TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 1

Energy-Constrained Balancing

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—This paper defines and analyzes a fundamental data structures often used at wire speed, such as hash tables
energy-constrained balancing problem, in which elements need to and Bloom filters. Given its applicability, this problem was

be balanced across resources in or_der to minimize the increasing investigated in many contexts and under many assumptions.
convex cost function associated with the load at each resource

However, the balancing operation needs to satisfy average and.our paper is unique by considering simultaneously both the

instantaneous constraints on the energy associated with checkjn €nergy efficiency of the solution (that is, the total numbgr o
the current load of the many resources. its operations) and its quality under a large class of tedjet
In the paper, we first show tight lower and upper bounds on ytjlity functions.

the solution of the problem depending on the specific system \ye model the balancing problem using thalls and bins

parameters. Then, we explain how these solutions can be applied dell2 d ifically it tial ltiole-choi

to construct hash tables with optimal variance of the bin size, as moae [2], an more specinically litsequential multiple-choice

well as energy-efficient Bloom filters. variant [3]. In this modely balls are placed im: bins. Before
placing a balld bins are chosen according to some distribution
(e.g., uniformly at random) and the ball is placed in one efth

. INTRODUCTION bins following some rule (for example, in the least occupied

A. Motivation bin). Note that the process of choosing the bins randomly is

Power consumptiorof contemporary network devices hagduivalent to applyindully-randomhash functions on the balls.
become a major bottleneck in recent years, due to th#oreover, we consider an extension of this model that allows
continuously-growing demand both in the Internet core arsgsmall fraction of the balls not to be placed in the bins; ¢hes
in large datacenters. The large power consumption imp(,g@gls are either disregarded or stored in a dedicated owerflo
major energy-expensive cooling mechanisms to prevent ti# usually implemented in an expensive memory (a similar
heat from affecting the electronic components. As a resuodel was considered, for example, in [4]). The quality & th
energy represents a considerable cost factor in contenrgord@lancing is measured by the load on the bins: The resulting
networks and this cost keeps increasing rapidly. For exampl®ad at each bin induces a certaiost which is calculated by
power and cooling costs have already become the secopf-arbitrary non-decreasing conveock cost functioz. Our
largest contributor to the total cost of datacenters [1]rédwer, 90al is naturally to minimize the overall expected cost & th
the power and cooling needs are the major reason caus®Ygtem.
contemporary datacenter facilities to reach their full azity, o deal with the power consumption of the insertion al-
and therefore to build and migrate to newer facilities. fjpa 9orithm we impose the following restriction: each openatio
renewed environmental concerns are expected to resultCR 100k at up toa < d bins on average before deciding
new rules and laws in the near future that imposegreen where to place the ball. Note that in most reasonable samari
networking i.e. networking with reduced power consumptionchecking the status of a bin (e.g., its occupancy) corredpon

A promising approach to deal with the energy bottlenedR either a memory access or a probe over the network. Thus,
is to deviseenergy-efficient algorithms and data structuresQUr restriction can be viewed as imposingearergy budgeon
When studying high-speed data structures implemented in &€ insertion algorithm. Given this energy budget, we aim at
working devices, researchers have traditionally beenemed achieving the highest-quality (that is, lowest-cost) baiag.
about their worst-case performance, as well as paralledisch
pipelining abilities. However, power consumption is esigdly B Background
independent of these implementation choices and is mainlyBalancing problems were extensively investigated in the
determined by théotal (or equivalentlyaveragg performance last decades for various applications involving alloqagiof
rather than the worst-case per-operation performance. resources [5]. Prime examples are task balancing betweey ma

This paper takes this approach and focuses om#tencing machines [6], [7], item distribution over several locagda],
problem—a fundamental problem that lies at the core of mariyandwidth allocation in communication channels [5] or with
operations and applications in modern computer netwotks s switches and routers [9], and hash-based data structudgs [1
as routing, switching, packet classification, storage amehym Our paper is most related to tisequential static multiple-

more. The balancing problem is also crucial for devisingeothchoice balls-and-bins problerdescribed above. This model
was first considered in the seminal work of Azar, Broder,

This work was partly supported by the European Research cldbtarting Karlin. and Upfal [3] and had a Iarge impact on modern
Grant no. 210389. ' !

Y. Kanizo is with the Dept. of Computer Science, Technion,fafaisrael. algorithms and data structures (see surveys in [11], [MNje
Email: ykanizo@cs.technion.ac.il. that most of the papers considered theximum loadof the

D. Hay is with the Dept. of Electronics, Politecnico di TajnTurin, Italy. system while our paper considers the entire load distdbut
Email: hay@tlc.polito.it. ' . .

I. Keslassy is with the Dept. of Electrical Engineering, feion, Haifa, Energy'conStra'ned hash-schemes were also considered
Israel. Email: isaac@ee.technion.ac.il. in [13]. Our paper is different since it deals with a general

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 2

balancing problem and aims to minimize a general cost funmemory (namely, the memaory block size). We will show how to
tion given a known overflow list size, while [13] consideredise the balancing problem with a specific block cost function
the size of the overflow list given bounded-size bins. in order to build Bloom filters that have low false positive
As described later, one of the applications of the balancimgte and consume significantly less power than the tradition
problem is the construction aénergy-efficient Bloom-filters architecture.
which also use multiple hash functions. One proposal in this Paper Organization: The optimal balancing problem is
direction is to use a Blocked Bloom Filter [14] in whichdefined in Section Il, followed by our lower bound results
for each element all hash functions are mapped into a singleSection Ill. The three optimal schemes and their analysis
block in the memory. Although this technique is clearly gyer are presented in Sections 1V, V, and VI, while a comparative
efficient, it suffers from poor performance (e.g. high falsstudy appears in Section VII. Two applications of the bailagnc
positive rate) due to aimbalancebetween the memory blocks.problems, namely chain-based hash tables and Bloom filters,
Our paper shows a solution to this problem with significantlgre presented in Sections VIII and IX, respectively. Fipall
better performance. Section X gives concluding remarks.

