TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL

Hash Tables With Finite Buckets
Are Less Resistant to Deletions

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—\We show that when memory is bounded, i.e. buckets _ o = -
are finite, dynamic hash tables that allow insertions and deletions 2 o3f| —.- Zt;:fmic o
behave significantly worse than their static counterparts that 8 Pt
only allow insertions. This behavior differs from previous results H 021 -
in which, when memory is unbounded, the two models behave “<.§ 0.1} T
similarly. ° -

We show the decrease in performance in dynamic hash 8> 03 o4 05 o8 07 o3 o9 1
tables using several hash-table schemes. We also provide tight load
upper and lower bounds on the achievable overflow fractions in () d-random with a stash
these schemes. Finally, we propose an architecture with content-
addressable memory (CAM), which mitigates this decrease in 0.4 —
performance. 5 oal| .o oo

g . ynamic
“; 0.2}
o
I. INTRODUCTION S 01
(=]
A. BaCkground %.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

Networking devices often ustynamichash tables, in which
elements keep arriving and departing, and static ones that
are_ built only once. However, for simplicity, deylce design Fig. 1. Overflow fraction with2 hash functions and bucket size using
typically model the performance of the dynamic hash tabl@sih the static and the dynamic model.
using models of the static hash tables. This paper shows that
these static models can lead to a significander-estimation
of the drop ratein the dynamic case. n elements in the hash table after each arrival.

This under-estimation of the drop rate can potentiallyaiffe(b) Likewise, when inserting each element in the leastdodad
the performance of networking devices. Hash tables form thétwo random bucketsdrandom algorithm withi = 2), the
core building block of many networking device operationgnaximum bucket size i®oglogn/log2 + O(1) in the static
such as flow counter management, flow state keeping, et@se; and again, the dynamic case yields the same result [3],
phant traps, virus signature scanning, and IP address fookd].
algorithms. If memory is allocated to the dynamic hash mbléc) Similarly, using the asymmetri¢-left algorithm, the static
according to the static model, many more elements might negaise and the dynamic case yield again the same bound on the
to be dropped from the hash tables than initially estimatedmaximum bucket size [5].

Using the static model seems natural. In fact, dynamic hasherefore, as illustrated in these three cases, given & larg
tables are known for beirtypically harder to modethan static number of elements, it appears that the network designéd cou
ones, sometimes even lacking any mathematical analysis [u$e the simpler static model for the dynamic case.

Therefore, the static model appears to be a simpler and morén this paper, we focus on the realistic scenario in which

accessible option to the network designer. buckets are finite, as used in networking devices, congraril
More significantly, past studies have also found #aene to the infinite-bucket case assumed above. We show that the

asymptotic behavioin dynamic and in static hash tables, irlynamic hash table can exhibits@gnificantly worsedrop rate

at least three cases: than its static counterpart.

(a) In the static case in which elements are uniformly hashed

into n infinite buckets, the maximum bucket size is known t@. |ntuitive Example

be approximatelylog n/loglogn with high probability [2],

[3]. The dynamic case yields the same result, assuming altﬁ{

!) e
nate departures and arrivals of random elements while kgep‘LjIS

(b) Cuckoo hashing with a stash

Fig. 1 plots the system overflow fraction as a function of
load, i.e. the fraction of elements not placed in the btk

a function of the average number of elements per bucket.
It shows the overflow fraction for both a static system, where
there are only insertions, and a dynamic system, where we
alternate between deletions and insertions while a fixed iwa
maintained [4], [6]. To measure the overflow fraction, ifesl

on an overflow list, calledstash to which new elements are

Y. Kanizo is with the Dept. of Computer Science, Technion,faldisrael.
Email: ykanizo@cs.technion.ac.il.

D. Hay is with the Dept. of Electrical Engineering, ColumbiaiW, NY,
USA. Email: hdavid@ee.columbia.edu.

I. Keslassy is with the Dept. of Electrical Engineering, fieion, Haifa,
Israel. Email: isaac@ee.technion.ac.il.

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 2

® H(x,@ ing bucketj is empty. This could never happen in the static

case (elements are stored in the overflow list only after thei
corresponding buckets are full, and full buckets cannobbrer
empty). It also could never happen in the dynamic case with
infinite buckets (there is no overflow list).

(i) "

i [T T 1] O T
iy ([1 []] @ T

(a) Finite buckets (b) Infinite buckets In this paper, we show that dynamic hash tables with finite
buckets behave worse than static ones.

We start by considering a simplistic dynamic scheme with
a single hash function. We model this hashing scheme ana-
lytically using three different models: a discrete-time rivtav
moved when they cannot be inserted in the hash table. Fiy. 1¢4ain, a continuous model with a birth-death chain, and d flui
and 1(b) show the overflow fraction of thlerandom algorithm model with a continuous-time Markov process. We find that
with a stash [4] and the cuckoo hashing with a stash [7], [8Jis simplistic dynamic scheme performs notably worse than
The overflow fractions are obtained in simulations using&®04ts corresponding static scheme.
buckets,10° rounds with one random element deletion and one Then, we derive a lower bound on the overflow fraction
element insertion in each round, and a standard pseudorando the dynamic model ofany hash-table scheme that uses
number generator to obtain hash vafues uniform hash functions and does not move back elements once

Both figures clearly show a non-negligible degradation ithey were placed in the overflow list. We prove that when the
the overflow fraction of the dynamic system. For instance, tlveragenumber of memory accesses per insertidncreases,
cuckoo hashing scheme with load of 0.6 yields an overflothe overflow fraction can decrease as slowly{Hs$/a). This
fraction of 0.52% and 2.97% in the static and dynamic modelgdicates that the bad performance of dynamic schemes is
respectively. Moreover, while for cuckoo hashing schemt wifundamental, and is hard to solve by simply using additional
load of 0.5 the overflow fraction in the static model goes tmemory accesses.

0 [9], it does so more slowly in the dynamic case. For instance Next, we introduce an online multiple-choice scheme. We
for m = 1024 we got an overflow fraction in the static anddemonstrate that this scheme reaches that lower bound and
dynamic models of 0.05% and 0.44%, where for= 16384 therefore is optimal up to a certain rate of memory access,
we got 0.0012% and 0.0606%, respectively. which depends on the system parameters.

The intuition behind this difference in behavior is that However, due to the slow decrease of the lower bound,
if the bucket size is bounded, once an element is placggtimality may be insufficient for certain applications.€Fe-
in the overflow list it Stays there regardless of whether tl’f@re, we Suggest Changing the assumptions and moving back
corresponding bucket become available later upon deletigflements from the overflow list when a bucket becomes
Therefore, the order of the insertion and deletion Opeﬂ&tiOava”abkg upon deletion. We propose the M-B (Moving-Back)
directly affects the performance. This is typically not ttese scheme that uses a CAM (content-addressable memory) device
in the unbounded bucket case, and the difference can causgaa stores the elements along with their hash values. Alphara
drastic degradation in the scheme performance. lookup operation is used once an element is deleted and its

Fig. 2 illustrates this degradation in performance, ush®y tpucket becomes non-full. This operation, supported by the
same scenario both for the finite and the infinite bucket SiZ@AM' finds an element in the overflow list that can be moved

For the case of finite buckets, we assume bucket sizels ofhack to the bucket. This scheme is shown to beat the initial
an overflow list, and an insertion algorithm that uses onlg onower bound without a CAM.

hash_ function. We consider thg following scenario: Ldie Finally, we evaluate in this paper all proposed schemes
the time when a new element is hashed to a full bucket sing simulations as well as experiments with real hash
that already stores elemeng (step (i) in both Fig. 2(a) and f,nctions applied on real-life traces.

