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Energy-Constrained Balancing
Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—This paper defines and analyzes a fundamental
energy-constrained balancing problem, in which elements need to
be balanced across resources in order to minimize the increasing
convex cost function associated with the load at each resource.
However, the balancing operation needs to satisfy average and
instantaneous constraints on the energy associated with checking
the current load of the many resources.

In the paper, we first show tight lower and upper bounds on
the solution of the problem depending on the specific system
parameters. Then, we explain how these solutions can be applied
to construct hash tables with optimal variance of the bin size, as
well as energy-efficient Bloom filters.

I. I NTRODUCTION

A. Motivation

Power consumptionof contemporary network devices has
become a major bottleneck in recent years, due to the
continuously-growing demand both in the Internet core and
in large datacenters. The large power consumption imposes
major energy-expensive cooling mechanisms to prevent the
heat from affecting the electronic components. As a result,
energy represents a considerable cost factor in contemporary
networks, and this cost keeps increasing rapidly. For example,
power and cooling costs have already become the second-
largest contributor to the total cost of datacenters [1]. Moreover,
the power and cooling needs are the major reason causing
contemporary datacenter facilities to reach their full capacity,
and therefore to build and migrate to newer facilities. Finally,
renewed environmental concerns are expected to result in
new rules and laws in the near future that impose agreen
networking, i.e. networking with reduced power consumption.

A promising approach to deal with the energy bottleneck
is to deviseenergy-efficient algorithms and data structures.
When studying high-speed data structures implemented in net-
working devices, researchers have traditionally been concerned
about their worst-case performance, as well as parallelismand
pipelining abilities. However, power consumption is essentially
independent of these implementation choices and is mainly
determined by thetotal (or equivalently,average) performance
rather than the worst-case per-operation performance.

This paper takes this approach and focuses on thebalancing
problem—a fundamental problem that lies at the core of many
operations and applications in modern computer networks, such
as routing, switching, packet classification, storage and many
more. The balancing problem is also crucial for devising other
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data structures often used at wire speed, such as hash tables
and Bloom filters. Given its applicability, this problem was
investigated in many contexts and under many assumptions.
Our paper is unique by considering simultaneously both the
energy efficiency of the solution (that is, the total number of
its operations) and its quality under a large class of targeted
utility functions.

We model the balancing problem using theballs and bins
model[2], and more specifically itssequential multiple-choice
variant [3]. In this model,n balls are placed inm bins. Before
placing a ball,d bins are chosen according to some distribution
(e.g., uniformly at random) and the ball is placed in one of these
bins following some rule (for example, in the least occupied
bin). Note that the process of choosing the bins randomly is
equivalent to applyingfully-randomhash functions on the balls.
Moreover, we consider an extension of this model that allows
a small fraction of the balls not to be placed in the bins; these
balls are either disregarded or stored in a dedicated overflow
list, usually implemented in an expensive memory (a similar
model was considered, for example, in [4]). The quality of the
balancing is measured by the load on the bins: The resulting
load at each bin induces a certaincost, which is calculated by
an arbitrary non-decreasing convexblock cost functionφB . Our
goal is naturally to minimize the overall expected cost of the
system.

To deal with the power consumption of the insertion al-
gorithm we impose the following restriction: each operation
can look at up toa < d bins on average, before deciding
where to place the ball. Note that in most reasonable scenarios,
checking the status of a bin (e.g., its occupancy) corresponds
to either a memory access or a probe over the network. Thus,
our restriction can be viewed as imposing anenergy budgeton
the insertion algorithm. Given this energy budget, we aim at
achieving the highest-quality (that is, lowest-cost) balancing.

B. Background

Balancing problems were extensively investigated in the
last decades for various applications involving allocations of
resources [5]. Prime examples are task balancing between many
machines [6], [7], item distribution over several locations [8],
bandwidth allocation in communication channels [5] or within
switches and routers [9], and hash-based data structures [10].

Our paper is most related to thesequential static multiple-
choice balls-and-bins problemdescribed above. This model
was first considered in the seminal work of Azar, Broder,
Karlin, and Upfal [3], and had a large impact on modern
algorithms and data structures (see surveys in [11], [12]).Note
that most of the papers considered themaximum loadof the
system, while our paper considers the entire load distribution.

Energy-constrained hash-schemes were also considered
in [13]. Our paper is different since it deals with a general
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balancing problem and aims to minimize a general cost func-
tion given a known overflow list size, while [13] considered
the size of the overflow list given bounded-size bins.

As described later, one of the applications of the balancing
problem is the construction ofenergy-efficient Bloom-filters,
which also use multiple hash functions. One proposal in this
direction is to use a Blocked Bloom Filter [14] in which
for each element all hash functions are mapped into a single
block in the memory. Although this technique is clearly energy
efficient, it suffers from poor performance (e.g. high false
positive rate) due to animbalancebetween the memory blocks.
Our paper shows a solution to this problem with significantly
better performance.

C. Our Contributions

This paper explores theoptimality regionof the balancing
problem.

We first provide lower bounds on the minimum cost of
each instance of the problem. The lower bound depends on
the energy budgeta, the number of hash functionsd, and
the overflow list size, but does not depend on the block cost
function φB . Our lower bounds hold when all hash functions
have uniform distribution or when their overall distribution is
uniform (in the latter case, the hash function distributions can
be different).

Then, we provide three different schemes that meet the
lower bounds on different energy budgets; we further find the
minimum size of the overflow list that should be provided
in order to achieve optimality. All our analytical models are
compared with simulations showing their accuracy.

We conclude by showing how, with a careful choice of
the block cost functionφB , the balancing problem can be
directly used to optimize two important data structures, which
are widely-used in wire-speed algorithms:

First, we consider ahash table in which random hash
functions map elements to associated buckets, andchaining
is used to solve hash collisions: if two items are mapped to the
same bucket they will be stored in a correspondinglinked list.
Notice that the longer the linked list is, the longer it takesto
query the bucket. Many studies investigated the performance
of such hash tables, focusing mainly on the worst-case query-
time (see [15] for further discussion). In this paper we show
how solving the balancing problem with a quadratic block cost
function can be used in order to devise such hashing schemes
with optimal varianceas well as energy efficiency.

The second application we analyze deals withBloom filters,
which are space-efficient randomized data structures that sup-
port approximate set membership queries [16]. The quality of
a Bloom filter is measured by itsfalse positive rate, i.e. the
probability that a set membership query returnsTRUE, while
the element is not in the set; Bloom filters always havezero
false negative rate. Bloom Filters are often used in network
applications [17] especially when the set is very large, when the
memory is scarce (e.g. high-speed on-chip memory), or when
it should be shared across many nodes in a limited-bandwidth
network [18]. Usually Bloom Filters are not energy-optimized
and do not take into account the structure of their underlying

memory (namely, the memory block size). We will show how to
use the balancing problem with a specific block cost function
in order to build Bloom filters that have low false positive
rate and consume significantly less power than the traditional
architecture.