Il. PROBLEM STATEMENT

In this section, we define the notations and settings of the
This paper explores theptimality regionof the balancing optimal balancing problem
problem. More specifically, let3 be a set ofn bucketsof unbounded
We first provide lower bounds on the minimum cost o§jze (also referred to alins or block9 and let& be a set
each instance of the problem. The lower bound depends &M, elements(or balls) that should be distributed among the

the energy budget, the number of hash functiond, and puckets. In addition, denote by= 2 the element-per-bucket
the overflow list size, but does not depend on the block cagtio.

function ¢ 5. Our lower bounds hold when all hash functions Assume also that there exists awerflow list [4], ie. a

have uniform distribution or when their overall distrilrti is special bucket of bounded size: (namely, at most a fraction
uniform (in the latter case, the hash function distribugi@an of the elements can be placed in the list), which can be used by
be different). the insertion algorithm at any time. For example, dependimg
Then, we provide three different schemes that meet th& application, the overflow list may correspond to a dedita
lower bounds on different energy budgets; we further find thﬁemory (e.g. CAM) in hardware-implemented hash-table, or
minimum size of the overflow list that should be provideg the loss ratio when the hashing scheme is allowed to drop
in order to achieve optimality. All our analytical modelsear elements.
compared with simulations showing their accuracy. Elements are inserted into either one of théouckets or the
We conclude by showing how, with a careful choice ofverflow list, according to some hashing scheme with at most
the block cost functionpp, the balancing problem can bed hashes per element, which is defined as follows [13]:
directly used to optimize two important data structuresiciwh Definition 1: A hashing schemeonsists of defining:
are widely-used in wire-speed algorithms: (i) d hash-function probability distributions over bucket et
First, we consider ahash tablein which random hash used to generate ash-function set{ = {H,..., H;} of d
functions map elements to associated buckets, @raining independent random hash functions;
is used to solve hash collisions: if two items are mappedéo ttii) and aninsertion algorithmthat places each elementc £
same bucket they will be stored in a correspondinged list in one of thed buckets{ H;(z), ..., Hy(x)} or in the overflow
Notice that the longer the linked list is, the longer it takes list. The insertion algorithm is amnline algorithm, which
query the bucket. Many studies investigated the performanglaces the elements one after the other with no knowledge of
of such hash tables, focusing mainly on the worst-case quefyture elements.
time (see [15] for further discussion). In this paper we show The power consumption of a hashing scheme is measured by
how solving the balancing problem with a quadratic blockicothe number ofoucket accesseseeded to store the incoming
function can be used in order to devise such hashing schersksments. We assume that a hashing scheme needs to acces
with optimal varianceas well as energy efficiency. a bucket to obtain any information on it. We do not count
The second application we analyze deals vidtbom filters accesses to the overflow list.
which are space-efficient randomized data structures tigt s We further consider two constraints, which can be seen
port approximate set membership queries [16]. The qualfity as either power- or throughput-constraints depending en th
a Bloom filter is measured by itfalse positive ratei.e. the application. First, we require that tleeragenumber of bucket
probability that a set membership query retummUE, while accesses per element insertion must be bounded by some
the element is not in the set; Bloom filters always haeeo constantz > 0. In addition, notice that thevorst-casenumber
false negative rateBloom Filters are often used in networkof bucket accesses per element insertion is always bounded b
applications [17] especially when the set is very large,miiie d, because an element does not need to consider any of its
memory is scarce (e.g. high-speed on-chip memory), or whérhash functions more than once. These two constraints are
it should be shared across many nodes in a limited-bandwidtptured by the following definition:
network [18]. Usually Bloom Filters are not energy-optietdz ~ Definition 2: An {(a,d,r) hashing scheme is a hashing
and do not take into account the structure of their undeglyirscheme that inserts all elements with an average (respbgtiv

C. Our Contributions

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 3

maximum) number of bucket accesses per insertion of at mostJnder the constraint that all hash functions are uniforra, th

a (respectivelyd), when given an element per bucket ratio optimal expected limit balancing cosh; in the oPTIMAL
We are now ready to define tlogptimal balancing problem BALANCING PROBLEM is bounded from below by

which is the focus of this paper. Léts : N — R be theblock

cost functionmapping the occupancy of a bucket to its real- BAL . .

valued cost. We assume thag is non-decreasingnd convex e Z Pie (i) 65 (1)

Our goal is to minimize the expected overall cost: 7=0

Definition 3: Let O; be a random variable that counts the\ote thatP,_, (1) is independent of the block cost functign.

ko+1

number of elements in thg-th bucket. Giveny, a, d and Proof: We derive the lower bound on the balancing by
r, the OPTIMAL BALANCING PROBLEM consists in finding an computing the best-case distribution of each bucket in fimef
(a,d,r) hashing scheme that minimizes setting. We assume that whenever an hash function points to
1 some bucket, an element is inserted into this bucket, haaing
¢ = lim — % E(¢p(0;)). total of a-n elements at the end of the process. Then, we remove
TGS exactly (a — 1 +) - n elements, which results ifl —) - n

Whenever defined, letéA- denote this optimal expected limittotal elements in the buckets. We remove the elements in a way
balancing cost. that minimizes the cost function®*.

Note for example that given an identity cost function In fact, by the convexity of the block cost functiops,
¢p(z) = = and no overflow list{ = 0), ¢BA- corresponds Minimizing the total cost*" can be done by removing the
to the average load per bucket, which is exaetlyno matter (a —1+7) - n elements greedily, each time from one of the

what insertion algorithm or hash functions are used. most occupied buckets. This is because the marginal cdse is t
largest (due to convexity) in those buckets. In the sequel, w
1. L OWER BOUNDS relate to this process as themoval process

A Uniform Hash Eunction Distributions We consider every hash value as a distinct element. There-
) . . fore, the number of elements (out of totah elements) that are
In this section, we show a lower bound on the achievablgapped to buckef € B follows a Binomial distribution with

value of ¢d5;. This is accomplished when the occupancy of ., independent experiments and a success probabiliy of
the buckets follows a very particular distributidfg (i) that an (2

depends on the number of buckets the number of elements L&t @; (i) = (.) =) (1=)" denote the probability
n, the average number of bucket accesseand the overflow that bucket;j storesi elements before the removal process.
fraction . Let M (i) be the probability that bucket storesi elements
Pig (i) is derived by computing the best-case distribution Gffter the removal process. As we show nowd; (i) has to
each bucket in an offline setting. In this setting, each mgmogatisfy two constraints. First, since in the removal precels-
access is considered as a distinct element, where ini#@illy ments are only removed (and not inserted), then the pratyabil
the a - n distinct elements are hashed to the buckets. TheRat some bucket stores less thaelements after the removal

(a—1++)-n are removed in a way that minimizes the cos$rocess cannot be larger than before the removal process, Th
function ¢**" (we end up with exactly1 —~) -n elements in for every;:

buckets). Since the block cost functign; is non-decreasing i i

and convex then the marginal _cost is the largest in th_e most ZMJ‘ (k) > ZQi (k). (1)
occupied buckets. Thus, removing the elements greedith ea =0 F—0

time from one of the most occupied buckets, is expected to ,)

minimize the lower bound on the achievable value¢dfs. S€cond, since we end up with exaclly —v) - n elements,
Interestingly, we get thaP; (i) does not depend on the blockthen: e

cost functiong z. Z (ZZ M, (i)) —(1=)-n, ?)

Theorem 1:Let ky be the largest integer such that —\=
a-r- r (kOv %) ke [1- r (kO +1, %) <r(l-7) that is, the expected number of elements in all the buckéds af
(ko — 1)! ko! " the removal process must Ife —) - n.

