefore,

π∞
k =

(ch)
k

k!
· π∞

0 =

(ch)
k

k!
h
∑

l=0

(ch)
l

l!

,

corresponding to the stationary distribution in theM/M/h/h
loss system [14]. In addition, the drop rate in the fluid model
is

γ∞
SINGLE = π∞

h ,

following the well-known Erlang-B formula. Finally, since
the differential equations are exactly those of the ergodic
M/M/h/h continuous-time Markov process,p(t) converges
to π∞ [14], [20].

D. Proof of Corollary 4

For eachn ∈ N
∗ ∪ {∞},

∑h
k=0 π

n
k = 1 andπn

0 > 0, so for
k ∈ [0, h], πn

k /π
n
0 is defined and

πn
k =

πn
k /π

n
0

∑h
l=0 π

n
l /π

n
0

.

Therefore, to prove the convergence of{πn}n≥1, which is a
sequence of finite vectors, we only need to prove the point
convergence ofπn

k /π
n
0 to π∞

k /π∞
0 . We get

πn
k /π

n
0 =

(

n

k

)(

1

m− 1

)k

=
1

k!
·
( n

m

)k

·
(1) ·

(

1− 1
n

)

· · · · ·
(

1− k−1
n

)

(

1− 1
m

)k

=
1

k!
· (ch)

k
· (1 + o(1)) = π∞

k /π∞
0 · (1 + o(1)),

which concludes the proof of the convergence ofπn to π∞.
Lastly, γ∞

SINGLE = π∞
h and γn

SINGLE = πn
h ·
(

1− h
n

)

. Since
(

1− h
n

)

= 1 + o(1), the convergence ofγn
SINGLE to γ∞

SINGLE

follows.

E. Proof of Theorem 6

For anyk ∈ [1, h], let pk(t) denote the fraction of buckets
of size k. As shown with the single-choice hashing scheme
(SINGLE), in the fluid model, the departures from buckets of
size k ≥ 1 decrease the fractionpk(t) at ratek · pk(t), and
increase the fractionpk−1(t) at the same ratek · pk(t).

Likewise, the element arrival rate before hashing isch =
limn→∞

n
m

, and the hashing rate per element isa, therefore
the hashing rate isach. Let r = ach. Since elements can
only decide to enter a bucket after hashing into it, we know
that their post-hashing arrival rate to any bucket is bounded
from above byr. Of course, the decision of whether to enter
a bucket after hashing into it might depend on the bucket
occupancy. Therefore, letrk(t) denote the average arrival rate
to the fraction of buckets of sizek at timet, with 0 ≤ rk(t) ≤
r. These arrivals cause the fractionpk(t) to decrease at rate
rk(t) · pk(t), and the fractionpk+1(t) to increase at the same
rate.

Combining departures and arrivals, we obtain the following
differential equation characterizing the birth-death process:

dpk(t)

dt
=



















rk−1(t)pk−1(t) + (k + 1)pk+1(t)

−(rk(t) + k)pk(t) for k ∈ [1, h− 1],

p1(t)− r0(t)p0(t) for k = 0,

rh−1(t)ph−1(t)− hph(t) for k = h,

with
∑h

k=0 pk = 1 andpk(0) = 1k=0.
Consider a fixed pointπ of the birth-death process, i.e.

assume that for anyi ∈ [0, h], dπk(t)
dt

= 0. Then the finite
vector (π0(t), . . . , πh(t)) is independent oft, and therefore
the arrival raterk(t) to a bucket of sizek is independent
of t as well. Denote this constant arrival rate asrk, where
0 ≤ rk ≤ r. Solving the differential equation above yields the
following balance equations: for eachk ∈ [1, h],

rk−1πk−1 = kπk, (7)

with
∑h

k=0 πk = 1. Therefore,π satisfies

πk =

∏k−1
j=0 rj

k!
· π0 =

∏k−1
j=0 rj

k!
h
∑

l=0

∏l−1
j=0 rj

l!

.

Using Lemma 1, we find that the average bucket occupancy
EXπ underπ is upper-bounded by the average bucket occu-
pancyEX π̄ under π̄, where π̄ is the fixed-point distribution
whenrk = r. This is becausef : X → X is increasing [20],
andrk ≤ r for k ∈ [0, h− 1]. Therefore,

EXπ ≤ EX π̄. (8)

Finally, note that without element losses, we would have the
average occupancy equal to the average number of elements
per bucket, i.e.,ch = limn→∞

n
m

. Therefore, the average
fraction of lost elements is equal to

γ∞ =
ch− EXπ

ch

(a)
= 1− a ·

EXπ

r

(b)

≥ 1− a ·
EX π̄

r

(c)
= 1− a ·

r · (1− π̄h)

r

(d)
= 1− a+ a ·

rh

h!
∑h

l=0
rl

l!

,

where (a) usesr = ach, (b) relies on Equation (8), (c) uses
a standard Erlang-B result [13], [14], and (d) comes from
Equation (8) withrk = r.

F. Proof of Theorem 8

As in the proof of Theorem 6, in each subtablei, we focus
on the fixed-point distributionπi, which satisfies

πi
k =

∏k−1
j=0 r

i
j

k!
h
∑

l=0

∏l−1
j=0 r

i
j

l!