Fig. 2(b)). If a finite bucket is used, then is moved to the
overflow list (step (ii) in Fig. 2(a)), while in the infinitedoket

case,r; is simply stored in buckej (step (ii) in Fig. 2(b)).

Let ¢’ > ¢ be the time when elemeny, is deleted. Assuming
that element:; is not deleted beforg, it stays in the overflow
list in the finite-bucket case, while in the infinite-buckeise

C. Our Contributions

ONRONEEN]

Fig. 2. An example demonstrating the degradation of perforemandynamic
hash tables.

Paper Organization: We start with preliminary defini-
tions in Section Il. Section Il presents and analyzes thglst
choice SINGLE scheme, while Sections IV and V provide a
lower bound on the overflow fraction. Then, in Section VI we
present and analyze the multiple-choie@LTIPLE scheme,
and in Section VII we present the CAM-based M-B scheme

It |_T_hstor$d n puiﬁey(j(step (.'"))' ith finite bucket si which, upon deletion, moves back elements from the over-
erefore, in e dynamic case with 1inite DUCKEl SIz€qy,) et Finally, we evaluate all the analytical results in

elementz; is in the overflow list, even though its correspond—Section VI

ISimulations with ten times more buckets or rounds yielded fuzantical Note thajt' for the Sa!(e of rea;dabi"ty’ some proofs are
results. presented in the appendices of this paper.

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 3

[I. PROBLEM STATEMENT the system, so that departing elements are replaced byngrriv
elements.
Discrete Model — In the discrete modelwe assume that
This paper considersingle- and multiple-choice hashtime is divided into time-slots of unit duration, and statt a
schemes with a stagh0], [11]. Such schemes consist of twatime ¢ = 0 with » elements in the overflow list. At the start
data structures(i) A hash tableof total memory sizen - h, of each time-slot > 0, an element is chosen uniformly at
partitioned intorn buckets of sizeh; (i) An overflow list random among alh elements in the system to depart. Next,
usually stored in an expensive CAM. Note that the overflogt the end of time-slot, a new element arrives and is inserted
list can also be absent, in which case overflow elements @igording to the hashing scheme into either a non-full bucke
simply dropped. or the overflow list. Therefore, by the end of each time-sjot
As in traditional hash tables, the schemes should suppgitre are always elements in the system, either in the hash
three basic operations: element insertions, elementidet table or in the overflow list.
and lookups. We call the (infinitely long) sequence of these Continuous Model — The second model is eontinuous-
operations thearrival sequenceof the scheme. In the papertime model starting again at tim¢ = 0 with n elements
we focus mostly on a specific arrival sequence, alternatifig the overflow list. In this model, each element stays in the
between departures of a random element (picked uniformlygistem for an exponentially-distributed duration of agera.
random) and insertions of a new element [4], [6]. Therefore, at each infinitesimal time-intervil t 4 6t], the
Multiple-choice hashing schemes employ up/tarobability probability that a given element departs sis- 5t + o(dt).
distributions over the set of buckets; these distributians For each element departure, another element is autoniatical
then used to generatehash-function set{ = {H,...,H;} generated and inserted in the system according to the fgashin
of d independent hash functions. For each elemerdand algorithm into either a non-full bucket or the overflow list.
each operation, the scheme can consider only the buckatgin, there are always elements in the system at each time
{H(x),...,Hq(x)} (and the overflow list). In addition, we ¢, ensuring a constant load.
assume that the scheme must access a bucket to obtain arsince there are departures per time-unit on average instead
information on it (thus, if the hashing scheme tries to ihsesf a single one, the continuous system can be seen as a
an element in a full bucket, it must access the bucket first)speeded-up version of the discrete system. In fact, when onl
Our goal is to minimize thexpected overflow fractioof looking at the system during the discrete element departure
the scheme, i.e. the fraction of elements that are placedtimes, which follow exponentially-distributed inter-deture
the overflow list, subject to the (total and average) numiber thmes, we obtain the discrete model again
memory accesse¥/e count as one memory access reading andincidentally, although each element departure triggees th
updating all the elements of a single bucket (this corredporarrival of another element with different hashed buckets, w
to the common practice of sizing the bucket size by the widthill sometimes refer by simplicity to the departed elemest a
of the memory word) and we do not count accesses to tifigt was reinserted.
overflow list. We further assume that up dobuckets can be Fluid Model — The last model is thdluid mode] which
read in parallel before deciding which one to update, réamir attempts to model the behavior of the continuous system as
a total ofd memory accesses. the number of elements and the number of buckets go
Formally, the hashing scheme and the optimization probletm infinity with a constant limit raticch = lim,, . =. In the
are captured by the following two definitions, where the loaffuid model, we will often analyze the system using diffetaint
c is the ratio of the total number of elemenisby the total equations, and will be mainly interested in their fixed-poin
memory sizemh: ¢ = .. solutions. Again, we will assume that at= 0, all elements
Definition 1: When the load is: and the bucket size i, are in the overflow list.
an (a,d, ¢, h) hashing schemé a scheme with an expected In the fluid model, as in the finite continuous-time model,
(respectively, maximum) number of memory accesses pements stay in the system for an exponentially-disteitbut
element of at most (respectivelyd). duration of averagd, and therefore the departure rate from
Definition 2: The OPTIMAL DYNAMIC HASH TABLE PROB- each bucket is proportional to the bucket size.
LEM is to find an{a,d, ¢, h) hashing scheme that minimizes In addition, as in the other models, element departures
the expected overflow fraction as the number of elements trigger element arrivals. Note that in the continuous model
goes to infinity. Whenever defined, les-; denote this optimal the average arrival rate per bucket Js, since the arrival
expected limit overflow fraction. rate isn and there aren buckets. Therefore, in the fluid
model, we model a constant average arrival rate per bucket of
. ch = lim,_, 7-. Likewise, in the continuous model, when
B. Arival Models arriving elements use a uniformly-distributed hash fuocti
Throughout the paper, we will use three different models féhey hash into each bucket at a rate equal to the average rate
the arrivals and departures of elementstigcrete modeWwith of . In the fluid model, since we consider an infinite number
a finite number of elements; @ntinuous modelith a finite of buckets, auniformly-distributed hash functiois not well
number of elements; and fauid modelbased on differential defined. By extension, and for simplicity, we will define such
equations with an infinite number of elements. Our objedtve a function as one that enables the same arrival ratehdb
to model a constant load, i.e. a constant number of elementsll buckets.