As we are looking for a lower bound on the balancing
cost, our goal is to pick the bucket distribution that mirdes
that cost. Consider bucket and assume that the expected
occupancy after the removal process Ag. Since all hash
"functions are uniform, by symmetri, must be at most*.

where T (s,z) = f;o t*~le~tdt is the upper incomplete
gamma function. Also, letg = %2 . T (kg, %2) / (ko — 1)!
andpy =T (ko + 1, %2) / (ko)!. We define the following dis-

tribution P s (7) that we name as the lower bound distributio

6_%(%)1' 0<i<k We construct the following distribution that minimizes the

ko - 0 balancing cost of buckef. The idea is to keep the original
o) = 1 ¢ e { 'gn!) teotko+l g probabilities for low values of buffer occupancies, untiet
8 —kopo —po—1-(1—7) point where the expected occupangy is reached. On this

—eg —ko+kopot+r-(1—7) i=ko+1 point, we share the remaining probabilities such that we get
0 otherwise the exact expected occupancy. Specificallyklebe the largest

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 4

integer such that Thus,
ko+1 o0 oo
k?(] k'[)
. . . G;(0) — P;(£)| =0.
> 0,0k (1-3°0:0) < 5o 2 |G
=0 =0

That is, ko is the buffer occupancy until which we keep th@yoothe definition of P; (i), for everyi < ko, >°,2, P; (¢) =
original probability. Lete, = > %7 - Q; (i) and py = > = Qi (0). So,

Zfio ; (). In the sequel, we use andp, to construct the ko [o oo
remainder of the distribution, that is, the probability farffer lz G (0= Q; (0)|+Gj (ko +1)—P; (ko +1) = 0.
occupancieg, and kg + 1. i=1 Le=i (=i

We define the following distributio; (i): The first constraint (Equation (1)) states t@@zo Gj(0) >
Q; (i) 0<i< ko S0 @y (0), thus, 352, G (0) < S°52.Q; (¢). Also, we
Qj (7) +eg+ko+1 know thath (ko + 1) < Pj (k‘o + 1). SinceGj (’Lo) =+ Qj (io),

. 1=k 7
Pi(i) = —kopo — po — Eo 0 we get that the total sum cannot be zero, that is, at least one
—eg — ko + kopo + Eo i =ko+1 element in the sum is negative (but none is positive). Tloeeef
0 otherwise 11 > kg.

P; (i) satisfies both constraints from Equations (1) and (2). The last case to consider is whén = ko. If G; (io) <
First, since we kept the original probabilities until buffeecu- £ (7o), thenG; (i) clearly does not satisfy the second con-
pancyko, and then shared the remaining probabilities betwe&iaint (Equation (2)) as for every < ko, G; (io) = P; (io)-
ko and ko + 1, then for everyi, S, _, P; (k) > 22:0 Q; (k). The_refqre,(_;j (i0) > P; (o). Furthermoret thg second con-
Second, let?; (i) be the random variable that corresponds §i@int implies that there must be some integer> ko + 1
the distribution?; (i). Then, the expected number of element8Uch that; (i1) # 0. Therefore,iy —ig > 2.

in bucket; is: We are now ready to define another distributidi; (i),
o which also has minimal cost function:
E(P; (i) = i P (i Gj (i) —w i€ {ig,ix
<J()) ; 36 G (i) = {G;(i)—l-w ie}z‘o+i,z‘1—1}
= €9 — k()Qj (k/’o) + kon (ko) Gj (Z) otherwise
+ (kO +]-) Pj (kO +]-) wherew = min{Gj (Zo) — Pj (Zo) 7Gj (’Ll) — Pj (’Ll)} Notice
= L thatG; (¢) is well-defined sincé; —ip > 2. In addition,w > 0

N e _ sinceG; (ig) > P; (io) and G, (i) > P; (i1). Hence,G (i),
Thus, P; (7) satisfies the two constraints. which clearly preserves both constraints, has a cost nerdarg

We now show that it minimizes the cost function ovey, . R . o
S i . N hanG; (i). By continuing this process, we end up wil; (7)
all distributions that satisfy both constraints. L&Y (i) be no maf[ter what, (i) is, asi, — i, decreases at each step by
a distribution over the buffer occupancies after the rerhov J ’

that satisfies both traint be th I tgtleast 1. This implies tha®; () minimizes the cost function.
process ?] T}ag 1€s Do Pco'ns. r$|n S'h{‘?e de € smalfles Finally, since we are interested in thienit balancing cost
integer such thaG; (ip) # P (io); if such io does not exist, |, o bound¢P-, we consider the limit distributiorP,g (i)
we are done sincé&; (i) coincides withP; (i). We will show

. ;) : of the distribution P; (i) that was found to be optimal for
that G (Z_O) > B (Z_O)' Also, leti, be the largest integer SLIChany finite parameters. This is done by using the Poisson ap-
thath (21) > Pj (7,1).

We now show that ifi; andi, are defined, thei; (i) > proximation for the binomial distributio); (¢) of the buffers

occupancy before the removal process [13], [19], [20], wher

£ (io), andi, —io = 2. We distinguish between 3 casesy .o the same approximation to find the valuekpp, and
19 > ko, 1o = ko andig < kg.

_ A=)mn _ g
First, in case ofy > ko, for every bucket occupanay< kg, ¢o- AlS0, by symmetry we get thalfy = === =r-(1 VL
G, (i) = Pj (). Thus,G; (i) = P; (i) for everyi, asG, (7) . . .)
satisfies the second constraint (Equation (2)), implyireg th amUrllgsr the assumptions above, we derive the following ex
andi; are not defined, EF;arﬁ le 1:Figure 1 shows the lower bound distribution
In caseip < ko, by the first constraint (Equation (1)) and (i) fgr s gﬂ — 8y —0andac {1,1.1,1.2}. As
the fact thatP;(i) = Q,(i) for everyi < iy, we get that -2\’ P ST = “ it N

G, (i) > P, (iy). We now show thati, > ko, implying increases, i.e. as the hashing scheme is allowed incréasing
that iy — igp > 2. Assume on the contrary thay < ko,

more accesses to perform a better load-balancing, we can see
then G, (ko + 1) < P, (ko + 1) and for everyi > ko + 1, that the.I(.)wer bound requires a balancing that is morg and
. ~ . more efficient. Note that whein = 1, ky = oo becausey = 0;
G, (i) = 0. Let G, (i) be the random variable that correspond _ . o
. ~ ~ erefore, for that casd? (i) matches the Poisson distribution
to G, (i). SinceE{G, (i)} = E{P; (i)} and for any random

- . o with parameter\ = r = 8, as shown using the solid line.
variable X that takes values iV, E(X) = > ,~, Pr{X > /}, P " g
we get that
ko+1 oo “+1

SPIACEDS

i=1 (=i i=1

B. Multiple Hash Function Distributions

ij (0). We consider a setting wheré < d different distributions
i over the buckets are used by thehash functions. Denote

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 5

07 A. Description by Differential Equations

a=1

" In recent years, several hashing schemes have been modelec
o a2 using a deterministic system of differential equationg [113],
[21]. We adapt this approach and first describe it shortly.

