
TECHNICAL REPORT TR09-01, COMNET, TECHNION, ISRAEL 1

Worst-Case TCAM Rule Expansion
Ori Rottenstreich and Isaac Keslassy
Department of Electrical Engineering

Technion - Israel Institute of Technology
Haifa 32000, Israel

{or@tx,isaac@ee}.technion.ac.il

Abstract—Designers of TCAMs (ternary CAMs) for packet
classification often have to deal with unpredictable sets of rules.
These result in highly variable rule expansions, and can only rely
on heuristic encoding algorithms with no reasonable guarantees.
In this paper, given several types of rules, we provide new upper
bounds on the TCAM worst-case rule expansions. In particular,
we prove that a W -bit range can be encoded in W TCAM entries,
improving upon the previously-known bound of 2W − 5. We also
introduce new analytical tools based on independent sets and
alternating paths, and use these tools to prove the tightness of the
upper bounds. In particular, no prefix encoding can encode all
ranges in less than W TCAM entries. Last, we propose a modified
TCAM architecture that can use additional logic to significantly
reduce the rule expansions, both in the worst case and using
real-life classification databases.

I. INTRODUCTION

A. Background

Packet classification is the key function behind many net-
work applications, such as routing, filtering, security, account-
ing, monitoring, load-balancing, policy enforcement, differenti-
ated services, virtual routers, and virtual private networks [3]–
[6]. For each incoming packet, a packet classifier compares
the packet header fields against a list of rules, e.g. from access
control lists (ACLs), then returns the first rule that matches the
header fields, and applies a corresponding action on the packet.

Today, hardware-based ternary content-addressable memo-
ries (TCAMs) are the standard devices for high-speed packet
classification [7], [8]. TCAMs are associative-memory devices
that match packet headers using fixed-width ternary arrays
composed of 0s, 1s, and ∗s (don’t care). For each packet,
TCAM devices can check all rules in parallel, and therefore
can typically reach higher line rates than software-based clas-
sification algorithms [3]–[5]. For instance, the 55 nm CMOS-
based NL9000 TCAM device can run over 1 billion searches
per second on headers of up to 320 bits [7].

However, power consumption constitutes a bottleneck for
TCAM scaling [9]. Given the same access rate, a TCAM chip
can consume 30 times more power than an equivalent SRAM
chip with a software-based solution [10]. As a consequence,
in the Cisco CRS-1 core router, classification and forwarding
constitute a third of all power consumption, the highest usage
of power together with the power management devices such as
fans, which constitute another third [11].

TCAM devices run each search in parallel on all their
entries, therefore their power consumption is proportional to

This Technical Report is an extended version of [1], [2].

their number of searched entries. Unfortunately, this number of
entries is often larger than the number of classification rules.
This is because there are two types of rules: simple rules (exact-
and prefix-matches), which need a single entry per rule; and
range rules, which can need many entries per rule, thus causing
range expansion.

Today, TCAM power consumption is mostly and increasingly
due to range expansion. Typically, while range rules constitute
a minority of the rules, they also cause the majority of
the entries, and therefore the majority of the TCAM power
consumption [12]. In addition, there is evidence that the
percentage of range-based rules is increasing. For instance, a
comparison of two typical classification databases from 1998
and 2004 shows that the total percentage of range-based rules
has increased from 1.3% to 13.3%, including an emergence of
rules with two range-fields from 0% to 1.5% and an increase
in the number of diverse ranges [13]. Unfortunately, as the
number of range-based rules increases in an unpredictable way,
it is unclear whether it is possible to provide any reasonable
guarantee on the worst-case number of TCAM entries needed
to encode them.

The goal of this paper is to gain a more fundamental
understanding of the worst-case number of TCAM entries
needed to encode a rule. Our objective is to provide upper
and lower bounds on the worst-case rule expansion, which
would characterize the theoretical capacity of TCAM devices
depending on the complexity of the rules: e.g., single-field
or multiple-field range rules, using simple or complex ranges,
either alone or in interaction with other rules. In a sense, we
want to help define the TCAM capacity region.