A. Terminology and Notations

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 4

Furthermore, we will define the average hashing rate perlt is interesting to note that Equation (1) can be rewritten
elementa such that it is valid at any time. We will also as a truncated binomial expression

assume that elements may not use hash functions that pick wit k n—k

higher probability buckets with lower occupancy, i.e. tte (n> (1) (1 — 1)

average hashing rate limit af is valid given any bucket size. n— k) \m m ’ (3)
Thus, if one tenth of the buckets are empty, a uniform hash h/n 1\ 1\"!

will find one tenth of its buckets empty as well. Of course, Z (l) (m> <1 N m)

an element might still decide to enter a bucket with lower (=0

occupancy with higher probability. which hints at the following interesting equivalent systdhe

Model Alternatives — In general, to model system scalingbucket occupancy is distributed as if the elements were
we would be interested in using either the discrete or centi@ssigned uniformly at random among the buckets, and
uous finite models, and then in studying how their solutioften the buckets with more thanelements were completely
scales withn. However, given the complex interactions becleared out and hadll their elements put in the overflow
tween then elements, these models often prove intractablést. This is in contrast with the static system in which only
Therefore, we will use the fluid model in these cases, and willements exceeding the bucket capacityhofire placed in
most oftennot be ableto prove convergence of the discrete othe overflow list. Therefore, it nicely illustrates the difénce
continuous models to the fluid model. Likewise, we will noPetween the static and dynamic cases.
always prove convergence of the differential equationseo t A detailed example of the behavior of the scheme in
fixed-point solutions. This is, of course, a limit of our ays$. the dynamic and static setting appears in Appendix B-A,

On the other hand, for the single-choice hashing schem@&ich shows a simplistic setting where, as the number of
(Section 1I1), we provide a full analysis with the three misge buckets increases (with fixed load), the dynamic case yaaids
and prove that the limit of the discrete and continuous fini@verflow fraction of50%, while the static case has an overflow
models behaves indeed like in the fluid model. In simulation&action of onlye~! ~ 36.79%.
we will also show that the scaled systems converge fast to the Continuous Model — We now turn to the continu-
fluid model. We refer to [12] for a more complete discussion ¢fus model in which elements stay in the system for an
the sufficient conditions for the convergence to the fluididi €xponentially-distributed duration of average It turns out

fixed-point solution. that the continuous model yields similar results to those of
the discrete model (Theorem 1).
I1l. A SINGLE-CHOICE HASHING SCHEME Theorem 2:In the continuous model, the single-choice

We start by analyzing a simplistic hashing scheme, whidtashing scheme has the same stationary distribution and
uses only a single uniformly-distributed hash functiihto overflow fraction as in the discrete model.
insert elements in the hash table. Each elemeist stored in Fluid Model — We now analyze théfinite system using
bucketH (x), if it is not full, and in the overflow list otherwise. a fluid model. In the fluid model, as in the finite continuous-
Since an element uses exactly one hash function, its averéigege model, elements stay in the system for an exponentially
number of memory accesses per element is 1. Of course, distributed duration of average and therefore the departure
this simplistic scheme would probably not be implemented nate from each bucket is proportional to the bucket size. In
advanced networking devices. However, it provides a bettddition, when an element departs, a new element in inserted
intuition on the reasons behind the performance degradatiato the hash table (or in the overflow list if the corresporyi
in dynamic hash-table schemes. bucket is full). As explained in Section I, the arrival rete
Discrete Model —We first develop an analytical model foreach bucket is thereforg: = lim,, , ;-
the scheme within the discrete framework presented in SecThe following theorem, which is based on the M/M/h/h
tion 1l. Let px(¢) denote the fraction of buckets that havel- continuous-time Markov process [14], shows the performeanc
ements at the end of time-slgtandp(t) = (p1(¢),...,pn(t)). of the scheme under the fluid model. (The full proof is in
Using this discrete model, we obtain the following result oAppendix A-C).
the limits of the distribution op and of the overflow fraction. =~ Theorem 3:In the fluid model,
The full proof appears in Appendix A-A and is based on @) the distribution ofp(¢) converges to the stationary distri-
birth-death Markov chain that models the occupancy of dntion 7>, where

arbitrary bucket over time. E , h 1
Theorem LiLet C = Y, (1) (=15)% In the discrete TP = (Ch)/z @, k=0,...,h. (4)
model, k! =
(i) the distribution ofp(¢) converges to the Engset distributior‘(ii) the overflow fraction converges to° and follows the
7" [13], [14]; namely, Erlang-B formula. L
. 1 (n 1 k We have seen that the discrete and continuous models with
™= (k) ‘ (m_1> : (1) n elements yield a stationary distributiori’, while the fluid

model yields a fixed-point distribution>. We will now show
that as expected, when scalingto infinity, 7" converges to
1 (n) . (1)h. <1 h) @ 7, and so does the associated overflow fraction. (Proof in

(ii) the overflow fraction converges to

c \h m—1 T n Appendix A-D.)

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 5

. i E - ' ' ' ' ' ' ' ‘4)(— ‘namlc
Corollary 4: Whenn — oo with - — ch,

(i) the stationary distribution converges to the fixed-point
distribution of the fluid modelx™ — 7°°; and
(i) the overflow fraction of the discrete (continous) model ol o

0.5 1 15 2 25 3 35 4 4.5 5

converges to the overflow fraction of the fluid model. a

. Flnglly, we generalize the _SCheme to deal vitbbabilistic Fig. 3. Overflow fraction as a function of the average memoressaate
insertions Namely, there exists some € [0,1] such that

each arriving element is either hashed into a bucket as defor

with probability «, or placed directly in the overflow list with)]
probability 1 — «, yielding an average number of memoryYoet IN the OPTIMAL DYNAMIC HASH TABLE PROBLEM is
accessea (or equivalently, a total number of memory accessd@wer-bounded by

an < n, less than the number of elements). Using the fluid phoy D

model for simplicity, we obtain the following result. Whilkis 15 @) =1-a+a 4 / > L (6)
probabilistic scheme is probably not useful in practicedsi =0 7

the average memory access rate is seldom lesslhave will \wherer = ach.

later demonstrate that it Bp“mal under SpeCifiC conditions. Note again that the Er|ang_B formula appears in the lower-

Theorem 5:In the fluid model, given the single-choicepound on the overflow. This yields the following optimality
hashing scheme with an insertion probability we obtain resylt:

> 05

a=a S.l' gnd. . o Theorem 7:In the fluid model, the single-choice hashing
(i) the distribution ofp(t) converges to the stationary distri-scheme is optimal for every average number of memory
bution 7°°, where accesses in [0,1] (and in particular fore = 1).

o h ¢ Proof: For the SINGLE scheme, there is a single hashed
o (ach) /Z (ach) . k=0,....h (5) bucket per element, and it is accessed with probability
k)= thereforea = a. Fora < 1, we get

—~
=

Proof: The differential equations are the same as in t
proof of Theorem 3 when replacingh by ach, since a)
simply changes the arrival rate. The distribution resutes awhere (&) comes from Equation (6)~= ach anda = «, and
then immediate. In addition, in the fixed-point equations, &P) from Theorem 5. o u
arriving element either overflows immediately with probiapi ~ Example 1:We illustrate the significance of the lower
1 — a, or checks with probabilityr a bucket that can be full bound by considering a simple system with buckets of size

c-a a

with probability 73, hence the overflow equation follows adt = 1, implying 75 (@)=1-ata g =1-5
well. m [n particular, for a load- = 1, corresponding to the scaling

case where the number of buckets is kept equal to the
number of elements and therefolien,, .., -~ = 1, we get

IV. OVERFLOW LOWER BOUND Vs (a) = 1 — 1% = 1, which shows that the lower-

Our objective is to find a lower bound on the optimaPound decreases slowly &1/a) when the average number
expected limit overflow fractionyoer in the OPTIMAL DY- of memory accesses per insertierincreases.
NAMIC HASH TABLE PROBLEM, and therefore on the expected™0r instance, to get &% drop rate we need each element to
overflow fractionfy of any <a7 d7 c, h> hashing Scheme, Whenaccess an average of at least 99 buckets. Of course, this
assuming a fluid model. We will study the simpler case witl§ impossible to implement in high-speed networking desice
a single uniformly-distributed hash function, as defined ifhus, this lower bound is essentially @&mpossibility result
Section Il. The more general case with several hash funthich shows that it is not easy to obtain efficient hash tables

tions using different subtable-based distributions appéa With deletions. _ _
Section V. Fig. 3 compares this drop rate lower-bound with the drop