We consider the elements insertion process as performed
between the timeé = 0 andt = 1, thatis, attimg = . thej-th
element is inserted. Furthermore, Iét(%) denote the fraction
of buckets in the hash table that store exactyements at time
L, just before element is inserted, and” (%) be the vector
of all F; (1)'s. Also, let AF; (1) 2 F (&Y - F; (2
denote the change in the fraction of buckets that store lgxact
i elements between times and 21, Then

o
o
T

probability

o o o

w = ol
T T

o
)
T

o
-

20 -LF(2) i=0

bucket occupancy m

1 i) _op. ¥
Fig. 1. the lower bound distributio® s (¢) with » = 8 for different values . . m (Fh_l (n) P b gn)
7

+1\ =/J
oo (o (50) 7 (7)) - -
TRVALACY) R RTINS

these distributions by, ..., f¢, and assume that distribution
f¥is used by a fractiort; of the total memory accesses, with
Zle k; = 1. We now show that Theorem 1 holds also in thiat time ¢ = 0, F; (0) = 1 if i = 0 and0 otherwise.
case whery" | &, f,(i) = . The probability that element hits a bucket storingi
Theorem 2:1f Zﬁ:lkpfp(i) — % then the optimal ex- elements isF; (%) Thus, in the first equation, the fraction
pected limit balancing cost®; in the oPTIMAL BALANCING ~ Of empty buckets decreases when elenjergaches an empty

3~
—~
=
L
—
Sk
SN—
I
=
3
~

otherwise

®3)

PROBLEM is lower bounded by bucket, which occurs with probability of; (£). Likewise, in
the second equality, the fraction of buckets that stoeéements
ko+1 increases when elemepthits a bucket storing — 1 elements
= > Pe(i)-¢5(i). (with probability of F,,_; (1)), and decreases with probability
j=0

of p when the element hits a buckets storinglements (with
o o total probability ofp- F}, (£)). In the third equality, the fraction
where 13, (i) is as given in Theorem 1. of buckets storing+1 elements increases with probability @f
Proof: As in the proof of Theorem 1, the number ofif element; hits a bucket storing, elements. Last, in all other
elements mapped by the hash functions with distributfion cases, the fraction of buckets storingelements increases if
to bucketi follows approximately a Poisson distribution Withelementj hits a bucket storing — 1 elements, and decreases
ratek;-a-n- fp(i). Since the sum of Poisson random variableg it hits a bucket storingi elements. Any such increment or

is also a Poisson random variable,_ the tot_al num_ber o_f eleanegecrement is by a value g%, thus, all equations are multiplied
mapped to the bucketfollows a Poisson distribution with ratepy, L
m

1 . 3
an s,y kpfp(i). By dividing both sides of the equation k%yand considering
Thus, the proof of Theorem 1 implies that if for every buckehe fact thatn is large, so that the values dfF; (ﬂ) are

an

iany . kyfp(i) = %, we get the same limit lower boundcomparatively very small, we can use tfieid limit approxi-

balancing costg" . mation, which is often very accurate [21]:
[|
—fo(t) i=0
IV. SIMPLE - A SINGLE-CHOICE HASHING SCHEME o wfica®)—p-fi(t)) i=h
dat
We now want to find simple hashing schemes that can P fn1 (t) i=h+1
potentially achieve the balancing cost lower bouffg-, and
therefore the optimal balancing cast;. S (fica (t) — fi (1)) otherwise

We start by analyzing a simplistic hashing scheme, denoted B
SIMPLE, that is associated with 2 parametdrsand p. This More formally, letf (t) = (f1 (t),..., fa (t)) be the solution
scheme only uses a single uniformly-distributed hash fanct of the above set of linear differential equations when agssgm
H. Each element is stored in buckét(z) if it has less thark f,(0) = 1 and f;(0) = 0 for eachi # 0. Then, by Kurtz
elements. In case there are exadilglements, the element istheorems [22]-[24], the probability th{ft deviates fromF by
stored in the bucket with probability ¢of and in the overflow more than some constantdecays exponentially as a function
list with probability of 1 — p. Otherwise, the element is storedbf n ande? [21]. For further intuition behind this statement,
in the overflow list. refer to [21] and [25, Chapter 3.4].

=

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 6

B. Optimality of thesiMPLE Scheme

Theorem 3:Consider thesiMPLE hashing scheme with
buckets and» elements, and use the notations /f po, eo . (simulation)
and P from Theorem 1. Then for any value of the sSIMPLE fi(mode.)
scheme solves thePTIMAL BALANCING PROBLEM for ¢ = 1
whenever it satisfies the two following conditions:

(i) h = ko;

[N

x fo (simulation)

o
©

- fo (model)

o
©

o
3

o f2 (simulation)

o
o

— = f2 (model)

* f3 (simulation)

fraction of buckets
o
ol

(i) p is given by the solution of the following equation: o4 - ;;3('“"“"
P . . —o
—p- — h—1 % 0.3 - 9 °9 AR *
e Pr e " r-(1—p . e K
P(kO) = h h Z ((1l)) : 0.2f E /O/U */*/* Ty
(1-p) (1-p)" = v o ° ¥ o
01 ° - ¥
Proof: We solve the differential e(%uations one by one, . 3j***/%*’*

substituting the result of the equation @(Ij’;t—t) into the equation 0 0.2 04 06 08 1
for Y1) The first equation depends only g (t), and we

get immediage‘|¥ thatfo (t) = e_#’t' or fo = e”""'. Each Fig. 2. simulation vs. analytic model fernmpLE with » = 2.5, p = 0.5 and
equation forf;l—i), wherei < h, depends only onf;_; (t) h=2
and f; (t), and we get that fof < h, f; (t) = & (r-t)'e .

< . .
For /i, (t), we get that fol) < p <1 {Hy,...,Hg}, such that all functions are independent and

e h=1 (r-t-(1—p)) uniformly distributed. Upon inserting an elementthe scheme
L— o (1—) Z il successively reads the buckéfs (z), Hy(x),. .., Hq(x), and
(1-p) 1-p)"i5 placesz in the first bucket that satisfies one of the following
and forp =1, two conditions:(i) the bucket stores less th@anelements, or,
1 . (i) the bucket stores exactly elements, andr is inserted
fu(t) = 55(r-t)"e . with probability p. If the insertion algorithm fails to store
) the element in all thel buckets,z is stored in the overflow
We also use the fact thaf!” | f; =1 to get fi,41 (1). list. Last, to keep an average number of memory accesses per
By substitutingt = 1 in f; (), for i < h, we find that element of at most, the process stops when a total of n
fi (1) = #(r)’e”". We note that it is also the probability thatmemory accesses has been reached:; the remaining elemeents ar
an arbitrary bucket storeselements, and that it is equal toplaced in the overflow list.