B. Related Work

It is well-known that each range defined over a W -bit field
can be encoded in 2W − 2 entries for W ≥ 2 with an internal
expansion, i.e. an expansion that only uses entries from within
the range [14]. More generally, the product of d ranges defined
on d different fields of size W each can be internally encoded
in up to (2W − 2)d entries, which amounts to 900 TCAM
entries for d = 2 port range-fields of 16 bits each [3]. For
instance, assume that W = 3, and that we want to internally
encode the single-field range R = [1, 6] ⊆ [

0, 2W − 1
]

so
that packets in that range get accepted, while others get denied
(default action). Then we get the following 2W−2 = 4 TCAM

2

0 1 2 3 4 5 6 7

0 1

Fig. 1. External encoding of R = [1, 6].

entries, not counting the last default entry:

001 → accept
01∗ → accept
10∗ → accept
110 → accept
(∗∗∗ → deny)

A first improvement of the 2W −2 result has relied on non-
prefix internal TCAM encoding and a connection to Boolean
DNF (disjunctive normal form) to show a 2W − 4 upper-
bound [15]. A second improvement has kept prefix encoding
but relied on Gray codes instead of binary codes to reduce the
worst-case internal range expansion from 2W−2 to 2W−4 for
W sufficiently large [12]. This result has since been improved
to 2W − 5 using a more complex coding [16]. In any internal
coding, the worst-case range expansion is also shown to be at
least W [12]. The gap between the lower bound of W and
upper bound of 2W − 5 is still open to research.

These results, however, do not consider the full potentiality
of TCAM encoding, and in particular the order of the entries.
For instance, Fig. 1 shows how the example above could be
encoded in only 3 TCAM entries using an external encoding
that exploits a different entry order.

000 → deny
111 → deny
∗ ∗ ∗ → accept

We can see that the range exterior (complementary) is
encoded first, and then the range itself is encoded indirectly
later. Likewise, in this paper, we consider all possible TCAM
entry orders when providing worst-case bounds.

There is extensive literature on providing efficient heuristics
for TCAM rule expansion. These rely, for example, on redun-
dancy removal, truth table equivalency, additional bits, addi-
tional TCAM hardware, dynamic programming, and topologi-
cal transformation [3]–[5], [10], [17]–[20]. However, our main
objective is to analyze worst-case rule expansion guarantees,
instead of focusing only on typical average-case performance.
We later analyze the average-case efficiency of the worst-case
encoding schemes, and suggest hardware changes to better
implement them, as well as showing how they can be combined
with existing heuristics.

Lower bounds on coding length have more rarely been
considered. If coding is constrained to be internal, the worst-
case code length is known to be at least W [12]. Also, an
independent set of minterms in sum-of-products expressions is
presented in [21]. However, none of these consider external

coding, and therefore they do not fully exploit TCAM proper-
ties.

Note that the result f(W) ≤ W and some of the suggested
encoding techniques for multidimensional ranges have also
been independently found in [22].

C. Contributions

This paper investigates worst-case rule expansions in
TCAMs.

In the first part, we consider single-field ranges of W -bit
elements and attempt to encode them using efficient guaranteed
upper bounds. We first consider W -bit extremal ranges of the
form [0, x], and prove that they can be encoded in g(W) ≤⌈

W+1
2

⌉
TCAM entries, nearly half the best-known bound of

W entries [12].
Later, we consider regular ranges of the form [x1, x2], and

prove that they can always be encoded in f(W) ≤ W TCAM
entries. Therefore, for large W , this is nearly half the size of
the best-known binary bound for prefix TCAM encoding of
2W − 2 and best-known overall bound of 2W − 5 [14], [16].

We then introduce new analytical tools that are suited for
TCAM analysis. We first define the hull H(a1, . . . , an) of n
binary strings a1, . . . , an, and show that these strings match
a TCAM entry iff all the strings in their hull H(a1, . . . , an)
match this TCAM entry. We use this property to define an
independent set of n points using some specific hull-based
alternating path, and demonstrate that an independent set of
n points cannot be encoded in less than n TCAM entries,
given any arbitrary TCAM entries, in any order, and with any
corresponding actions.

Next, we use this strong property to prove that the upper-
bound on the expansion g(W) of extremal ranges is tight. Since
our encoding only uses TCAM prefix entries, it is therefore
optimal both among prefix-based encodings and general en-
codings.

Then, we also prove that the upper bound on the range ex-
pansion fp(W) is tight as well among prefix-based encodings,
hence proving optimality in this encoding class (but not among
non-prefix encodings).

Later, we show that our lower bounds on the general binary
encoding still hold for a more general class of codes, including
Gray codes.

Then, we prove that any union of k ranges of W -bit elements
can be encoded in at most kW TCAM entries. Further, we show
that our encoding bound is asymptotically optimal as k →∞.

Next, we find lower bounds on the TCAM expansion of
ranges defined on more than one range field. We argue that
these bounds appear in any TCAM architecture with binary
coding, even when adding any type of post-processing logic.