The proof relies on the following result from [15]. Considefate lower-bound in the static case, which is equal 6 [11].

an Erlang blocking model wittV servers, and suppose that thé\S @ is increased, the figure shows how dynamic hash tables
arrival rate depends on the system. Dgtbe the arrival rate are significantly less efficient than their static countetpa

; : h
(ii) the overflow fraction converges {d — o) + a - 7°. - a ach)h ach)t »
‘) " h’ég(@):(l—a)—ka-(h!) Z(l') = 7sincLE
=0

when there aré transmissions in progress,= 0,1,..., N —

1. Then we have: V. LOWERBOUND WITH MULTIPLE HASH-FUNCTION
Lemma 1 (Theorem 4.2 in [15])For all increasing map- DISTRIBUTIONS

pings f : R — R and for all¢ > 0, Ef(X) is concave We now consider a setting with a sSébf I = |Z| subtables,

increasing as a function ofy, for k =0,1,..., N — 1. where subtableé € T uses a fractiom’ of all buckets. We
We use this lemma to prove the lower-bound result. will allow for the d hash functions to use up t@ different

Theorem 6:In the fluid model, under the assumptionslistributions {f;},_,., over the I subtables, where each
above where all buckets have the same probability of beidgstribution f; assigns a probabilit)f;f to subtablei € Z,
hashed into, the optimal expected fixed-point overflow foact with >, fj = 1, and then uniformly picks buckets within

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 6

each subtable (as defined in Section IlI). We also assume thah the literature, several solutions exist to reduce thepdro
each distributionf; is used by a fractiors; of the total rate (or collision probability) in a dynamic system. Onetsuc
memory accesses. Therefore, subtalideaccessed with a total solution uses limited hash functions in order to be able to
probability of 3* = Z;l:l wj - fy, with 37,2 ° = 1. The rebalance the hash table in case of deletion [16]. Howelvisr, t
following result establishes that the lower-bound is reachapproach gives up randomness, and the efficiency of a similar
when the hash table is used in a uniform way, i.e. thepproach appears limited [6]. Another solution, based en th
probability 3 of accessing a subtable is equal to its fractiogecond-chancecheme [10], moves elements from one bucket
o' in the table, and therefore the lower-bound is the same tasanother by storing hints at each bucket [6]. However, we
established previously in Theorem 6. found in simulations that this solution was less effectivart
Theorem 8:In the fluid model with multiple distributions our suggested scheme presented below for higher loadss whil
as defined above, the lower-boungf (a) on the fixed-point it was more effective for lower loads. Detailed simulation
overflow fraction is the same as with a unique uniform hagksults are found in Section VIII.
function, and is reached iff for all € [1,], 8¢ = o, i.e. the To reduce the overflow fraction, we suggest a scheme

weighted average of all distributions is uniform. that allows moving elements back from the overflow list to
the buckets upon deletionoperatios. This scheme can be
VI. A M ULTIPLE-CHOICE HASHING SCHEME combined with any insertion scheme.

We now introduce a natural extension to the single-choice o
hashing scheme that uses an ordered set/ dfash func- A. Description
tions X = {Hi,...,Hy}, such that all the hash functions Our scheme, called the moving-back scheme (M-B), relies
are independent and uniformly distributed. Upon insertingn a (binary) CAM. In general, a CAM stores keys in entries.
an elementz, the scheme successively reads the buckeBven some keyk, a parallel lookup is performed over all
Hy(x),Hy(x),... Hy(x) and placesz in the first non-full entries and the index of the first (that is, highest priorégjry
bucket. If all these buckets are full,is placed in the overflow that contains: is returned from the CAM. In many cases, this
list. To keep an average number of memory accesses frefex is later used in order to access in regular memory a
element of at most, the algorithm attempts to insertinto direct-access array that contains the value associatéukwit
the hash table with a probability, otherwise it is directly CAMs enable constant-time operations, however they are mor
placed in the overflow list. A detailed example appears éxpensive and consume more power than regular memory. It

Appendix B-B. is a common practice to implement the overflow list in a
We evaluate the performance of this scheme analyticalfyAM [1], [10], [11], relying on the fact that the number of
using the fluid model. (Proof in Appendix A-G). elements in the overflow list is small.

Theorem 9:Assume the multiple-choice hashing scheme Our scheme uses an auxiliary CAM, besides the primary
with a hashing probabilityr. Using the fluid-model fixed- CAM used to store the element of the overflow list: For each

point distribution7, elementz that is stored in the-th entry of the primary CAM,
(ach)* we store the value§H, (z), Ho(z), ..., Hy(z)} in entriesd -
(|) T Satisﬁesﬂ-go(a) — hki' for eachk = O h, Z,d -1+ 1, ey d-i + (d — 1) of the auXiIiary CAM.
(ach)! When an element is deleted from a bucketthat was
ZZ Il previously full, we need to move an elementfrom the
(i) the average bucket access ratsatisfies the fixed-point Overflow list to bucketj such that; is the result of applying
equationa = q - 1= 2 (a)? at least one of the hash-functions anWe can locate such
B Tomo(a) ’
(i) the overflow fraction is equal to the lower-bound, angnthelkeementsm ngzt?ﬁé t;r:t? brétqlrjr?éﬁ":)g EEZ 2”“:':? (C:::L\AA
is thereforeoptimal for a € [O,aco], wherea® satisfies the ' yJ. Supp y retu y uxiiiary
) , o 1—m(ae0) is ¢, thenz is located in entry|¢/d| of the primary CAM.
fixed-point equatioru®® = 71 7= (aco) * We note that upon moving an element back to the hash table,
The following example illustrates our resuts. one should update the corresponding entries of the primary

Example 2:For the case wheré = 1, solving the fixed- a4 auxiliary CAMs. An efficient way to update is to write
point equation yields:® = 2=H/+4 Therefore, for @ the valuem-+ 1 in these entries, such that when a new element
load of one element per bucket, i.e.= lim, .. 7: = 1, s inserted into the overflow list, one can query the auxjliar
we geta® = 15 ~ 1.62, and the corresponding overflowCAM with the valuem + 1 to decide in which entry (of the
fraction is~% (a®°) = 1.5 — % ~ 38.2%. Likewise, for a primary CAM) to put the new element.

load of c = 0.1, we geta®® = =2-8E/1+0.01 ~ 1,099, with

the corresponding overflow fractioyfy (a“°) ~ 0.98%. B. Analysis
We first derive the exact overflow fraction in the case of the
VIl. M OVING BACK ELEMENTS SINGLE scheme, and later provide an approximate model for

So far, we have found optimal schemes for a range of valué§ MULTIPLE scheme, which is confirmed by simulations.
of a, the average number of memory accesses per elemenf.
H Ith h | th d fl f We also consider a scheme that works upwertion however the details

owever, although optimal, the expected overflow raCt'oé}e omitted due to lack of space; moving back elements uponiatelet

may still be too large. performs better in general.