Paper Organization:The optimal balancing problem is
defined in Section II, followed by our lower bound results
in Section III. The three optimal schemes and their analysis
are presented in Sections IV, V, and VI, while a comparative
study appears in Section VII. Two applications of the balancing
problems, namely chain-based hash tables and Bloom filters,
are presented in Sections VIII and IX, respectively. Finally,
Section X gives concluding remarks.

II. PROBLEM STATEMENT

In this section, we define the notations and settings of the
optimal balancing problem.

More specifically, letB be a set ofm bucketsof unbounded
size (also referred to asbins or blocks) and let E be a set
of n elements(or balls) that should be distributed among the
buckets. In addition, denote byr = n

m
the element-per-bucket

ratio.
Assume also that there exists anoverflow list [4], i.e. a

special bucket of bounded sizeγ·n (namely, at most a fractionγ
of the elements can be placed in the list), which can be used by
the insertion algorithm at any time. For example, dependingon
the application, the overflow list may correspond to a dedicated
memory (e.g. CAM) in hardware-implemented hash-table, or
to the loss ratio when the hashing scheme is allowed to drop
elements.

Elements are inserted into either one of them buckets or the
overflow list, according to some hashing scheme with at most
d hashes per element, which is defined as follows [13]:

Definition 1: A hashing schemeconsists of defining:
(i) d hash-function probability distributions over bucket setB,
used to generate ahash-function setH = {H1, . . . ,Hd} of d
independent random hash functions;
(ii) and aninsertion algorithmthat places each elementx ∈ E
in one of thed buckets{H1(x), . . . ,Hd(x)} or in the overflow
list. The insertion algorithm is anonline algorithm, which
places the elements one after the other with no knowledge of
future elements.

The power consumption of a hashing scheme is measured by
the number ofbucket accessesneeded to store the incoming
elements. We assume that a hashing scheme needs to access
a bucket to obtain any information on it. We do not count
accesses to the overflow list.

We further consider two constraints, which can be seen
as either power- or throughput-constraints depending on the
application. First, we require that theaveragenumber of bucket
accesses per element insertion must be bounded by some
constanta ≥ 0. In addition, notice that theworst-casenumber
of bucket accesses per element insertion is always bounded by
d, because an element does not need to consider any of its
d hash functions more than once. These two constraints are
captured by the following definition:

Definition 2: An 〈a, d, r〉 hashing scheme is a hashing
scheme that inserts all elements with an average (respectively,
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maximum) number of bucket accesses per insertion of at most
a (respectively,d), when given an element per bucket ratior.

We are now ready to define theoptimal balancing problem,
which is the focus of this paper. LetφB : N 7→ R be theblock
cost functionmapping the occupancy of a bucket to its real-
valued cost. We assume thatφB is non-decreasingandconvex.
Our goal is to minimize the expected overall cost:

Definition 3: Let Oj be a random variable that counts the
number of elements in thej-th bucket. Givenγ, a, d and
r, the OPTIMAL BALANCING PROBLEM consists in finding an
〈a, d, r〉 hashing scheme that minimizes

φBAL = lim
m→∞

1

m

m∑

j=1

E (φB (Oj)).

Whenever defined, letφBAL
OPT denote this optimal expected limit

balancing cost.
Note for example that given an identity cost function

φB(x) = x and no overflow list (γ = 0), φBAL
OPT corresponds

to the average load per bucket, which is exactlyr, no matter
what insertion algorithm or hash functions are used.

III. L OWER BOUNDS

A. Uniform Hash Function Distributions

In this section, we show a lower bound on the achievable
value of φBAL

OPT. This is accomplished when the occupancy of
the buckets follows a very particular distributionPLB (i) that
depends on the number of bucketsm, the number of elements
n, the average number of bucket accessesa, and the overflow
fraction γ.

PLB (i) is derived by computing the best-case distribution of
each bucket in an offline setting. In this setting, each memory
access is considered as a distinct element, where initiallyall
the a · n distinct elements are hashed to the buckets. Then,
(a − 1 + γ) · n are removed in a way that minimizes the cost
function φBAL (we end up with exactly(1 − γ) · n elements in
buckets). Since the block cost functionφB is non-decreasing
and convex then the marginal cost is the largest in the most
occupied buckets. Thus, removing the elements greedily, each
time from one of the most occupied buckets, is expected to
minimize the lower bound on the achievable value ofφBAL

OPT.
Interestingly, we get thatPLB (i) does not depend on the block
cost functionφB .

Theorem 1:Let k0 be the largest integer such that

a · r ·
Γ
(
k0,

a·n
m

)

(k0 − 1)!
+ k0 ·

(
1 −

Γ
(
k0 + 1, a·n

m

)

k0!

)
< r (1 − γ) ,

where Γ (s, x) =
∫∞

x
ts−1e−tdt is the upper incomplete

gamma function. Also, lete0 = a·n
m

· Γ
(
k0,

a·n
m

)
/ (k0 − 1)!

andp0 = Γ
(
k0 + 1, a·n

m

)
/ (k0)!. We define the following dis-

tribution PLB (i) that we name as the lower bound distribution:

PLB (i) =





e−
a·n
m

( a·n
m )

i

i! 0 ≤ i < k0

e−
a·n
m

( a·n
m )

k0

k0!
+ e0 + k0 + 1

−k0p0 − p0 − r · (1 − γ)
i = k0

−e0 − k0 + k0p0 + r · (1 − γ) i = k0 + 1
0 otherwise

Under the constraint that all hash functions are uniform, the
optimal expected limit balancing costφBAL

OPT in the OPTIMAL

BALANCING PROBLEM is bounded from below by

φBAL
LB =

k0+1∑

j=0

PLB (i) · φB (i) .

Note thatPLB (i) is independent of the block cost functionφB.
Proof: We derive the lower bound on the balancing by

computing the best-case distribution of each bucket in an offline
setting. We assume that whenever an hash function points to
some bucket, an element is inserted into this bucket, havinga
total ofa·n elements at the end of the process. Then, we remove
exactly (a − 1 + γ) · n elements, which results in(1 − γ) · n
total elements in the buckets. We remove the elements in a way
that minimizes the cost functionφBAL .

In fact, by the convexity of the block cost functionφB,
minimizing the total costφBAL can be done by removing the
(a − 1 + γ) · n elements greedily, each time from one of the
most occupied buckets. This is because the marginal cost is the
largest (due to convexity) in those buckets. In the sequel, we
relate to this process as theremoval process.

We consider every hash value as a distinct element. There-
fore, the number of elements (out of totala·n elements) that are
mapped to bucketj ∈ B follows a Binomial distribution with
a ·n independent experiments and a success probability of1

m
.