Pg (1), thus mimicking the distribution of’g (i) for i < h.
We are left to show that there exists suchpac [0,1]
so that using its value forf, (1) will result in the exact
expression forPg (k). When substitutingp = 0, we get
that f, (1) = 1 —e " Zf;ol TT, which is clearly larger than

Fs (1) (it |s'eq.ual whenPis (.4 1) = 0). On the oltherhhzir:d, of the scheme as a system of differential equations.
when substitutingy = 1, we get thatfy (1) = 7(r)"e As before, letf; (¢) represent the fraction of buckets storin
which is lower thanP (h). Thus, using the Intermediate . ’ ! P 9

Value Theorem (all functions are clearly continuous), ¢her elements at time, then

e—p~r't Tt

fu(t) =

A. Description by Differential Equations

We start analyzing thesREEDY scheme by first assuming
that there is no constraint on the total number of memory
accesses (that i3y = oo) and characterizing the dynamics

exists somep € [0,1] such thatf, (1) = P (h). Since —for(t)g(t) i=0

Soite £ (1) = Y170 Pie (i) = 1, we get also thafy, 4, (1) =

P (h+1). df; (1) (i) =p-fu(t)gt) i=h
We finish with the following simple example: dt ep- fu(t)g(t) i=h+1
Example 2:When~ = 0, kg = oo, therefore thesiIMPLE

scheme performs with infinite buckets, and there is no meanin e (fica () = fi (1) g () otherwise(4)

for p.
We next verify the accuracy of our model by simulationdVhere

Figure 2 shows the evolution over time ¢, ..., f3 where d-1 k

r =25 p = 05andh = 2, comparing the model with g(t) = D> ((L=p)- fu(t)+ far1 (1)

simulated values. In the simulation we used= 25,000, and k=0

som = 10, 000. 1= ((1=p) fu () + frr1 (1)

L= ((L=p) fn(t) + fas1 (1)’

V. GREEDY- A MULTIPLE-CHOICE HASHING SCHEME with fo(0) = 1 and f;(0) = 0 for eachi # 0 as an initial
We now introduce theGREEDY scheme which is also condition. Comparing with the differential equations ofth
associated with two parametefs and p. In the GREEDY SIMPLE scheme (Equation (3)), there is an additional factor of

scheme, we use an ordered setdtash functionsH = ¢ (¢). For instance, in the first equatioff (¢) is replaced by

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 7

fo®gt) = X901 =p)- fu () + fura (0)F - fo(£)|, by the overflow list of sizey - n that results into = 1, that is,
which represents the sum of the probabilities of mapping #recoy (1) = a.
an empty bucket after being mappkd= 0,1,...,d — 1 times Proof: We compare th&REEDY scheme with thesiMPLE

to a bucket in which the element could not be stored; in othegheme. In thesREEDY scheme we continually try to insert
words, each bucket either already Had 1 elements, or had each element, until either it is placed or dllfunctions are
element but with probability of — p the element was deniedused.
insertion. Note that all hash functions have the same (uniform) distrib
We are also interested in the average number of memaiyn over all buckets. Thus, for evetyf; () are independent of
accesses performed during this process. fcgt.py (1) denote e exact elements that are hashed. Therefore, applyingd
g]eﬁlgﬁr:]n;;ilgggebr%W{)g;gfbrgerwgéyélggcg:ses performed by t'Wgs'h functions on the same element is egu?valept to applying
e he reslts of eILE scheme. i which a tol af
dfé t _ _ use sults s , in whi n
fGRi;;Y(- Zk'(f" O (= fa)+ (£)T,) elements are considered and therefore a total -of memory
=t accesses are performed.

where Given an average number of memory accessesie set
fo () = ((L=p) - fu (8) + farr (1) h = ko, and letGREEDY operate untile is reached, that is,
and fccoy (0) = 0 as an initial condition. until time ¢y < 1 such thatfggeeoy (to) = a. We apply the

The differential equation reflects the fact that at a giveR!MPLE dynamics to getf; (o), and get that
time ¢, the cumulative number of memory accesses increases

1 i —ar .
_ lia. <h
by 1 < k < d memory accesses whenever in the fitst 1 w(a-r)e !
memory accesses an element is not stored and in the next one Cpar e h=1 (ar(1—p))?
. . e _ e E K a-r (P)) i=h
the element is stored. It also increasesdosnemory accesses (to) = (A—p)" — (A—p)" £vj=0 J!
whenever in the first — 1 memory accesses an element is notfl 0 .
stored, independently of the bucket state in &kt memory 1- Zhj La-r)year—
j=0 j! .
access. ever’emer Zh,l (ar-(1—p)y t=h+1
(1-p)* T (1-p)" £i=0 7! ©)
B. Optimality of theGREEDY Scheme Using the same consideration as in the proof of Theorem 3,

We now want to show the optimality of thi@REEDY scheme we find that there is some € [0, 1] such thatf; (¢¢) is exactly
over a range of values af and~. In general, the above differ- P g (¢), for everyi.
ential equations are hard to solve analytically, and thusmice However, note that thesREEDY scheme cannot bring to
help in showing optimality — even though they can of coursany desired number of memory accessesnd is limited to
be solved numerically and yield a numerical approximatibn ¢, ..., (1). Since f&.ccoy () increases ag, decreases, and
the expected balancing cost. ko decreases as increases, then the minimum such that
Instead, to show the optimality of theREEDY scheme, the GREEDY scheme achieves optimality, for a giverandr,
we reduce it to the optimality of theImMPLE scheme. Since is given by, such thatfd:ceoy (1) = a. Thus, we get the
both thesiMPLE and GREEDY schemes use the same unifornoptimality region of this scheme. []
distribution, a new attempt to insert an element after amcns
cessful previous attempt in tt&REEDY scheme is equivalentto v/| Ty MuLTi-LEVEL HASH TABLE (MHT) SCHEME
creating a new element in tt@MPLE scheme and then trying)
to insert it. In other words, the number of elements sucatigsf | e Multi-level hash tableMT) scheme conceptually con-
inserted by thesREEDY scheme after considering elements sists ofd separate subtables,, ..., Ty, whereT; hasa, - n

and using a total of: - n memory accesses is the same e*?sUCketS’ andi associated hash functiods,, e ’.Hd’ defined
the number of elements successfully inserted by ghepLe such thatH; never returns values of bucket indices outside
scheme after considering: elements Using theMHT scheme, element is placed in the smallest

Theorem 4:Consider thesREEDY hashing scheme with 1 that satisfies one of the following two condition§) the
buckets and: elements, and use the notationsief po, ¢ and bucket H;(z) stores less thah elements, or(ii) the bucket

P from Theorem 1. ThesREEDY scheme solves thePTIMAL H;(x) stores exactly: elements, and elementis then inserted

BALANCING PROBLEM whenever it satisfies the three followingith Probability p. If the insertion algorithm fails to store the
element in all thed buckets,z is placed in the overflow list.

conditions: } L : .