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 7

Theorem 10:Consider theSINGLE scheme with M-B for 04
moving back elements from the TCAM and a symmetric ol
insertion algorithm. The overflow fraction is given by: Ioger bound
> 0.2 * SINGLE N
acm ol © e | TP e
B () =1-- + Z h k g L:/IiL‘JeLf'[I'H:“LEM—B ¢

L L L L L
15 2 25 3 35 4
a

[N

Proof: Whenever a deletion occurs, the CAM device
performs a lookup operation for any element that can be moveg. 4. Overflow fraction as a function af with d = 4, h = 4, ¢ = 1.
back to the bucket. Since every element has only one hash

value, all elements that are corresponding to some bucket ca 01—

be viewed as its own pending list. Since the element we pick ooal = Smiton

to delete follows a random process that is independent of any _oosp

other random process in our system, and also the load is fixed, 004

we get that the overflow fraction follows the static case #yac 00z

which is given in [11].] 8T o2 o3 o0¢ o5 o6 07 o8 o5 1

load

Theorem 11:Consider themULTIPLE scheme with M-B
for moving back elements from the CAM and a symmetrigig. 5. M-B with MULTIPLE scheme, foth = 4, d = 2 and different loads
insertion algorithm. LetX} is the occupancy of bucket at
stept and P, ..., P, be the equilibrium probabilities of the
occupancy of each buffer. The probabilities can be modelggtB scheme beats the lower bound with an overflow fraction
by the following Markov chain: of 4.6%, emphasizing the strength of this architecture. Of
course, the lower bound does not apply to this case, since

Py = Pr(X=jlXi1=k) it moves back elements from the CAM.
g: - j=k+1lk<h As follows from Theorems 7 and 9, the overflow fractions
= w7 k—=1,h>k>0 Ysinote (@) and yyuimeie (a) of the single-choice YINGLE)
% e Pn j=k—-1,k=h and the multiple-choiceMULTIPLE) hashing schemes follow

the lower-bound line, respectlvely untilSy. e = 1 with

whereg = S0 1Phl*1 = 1= P’L , and the overflow fraction ysweie = 31.1%, and ad rpe = 2.195 With Yyuimpe =

~ is given byy =1 — E Z oZ P, 13.5%. Therefore, they are clearly optimal up to a certain

Proof: The Markov chain is the same as in the reguldfoint.

MULTIPLE scheme, except when an element is deleted from aWe also test our models from Section VII-B. Fig. 5 shows
full bucket. In this case, it is possible that one of the owerfl the accuracy of our M-B model. We ran simulations with
elements in the CAM is moved back to the bucket. It igz = 1024, h = 4, d = 2 and different loads. The
possible only in this case because all elements in the CAMRXIimum gap is for load: = 1 where our model predicts
have hashes to full buckets. an overflow fraction 00.20%, whereas simulations show an

We now approximate the probability that none of theverflow fraction 0f9.68%. For lower values of, the model
elements has an hash value to that bucket: The total numisemuch more accurate. For instance, for laag= 0.5, our
of hashes isy - n - d, where all the hashes are to fullmodel predicts an overflow fraction 6f19% compared to an
buckets. The number of full buckets £, -m. The probability overflow fraction of0.18% found via simulations.
that a single hash does not point to the specific bucket isWe further evaluate the performance of our proposed M-

M when using tVULTIPLE
pomts to the specmc bucket is given by scheme (of Section VI), the M-B scheme outperforms the
nd staticcase of thewuLTIPLE scheme (see Fig. 6), and performs
(1 _ 1) R e o similarly to the staticd-random scheme (in the static case,
Py -m d-random performs better than our multiple-choice scheme,

Multiplying the above expression by the probability thagon@lbeit consuming significantly more energy [11]). This can

of the elements is picked for deletions in case the bucketl§ explained intuitively as follows: our moving-back segy
full yields the claimed Markov chain. m Mmoves back an element to the only corresponding bucket

which is not full; this is equivalent to inserting the elerhém

the least occupied bucket as in ti@andom hashing scheme.
Finally, we compare the performance of our proposed M-

B scheme with the performance of the hint-based scheme
Fig. 4 compares all the schemes. It was obtained with4 proposed in [6]. Note that our M-B scheme can be used

choices, bucket sizé = 4, n = 4,096 elements andn = with any insertion scheme. Thus, for fair comparison, since

1,024 buckets, yielding a load = 1. the hint-based scheme uses the second-chance scheme [10]
The solid line plots the overflow fraction lower-boundor insertions, we also used the second-chance schemefor ou

e (a) from Theorem 6. Simulations show that the proposqutoposed M-B scheme. We ran simulations with= 4096,

VIIl. EXPERIMENTAL RESULTS
A. Simulations

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 8

02 MULTIPLE dynamic ozl M-B -
0151 =+ - MULTIPLE static | ! —+— - hints—based e
151 —%— muLTIPLE M-B 015t L
> g1t © d-random static 4 . 0.1F - z
0.05f X 0.05¢ L
J/%/Z o . = ‘ ‘ ‘
05 06 07 08 09 1 04 05 06 o 08 09 !
Cc
(@h=4andd =4 Fig. 8. The M-B and the hints-based schemes, o= 4, d = 1 and

different loads.

0.2r MULTIPLE dynamic]
015l + - MULTIPLE static | |
: —— MULTIPLE M-B 0.8

> o1k © - d-random static i O SINGLE (sim)
: + 06 SINGLE (model)

0.05 5 3 N . 1 X MULTIPLE (sim) M
> 04r MULTIPLE (model) xxxxxxxx 1

0 L L L L X
2 3 4 5 6 7 0.2} XXX |

d x XX xx
X% o L L L L L
() h=4andc=1 0 100 200 300 400 500 600 700

total num of elements
Fig. 6. Overflow fraction of the proposed moving-back (M-Bheme (via)))
simulations). Fig. 9. Marginal overflow fraction of 100 on-off flows witth = 500, h = 1
andd = 2

0.4

> o 5 Ejiﬁf‘r;i'eyffsﬁ given the source and destination IP tuple as well as the
x o s sequence and acknowledgment numbers of the TCP packets.
92 03 04 o5 06 07 o8 o9 1 Therefore, the hash table stores the latest TCP packets, and
road can retrieve any needed packet based on its header. It can be

(a) SINGLE used to monitor ongoing TCP flows, given a target number

n of packets that are stored at any time. Its objective in our
experiments was mainly to test the correctness of our model.

h=1 (analysis)
0.4r O h=1 (trace)

h:

h:

=2 (analysis)

02| _x_h=2 (race) o Fig. 7 shows that the results of our experiments are relgtive
5 P ‘ ‘ ‘ ‘ ‘ close to our model. The maximum gap is for tBeNGLE
02 03 04 05 06 07T 08 09 1 scheme withh = 1 and ¢ = 0.3. Our model predicts an
(b) MULTIPLE g;/%r;l(;w fraction of 23.08%, while the experiment yields
. 0.

Fig. 7. Experiment using real-life traces and hash functieith SINGLE
and MULTIPLE (d=2).

C. Experiments Using an On-off Arrival Model

h =1, d = 4 and different loads. As proposed in [6], the e also consider a queueing model where at eachistep

memory level sizes are exponentially decreasing with factglements arrive according toindependent on-off bursty flows

2. of elements [19]; then, after the arrival phase, one elengent
F|g 8 shows that our M-B scheme is more effective than thgndomly deleted. Therefore, the number of elements in the

for Iower loads. For instance, for a Ioad @6, the M-B and 3 constant load.

the hints-based schemes yield overflow fractions.08% and iy 9 shows the marginal overflow fraction under the above

0.78%, respectively. For a load df.7, they yield3.88% and queueing model witht = 100 on-off flows of elements.