Let Qj (i) =

(
an
i

)(
1
m

)i (
1 − 1

m

)an−i
denote the probability

that bucketj storesi elements before the removal process.
Let Mj (i) be the probability that bucketj storesi elements

after the removal process. As we show now,Mj (i) has to
satisfy two constraints. First, since in the removal process ele-
ments are only removed (and not inserted), then the probability
that some bucket stores less thani elements after the removal
process cannot be larger than before the removal process. Thus,
for every i:

i∑

k=0

Mj (k) ≥

i∑

k=0

Qj (k) . (1)

Second, since we end up with exactly(1 − γ) · n elements,
then:

m∑

k=1

(
∞∑

i=0

i · Mk (i)

)
= (1 − γ) · n, (2)

that is, the expected number of elements in all the buckets after
the removal process must be(1 − γ) · n.

As we are looking for a lower bound on the balancing
cost, our goal is to pick the bucket distribution that minimizes
that cost. Consider bucketj and assume that the expected
occupancy after the removal process isE0. Since all hash
functions are uniform, by symmetryE0 must be at mostan

m
.

We construct the following distribution that minimizes the
balancing cost of bucketj. The idea is to keep the original
probabilities for low values of buffer occupancies, until the
point where the expected occupancyE0 is reached. On this
point, we share the remaining probabilities such that we get
the exact expected occupancy. Specifically, letk0 be the largest
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integer such that
k0∑

i=0

i · Qj (i) + k0 ·

(
1 −

k0∑

i=0

Qj (i)

)
< E0.

That is, k0 is the buffer occupancy until which we keep the
original probability. Let e0 =

∑k0

i=0 i · Qj (i) and p0 =∑k0

i=0 Qj (i). In the sequel, we usee0 andp0 to construct the
remainder of the distribution, that is, the probability forbuffer
occupanciesk0 andk0 + 1.

We define the following distributionPj (i):

Pj (i) =





Qj (i) 0 ≤ i < k0

Qj (i) + e0 + k0 + 1
−k0p0 − p0 − E0

i = k0

−e0 − k0 + k0p0 + E0 i = k0 + 1
0 otherwise

Pj (i) satisfies both constraints from Equations (1) and (2).
First, since we kept the original probabilities until buffer occu-
pancyk0, and then shared the remaining probabilities between
k0 andk0 + 1, then for everyi,

∑i
k=0 Pj (k) ≥

∑i
k=0 Qj (k).

Second, letP̃j (i) be the random variable that corresponds to
the distributionPj (i). Then, the expected number of elements
in bucketj is:

E
(
P̃j (i)

)
=

k0+1∑

i=0

i · Pj (i)

= e0 − k0Qj (k0) + k0Pj (k0)

+ (k0 + 1)Pj (k0 + 1)

= E0

Thus,Pj (i) satisfies the two constraints.
We now show that it minimizes the cost function, over

all distributions that satisfy both constraints. LetGj (i) be
a distribution over the buffer occupancies after the removal
process that satisfies both constraints. Leti0 be the smallest
integer such thatGj (i0) 6= Pj (i0); if such i0 does not exist,
we are done sinceGj (i) coincides withPj (i). We will show
that Gj (i0) > Pj (i0). Also, let i1 be the largest integer such
that Gj (i1) > Pj (i1).

We now show that ifi0 and i1 are defined, thenGj (i0) >
Pj (i0), and i1 − i0 ≥ 2. We distinguish between 3 cases:
i0 > k0, i0 = k0 and i0 < k0.

First, in case ofi0 > k0, for every bucket occupancyi ≤ k0,
Gj (i) = Pj (i). Thus,Gj (i) = Pj (i) for every i, as Gj (i)
satisfies the second constraint (Equation (2)), implying that i0
and i1 are not defined.

In casei0 < k0, by the first constraint (Equation (1)) and
the fact thatPj(i) = Qj(i) for every i < i0, we get that
Gj (i0) > Pj (i0). We now show thati1 > k0, implying
that i1 − i0 ≥ 2. Assume on the contrary thati1 ≤ k0,
then Gj (k0 + 1) ≤ Pj (k0 + 1) and for everyi > k0 + 1,
Gj (i) = 0. Let G̃j (i) be the random variable that corresponds
to Gj (i). SinceE{G̃j (i)} = E{P̃j (i)} and for any random
variableX that takes values inN, E(X) =

∑∞

ℓ=1 Pr{X ≥ ℓ},
we get that

k0+1∑

i=1

∞∑

ℓ=i

Gj (ℓ) =

k0+1∑

i=1

∞∑

k=i

Pj (ℓ) .

Thus,
k0+1∑

i=1

[
∞∑

ℓ=i

Gj (ℓ) −
∞∑

ℓ=i

Pj (ℓ)

]
= 0.

By the definition ofPj (i), for every i ≤ k0,
∑∞

ℓ=i Pj (ℓ) =∑∞

ℓ=i Qj (ℓ). So,

k0∑

i=1

[
∞∑

ℓ=i

Gj (ℓ)−

∞∑

ℓ=i

Qj (ℓ)

]
+Gj (k0 + 1)−Pj (k0 + 1) = 0.

The first constraint (Equation (1)) states that
∑i

ℓ=0 Gj (ℓ) ≥∑i
ℓ=0 Qj (ℓ), thus,

∑∞

ℓ=i Gj (ℓ) ≤
∑∞

ℓ=i Qj (ℓ). Also, we
know thatGj (k0 + 1) ≤ Pj (k0 + 1). SinceGj (i0) 6= Qj (i0),
we get that the total sum cannot be zero, that is, at least one
element in the sum is negative (but none is positive). Therefore,
i1 > k0.

The last case to consider is wheni0 = k0. If Gj (i0) <
Pj (i0), then Gj (i) clearly does not satisfy the second con-
straint (Equation (2)) as for everyi < k0, Gj (i0) = Pj (i0).
Therefore,Gj (i0) > Pj (i0). Furthermore, the second con-
straint implies that there must be some integeri1 > k0 + 1
such thatGj (i1) 6= 0. Therefore,i1 − i0 ≥ 2.

We are now ready to define another distribution,G′
j (i),

which also has minimal cost function:

G′

j (i) =





Gj (i) − w i ∈ {i0, i1}
Gj (i) + w i ∈ {i0 + 1, i1 − 1}
Gj (i) otherwise

wherew = min{Gj (i0) − Pj (i0) , Gj (i1) − Pj (i1)}. Notice
thatG′

j (i) is well-defined sincei1−i0 ≥ 2. In addition,w > 0
sinceGj (i0) > Pj (i0) andGj (i1) > Pj (i1). Hence,G′

j (i),
which clearly preserves both constraints, has a cost no larger
thanGj (i). By continuing this process, we end up withPj (i)
no matter whatGj (i) is, asi1 − i0 decreases at each step by
at least 1. This implies thatPj (i) minimizes the cost function.