() h = ko; Since that smallest with available space is used, the memory

(i) o is s’uch thatfe (to) = a, andty < 1; accesses for each elemenare sequential, starting frofi; (x)
GREEDY - " = 4,

until a place is found or all hash functions are used (and the

(iii) p is given by the solution of the following equation: X X X
element is stored in the overflow list).

e—par a-r

Car B i
L e (e (op)
1-p" (-p" = a! A. Description by Differential Equations

Moreover, the optimality region, that is, the minimymmeeded The system of differential equations that characterizes th
to achieve optimality of th&sREEDY hashing scheme, is givendynamics of MHT is influenced by the static partitioning of

P (ko) =

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 8

the memory among subtables, which introduces extra vasablAlso, let~%,,..« (t) be the fraction of the elements that are not
Specifically, letf; ; (¢) be the fraction of buckets in subtablestored in the buckets out of all the elements that arrivedoup t

T; that store exactly elements. Then:

—armJoi () g; (1) i=0
gy (o) | o Frra = g () g (0 i =h
a g () g; () i=h+1
o (fim1y (0) = fij (1) g5 (1) otherwise
(7
where
9; () = [T (A =p) fak (V) + Fasr (£)
k=1

time ¢. Given all f2"™P'5 (¢)’s, it is simply the complementary

of the expectation of the number of elements in the buckets up
to time ¢t normalized by the total number of elements arrived
up to this time:

h+1

:Z Z ,L-fiSIMPLE (ﬁ))

=0

'YélMPLE (t) = (10)

Letn; (t) denote the number of elements that are considered
in subtableT; up to timet, and v} (¢) denote the fraction
of these elements that are not placed in subtédble We
will express these using®™"® and~¢,,,- e, the corresponding
functions in thesiIMPLE scheme.

Note that as shown in Equations (9) and (1@§M"'E (¢)
and ~%,,0.c (t) only depend on the time, the number of

represents the probablllty that all the insertion attenipts elements:, the number of buckets:, the bucket sizé and the

subtablegy, -, T
thus thatvHT will attempt to insert the element in subtalile
By conventiony, (¢) = 1. The initial conditions arg; ; (0) =1
for i =0 and f; ; (0) = 0 otherwise.

_, do not result in storing the element, andJrObab"'typ, thus, we refer to them ag>™'= (¢, m, n, h, p)

and &, yp.e (t,m,n, h,p). We obtain the following theorem,
which is valid for any arbitrary partition of the subtables.
Theorem 5:Consider an{a,d,r) MHT hashing scheme in

As in theGREEDY scheme, lefé,,, (t) denote the cumulative Which for eachl < j < d, subtableT; hasca; - m buckets,

number of memory accesses done by timeormalized byn.

with 3~ «; = 1. Then, as long agy,; (t) < a, the functions

Then the following differential equation reflects the dyriesn 7;(t), 75 (t) and f; ; (t) satisfy

of fgur (1):

d—
dfMHT Z —(1-p) Tk (t) — Frtak (1)) +
d

ga (t),)
with f.; (0) = 0.

B. Reduction to thesiIMPLE Scheme

j-1

ni () = n-t-][@ (11)
k=1

'7; (t) = 'YéanLE (17 Q1,105 (t) s hap) , (12)

.fi,j (t) = fiSIMPLE (1, ajm, nj (t) 3 h,p) . (13)

Proof: By the definition of themHT scheme, it follows
immediately thatn; (t) = ~5_, (t)n;_1 (t); sincen, (t) =
n-t (aII elements go through the first subtable), we get that

In the last section we presented the description of thg (1) =n-¢- Hk 1%()
dynamics of themHT scheme using a system of differential Equations (12) and (13) are immediately derived by setting
equations; however, this system is generally difficult tvso the right parameters for eachiMPLE scheme within each
This can be circumvented by relying on our results from thgubtableT);; namely, its total number of buckets ds - m and

SIMPLE scheme. the number of elements by timeis n; (t). [|
Our approach relies on the fact thedich subtable follows a

local simpLE schemeMore specifically, all elements attempt-

ing to access some subtafile only access a single uniformly- C- Optimality of theuHT Scheme

distributed bucket mT,, and if this bucket is full, do not \We now show thaMHT is optimal on a given range af

consider any other bucket ifi.. Thus, within each subtablg;, and~.

MHT behaves likesiIMPLE, with a number of initial elements Theorem 6:Consider an{a,d,r) MHT hashing scheme in

that depends on previous subtables. which each subtabld}; hasa; - m buckets, withy~ a; = 1,
More formally, let f7""*€ (t) be the fraction of buckets thatand use the notations df,, py, e and P from Theorem 1.

store exactlyi elements at time in the SIMPLE scheme. As Further, letp (a) = Yueie (1,m,a - n, h,p) denote the over-

in the proof of Theorem 3, it is given by: flow fraction of thesIMPLE scheme withz - n elements. Then,

the {(a,d,r) MHT scheme solves thePTIMAL BALANCING

1 i —rt ;
S(r-t <h X L . "
wlr-t)e ! PROBLEM whenever it satisfies the following four conditions:
e~ Pt gt Zf}fl (r-t-(l—P))j i=h (I) h = ko;

FEMPLE) = (1-p)* (-p)* &5=0 J! andt, < 1;

1—p(a)
?I))to_a(l pé“)tZ’ lution of the followi i
B . iii) p is given by the solution of the following equation:
1— Z?:()l %(T . t)J —rt__
e~ Pt et Eh 1 (rf (1 p))J Z = h+1
(1-p" ' (A-p)" £3=0

e~ par e—ar

h—1 1
(a-r-(1-p))
p)" ; 2 =

P (ko) = —
©) o) = o s

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 9

0.03

(iv) the subtable sizes; - m follow a geometric decrease of
factor p(a): 0.2}
1-p(a - 001f .
o = <()d> pla) " (14) o
1-p(a) o
1 1.05 11 1.15 1.2
Moreover, the optimality region (the minimum needed to a

achieve optimality Of, thevHT hashing scheme) is given byFig. 3. Optimality regions osREEDY and MHT with » = 8 andd = 3
the overflow list of sizey - n that results inty = 1, that is,
fr (1) = a. Furthermore, if all four conditions are met then ‘ ‘
all buckets have an identical occupancy distribution. I
Proof: Given the average number of memory accesses R 0.04r ’
we seth = ky. We would like to letMHT operate untila is |
reached, that is, until tim¢, < 1 such thatfg . (t/) = . | |
However, f,; (t) depends on the subtables sizess. 0 I " 2 pr » pe 2
Up to timetq, in which we aim to exhaust all - n memory r
accessgs, we used egacbly; (to) ,tlmes the haSh functhn Fig. 4. Optimality regions oGREEDY and MHT with @ = 1.2 andd = 3
Hj (x) in subtableT};. Since we aim at an optimal balancing
cost, the necessary condition on the distributions of trghha

functions, given in Theorem 2, immediately implies that ;4 by substituting, = a (1—p(a)) we get thatf; ; (1) =

1—p(a)?

o = M (15) fz’SIMPLE (Lmaa'na h7p)
J n-a Finally, as in the proof of Theorem 4, theHT scheme

cannot bring to any desired average number of memory ac-

cessesu, but is limited to &, (1). Since f%,, (t) increases

0.06

By substituting the expression far; in (11), we get:

%t_ (to)) = YiueLe (17) (to)m,nj (t),h,p) as k_o decreases, and, decreases as incrgases, thgn t_he
n-a minimum ~ such that theMHT scheme achieves optimality,

%m for a givena andr, is given by~ such thatfg,, (1) = a.