4.59%. Each flow has rate = 0.0095 and average burst size of 10
_ . . elements. The figure shows that, given the number of elements
B. Experiments Using Real-Life Traces currently in the system, the marginal overflow fraction is

We have also conducted experiments using real-life tracggproximately the one we found for the constant-load case,
recorded on a single direction of an OC192 backbone link [1#joth for SINGLE and MULTIPLE.
Our goal is to compare the average overflow fraction retdeve Moreover, by the distribution of the number of elements
using our models fosINGLE and MULTIPLE with the corre- in the system given by the queueing model, we are able
sponding overflow fraction when using a real hash functido heuristically approximate the overall expected numbfer o
on a real-life trace. We used a 64-bit mix function [18] t@lements in the overflow list. More precisely, we take the sum
implement two 16-bit hash functions. We used= 10,000 product of the queue size distribution by the distributidn o
buckets, and set a number of elementas corresponding to the overflow fraction as a function of the load. In the case
various values ofh and c. To keep a constant desired loadof SINGLE this model gives an expected number of overflow
we alternated 00,000 times between an arrival (insertion) ofelements of 61.63, while simulations yield 61.41. Likewise
a new TCP packet according to the trace, and the departureLTIPLE, we obtain 40.17 and 40.26, respectively. Therefore,
(deletion) of a random TCP packet. The hash functions wettés heuristic model proves quite accurate.

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 9

IX. CONCLUSION [19] A. Adas, “Traffic models in broadband network$ZEE Communica-

. . tions Magazinevol. 35, pp. 82-89, 1997.
In this paper V_ve demonstrated that,Wh‘?” the memory b%] S. AsmussenApplied Probabilities and Queug®2nd ed. Springer,
bounded, dynamic schemes behave significantly worse than 2003.
their static counterparts. This decrease in performance [d$] W. Grassmann, “The convexity of the mean queue size of\the\//c
inherent to the problem, as shown by our lower bounds queue with respect to the traffic intensitygurnal of Applied Probabil-
d, d hashi h h. ity, vol. 20, pp. 916-919, 1983.

Moreover, we .COHSI ere. two ?‘S Ing S(.: emes that] K. R. Krishnan, “The convexity of loss rate in an Erlargs$ system
proved to be optimal: a single-choice hashing scheme that and sojourn in an Erlang delay system with respect to arawelservice
was used to demonstrate our approach and techniques, andrates,’IEEE Trans. Communvol. 38, no. 9, pp. 1314-1316, 1990.
a multiple-choice scheme that inserts the elements ggeedil 2%! gé?:;fclhvifﬂé’g"%p;"%%“igg’_fstg‘; Elrg%”g] loss fortai Operations

However, due to the slow decrease of the lower bound, opti- ' ’ ’
mality may be insufficient for certain applications. Theref
we suggested moving back elements from the overflow list as
soon as a deletion occurs. We have shown through simulations APPENDIXA
that this strategy beats the lower bound of the dynamic case PROOFsS
(where moving back elements is not allowed).

We also conducted an extensive exp_erimental study to verify Proof of Theorem 1
the accuracy of our model, the behavior of the models under

realistic (rather than fully-random) hash functions, amdier We model the hash table usinglscrete-time Markov chain

variable-load arrival models. that represents the occupanky of an arbitrary bucket at the
end of time-slott. We will see that this is possible because
ACKNOWLEDGMENT the process is memoryless from time-slot to time-slot, and

This work was partly supported by the European Resear@ficause when conditioned on the occupancy of buckis
Council Starting Grant h 210389 and by the Legacy Her-arrival and departure probabilities are independent oftates
itage Fund program of the Israel Science Foundation (gra¥tthe other buckets or of the overflow list.

11816/10). At the end of each time-slat— 1, there areX;_, elements
in bucketi. Then, at the start of time-slat the element that
REFERENCES departs is chosen uniformly at random out of thelements
[1] A. Kirsch, M. Mitzenmacher, and G. Varghesklash-Based Techniques in the system. Therefore, the prOb?‘g'"ty that it belongsrte
for High-Speed Packet ProcessingDIMACS, 2010, ch. 9. of the Xzfl elements in bucket is =t=t .,
[2] G. H. Gonnet, “Expected length of the longest probe sagaen hash . . e .
code searching,J. ACM vol. 28, no. 2, pp. 289-304, 1981. The element is then reinserted into the system. The praebabil

[3] M. Mitzenmacher, A. Richa, and R. Sitaraman, “The power wb t ity that it is hashed by the uniformly-distributed hash ftioic
random choices: A survey of techniques and resultsHandbook of ; . ol
Randomized Computingol. 1, 2000, pp. 255-312. H into bucket: OUt_ of m buckets ISmt .)

[4] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balandealloca- We can now build the state transition matrix. The bucket

tions,” in ACM STOC 1994, pp. 593-602. o occupancy obviously increases iff there is no departurdewhi
[5] B. Vocking, “How asymmetry helps load balancing,” lBEE FOCS . . o . .
1999, pp. 131-141. there is an arrival, while it decreases iff there is a departu

[6] A. Kirsch and M. Mitzenmacher, “On the performance of mu&ip but no arrival. Forl < j k < h, the transition probability
choice hash tables with moves on deletes and insertgflénton, 2008, from occupancyj to occupancyk is
pp. 1284-1290.

[7] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robustshing:

Cuckoo hashing with a stashSIAM J. on Computingvol. 39, no. 4, i _ i _ i
p. 1543, 2000, i i e = Pr(Xi=kXi, =)

[8] R. Kutzelnigg, “A further analysis of cuckoo hashing lia stash and 1 (_ l) k=j+1,k>1
random graphs of excess’ Submitted for publication2009. m n 7 ’

[9] M. Drmota and R. Kutzelnigg, “A precise analysis of cuckoashing,” = Z.(1-41) k=j—-1,k<h-1,
Submitted for publication2009. (1 _ i) (1 . L) + il =

[10] A. Kirsch and M. Mitzenmacher, “The power of one move: Hagh n m nm

schemes for hardware,” ifEEE Infocom 2008, pp. 565-573.

11] Y. Kanizo, D. Hay, and |. Keslassy, “Optimal fast hashinip IEEE . .o . .
[Infocom 2009 pp)_/2500_2508_ v P o The birth-death Markov chain is clearly irreducible, pos-

[12] M. Mitzenmacher, “The power of two choices in randomizesd Itive, recurrent and aperiodic. Therefore, it convergestso

balancing,” Ph.D. dissertation, Univ. of California at Riey, 1996. stationary distributionr™. In addition, since the state transition
[13] R. B. CooperJntroduction to Queueing Theorgnd ed. North Holland, matrix does not depend an by ergodicity, the distribution of
1981. p(t) converges tar™ as well. 7" satisfies:

[14] L. Kleinrock, Queueing Systems Wiley, 1975.

[15] P. Nain, “Qualitative properties of the Erlang bloagirmodel with)
heterogeneous user requirements,” INRIA, Tech. Rep. 10p8é| 2989. n L.(1-12) n

[16] S. Kumar, J. Turner, and P. Crowley, “Peacock hashingeenistic TE = m ‘o1, k=1,...,h,
and updatable hashing for high performance networking, |BEE n m
Infocom 2008, pp. 556-564.