Finally, we propose a modified TCAM architecture that can
use additional logic to significantly reduce the rule expansions,
with a bound that is linear instead of exponential in the number
of fields. We conclude by illustrating its results both in the
worst case and using real-life classification databases.

Paper Organization: We start with preliminary definitions
in Section II. Then, in Section III we prove upper bounds on
the range expansions of extremal ranges and general ranges

3

later. In Sections IV, V we present general analytical tools
in order to show that those upper bounds are tight. Later, in
Section VI we deal with the encoding of union of ranges
and with multidimensional ranges in Section VII. Last, in
Section VIII we suggest several TCAM architectures that
enable us to implement range encoding efficiently. We evaluate
them, with the other results, in Section IX.

II. MODEL AND NOTATIONS

A. Terminology

We first formally define the terminology used in this paper.
We initially assume a binary code expansion, and will later
revisit this assumption. For simplicity, whenever there will be
no confusion, we also do not distinguish between a W -bit
binary string (in {0, 1}W) and its value (in [0, 2W − 1]).

Definition 1 (Header): A packet header x = (x1, . . . , xd) ∈
{0, 1}W is a W -bit string defined on the d fields (F1, . . . , Fd).
Each sub-string xi of length Wi represents field Fi, with∑

Wi = W .
Example 1: A header could typically consist of the follow-

ing d = 5 fields: (F1, . . . , F5) = (source IP address, destina-
tion IP address, source port number, destination port number,
and protocol type), of respective lengths (W1, . . . , W5) =
(32, 32, 16, 16, 8) bits.

Definition 2 (Range Rule): The range rule Ri in field Fi

represents a set of allowed strings over {0, 1}Wi . It is defined
as an integer range [r1, r2], where r1 and r2 are Wi-bit integers
and r1 ≤ r2. A packet header sub-string xi ∈ {0, 1}Wi is said
to match Ri whenever xi ∈ [r1, r2].

In particular, the range rule Ri could be a prefix rule, with
a prefix r′ ∈ {0, 1}k of size k ∈ [0,Wi], r1 = {r′}{0}Wi−k,
and r2 = {r′}{1}Wi−k. It is an exact match with k = Wi and
r1=r2.

Definition 3 (Rule): A classification rule R =
((R1, . . . , Rd) → a) is defined as the union of a set of
range rules (predicates) (R1, . . . , Rd) defined over fields
(F1, . . . , Fd), and an action (decision) a ∈ A, where A is a set
of legal actions (e.g.A = {accept, deny, accept with logging}).
A packet header x = (x1, . . . , xd) matches a rule R iff each
xi matches Ri.

Definition 4 (Classifier): A classifier C = (R1, ..., Rn(C))
is an ordered set of n(C) classification rules . For each header
x ∈ {0, 1}W , let Rj =

(
(Rj

1, . . . , R
j
d) → aj

)
be the first rule

matched by x. Then the classifier effectively defines a classifier
function α : {0, 1}W → A that returns an action for each
header so that α(x) = aj . We assume that the last rule Rn(C)

is matched by all headers and returns a default action ad ∈ A,
and therefore that the classifier is complete and α is always
defined.

Definition 5 (TCAM entry): A TCAM entry S → a is de-
fined as the union of a TCAM rule S = (s1, . . . , sW) ∈
{0, 1, ∗}W , where {0, 1} are bit values and ∗ stands for don’t-
care, and an action a ∈ A. A W -bit string b = (b1, . . . , bW)
matches S, denoted as b ∈ S, iff for all i ∈ [1,W], si ∈ {bi, ∗}.

Definition 6 (TCAM Encoding Scheme): A TCAM encoding
scheme φ is said to map a function α to an ordered set of nφ(α)
TCAM entries

(
S1 → a1, . . . , Sn → anφ(α)

)
using a default

action ad ∈ A iff for any header x ∈ {0, 1}W , either the first
TCAM entry Sj → aj matching x satisfies α(x) = aj , or no
TCAM entry matches x and α(x) = ad. The number nφ(α) of
non-default TCAM entries is called the expansion of encoding
scheme φ for the classifier function α.

In the Introduction, we saw an example of TCAM encoding
of a single-field range classifier function α, with α([1, 6]) =
accept and α({0}∪{7}) = deny. In the remainder of the paper,
we will always assume for simplicity that the default action is
ad = 0. Each single-field range R is uniquely characterized by
its range indicator function αR, which takes a value of 1 on R
and 0 outside R. We will use range to indicate either R or its
indicator function αR.