= 1= n; (t) Sincet, = a f:pp((aa))d , we seeky such thata = %

h41 Thus, we get the optimality region of this scheme. []

=0
h+1

= 1 N (Lmya by p)

n-a
=0

’YélMPLE (1,m,a-n,h,p)

= pla)

It is important to notice that, quite surprisingky§ (to) does

not depend ory.

We now obtain the time, by observing that; (o) = n -
top(@’ Since Y7, ap = 1, we
getZZ:1 t"p; = 1, and thereford,, is given by the sum of

to-p(a) !, thusa; =

—1

a geometric series:

to:a(l—p(a))_
1—p(a)’

. n; (to
sziSIMPLE <1’ ;fa)m’nj

(t). h,p)

VIl. COMPARATIVE EVALUATION

Figure 3 shows the optimality region GfREEDY and MHT
with »r = 8 andd = 3, that is, for each value of the average
number of memory accessesit shows the minimum value of
~ that suffices to solve thePTIMAL BALANCING PROBLEM.
We can see that for a CAM size df%, GREEDY achieves
optimality for ¢ =~ 1.1. We will show in Section IX that the
optimal solution for such parameters dramatically redubes
balancing cost compared to= 1 with no CAM.

On the other hand, Figure 4 shows the optimality region of
GREEDY andMHT with ¢ = 1.2 andd = 3 for different values
of . We can see thatiHT scales better to higher loads.

VIII. V ARIANCE OF THE QUERY-TIME IN CHAIN-BASED
HASH-TABLES

This, in turn, immediately gives us the claimed memory parti Tpe balancing problem can be directly used in order to

tioning a;.

construct an energy-constrained hashing scheme with aptim

We now turn to show that all bucket distributions are identj;ariance over its query time. In such a scheme, the time it

cal. In subtableT;, the total number of elements considere
is nj(ty) = n -1t -p(a)’", while there arem - a; =

(1=p(a)
m (1—p<a>d

that the fraction of buckets in subtakile that store exactly

elementsf; ; (t) is given by

fiSIMPLE <]-7m : (11 —~ p(a)d> p (a)jil y e tO P (a)jil) hvp>

—p(a)

thkes to complete dokup operation directly depends on the
occupancy of the buckets. For example, suppose that there is

)p(a)j_l buckets. Hence, by Theorem 5, we gepnly one hash-function, and some elemgnis mapped to a

bucketh(y); in order to queryy we need to go over all elements
of h(y) in casey is not in the table, or on average over half
of them in casey is in the hash-table.

Note that theaverage loadis simple to obtain and equals
(=2 We next show how to find hashing schemes with

m

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 10

minimal variance Var(O). This is simply done by defining the
appropriate block cost function:

bp(i) = i% (“‘””)2

m

Thus,

BAL . 1 & 2 (1*7)71 :
= A@mmZE<0J“(m>>

J=1

: 1 S 2 2
- JE&EZIE(OJ.)*E(OJ-)
‘7:

1 m
= lim — \Y;
m;rr;om;:l ar(0;)
= \Var(0),

where O; is the random variable representing the occupancy
of bucket j. By symmetry, all variableg); have the same
distribution and thus the same variance, which is denoted by T
Var(O). L

This immediately implies that the schemes we presented Ga§ 5. iustration of a Bloom filter implementation usingHT.
be used in order to build a hash-table with optimal variance.

address: 00 01 10 11 00 01 00

subtable, the element is hashed to address 01, where there

are 2 elements (the counter indicates ‘10’ in binary basis).

A. Architecture At this point, the element is inserted to this memory word
The standard Bloom filter is not energy efficient when wid@ probability of p, which is indeed the case in this illustration.

memory words can be read and written. If such a memory Tde dashed arrow to subtalilg illustrates a hash function that

used, there are potentiallymemory words that have to be reads not actually performed.

for an insertion (and query operation), since it is mostljike

that thek hash functions point to distinct memory words (whef- Implementation Considerations

the filter is sufficiently large). To avoid this problempbocked Assuming memory words of sizB bits and bits-per-element

Bloom filter [14] first picks a single memory word where allratio 3, the number of elements per bucketis given by

hash functions point to the bits within this memory word,shu B//3. Using the optimal online hashing schemes to implement

IX. ENERGY-EFFICIENT BLOOM FILTERS

only one memory word is read (or written). a Bloom filter requires saving some = [log, (ko + 2)]
The blocked Bloom filter mechanism corresponds to tH#ts in every memory word to count the elements hashed
SIMPLE scheme withy = 0 and block cost functioy s (i) = into each one. Thus, the block cost function is given by

ki B ki \ F . . . _ ki k

(1 -(1-%) ? ~ (1—e B) ,whereB is the size of the ¢p (i) = gl —e B
memory word (in bits) and: is the number of hash functions In the standard Bloom filter, the optimal false positive riate
used. However, although the&MPLE scheme is optimal, its archived when using = r-1n 2 hash functions [17]. Although
average number of memory accesses is 1, thus, it achietlis may not be the best choice when using large memory words
poor balancing of the elements that results in a poor falgs one has to take into consideration the distribution of the
positive rate. In this section we suggest to use the optimimber of elements in each bucket, we will use the sarfe
online hashing schemes to achieve a better balancing betweinplicity.
the buckets, and therefore, better false positive rate. Hashing schemes that read more than one memory word on

Figure 5 illustrates an insertion of a new element into @ query operation increase the false positive rate, because
Bloom filter based on thesHT hashing scheme with = 2 false positive may result from a query operation on each one
and some arbitrary. The memory consists of 3 subtables o@f the buckets. Thus, since the probability of false posifiv
decreasing size, the first one with 4 memory words, the secd#@ry memory word is relatively very small, then the overall
with 2 memory words and the last one with one memory woréhlse positive probability, i.e. the false positive rate,given
Each memory word is of size 6 bits, where 2 bits are used abyaZ] 1 Pj - FPR;, where P; is the probability that a query
counter that counts the number of elements already insergeration feSU|tS in at Iea§tmemory words, and FPRs the
into the memory word. When element arrives, it is first false positive probability of thg-th memory word read.
hashed to the memory word at address 10 in subtahl&he
counter at this memory word indicates that 3 elements hate Comparative Analysis
already been inserted there (‘11’ in binary basis), theeethe Figure 6 compares the false positive rate for different &alu
schemes tries to insert the element into subtaldleIn this of bits-per-element ratios with memory word size = 256.