[17] C. Shannon, E. Aben, K. claffy, and D. E. Andersen, “CAID uith
Anonymized 2008 Internet Trace equinix-chicago 2008-0318900-
20:00 UTC (DITL) (collection),” http://imdc.datcat.orglbection/. h

[18] T. Wang, “Integer hash function,” http://www.concgomet/Ttwang/ ZW}C’ =1.
tech/inthash.htm. =0

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 10
For0 < k < h, occupancyk is

0= . ([
Lo 1y 0 k= j-(l—

k=j+1,k>1,

T <r0n L L) k=j-1k<h-1,
<“wﬂ () = (= 8) k=
= - . —_— . 7r0)
joo J 1 m—1 {Xg}tzo is ergodic (e.g., from Corollary 2.5 in p. 74 of [20]),
n 1 k and therefore its distribution converges to the statiordisy
") K k) (m) tribution ™. By ergodicity, the distribution op(¢) converges
= <k> . (m — 1) T = o to 7™ as well. Furthermore, since the transition rates from any
Z ny (1) j to anyk # j in the continuous-time Markov process are a
—\! m—1 scaled version of the transition probabilities in the di¢er

time Markov chain by a scaling facton, the stationary
with (7) = 0 when! > n by convention. distribution 7™ is the same as in the discrete model.

Lastly, bucketi overflows in a given time-slot when Finally, since we assume instantaneous recirculation of
it contains . elements, no element leaves bucketand an departing elements, a recirculated element is lost whes it i
element arrives to bucket In addition, the probability that hashed into a bucket different from the one it just left, arid t
the element arriving at timeis sent to the overflow list is the bucket is full. In particular, during time intervid, ¢ + 6t], the
sum of all individual bucket overflow probabilities. Thesed, probability that an element is recirculated to a full buckef
by ergodicity, the total overflow probability at time-slot sizeh from another bucket |§"7—;h Pr (X;' = h))'5t+o(5t),

converges to since there arex — h elements in the other buckets, each
recirculating at ratel and then hashed into buckeétwith
n _ n h Iy . h probability L. Since then elements are recirculated at a total
Ysneie=m - |\ (1l=—=) - —)=m,-(1-=]. me. . . ; ’
n rate ofn, and in particular are recirculated into buckett rate

) _ -, the fraction of all such elements that overflow converges
Note that when assuming that elements are chosen un|forrﬂ§y

at random at each time slot among allelements to depart n—h s
and be reinserted in the system, independently of the system 5 = YéeLe
state, then the probability for a given element to be in the m

overflow list converges to/, .« as well; and therefore, the which concludes the prool
expected size of the overflow list {3Z e - 7). W

C. Proof of Theorem 3

B. Proof of Theorem 2 In the fluid model, the departures from buckets of gize 1
) .)) _cause the fractiopy (t) to decrease at rate py(t), since each
As in the discrete model, we build a birth-death chain 1gf the . elements departs at rateand therefore the elements
model the occupancy; of an arbitrary bucket at timet. gepart at a total rate df. Since the buckets of size with a
First, during any time intervel, ¢+ 6t], the probability that departing element have a new size- 1, the departures from
an element in bucketof size X; is chosen to depart i} -6i+ sych buckets increase in tupp_, (¢) at the same rate- py, (t).
o(dt), since each element stays for an exponentially-distribute | jkewise, the arrivals to buckets of size< h, which occur
amount of time of averageand there areX; such elements in at ratech = lim,,_,., 2, cause the fractiop;(t) to decrease

distributed hash function to hash elements into the buckefgme rate.

a chosen element might be reinserted into the same bucket Therefore, we obtain the following differential equation
with probability L. The element thus departs the bucket witlwhich characterizes the birth-death process:
probability 1 — %n Therefore, the departure probability from

bucketi during time interval, ¢ + 6t] is X; - (1 — L) -6t + ch-pe1(t) + (k + Dpra (t)

o(61). m dpi(t) —(ch + k)px(t) for k € [1,h —1],
. dt) pi(t) —ch-po(t) for k =0,
Likewise, during any time intervalt, ¢ + 6¢], an element
g any alt, ¢ + o] ch - pr_1(t) — hpn(t) for k = h,

leaves the other buckets with probability — X7) - 6t+o(6t),

since they contain—X; elements. Therefore, since the singl
choice hashing schemesiNGLE) uses a single uniformly-
distributed hash function to hash elements into the buck

the probability that an element is hashed into bucketring . ar(t) .
time intervallt, ¢ + 5] is X 8t + ol61). ie. a;sume_that for_ank € [0,@], b = O.ISoIvmg

’ > T m : N the differential equation above yields the following baan

Therefore, we obtain the following transition rate Magquations: fork € [1,]

trix for the continuous-time birth-death Markov processt f
1 < j,k < h, the transition rate«Q;l,C from occupancy; to ch-mi2,=k-m°,

Swith 22:0 pr = 1. Assume the system is initially empty, i.e.

e%(o) = 1p—0.

Consider a fixed pointr® of the birth-death process,

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 11

with ZZ:O > = 1. Therefore, Combining departures and arrivals, we obtain the following
e differential equation characterizing the birth-deathosss:
%) (Ch)k S (Ck') Te—1(8)pe—1(t) + (k + 1)pr+1(t)
T = T'WO = hilla dpi(t) _ —(re(t) + k)pr(t) for k € [1,}1—1],
) Z (ch) dt p1(t) — ro(t)po(t) for k=0,
1=0 i rh—1(t)ph—1(t) — hpn(t) for k = h,

corresponding to the stationary distribution in the/A//h/h with ZZ:O pr = 1 andpg(0) = 1x—0.

loss system [14]. In addition, the drop rate in the fluid model Consider a fixed pointr of the birth-death process, i.e.

is assume that for any € [0, h], d’“;t(t) = 0. Then the finite
VoneLlE = TR, vector (mo(t),...,m(t)) is independent of, and therefore

following the well-known Erlang-B formula Finally, since the arrival rater(t) to a bucket of sizek is independent
9 9 Y, f t as well. Denote this constant arrival rate a5 where

the differential equations are exactly those of the ergo C r. < r. Solving the differential equation above yields the

M/M/h/h continuous-time Markov procesg(t) converges foiowing balance equations: for eaghe [1, 4]
to 7> [14], [20]. m ' B

Th—1Tk—1 = kT, 7

D. Proof of Corollary 4 with S°F_ 7, = 1. Therefore,r satisfies

For eachn € N* U {oo}, Y20, 77 = 1 andxj > 0, so for T,

k € [0,h], mp/my is defined and !, J=0"J

- j=0"3 R k!
n n - — 5 1—
”£:%~ kit Z’:HFBW

Do ™/ I

=0
Using Lemma 1, we find that the average bucket occupancy
5(” under is upper-bounded by the average bucket occu-
pancyEX™ under#, wherer is the fixed-point distribution