Finally, since we are interested in thelimit balancing cost
lower boundφBAL

LB , we consider the limit distributionPLB (i)
of the distributionPj (i) that was found to be optimal for
any finite parameters. This is done by using the Poisson ap-
proximation for the binomial distributionQj (i) of the buffers
occupancy before the removal process [13], [19], [20], where
we use the same approximation to find the values ofk0, p0 and
e0. Also, by symmetry we get thatE0 = (1−γ)·n

m
= r ·(1 − γ).

Under the assumptions above, we derive the following ex-
amples:

Example 1:Figure 1 shows the lower bound distribution
PLB (i) for r = n

m
= 8, γ = 0 and a ∈ {1, 1.1, 1.2}. As a

increases, i.e. as the hashing scheme is allowed increasingly
more accesses to perform a better load-balancing, we can see
that the lower-bound requires a balancing that is more and
more efficient. Note that whena = 1, k0 = ∞ becauseγ = 0;
therefore, for that case,P (i) matches the Poisson distribution
with parameterλ = r = 8, as shown using the solid line.

B. Multiple Hash Function Distributions

We consider a setting whereℓ ≤ d different distributions
over the buckets are used by thed hash functions. Denote
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Fig. 1. the lower bound distributionPLB (i) with r = 8 for different values
of a

these distributions byf1, . . . , f ℓ, and assume that distribution
f i is used by a fractionki of the total memory accesses, with∑ℓ

i=1 ki = 1. We now show that Theorem 1 holds also in this
case when

∑ℓ
p=1 kpfp(i) = 1

m
.

Theorem 2:If
∑ℓ

p=1 kpfp(i) = 1
m

then the optimal ex-
pected limit balancing costφBAL

OPT in the OPTIMAL BALANCING

PROBLEM is lower bounded by

φBAL
LB =

k0+1∑

j=0

PLB (i) · φB (i) .

wherePLB (i) is as given in Theorem 1.
Proof: As in the proof of Theorem 1, the number of

elements mapped by the hash functions with distributionfp

to bucketi follows approximately a Poisson distribution with
ratekp ·a ·n ·fp(i). Since the sum of Poisson random variables
is also a Poisson random variable, the total number of elements
mapped to the bucketi follows a Poisson distribution with rate
an
∑l

p=1 kpfp(i).
Thus, the proof of Theorem 1 implies that if for every bucket

i, an
∑ℓ

p=1 kpfp(i) = an
m

, we get the same limit lower bound
balancing costφBAL

LB .

IV. SIMPLE - A SINGLE-CHOICE HASHING SCHEME

We now want to find simple hashing schemes that can
potentially achieve the balancing cost lower boundφBAL

LB , and
therefore the optimal balancing costφBAL

OPT.
We start by analyzing a simplistic hashing scheme, denoted

SIMPLE, that is associated with 2 parametersh and p. This
scheme only uses a single uniformly-distributed hash function
H. Each element is stored in bucketH (x) if it has less thanh
elements. In case there are exactlyh elements, the element is
stored in the bucket with probability ofp and in the overflow
list with probability of 1− p. Otherwise, the element is stored
in the overflow list.

A. Description by Differential Equations

In recent years, several hashing schemes have been modeled
using a deterministic system of differential equations [11], [13],
[21]. We adapt this approach and first describe it shortly.

We consider the elements insertion process as performed
between the timet = 0 andt = 1, that is, at timet = j

n
thej-th

element is inserted. Furthermore, letFi

(
j
n

)
denote the fraction

of buckets in the hash table that store exactlyi elements at time
j
n

, just before elementj is inserted, and~F
(

j
n

)
be the vector

of all Fi

(
j
n

)
’s. Also, let ∆Fi

(
j+1
n

) △
= Fi

(
j+1
n

)
− Fi

(
j
n

)

denote the change in the fraction of buckets that store exactly
i elements between timesj

n
and j+1

n
. Then

E
(
∆Fi

(
j + 1

n

)
|~F
(

j

n

))
=





− 1

m
F0

(
j

n

)
i = 0

1

m

(
Fh−1

(
j

n

)
− p · Fh

(
j

n

))

i = h
1

m
· p · Fh−1

(
j

n

)
i = h + 1

1

m

(
Fi−1

(
j

n

)
− Fi

(
j

n

))

otherwise
(3)

At time t = 0, Fi (0) = 1 if i = 0 and0 otherwise.
The probability that elementj hits a bucket storingi

elements isFi

(
j
n

)
. Thus, in the first equation, the fraction

of empty buckets decreases when elementj reaches an empty
bucket, which occurs with probability ofF0

(
j
n

)
. Likewise, in

the second equality, the fraction of buckets that storeh elements
increases when elementj hits a bucket storingh− 1 elements
(with probability ofFh−1

(
j
n

)
), and decreases with probability

of p when the element hits a buckets storingh elements (with
total probability ofp·Fh

(
j
n

)
). In the third equality, the fraction

of buckets storingh+1 elements increases with probability ofq
if elementj hits a bucket storingh elements. Last, in all other
cases, the fraction of buckets storingi elements increases if
elementj hits a bucket storingi − 1 elements, and decreases
if it hits a bucket storingi elements. Any such increment or
decrement is by a value of1

m
, thus, all equations are multiplied

by 1
m

.
By dividing both sides of the equation by1

n
and considering

the fact thatn is large, so that the values of∆Fi

(
j+1
n

)
are

comparatively very small, we can use thefluid limit approxi-
mation, which is often very accurate [21]:

dfi(t)
dt

=





− n
m

f0 (t) i = 0

n
m

(fi−1 (t) − p · fi (t)) i = h

p · n
m

fh−1 (t) i = h + 1

n
m

(fi−1 (t) − fi (t)) otherwise

More formally, let~f (t)
△
= (f1 (t) , . . . , fd (t)) be the solution

of the above set of linear differential equations when assuming
f0(0) = 1 and fi(0) = 0 for each i 6= 0. Then, by Kurtz
theorems [22]–[24], the probability that~f deviates from~F by
more than some constantε decays exponentially as a function
of n and ε2 [21]. For further intuition behind this statement,
refer to [21] and [25, Chapter 3.4].
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B. Optimality of theSIMPLE Scheme

Theorem 3:Consider theSIMPLE hashing scheme withm
buckets andn elements, and use the notations ofk0, p0, e0

andP from Theorem 1. Then for any value ofγ, the SIMPLE

scheme solves theOPTIMAL BALANCING PROBLEM for a = 1
whenever it satisfies the two following conditions:
(i) h = k0;
(ii) p is given by the solution of the following equation:

P (k0) =
e−p·r

(1 − p)
h
−

e−r

(1 − p)
h

h−1∑

i=0

(r · (1 − p))
i

i!
.