Definition 7 (Prefix Encoding Scheme): A TCAM prefix en-
coding scheme φ is a TCAM encoding scheme such that for
any TCAM entry S → a with S = (s1, . . . , sW) ∈ {0, 1, ∗}W ,
if sj = {∗} for some j ∈ [0,W], then sj′ = {∗} for any
j′ ∈ [j, W].

We will denote as Φp the set of all prefix encoding schemes,
and Φ the general set of encoding schemes including non-prefix
schemes, so that Φp ⊂ Φ.

B. Optimal Range Expansion Problem

We want to find a TCAM prefix encoding scheme φ ∈ Φp

that minimizes the worst-case TCAM prefix expansion nφ(αR)
over all possible range functions αR. We first focus on prefix
encoding schemes, and later consider non-prefix schemes.
To do so, we will first define extremal ranges, then define
the TCAM-expansion minimization problem over all extremal
ranges, before defining the TCAM-expansion minimization
problem over all possible ranges

Definition 8 (Extremal Ranges): Let us define two types of
extremal ranges over [0, 2W − 1].
(i) A left-extremal range RLE denotes a range of the form
RLE = [0, y] for some arbitrary value of y.
(ii) Likewise, a right-extremal range RRE denotes a range of
the form RRE = [y, 2W − 1] for some arbitrary value of y.

A non-extremal range R = [y1, y2] is a range such that 0 <
y1 ≤ y2 < 2W − 1. Therefore, a range is either left-extremal,
right-extremal, or non-extremal. We now want to define our
optimization problem, first over all range functions, then over
extremal ranges.

Definition 9 (Range Expansion): For any positive integer
W and any TCAM prefix encoding scheme φ ∈ Φp, the
range expansion of φ, denoted fφ(W), is the worst-case TCAM
expansion nφ(αR) over all possible range functions αR, i.e.

fφ(W) = max
R⊆[0,2W−1]

nφ(αR), (1)

We now want to optimize the range expansion over all possible
encoding schemes φ ∈ Φ. Then the range expansion f(W)
is defined as the best-achievable range expansion for W -bit
ranges given all encoding schemes, i.e.

f(W) = min
φ∈Φ

(
max

R⊆[0,2W−1]
nφ(αR)

)
(2)

Likewise, we define fp(W) as the best-achievable range ex-
pansion given all prefix encoding schemes φ ∈ Φp.

4

Definition 10 (Extremal Range Expansion): Define the left-
extremal range expansion g(W) and right-extremal range ex-
pansion g′(W) as the best-achievable range expansion given all
encoding schemes φ ∈ Φ for left-extremal and right-extremal
ranges, respectively. Then,

g(W) = min
φ

max
y: 0≤y≤2W−1

nφ(α[0,y]), (3)

g′(W) = min
φ

max
y: 0≤y≤2W−1

nφ(α[y,2W−1]). (4)

Likewise, define gp(W) and gp
′(W) over all prefix encoding

schemes φ ∈ Φp.

III. RANGE EXPANSION GUARANTEES

A. Upper-Bound on the Extremal Range Expansion

We now want to provide range expansion guarantees by
proving upper bounds on the range expansions of extremal
ranges first, and general ranges later. To do so, we first prove
that left-extremal and right-extremal ranges have the same
range expansion.

Lemma 1: The left-extremal and right-extremal range ex-
pansions are the same, i.e. for all W ∈ N∗, g(W) = g′(W).

Proof: For any y ∈ [0, 2W − 1], the value obtained when
inverting the bits in the binary representation of y is y′ =
(2W − 1) − x. In particular, for y = 0 we get y′ = 2W − 1.
Therefore, a left-extremal range RLE = [0, y] is transformed
into a right-extremal range RRE = [(2W − 1) − y, 2W − 1],
and vice-versa. Consequently, give W -bit binary strings, the bit
inversion defines a bijection between the set of left-extremal
ranges and the set of right-extremal ranges.

Let (S1 → a1, . . . , Sn → an) denote the n TCAM entries
encoding a left-extremal range. Then, by inverting the {0, 1}
symbols in each Si, we get n TCAM entries encoding the cor-
responding right-extremal range. Therefore, we have g′(W) ≤
g(W), and likewise g(W) ≤ g′(W), hence the result.

We now want to find g(W). To do so, we will first prove the
following lemma on range shifting. The lemma shows that if
we shift a range R ⊆ [0, 2W −1] by a positive multiple of 2W ,
then the range expansion of the shifted range does not need
more TCAM entries, because we only need to add a prefix to
the TCAM expansion of R.