,

with rij ≤
βi

αi ·r. This is because the rate at which the elements
check a bucket in subtablei ∈ I is proportional to the ratio of
their probabilityβi of picking subtablei by the proportional
sizeαi of subtablei. In addition, even if the elements check
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a bucket of sizej, they can decide not to enter it. The raterij
at which they enter it depends both on the sizej and on the
subtablei, although it needs to be upper-bounded by the rate
βi

αi · r at which they checked it.
From the proof of Theorem 6, in each subtablei ∈ I, we

know that the average occupancy is upper-bounded by the case
in which we have equality

rij =
βi

αi
· r.

We now want to find the vectorβ that maximizes the average
occupancy of the whole system. Let̄π

(

βi

αi r
)

denote the
distribution that maximizes the average occupancy in subtable
i ∈ I, and definef : R+ → R

+ with f(x) = EX π̄(x). Then
we want to find

max
∑

i∈I
αi · f

(

βi

αi
r

)

s.t.
∑

i∈I
αi = 1,

∑

i∈I
βi = 1.

f is known to be strictly concave [21]–[23] (the concavity
also follows from Lemma 1). Therefore

∑

i∈I

αi · f

(

βi

αi
r

)

(a)

≤ f





∑

i∈I

·αi ·
βi

αi
r



 = f



r ·
∑

i∈I

βi





(b)
= f(r),

where (a) uses concavity and
∑

i∈I αi = 1, and (b) uses
∑

i∈I βi = 1, with equality iff βi

αi r independent ofi, i.e.
βi = αi for all i ∈ I, because

∑

i∈I βi =
∑

i∈I αi. Finally,
as in the proof of Theorem 6, the same upper bound on
the average bucket occupancy corresponds to the same lower
bound on the overflow fraction.

G. Proof of Theorem 9

For a given ratea, the differential equations are the same
as for the single-choice hashing scheme (SINGLE) and satisfy
the same fixed-point distribution (Theorem 7).

Let us now computea. Whenever an element arrives, the
probability that it uses itslth hash functionHl, for 1 ≤ l ≤ d,
is α · (π∞

h )
l−1; namely, the product of the probabilityα that it

is not directly placed in the overflow list by the probabilitythat
the first l − 1 hash functions mapped into full buckets. Then,
the lth trial is successful with probability1 − π∞

h . Finally,
there wered unsuccessful trials with probabilityα · (π∞

h )
d−1.

Therefore, the average number of trials per element is:

a =

(

d−1
∑

l=1

l · α · (π∞
h )

l−1
(1− π∞

h )

)

+ d · α · (π∞
h )

d−1

Using the general formula
K
∑

k=1

kxk−1 =
1− xK+1 − (1− x) · (K + 1)xK

(1− x)2
,

we get

a = α

[

1− (π∞
h )d − (1− π∞

h ) · d · (π∞
h )d−1

1− π∞
h

+ d · (π∞

h )d−1

]

= α ·
1− (π∞

h )d

1− π∞
h

.

Finally, this can only hold forα ≤ 1; once we reachα = 1,
we obtainacoMULTIPLE .

10
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Fig. 10. Overflow fraction as a function of the number of buckets m.

APPENDIX B
EXAMPLES

A. Single-Choice: Dynamic vs. Static

For the case whereh = 1 the overflow fractionγn
SINGLE

reduces toγn
SINGLE = n−1

m+n−1 . Denoting the loadc = n
m

,

γn
SINGLE =

c− 1

m

1+c− 1

m

m→∞
−−−−→ γSINGLE =

c
1+c

, whereγSINGLE is the
limit overflow fraction as we scale the system while keeping
the load constant toc. For instance, forc = 1, we get

γSINGLE = 50%. (9)

In other words, when scaling the system with the same number
of elements and buckets, we find that we asymptotically lose
50% of the elements.

Note that in such a scaling, we lose a fractionγn
SINGLE =

1− 1

m

2− 1

m

= m−1
2m−1 of the elements. This fraction corresponds for

instance to no losses withm = 1; to 1/3 of the elements lost
with m = 2; and to40% of the elements lost withm = 3; the
overflow fraction then continuing to increase monotonically
and converge toγSINGLE.

Now we compare thedynamicoverflow fractionγn
SINGLE with

the static overflow fraction, denotedσn
SINGLE, given a bucket

size of1. First, assuming a loadc = 1, the overflow fraction
is equal to the fraction of unused buckets, because the number
of elements is equal to the number of buckets, and buckets can
contain at most one element. Therefore, since each element
chooses a bucket uniformly at random, we get

σn
SINGLE =

(

1−
1

m

)m
m→∞
−−−−→ σSINGLE = e−1.

Thus, the static system has a clearly lower overflow fraction.
Fig. 10 illustrates the overflow fraction as a fraction ofm in

both the static and dynamic cases. The dynamic case clearly
always causes a higher overflow fraction. In addition, both
converge fast from below to their limit values.

More generally, for any arbitrary loadc ≤ 1, the limit static
overflow fraction is known [11] to beσSINGLE = 1 − 1−e−c

c
.

Therefore, asc → 0, we asymptotically getγSINGLE = c +
O(c2), andσSINGLE = c

2 + O(c2), so for low loads, the large
dynamic system has about twice the overflow of the large static
one.

B. Illustration of theMULTIPLE Scheme

Fig. 11 illustrates the multiple-choice hashing scheme
(MULTIPLE) with m = 12, h = 1, d = 2 and q = 1. We
can see that elementx1 is initially mapped byH1 to a full
bucket. It is therefore mapped again byH2, and inserted in
an empty bucket. Then, the element in bucket number 6 is
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Fig. 11. Illustration of theMULTIPLE scheme

deleted. On the next step, elementx2 is directly inserted in an
empty bucket, and therefore does not need a second memory
access.