Proof: We solve the differential equations one by one,
substituting the result of the equation fordfi(t)

dt
into the equation

for dfi+1(t)
dt

. The first equation depends only onf0 (t), and we
get immediately thatf0 (t) = e−

n
m

t, or f0 = e−r·t. Each
equation for dfi(t)

dt
, where i ≤ h, depends only onfi−1 (t)

andfi (t), and we get that fori < h, fi (t) = 1
i! (r · t)

i
e−r·t.

For fh (t), we get that for0 ≤ p < 1

fh (t) =
e−p·r·t

(1 − p)
h
−

e−r·t

(1 − p)
h

h−1∑

i=0

(r · t · (1 − p))
i

i!

and forp = 1,

fh (t) =
1

h!
(r · t)

h
e−r·t.

We also use the fact that
∑h+1

i=0 fi = 1 to getfh+1 (t).
By substitutingt = 1 in fi (t), for i < h, we find that

fi (1) = 1
i! (r)

i
e−r. We note that it is also the probability that

an arbitrary bucket storesi elements, and that it is equal to
PLB (i), thus mimicking the distribution ofPLB (i) for i < h.

We are left to show that there exists such ap ∈ [0, 1]
so that using its value forfh (1) will result in the exact
expression forPLB (h). When substitutingp = 0, we get
that fh (1) = 1 − e−r

∑h−1
i=0

ri

i! which is clearly larger than
PLB (h) (it is equal whenPLB (h + 1) = 0). On the other hand,
when substitutingp = 1, we get thatfh (1) = 1

h! (r)
h
e−r

which is lower thanPLB (h). Thus, using the Intermediate
Value Theorem (all functions are clearly continuous), there
exists somep ∈ [0, 1] such thatfh (1) = PLB (h). Since∑h+1

i=0 fi (1) =
∑h+1

i=0 PLB (i) = 1, we get also thatfh+1 (1) =
PLB (h + 1).

We finish with the following simple example:
Example 2:When γ = 0, k0 = ∞, therefore theSIMPLE

scheme performs with infinite buckets, and there is no meaning
for p.

We next verify the accuracy of our model by simulations.
Figure 2 shows the evolution over time off0, . . . , f3 where
r = 2.5, p = 0.5 and h = 2, comparing the model with
simulated values. In the simulation we usedn = 25, 000, and
so m = 10, 000.

V. GREEDY - A M ULTIPLE-CHOICE HASHING SCHEME

We now introduce theGREEDY scheme which is also
associated with two parametersh and p. In the GREEDY

scheme, we use an ordered set ofd hash functionsH =
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0
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Fig. 2. simulation vs. analytic model forSIMPLE with r = 2.5, p = 0.5 and
h = 2

{H1, . . . ,Hd}, such that all functions are independent and
uniformly distributed. Upon inserting an elementx, the scheme
successively reads the bucketsH1(x),H2(x), . . . ,Hd(x), and
placesx in the first bucket that satisfies one of the following
two conditions:(i) the bucket stores less thanh elements, or,
(ii) the bucket stores exactlyh elements, andx is inserted
with probability p. If the insertion algorithm fails to store
the element in all thed buckets,x is stored in the overflow
list. Last, to keep an average number of memory accesses per
element of at mosta, the process stops when a total ofa · n
memory accesses has been reached; the remaining elements are
placed in the overflow list.

A. Description by Differential Equations

We start analyzing theGREEDY scheme by first assuming
that there is no constraint on the total number of memory
accesses (that is,a = ∞) and characterizing the dynamics
of the scheme as a system of differential equations.

As before, letfi (t) represent the fraction of buckets storing
i elements at timet, then

dfi (t)

dt
=





− n
m

· f0 · (t) g (t) i = 0

n
m

· (fh−1 (t) − p · fh (t)) g (t) i = h

n
m

· p · fh (t) g (t) i = h + 1

n
m

· (fi−1 (t) − fi (t)) g (t) otherwise
(4)

where

g (t) =

d−1∑

k=0

((1 − p) · fh (t) + fh+1 (t))
k

=
1 − ((1 − p) · fh (t) + fh+1 (t))

d

1 − ((1 − p) · fh (t) + fh+1 (t))
,

with f0(0) = 1 and fi(0) = 0 for each i 6= 0 as an initial
condition. Comparing with the differential equations of the
SIMPLE scheme (Equation (3)), there is an additional factor of
g (t). For instance, in the first equation,f0 (t) is replaced by
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f0 (t) g (t) =
∑d−1

k=0

[
((1 − p) · fh (t) + fh+1 (t))

k
· f0 (t)

]
,

which represents the sum of the probabilities of mapping to
an empty bucket after being mappedk = 0, 1, . . . , d− 1 times
to a bucket in which the element could not be stored; in other
words, each bucket either already hadh+1 elements, or hadh
element but with probability of1 − p the element was denied
insertion.

We are also interested in the average number of memory
accesses performed during this process. Letfa

GREEDY (t) denote
the cumulative number of memory accesses performed by time
t, normalized byn. It can be modeled as

dfa
GREEDY (t)

dt
=

d−1∑

k=1

k ·(fn (t))k−1 (1 − fn (t))+d ·(fn (t))d−1
, (5)

where
fn (t) = ((1 − p) · fh (t) + fh+1 (t)) ;

andfa
GREEDY (0) = 0 as an initial condition.

The differential equation reflects the fact that at a given
time t, the cumulative number of memory accesses increases
by 1 ≤ k < d memory accesses whenever in the firstk − 1
memory accesses an element is not stored and in the next one
the element is stored. It also increases byd memory accesses
whenever in the firstd− 1 memory accesses an element is not
stored, independently of the bucket state in thed-th memory
access.

B. Optimality of theGREEDY Scheme

We now want to show the optimality of theGREEDY scheme
over a range of values ofa andγ. In general, the above differ-
ential equations are hard to solve analytically, and thus cannot
help in showing optimality — even though they can of course
be solved numerically and yield a numerical approximation of
the expected balancing cost.

Instead, to show the optimality of theGREEDY scheme,
we reduce it to the optimality of theSIMPLE scheme. Since
both theSIMPLE and GREEDY schemes use the same uniform
distribution, a new attempt to insert an element after an unsuc-
cessful previous attempt in theGREEDY scheme is equivalent to
creating a new element in theSIMPLE scheme and then trying
to insert it. In other words, the number of elements successfully
inserted by theGREEDY scheme after consideringn elements
and using a total ofa · n memory accesses is the same as
the number of elements successfully inserted by theSIMPLE

scheme after consideringa · n elements.
Theorem 4:Consider theGREEDY hashing scheme withm

buckets andn elements, and use the notations ofk0, p0, e0 and
P from Theorem 1. TheGREEDY scheme solves theOPTIMAL

BALANCING PROBLEM whenever it satisfies the three following
conditions:
(i) h = k0;
(ii) t0 is such thatfa

GREEDY (t0) = a, andt0 ≤ 1;
(iii) p is given by the solution of the following equation:

P (k0) =
e−p·a·r

(1 − p)
h
−

e−a·r

(1 − p)
h

h−1∑

i=0

(a · r · (1 − p))
i

i!
.