Lemma 2: Consider a W -bit range R = [y1, y2] ⊆ [0, 2W −
1], a w-bit value x ∈ [0, 2w − 1], and a shifted range R′ =
[x · 2W + y1, x · 2W + y2] ⊆ [0, 2W+w − 1]. Then the range
expansion of the shifted range R′ is no more that that of R.

Proof: Let (S1 → a1, . . . , Sn → an) denote the TCAM
entries encoding R, where each Si is of length W . For each i ∈
[1, n], let S′i = {x}·Si denote the (w+W)-bit concatenation of
x and Si. Then (S′1 → a1, . . . , S

′
n → an) has the same number

of TCAM entries and encodes R′ (Definition 6).
Example 2: For W = 3, as shown in the Introduction, the

range R1 = [1, 6] can be encoded with the three TCAM entries
(000 → 0, 111 → 0, ∗ ∗ ∗ → 1) using default action 0.
Likewise, the range R′ = [17, 22] = [2 · 23 + 1, 2 · 23 + 6]
can be encoded by simply adding the prefix 10 to all three
TCAM entries: (10000 → 0, 10111 → 0, 10 ∗ ∗∗ → 1).

We are now ready to characterize g(W). We first find an
upper-bound on g(W) by constructing an encoding scheme,

and then later show that this upper-bound is actually tight. The
following result improves by a factor of nearly two the best-
known bound of W [12].

Theorem 1: For all W ∈ N∗, the extremal range expansion
satisfies the following upper-bound:

g(W) ≤
⌈

W + 1
2

⌉
(5)

Proof: By Definition 10 of g(W), we only need to exhibit
an encoding scheme φ that manages to encode each left-
extremal range RLE = [0, y] ⊆ [0, 2W − 1] using at most⌈

W+1
2

⌉
non-default TCAM entries. Let’s do it by induction on

W ∈ N∗.
Induction basis: For W = 1, the only left-extremal ranges

are RLE
1 = [0, 0] and RLE

2 = [0, 1], which are respectively
encoded by (0 → 1) and (∗ → 1), i.e. in at most

⌈
1+1
2

⌉
= 1

TCAM entry each.
For W = 2, there are four left-extremal ranges: RLE

1 = [0, 0]
is encoded as (00 → 1), RLE

2 = [0, 1] is encoded as (0∗ → 1),
RLE

3 = [0, 2] is encoded as (0∗ → 1, 10 → 1), and RLE
4 =

[0, 3] is encoded as (∗∗ → 1), i.e. in at most
⌈

2+1
2

⌉
= 2 TCAM

entries each.
Induction step: Let’s now assume that the result is correct

until W − 1, and prove it for W . We will show that

g(W) ≤ 1 + g(W − 2), (6)

which suffices to prove the result, since it would imply that

g(W) ≤ 1 +
⌈

(W − 2) + 1
2

⌉
=

⌈
W + 1

2

⌉
.

Consider the left-extremal range RLE = [0, y] ⊆ [0, 2W − 1].
We will cut the W -bit range [0, 2W − 1] into four equal sub-
ranges of size 2W−2, and show that no matter the sub-range
to which y belongs, RLE can be encoded in 1 + g(W − 2)
TCAM entries, thus proving Equation (6).

(i) If y ∈ [0, 2W−2−1], then RLE can be seen as a (W−2)-
bit left-extremal range, which can be encoded in g(W − 2)
entries.

(ii) If y ∈ [2W−2, 2W−1 − 1], then we first encode
the sub-range [0, 2W−2 − 1] using a single TCAM entry
({00}{∗}W−2 → 1), and then by Lemma 2, we can encode
the remaining sub-range [2W−2, y] by adding at most g(W−2)
TCAM entries (using the {01} prefix for all entries). Thus, we
use a total of at most 1 + g(W − 2) TCAM entries.

(iii) Likewise, if y ∈ [2W−1, 2W−1 + 2W−2 − 1], then we
first encode the sub-range [0, 2W−1− 1] using a single TCAM
entry ({0}{∗}W−1 → 1), and then by Lemma 2 we encode the
remaining sub-range [2W−1, y] by adding at most g(W − 2)
TCAM entries, thus using at most 1+g(W−2) TCAM entries.

(iv) Last, if y ∈ [2W−1 + 2W−2, 2W − 1], we actually first
encode the complementary range [y + 1, 2W − 1], which by
Lemma 1 can be done in up to g′(W −2) = g(W −2) TCAM
entries of action 0. Then, we add the TCAM entry ({∗}W → 1)
to encode the range, thus using again at most 1 + g(W − 2)
TCAM entries. Since the four cases imply Equation (6), we
finally get the result by induction.