Therefore, to prove the convergence{af"}, ., which is a
sequence of finite vectors, we only need to prove the poi]E
convergence ofrp /ng to m° /mg°. We get

o n 1 k whenr, = r. This is becaus¢ : X — X is increasing [20],
/T = (k) <ml) andry <r for k € [0, h — 1]. Therefore,
- Loy - (1=5)-- (=) EX"™ <EX™. ®)
- o \Gn) k . :
kKl Am (1-4) Finally, note that without element losses, we would have the
1 k e average occupancy equal to the average number of elements
= (ch)” - (1 +0(1)) = m®/m5" - (1 +o(1)), per bucket, i.e.ch = lim,_, 2. Therefore, the average
which concludes the proof of the convergencersfto 7>°. fraction of lost elements is equal to
Lastly, 725ce = m5° and 1yee = 7 - (1 — £). Since o _ ch—EXT () - EXT™ (;) L EXT
(1—12) =1+ o(1), the convergence ofZc.e 10 YShoLe = ch = = @ =
follows. m © ro(1=7) @ '
é 1_a.7h:1—a+a.h}’7'!rl’

T r
=0 1!

where (a) uses = ach, (b) relies on Equation (8), (c) uses
a standard Erlang-B result [13], [14], and (d) comes from
n(;i?quation (8) withrp, =r. m

E. Proof of Theorem 6

For anyk € [1,h], let p(t) denote the fraction of buckets
of size k. As shown with the single-choice hashing sche
(SINGLE), in the fluid model, the departures from buckets
size k > 1 decrease the fractiopy(¢) at ratek - py(t), and

increase the fractiop,_1 (t) at the same raté - pj(t). F. Proof of Theorem 8

Likewise, the element arrival rate before hashing:fis= As in the proof of Theorem 6, in each subtablave focus

lim,, . 7=, and the hashing rate per elementistherefore on the fixed-point distributionr®, which satisfies
the hashing rate isch. Let r = ach. Since elements can Hkqﬂ
only decide to enter a bucket after hashing into it, we know 24=0J
that their post-hashing arrival rate to any bucket is bodnde = k7!_7

.. h -1 5
from above byr. Of course, the decision of whether to enter Z Hj:o i

!

a bucket after hashing into it might depend on the bucket
occupancy. Therefore, lef(t) denote the average arrival rate A
to the fraction of buckets of sizeat timet, with 0 < r(t) < with 7% < 2— -r. This is because the rate at which the elements
r. These arrivals cause the fractipp(¢) to decrease at rate check a bucket in subtablec 7 is proportional to the ratio of
ri(t) - pr(t), and the fractiom, () to increase at the sametheir probability 3° of picking subtablei by the proportional

rate. size «; of subtablei. In addition, even if the elements check

=0

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL 12

a bucket of sizg, they can decide not to enter it. The rage 0.6/ ——static
at which they enter it depends both on the sjzand on the

subtable:, although it needs to be upper-bounded by the ra
8. .r at which they checked it.

0.2

From the proof of Theorem 6, in each subtable Z, we e o 0 0
know that the average occupancy is upper-bounded by the case "
in which we have equality Fig. 10. Overflow fraction as a function of the number of busket
%
rh = B— T
J ot
APPENDIXB

We now want to find the vectg# that maximizes the average
occupancy of the whole system. Leat g—r) denote the

distribution that maximizes the average occupancy in flbta)
i € Z, and definef : R* — R* with f(z) = EX7@. Then For the case wheré = 1 the overflow fractiony,e e
we want to find reduces toyl e = —2-1-. Denoting the loadc = 2~

m+n—1" m’

EXAMPLES
A. Single-Choice: Dynamic vs. Static

m— 00

. c—L c .
) Bt) , YsinGLE = Treo T — 7 VSINGLE = Ti¢» wherevygsie is the
7 T __ 1 __ c
maXZO‘ f (air St Z o' =1, Zﬁ =L limit overflow fraction as we scale the system while keeping
el el el the load constant te. For instance, for: = 1, we get

f is known to be strictly concave [21]-[23] (the concavity
also follows from Lemma’1). Therefore ~Ysinere = 50%. 9)

i (B) (@) e B) i ® In other words, when scaling the system with the same number
;a d (air =/ ; Tl I ;6 = 1) of elements and buckets, we find that we asymptotically lose

h . i — 1 and (b 50% of the elements.

where (a) uses concavity anEiﬁelIO‘ = 1, and (b) uses Note that in such a scaling, we lose a fractigfy . =
. * = 1, with equality iff = r independent of;, ie. 1-1 _ ;1 : :

%;1510?7; orallier gecagseza gi % o, Finally, 2L = L of the elements. This fraction corresponds for
- ’ 1€ - €L . ’

as in the proof of Theorem 6, the same upper bound

('Brhsfénce to no losses with, = 1; to 1/3 of the elements lost
the average bucket occupancy corresponds to the same Io\\fvv'gr1 m = 2; and 1040% of the elements lost with: = 3; the
bound on the overflow fractiom

overflow fraction then continuing to increase monotonicall
and converge to/sneLe-
Now we compare thdynamicoverflow fractiomyg, s, With
])) } the static overflow fraction, denote@?, . given a bucket
For a given rates, the differential equations are the samgjze of1. First, assuming a load = 1, the overflow fraction
as for the single-choice hashing scherseVGLE) and salisfy s equal to the fraction of unused buckets, because the numbe
the same fixed-point distribution (Theorem 7). of elements is equal to the number of buckets, and buckets can

Let us now compute:. hWhenever an element arrives, tgontain at most one element. Therefore, since each element

is a- (w;'f’)l’l; namely, the product of the probability that it m

is not directly placed in the overflow list by the probabilibat ool = (1 _ 1) M0 remote = €L

the first! — 1 hash functions mapped into full buckets. Then, m

the [trial is successful with probability — 75°. Finally, Thus, the static system has a clearly lower overflow fraction
there wered unsuccessful trials with probability - (wgo)d’l. Fig. 10 illustrates the overflow fraction as a fractionmefin
Therefore, the average number of trials per element is: both the static and dynamic cases. The dynamic case clearly

G. Proof of Theorem 9

d—1 always causes a higher overflow fraction. In addition, both
a= Zl - (W}c;o)lfl (1—7m) | +d - (W;:O)dfl converge fast from below to t.heir limit values. - _
=1 More generally, for any arbitrary load< 1, the limit static
Using the general formula overflow fraction is known [11] to 'berSINGLE =1- 1*570
X Therefore, asc — 0, we asymptotically getysincie = ¢ +
3 kot = L—afH — (1 —a) (K + 1) O(c?), andoginee = £ + O(c?), so for low loads, the large
— (1—2x)? ’ dynamic system has about twice the overflow of the largecstati
we get one.
oco\d oo co\d—1
o = « {1 — ()" — (1 *7”;0) ~d - (mi) +d- (mp2)dt B. lllustration of theMULTIPLE Scheme
— T
, " Fig. 11 illustrates the multiple-choice hashing scheme
N e G (MULTIPLE) with m = 12, h = 1, d = 2 andg = 1. We
L —mpe can see that element; is initially mapped byH; to a full

Finally, this can only hold forx < 1; once we reaclx = 1, bucket. It is therefore mapped again b, and inserted in
we obtainall, 1p.z- M an empty bucket. Then, the element in bucket number 6 is

TECHNICAL REPORT TR10-01, COMNET, TECHNION, ISRAEL

H, (%)

H EE BN N

2 3 4 5 6 7 8 9 10 11 12

3

4 5 6 7 8 10 11 12

3

4 5 6 7 8 10 11 12

Fig. 11. lllustration of themuLTIPLE scheme

deleted. On the next step, elementis directly inserted in an
empty bucket, and therefore does not need a second memory
access.