Moreover, the optimality region, that is, the minimumγ needed
to achieve optimality of theGREEDY hashing scheme, is given

by the overflow list of sizeγ · n that results int0 = 1, that is,
fa

GREEDY (1) = a.
Proof: We compare theGREEDY scheme with theSIMPLE

scheme. In theGREEDY scheme we continually try to insert
each element, until either it is placed or alld functions are
used.

Note that all hash functions have the same (uniform) distribu-
tion over all buckets. Thus, for everyi, fi (t) are independent of
the exact elements that are hashed. Therefore, applyingd1 ≤ d
hash functions on the same element is equivalent to applying
a single hash function ond1 elements. This implies we can
use the results of theSIMPLE scheme, in which a total ofa ·n
elements are considered and therefore a total ofa · n memory
accesses are performed.

Given an average number of memory accessesa, we set
h = k0, and let GREEDY operate untila is reached, that is,
until time t0 ≤ 1 such thatfa

GREEDY (t0) = a. We apply the
SIMPLE dynamics to getfi (t0), and get that

fi(t0) =





1
i! (a · r)

i
e−a·r i < h

e−p·a·r

(1−p)h − e−a·r

(1−p)h

∑h−1
j=0

(a·r·(1−p))j

j! i = h

1 −
∑h−1

j=0
1
j! (a · r)

j
e−a·r−

e−p·a·r

(1−p)h + e−a·r

(1−p)h

∑h−1
j=0

(a·r·(1−p))j

j!

i = h + 1

(6)
Using the same consideration as in the proof of Theorem 3,
we find that there is somep ∈ [0, 1] such thatfi (t0) is exactly
PLB (i), for everyi.

However, note that theGREEDY scheme cannot bring to
any desired number of memory accessesa, and is limited to
fa

GREEDY (1). Since fa
GREEDY (t) increases ask0 decreases, and

k0 decreases asγ increases, then the minimumγ such that
the GREEDY scheme achieves optimality, for a givena andr,
is given by γ0 such thatfa

GREEDY (1) = a. Thus, we get the
optimality region of this scheme.

VI. T HE MULTI -LEVEL HASH TABLE (MHT) SCHEME

The multi-level hash table (MHT) scheme conceptually con-
sists ofd separate subtablesT1, . . . , Td, whereTi hasαi · n
buckets, andd associated hash functionsH1, . . . ,Hd, defined
such thatHi never returns values of bucket indices outsideTi.

Using theMHT scheme, elementx is placed in the smallest
i that satisfies one of the following two conditions:(i) the
bucketHi(x) stores less thanh elements, or,(ii) the bucket
Hi(x) stores exactlyh elements, and elementx is then inserted
with probability p. If the insertion algorithm fails to store the
element in all thed buckets,x is placed in the overflow list.
Since that smallesti with available space is used, the memory
accesses for each elementx are sequential, starting fromH1(x)
until a place is found or alld hash functions are used (and the
element is stored in the overflow list).

A. Description by Differential Equations

The system of differential equations that characterizes the
dynamics ofMHT is influenced by the static partitioning of
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the memory among subtables, which introduces extra variables.
Specifically, letfi,j (t) be the fraction of buckets in subtable
Tj that store exactlyi elements. Then:

dfi,j (t)

dt
=





− n
αjm

f0,j (t) gj (t) i = 0

n
αjm

(fh−1,j (t) − p · fh,j (t)) gj (t) i = h

n
αjm

· p · fh,j (t) gj (t) i = h + 1

n
αjm

(fi−1,j (t) − fi,j (t)) gj (t) otherwise
(7)

where

gj (t) =

j−1∏

k=1

((1 − p) fh,k (t) + fh+1,k (t))

represents the probability that all the insertion attemptsin
subtablesT1, · · · , Tj−1 do not result in storing the element, and
thus thatMHT will attempt to insert the element in subtableTj .
By conventiong1 (t) = 1. The initial conditions arefi,j (0) = 1
for i = 0 andfi,j (0) = 0 otherwise.

As in theGREEDY scheme, letfa
MHT (t) denote the cumulative

number of memory accesses done by timet, normalized byn.
Then the following differential equation reflects the dynamics
of fa

MHT (t):

dfa
MHT (t)

dt
=

d−1∑

k=1

k · gk (t) (1 − (1 − p) fh,k (t) − fh+1,k (t)) +

d · gd (t) , (8)

with fa
MHT (0) = 0.

B. Reduction to theSIMPLE Scheme

In the last section we presented the description of the
dynamics of theMHT scheme using a system of differential
equations; however, this system is generally difficult to solve.
This can be circumvented by relying on our results from the
SIMPLE scheme.

Our approach relies on the fact thateach subtable follows a
local SIMPLE scheme. More specifically, all elements attempt-
ing to access some subtableTj only access a single uniformly-
distributed bucket inTj , and if this bucket is full, do not
consider any other bucket inTj . Thus, within each subtableTj ,
MHT behaves likeSIMPLE, with a number of initial elements
that depends on previous subtables.

More formally, letf SIMPLE
i (t) be the fraction of buckets that

store exactlyi elements at timet in the SIMPLE scheme. As
in the proof of Theorem 3, it is given by:

f SIMPLE
i (t) =





1
i! (r · t)

i
e−r·t i < h

e−p·r·t

(1−p)h − e−r·t

(1−p)h

∑h−1
j=0

(r·t·(1−p))j

j! i = h

1 −
∑h−1

j=0
1
j! (r · t)

j
e−r·t−

e−p·r·t

(1−p)h + e−r·t

(1−p)h

∑h−1
j=0

(r·t·(1−p))j

j!

i = h + 1

(9)

Also, let γt
SIMPLE (t) be the fraction of the elements that are not

stored in the buckets out of all the elements that arrived up to
time t. Given all f SIMPLE

i (t)’s, it is simply the complementary
of the expectation of the number of elements in the buckets up
to time t normalized by the total number of elements arrived
up to this time:

γt
SIMPLE (t) = 1 −

m

nt
·

h+1∑

i=0

if SIMPLE
i (t) . (10)

Let nj (t) denote the number of elements that are considered
in subtableTj up to time t, and γt

j (t) denote the fraction
of these elements that are not placed in subtableTj . We
will express these usingf SIMPLE

i andγt
SIMPLE, the corresponding

functions in theSIMPLE scheme.
Note that as shown in Equations (9) and (10),f SIMPLE

i (t)
and γt

SIMPLE (t) only depend on the timet, the number of
elementsn, the number of bucketsm, the bucket sizeh and the
probability p; thus, we refer to them asf SIMPLE

i (t,m, n, h, p)
and γt

SIMPLE (t,m, n, h, p). We obtain the following theorem,
which is valid for any arbitrary partition of the subtables.