5

We can actually obtain a stronger result by showing that
the worst-case extremal range expansion gp(W) over all prefix
encoding schemes φ ∈ Φp satisfies the same upper bound.

Theorem 2: For all W ∈ N∗, gp(W) satisfies

g(W) ≤ gp(W) ≤
⌈

W + 1
2

⌉
(7)

Proof: We note that we only used TCAM prefix entries in
the proof of the previous theorem, and therefore the encoding
scheme φ used in the proof satisfies φ ∈ Φp. All other
arguments stay the same, and in particular Lemma 1 and
Lemma 2 are still valid within Φp, hence gp(W) ≤ ⌈

W+1
2

⌉
.

Last, since Φp ⊂ Φ, g(W) ≤ gp(W) by definition.

B. Upper-Bound on the Range Expansion

We now want to find an upper-bound on the range expansion
f(W) by constructing an efficient encoding scheme. We will
later show that this upper-bound is actually tight for prefix
encoding schemes.

Theorem 3: For all W ∈ N∗, the worst-case range expansion
satisfies the following upper-bound:

f(W) ≤ W. (8)

Proof: Let’s prove this by induction on W ≥ 1.
Induction basis: For W = 1, all non-empty ranges are ex-

tremal, therefore the result follows by Theorem 1. In addition,
for W = 2, all non-empty and non-extremal ranges are either
single points, or [1, 2], which can be encoded in two TCAM
entries.

Induction step: Now let W ≥ 3, and assume the claim true
until W − 1. Consider any range R ⊆ [0, 2W − 1], and cut
it into four possibly-empty sub-ranges, that correspond to its
intersection with the four consecutive sub-spaces of size 2W−2

of the space [0, 2W − 1] of size 2W : R = R1 ∪R2 ∪R3 ∪R4,
with R1 = R ∩ [0, 2W−2 − 1], R2 = R ∩ [2W−2, 2W−1 − 1],
R3 = R∩ [2W−1, 2W−1 +2W−2− 1], and R4 = R∩ [2W−1 +
2W−2, 2W − 1]. We want to show that R can be encoded in at
most W TCAM entries. Distinguish between several cases:

(i) If R = R1∪R2 ⊆ [0, 2W−1−1], i.e. R3 = R4 = ∅, then
by induction R can be encoded in at most W − 1 entries.

(ii) Else if R = R3∪R4 ⊆ [2W−1, 2W −1], i.e. R1 = R2 =
∅, then this is just a shifted version of the previous case and,
by Lemma 2, R can be encoded in at most W − 1 entries.

(iii) Else |R2| > 0 and |R3| > 0, because R is a range.
Let’s distinguish between two similar sub-cases. (a) If R4 = ∅,
then R = (R1 ∪ R2) ∪ R3. (R1 ∪ R2) is a right-extremal
range on [0, 2W−1 − 1], and by Lemma 1, can be encoded in
g(W − 1) TCAM entries. Further, R3 is just a shifted version
of a left-extremal range, and by Lemma 2, can be encoded
in g(W − 2) TCAM entries. (b) Likewise, if R1 = ∅, then
R = R2 ∪ (R3 ∪R4), R2 can be encoded in g(W − 2) TCAM
entries, and (R3 ∪R4) in g(W − 1) TCAM entries. Therefore
in both sub-cases, by Theorem 1, R can be encoded in up to

g(W − 1) + g(W − 2) ≤
⌈

W

2

⌉
+

⌈
W − 1

2

⌉
= W

TCAM entries. Note that in both sub-cases, the TCAM en-
tries can be merged because the construction in the proof

of Theorem 1 is prefix-based and limited to the range sub-
space, therefore there are no conflicts between the entries
corresponding to two distinct range sub-spaces.

(iv) Last, if all |Ri| > 0 for i ∈ [1, 4], then we use 2 different
techniques according to the parity of W .