TECHNICAL REPORT TR09-02, COMNET, TECHNION, ISRAEL 11

o ‘ ‘ ‘ ‘ ‘ its expected or worst-case time. Then, we showed that when
e o setting the cost function to correspond to takse positive rate
L e O SIMPLE (a=1, y=0.0049) of a Bloom Filter, the balancing problem can be used to devise
10° —— MHT (a=1.2, y= 0.0049) []

energy-efficient Bloom Filter architectures.

A promising line of future research is to find other applica-
tions for the balancing problem. For example, we believé tha
the balancing problem can prove very effective for distigiolu
storage systems and datacenters, where load balancing glay

false positive rate

major role.
10° f
REFERENCES
10— s = > > ;) [1] Intel Corp., “Increasing data center density while dryy down power
l 15 biy,s—per—elgmem ° 4 and cooling costs,” 2006.

[2] N. L. Johnson and S. KotzUrn models and their application: an
‘ -))) approach to modern discrete probability theoryViley New York, 1977.
Fig. 6. False positive rate of different Bloom filter schemethwnemory [3] VY. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balandeallocations,”
word size of 256 bitssiMPLE and MHT perform withy = 0.49%. in ACM STOG 1994, pp. 593-602.
[4] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robustshing:
Cuckoo hashing with a stash,” BSA 2008, pp. 611-622.
The MHT hashing scheme is used with= 1.2 andd = 3. Al [5] \ZKlQ_Z;ZrS C{g-gllzne load balancing, Theoretical Computer Sciencep.
these parameters let us compute the minimum overflow list Size] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, “Dre load
~-n such that the scheme is optimal. As Figure 4 showis balancing with applications to machine scheduling and alrtircuit

independent of the elements-per-bucket rati@nd therefore, routing,” in ACM STOC - New York, NY, USA: ACM, 1993, pp. 623~

. . . 631.

independent of the bits-per-element ratio, so the overfiot | (7] R. Graham, “Bounds for certain multiprocessing anomaliBs)l System
size used igy = 0.49%. For comparison, theIMPLE hashing Technical Journalvol. 45, p. 1563. _
scheme is used with = 1 and the same overflow list size, [8] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp krStoica,

. “Load balancing in dynamic structured p2p systems,”INFOCOM,
that is,y = 0.49%. 2004.

As Figure 6 indicates, theiMPLE hashing scheme performs [9] |. Keslassy, “The load-balanced router,” Ph.D. disaon, Stanford, CA,

; . USA, 2004.
slightly better than the blocked Bloom filter scheme. Howgvi] G. H. Gonnet, “Expected length of the longest probe seqa in hash

the MHT scheme performs worse for low values of bits-per- ~ code searching,. ACM vol. 28, no. 2, pp. 289-304, 1981.
element ratio. This is due to the need to check multiple mgmdi1] M. Mitzenmacher, A. Richa, and R. Sitaraman, “The powertwb

: random choices: A survey of techniques and results,Handbook of
words (up tod) on a query operation. But for larger values of Randomized Computing000, pp. 255-312.

bits-per-element ratios, theHT performs better by two orders[12] A. Kirsch, M. Mitzenmacher, and G. Varghedgash-Based Techniques
of magnitude, and only one order of magnitude worse then the for High-Speed Packet ProcessindIMACS, 2009, to appear. [Online].

standard Bloom filter, which uses a memory-inefficient & Ar\:ailabl%:8 h(tjtfp://WWW.eecs.harvard.edu/ michaelm/pagise/dimacs-
!) chapter-08.p

For example, for a bit-per-element ratio of 24, = 17 [13] Y. Kanizo, D. Hay, and I. Keslassy, “Optimal fast hashinip IEEE
hash functions are used, introducing up 1tb memory-read Infocom 2009.

. . - . 4] F. Putze, P. Sanders, and J. Singler, “Cache-,hash-spade-efficient
operations in the standard Bloom filter, which can cleari}]/ Bloom filters,” in Workshop on Experimental Algorithp2007, pp. 108—

present memory-throughput and power-consumption issues. 121.

This problem worsens for a bit-per-element ratio of 40, whef15] J. Kleinberg and E. Tardosilgorithm Design Boston, MA, USA:

_ i ; i Addison-Wesley Longman Publishing Co., Inc., 2005.
k = 28 hash functions are used. In this case, the false pOSItI[\ig] B. H. Bloom, “Space/time trade-offs in hash coding witHoaiable

rate of the standard Bloom filter i§.1 - 10~ while the errors,” Communications of the ACMol. 13, no. 7, pp. 422-426, 1970.
corresponding false positive rate BHT is 1.4 - 107 and of [17] A.Broder and M. Mitzenmacher, “Network applicationsgibom filters:
the blocked Bloom filter i<.3 - 105 A survey,” Internet Mathematicsvol. 1, no. 4, pp. 485-509, 2004.

[18] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and/&ghese,
“Beyond Bloom filters: from approximate membership checks foraxy-
X. CONCLUSION imate state machines,” iBIGCOMM 2006, pp. 315-326.
. . .[19] A. D. Barbour and P. G. Hall, “On the rate of Poisson cageece,’
In this paper we presented the balancing problem, whiCh" math. Proc. Cambridge Philos. Sowol. 95, no. 3, pp. 473-480, 1984.

deals simultaneously with several system parameters: {R@ J. M. Steele, “Le Cam’s inequality and Poisson approxioms,” Amer-

_ : - : ican Mathematical Monthlyvol. 101, pp. 48-54, 1994.
worst-case insertion time, the energy budget, the overfistv I[21] A. Kirsch and M. Mitzenmacher, “The power of one move: Hagh

size, and the targeted utility functions. Furthermore eteling schemes for hardware,” iEEEE Infocom 2008, pp. 565-573.

on the specific given parameters, we showed how to solve t#al fésl\els' Ethier and T. G. KurtzMarkov processes John Wiley&Sons,
proplem optimally, b,y applying a simple approach (usmgyon|[23] T. G.' Kurtz, “Solutions of ordinary differential equans as limits of
a single hash function), then a greedy approach, and last by pure jump Markov processesJ: of Applied Probability vol. 7, no. 1,

building the hash table in hierarchical manner as inrtheli- pp. 49-58, 1970. _
level hash table [24] ——, Approximation of Population Processekd81.
i i i i 25] M. Mitzenmacher, “The power of two choices in randomizezhd
Since the cost function is very general, the balancing prob-" palancing,” Ph.D. dissertation, University of CaliforriaBerkley, 1996.

lem can be used in many contexts. We first showed how it
can be used in order to find optimal hashing schemes that take
into the account the variance of the query-time and not just