Theorem 5:Consider an〈a, d, r〉 MHT hashing scheme in
which for each1 ≤ j ≤ d, subtableTj hasαj · m buckets,
with

∑
αj = 1. Then, as long asfa

MHT (t) ≤ a, the functions
nj(t), γt

j (t) andfi,j (t) satisfy

nj (t) = n · t ·

j−1∏

k=1

γt
k (t) , (11)

γt
j (t) = γt

SIMPLE (1, αjm,nj (t) , h, p) , (12)

fi,j (t) = f SIMPLE
i (1, αjm,nj (t) , h, p) . (13)

Proof: By the definition of theMHT scheme, it follows
immediately thatnj (t) = γt

j−1 (t) nj−1 (t); since n1 (t) =
n · t (all elements go through the first subtable), we get that
nj (t) = n · t ·

∏j−1
k=1 γt

k (t).
Equations (12) and (13) are immediately derived by setting

the right parameters for eachSIMPLE scheme within each
subtableTj ; namely, its total number of buckets isαj ·m and
the number of elements by timet is nj (t).

C. Optimality of theMHT Scheme

We now show thatMHT is optimal on a given range ofa
andγ.

Theorem 6:Consider an〈a, d, r〉 MHT hashing scheme in
which each subtableTj hasαj · m buckets, with

∑
αj = 1,

and use the notations ofk0, p0, e0 and P from Theorem 1.
Further, letp (a) = γt

SIMPLE (1,m, a · n, h, p) denote the over-
flow fraction of theSIMPLE scheme witha ·n elements. Then,
the 〈a, d, r〉 MHT scheme solves theOPTIMAL BALANCING

PROBLEM whenever it satisfies the following four conditions:
(i) h = k0;
(ii) t0 = a

(
1−p(a)

1−p(a)d

)
, andt0 ≤ 1;

(iii) p is given by the solution of the following equation:

P (k0) =
e−p·a·r

(1 − p)
h
−

e−a·r

(1 − p)
h

h−1∑

i=0

(a · r · (1 − p))
i

i!
;
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(iv) the subtable sizesαj · m follow a geometric decrease of
factor p(a):

αj =

(
1 − p (a)

1 − p (a)
d

)
p (a)

j−1
. (14)

Moreover, the optimality region (the minimumγ needed to
achieve optimality of theMHT hashing scheme) is given by
the overflow list of sizeγ · n that results int0 = 1, that is,
fa

MHT (1) = a. Furthermore, if all four conditions are met then
all buckets have an identical occupancy distribution.

Proof: Given the average number of memory accessesa,
we seth = k0. We would like to letMHT operate untila is
reached, that is, until timet0 ≤ 1 such thatfa

MHT (t0) = a.
However,fa

MHT (t) depends on the subtables sizesαj ’s.
Up to timet0, in which we aim to exhaust alla ·n memory

accesses, we used exactlynj (t0) times the hash function
Hj (x) in subtableTj . Since we aim at an optimal balancing
cost, the necessary condition on the distributions of the hash
functions, given in Theorem 2, immediately implies that

αj =
nj (t0)

n · a
. (15)

By substituting the expression forαj in (11), we get:

γt
j (t0) = γt

SIMPLE

(
1,

nj (t0)

n · a
m, nj (t) , h, p

)

= 1 −
nj(t0)

n·a
m

nj (t)
·

h+1∑

i=0

if SIMPLE
i

(
1,

nj (t0)

n · a
m, nj (t) , h, p

)

= 1 −
m

n · a
·

h+1∑

i=0

if SIMPLE
i (1,m, a · n, h, p)

= γt
SIMPLE (1,m, a · n, h, p)

= p (a)

It is important to notice that, quite surprisingly,γt
j (t0) does

not depend onj.
We now obtain the timet0 by observing thatnj (t0) = n ·

t0 · p (a)
j−1, thus αj = t0·p(a)j−1

a
. Since

∑d
k=1 αk = 1, we

get
∑d

k=1
t0pj−1

a
= 1, and thereforet0 is given by the sum of

a geometric series:

t0 = a

(
1 − p (a)

1 − p (a)
d

)
. (16)

This, in turn, immediately gives us the claimed memory parti-
tioning αj .

We now turn to show that all bucket distributions are identi-
cal. In subtableTj , the total number of elements considered
is nj (t0) = n · t0 · p (a)

j−1, while there arem · αj =

m ·
(

1−p(a)

1−p(a)d

)
p (a)

j−1 buckets. Hence, by Theorem 5, we get
that the fraction of buckets in subtableTj that store exactlyi
elementsfi,j (t) is given by

f SIMPLE
i

(
1,m ·

(
1 − p (a)

1 − p (a)
d

)
p (a)

j−1
, n · t0 · p (a)

j−1
, h, p

)
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Fig. 3. Optimality regions ofGREEDY and MHT with r = 8 andd = 3
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Fig. 4. Optimality regions ofGREEDY and MHT with a = 1.2 andd = 3

and by substitutingt0 = a
(

1−p(a)

1−p(a)d

)
, we get thatfi,j (t) =

f SIMPLE
i (1,m, a · n, h, p).
Finally, as in the proof of Theorem 4, theMHT scheme

cannot bring to any desired average number of memory ac-
cessesa, but is limited tofa

MHT (1). Sincefa
MHT (t) increases

as k0 decreases, andk0 decreases asγ increases, then the
minimum γ such that theMHT scheme achieves optimality,
for a givena and r, is given byγ0 such thatfa

MHT (1) = a.

Since t0 = a
(

1−p(a)

1−p(a)d

)
, we seekγ such thata = 1−p(a)d

1−p(a) .
Thus, we get the optimality region of this scheme.

VII. C OMPARATIVE EVALUATION

Figure 3 shows the optimality region ofGREEDY and MHT

with r = 8 and d = 3, that is, for each value of the average
number of memory accessesa, it shows the minimum value of
γ that suffices to solve theOPTIMAL BALANCING PROBLEM.
We can see that for a CAM size of1%, GREEDY achieves
optimality for a ≈ 1.1. We will show in Section IX that the
optimal solution for such parameters dramatically reducesthe
balancing cost compared toa = 1 with no CAM.

On the other hand, Figure 4 shows the optimality region of
GREEDY andMHT with a = 1.2 andd = 3 for different values
of r. We can see thatMHT scales better to higher loads.

VIII. V ARIANCE OF THE QUERY-TIME IN CHAIN -BASED

HASH-TABLES

The balancing problem can be directly used in order to
construct an energy-constrained hashing scheme with optimal
variance over its query time. In such a scheme, the time it
takes to complete alookup operation directly depends on the
occupancy of the buckets. For example, suppose that there is
only one hash-function, and some elementy is mapped to a
bucketh(y); in order to queryy we need to go over all elements
of h(y) in casey is not in the table, or on average over half
of them in casey is in the hash-table.