If W is even, we encode R in a very similar way to what we
did in the previous case. (R1∪R2) is a right-extremal range on
[0, 2W−1− 1] and, by Lemma 1, can be encoded in g(W − 1)
TCAM entries. Further, (R3 ∪R4) is just a shifted version of
a left-extremal range and, by Lemma 2, can be encoded in
g(W − 1) TCAM entries. Again there are no conflicts and by
Theorem 1, R can be encoded in up to

g(W − 1) + g(W − 1) ≤ 2 ·
⌈

W

2

⌉
= W

TCAM entries.
If W is odd, we first encode the range complementary (using

action 0), and then use an additional TCAM entry with action
1 ({∗}W → 1) to encode the remaining range. To encode
the range complementary, we encode the left-extremal range(
[0, 2W−2 − 1] \R1

)
in g(W−2) entries, and the shifted right-

extremal range
(
[2W−1 + 2W−2, 2W − 1] \R4

)
in g(W − 2)

entries as well (using Lemma 2 on shifts and Lemma 1 on
right-extremal ranges). Again there are no conflicts between
the entries. Therefore R can be encoded in up to

2g(W − 2) + 1 ≤ 2
⌈

W − 1
2

⌉
+ 1 ≤ W

entries, and considering all cases, f(W) ≤ W .
As for extremal ranges, we also get the corresponding

stronger result on prefix encoding schemes.
Theorem 4: For all W ∈ N∗, fp(W) satisfies

f(W) ≤ fp(W) ≤ W (9)

Proof: We note that we only used TCAM prefix entries in
the proof of the previous theorem, and therefore the encoding
scheme φ used in the proof is also in Φp. All other arguments
stay the same and are valid within Φp. Last, since Φp ⊂ Φ,
f(W) ≤ fp(W) by definition.

IV. HULL, INDEPENDENCE, AND ALTERNATING PATHS

We now want to introduce new general analytical tools that
will help us analyze the minimum number of TCAM entries
needed to code a classifier function. Intuitively, given any range
that we need to encode, we will want to exhibit n points that
are independent in some sense, and prove that they cannot be
encoded in less than n TCAM entries.

First, we define the hull of a set of W -bit strings in the W -
dimensional string space (this hull is also known as the isothetic
rectangle hull, minimum bounding rectangle, or minimum axis-
aligned bounding box in different contexts).

Definition 11 (Hull): Let (n,W) ∈ N∗2, and consider n
strings a1, . . . , an of W bits each, with ai = (ai

1, . . . , a
i
W)

for each i ∈ [1, n]. Then the hull of {a1, . . . , an}, denoted
H(a1, . . . , an), is the smallest cuboid containing a1, . . . , an in
the W -dimensional string space, and is defined as

H(a1, . . . , an) = {x = (x1, . . . , xW) ∈ {0, 1}W |
∀j ∈ [1,W], xj ∈ {a1

j , . . . , a
n
j }} (10)

6

10 110100

RLE

Fig. 2. Alternating path: RLE requires at least two TCAM entries using any
coding scheme.

We can now relate the hull of a set of points to the TCAM
entries that they jointly match.

Proposition 1: Let (n,W) ∈ N∗2, and consider n strings
a1, . . . , an of W bits each. Then a1, . . . , an match the same
TCAM entry iff all the strings in the hull H(a1, . . . , an) match
this TCAM entry.

Proof: On the one hand, by Equation (10) defining the
hull, we always have {a1, . . . , an} ⊆ H(a1, . . . , an). There-
fore, if all strings in H(a1, . . . , an) match a TCAM entry, so
does any ai.

On the other hand, assume that a1, . . . , an match a TCAM
entry S → a, with S = (s1, . . . , sW) ∈ {0, 1, ∗}W . Then
by Definition 5 of TCAM entry matching, for all i ∈ [1, n]
and for all j ∈ [1,W], sj ∈ {ai

j , ∗}. Now consider x =
(x1, . . . , xW) ∈ H(a1, . . . , an). Then by Equation (10), for
all j ∈ [1,W], xj ∈ {a1

j , . . . , a
n
j }. Therefore, for each bit j,

either all ai
j are equal, and xj obviously matches sj like all ai

j ,
or some of them are distinct, and then sj = ∗, so xj matches
sj again.

Using the definition of the hull, we now define independent
sets of points, and then show that an independent set of n points
cannot be coded in less than n TCAM entries. Therefore, this
result enables us to simply exhibit an appropriate independent
set of points whenever we want to prove a lower bound on the
expansion of a classifier function.

Definition 12 (Alternating Path and Independent Set): Let
n and W be positive integers, and let α : {0, 1}W → {0, 1}
be a classifier function. Then an alternating path An of
size n is defined as an ordered set of 2n − 1 W -bit strings
An = (a1, . . . , a2n−1) that satisfies the following two
conditions:
(i) Alternation: For i ∈ [1, 2n− 1],

α(a1) = α(a3) = · · · = α(a2n−1) = 1, and

α(a2) = α(a4) = · · · = α(a2n−2) = 0. (11)

(ii) Hull: For any i1, i2, i3 such that 1 ≤ i1 < i2 < i3 ≤ 2n−1,

ai2 ∈ H(ai1 , ai3). (12)

In such an alternating path, (a1, a3, a5, . . . , a2n−1) is an inde-
pendent set of size n.