Note that theaverage loadis simple to obtain and equals
(1−γ)n

m
. We next show how to find hashing schemes with
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minimal variance Var(O). This is simply done by defining the
appropriate block cost function:

φB(i) = i2 −

(
(1 − γ) n

m

)2

.

Thus,

φBAL = lim
m→∞

1

m

m∑

j=1

E

(
O2

j −

(
(1 − γ) n

m

)2
)

= lim
m→∞

1

m

m∑

j=1

E(O2
j ) − E(Oj)

2

= lim
m→∞

1

m

m∑

j=1

Var(Oj)

= Var(O),

whereOj is the random variable representing the occupancy
of bucket j. By symmetry, all variablesOj have the same
distribution and thus the same variance, which is denoted by
Var(O).

This immediately implies that the schemes we presented can
be used in order to build a hash-table with optimal variance.

IX. ENERGY-EFFICIENT BLOOM FILTERS

A. Architecture

The standard Bloom filter is not energy efficient when wide
memory words can be read and written. If such a memory is
used, there are potentiallyk memory words that have to be read
for an insertion (and query operation), since it is most likely
that thek hash functions point to distinct memory words (when
the filter is sufficiently large). To avoid this problem, ablocked
Bloom filter [14] first picks a single memory word where all
hash functions point to the bits within this memory word, thus,
only one memory word is read (or written).

The blocked Bloom filter mechanism corresponds to the
SIMPLE scheme withγ = 0 and block cost functionφB (i) =(
1 −

(
1 − 1

B

)ki
)B

≈
(
1 − e−

ki
B

)k

, whereB is the size of the
memory word (in bits) andk is the number of hash functions
used. However, although theSIMPLE scheme is optimal, its
average number of memory accesses is 1, thus, it achieves
poor balancing of the elements that results in a poor false
positive rate. In this section we suggest to use the optimal
online hashing schemes to achieve a better balancing between
the buckets, and therefore, better false positive rate.

Figure 5 illustrates an insertion of a new element into a
Bloom filter based on theMHT hashing scheme withh = 2
and some arbitraryp. The memory consists of 3 subtables of
decreasing size, the first one with 4 memory words, the second
with 2 memory words and the last one with one memory word.
Each memory word is of size 6 bits, where 2 bits are used as a
counter that counts the number of elements already inserted
into the memory word. When elementx arrives, it is first
hashed to the memory word at address 10 in subtableT1. The
counter at this memory word indicates that 3 elements have
already been inserted there (‘11’ in binary basis), therefore the
schemes tries to insert the element into subtableT2. In this
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Fig. 5. Illustration of a Bloom filter implementation usingMHT.

subtable, the element is hashed to address 01, where there
are 2 elements (the counter indicates ‘10’ in binary basis).
At this point, the element is inserted to this memory word
in probability ofp, which is indeed the case in this illustration.
The dashed arrow to subtableT3 illustrates a hash function that
is not actually performed.

B. Implementation Considerations

Assuming memory words of sizeB bits and bits-per-element
ratio β, the number of elements per bucketr is given by
B/β. Using the optimal online hashing schemes to implement
a Bloom filter requires saving someb = ⌈log2 (k0 + 2)⌉
bits in every memory word to count the elements hashed
into each one. Thus, the block cost function is given by

φB (i) =
(
1 − e−

ki
B−b

)k

.
In the standard Bloom filter, the optimal false positive rateis

archived when usingk = r · ln 2 hash functions [17]. Although
this may not be the best choice when using large memory words
as one has to take into consideration the distribution of the
number of elements in each bucket, we will use the samek for
simplicity.

Hashing schemes that read more than one memory word on
a query operation increase the false positive rate, becausea
false positive may result from a query operation on each one
of the buckets. Thus, since the probability of false positive in
every memory word is relatively very small, then the overall
false positive probability, i.e. the false positive rate, is given
by
∑d

j=1 Pj · FPRj , wherePj is the probability that a query
operation results in at leastj memory words, and FPRj is the
false positive probability of thej-th memory word read.

C. Comparative Analysis

Figure 6 compares the false positive rate for different values
of bits-per-element ratios with memory word sizeB = 256.
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Fig. 6. False positive rate of different Bloom filter schemes with memory
word size of 256 bits.SIMPLE and MHT perform withγ = 0.49%.

The MHT hashing scheme is used witha = 1.2 andd = 3. All
these parameters let us compute the minimum overflow list size
γ · n such that the scheme is optimal. As Figure 4 shows,γ is
independent of the elements-per-bucket ratior, and therefore,
independent of the bits-per-element ratio, so the overflow list
size used isγ = 0.49%. For comparison, theSIMPLE hashing
scheme is used witha = 1 and the same overflow list size,
that is,γ = 0.49%.

As Figure 6 indicates, theSIMPLE hashing scheme performs
slightly better than the blocked Bloom filter scheme. However,
the MHT scheme performs worse for low values of bits-per-
element ratio. This is due to the need to check multiple memory
words (up tod) on a query operation. But for larger values of
bits-per-element ratios, theMHT performs better by two orders
of magnitude, and only one order of magnitude worse then the
standard Bloom filter, which uses a memory-inefficienta ≈ k.

For example, for a bit-per-element ratio of 24,k = 17
hash functions are used, introducing up to17 memory-read
operations in the standard Bloom filter, which can clearly
present memory-throughput and power-consumption issues.
This problem worsens for a bit-per-element ratio of 40, where
k = 28 hash functions are used. In this case, the false positive
rate of the standard Bloom filter is6.1 · 10−9 while the
corresponding false positive rate ofMHT is 1.4 · 10−7 and of
the blocked Bloom filter is2.3 · 10−5.

X. CONCLUSION

In this paper we presented the balancing problem, which
deals simultaneously with several system parameters: the
worst-case insertion time, the energy budget, the overflow list
size, and the targeted utility functions. Furthermore, depending
on the specific given parameters, we showed how to solve this
problem optimally, by applying a simple approach (using only
a single hash function), then a greedy approach, and last by
building the hash table in hierarchical manner as in themutli-
level hash table.

Since the cost function is very general, the balancing prob-
lem can be used in many contexts. We first showed how it
can be used in order to find optimal hashing schemes that take
into the account the variance of the query-time and not just

its expected or worst-case time. Then, we showed that when
setting the cost function to correspond to thefalse positive rate
of a Bloom Filter, the balancing problem can be used to devise
energy-efficient Bloom Filter architectures.

A promising line of future research is to find other applica-
tions for the balancing problem. For example, we believe that
the balancing problem can prove very effective for distributed
storage systems and datacenters, where load balancing plays a
major role.
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