Example 3: As shown in Fig. 2, let W = 2, n =
2, and consider the left-extremal range RLE = [0, 2] =
{{00}, {01}, {10}} . Let a1 = 2 = {10}, a2 = 3 = {11},
and a3 = 1 = {01}. Then A2 = (a1, a2, a3) is an alternating

path of size 2 and (a1, a3) is an independent set, because they
satisfy the two needed conditions:
(i) Alternation: a1 ∈ RLE , a2 6∈ RLE , a3 ∈ RLE .
(ii) Hull: a2 ∈ H(a1, a3), i.e. {11} ∈ H({10} , {01}), because
it shares its first bit with a1 and its second bit with a3.

Lemma 3: Let n be a positive integer, and (a1, . . . , a2n+1)
be an alternating path of size n + 1. Then removing any two
successive elements in the alternating path yields an alternating
path of size n.

Proof: Removing elements ai and ai+1 yields
(a1, . . . , ai−1, ai+2, . . . , a2n+1) for any i ∈ [1, 2n]. Then
the two conditions defined above for the alternating path still
hold. First, odd elements should still yield action 1, and even
elements action 0. Second, for any three elements in the list,
the middle element is still in the hull of the other two, since it
was already there before the removal of the two elements.

Theorem 5: A classifier function with an alternating path of
size n cannot be coded in less than n TCAM entries.

Proof: The proof is by induction on n.
Induction basis: For n = 1, we need to code at least one

element with a non-default action of 1, therefore we need at
least one TCAM entry.

Induction step: We assume that we cannot code a classifier
function with an alternating path of size n in less than n TCAM
entries, and want to show it for n + 1 as well.

Assume, by contradiction, that we can code a classifier
function with an alternating path An+1 = (a1, . . . , a2n+1) of
size n + 1 in less than n + 1 TCAM entries. Then consider
the first TCAM entry S → a (as defined in Definition 6), and
distinguish several cases.

(i) If none of the elements of An+1 are in this first TCAM
entry, which we denote An+1∩S = ∅, then S does not impact
An+1, and we can actually code the elements of An+1 in
the next (at most) n − 1 TCAM entries. But by Lemma 3
we can extract from An+1 an alternating path of size n, e.g.
(a1, . . . , a2n−1), and by induction we know that it cannot be
coded in n− 1 TCAM entries.

(ii) If a single element ai out of An+1 is in this first TCAM
entry, i.e. An+1∩S = {ai}, then, by Lemma 3, we can remove
two successive elements from An+1, including ai, and obtain
an alternating path An of size n that does not contain ai. But
then we need to code An in the next n − 1 TCAM entries,
because An ∩ S = ∅, and by induction we know that this is
impossible.

(iii) If at least two elements out of An+1 are in this first
TCAM entry, i.e. |An+1 ∩S| > 1, then they all must yield the
same action by definition of the TCAM entry. Without loss of
generality, assume that {ai1 , ai2} ⊆ An+1 ∩ S, with i1 < i2.
Then since they yield the same action, we have i1 < i1+1 < i2,
and therefore ai1+1 ∈ H(ai1 , ai2) (Definition 12). Therefore,
by Proposition 1, ai1+1 also matches the same TCAM entry,
even though it should yield a different action than ai1 and ai2 .
Contradiction again.

V. RANGE EXPANSION OPTIMALITY

A. Extremal Range Expansion Optimality
Thanks to the tools developed above, we can now prove the

following theorem, which shows that the upper-bound g(W) ≤

7

⌈
W+1

2

⌉
proved in Theorem 1 is tight, and therefore that our

iterative encoding scheme reaches the optimal extremal range
expansion.

Theorem 6: The bound in Theorem 1 is tight, and therefore
for all W ∈ N∗, the extremal range expansion is exactly

g(W) =
⌈

W + 1
2

⌉
. (13)

Proof: We have to show that g(W) ≥ ⌈
W+1

2

⌉
.

The case of W = 1 is trivial. To distinguish between the
two left-extremal ranges RLE

1 = [0, 0] and RLE
2 = [0, 1], it is

clear that we need at least one TCAM entry.
Assume W ≥ 2. First, notice that for each even value of

W ∈ N∗, the upper-bound is the same for g(W) and g(W +
1), and is equal to

(
W
2 + 1

)
, i.e.

⌈
W+1

2

⌉
=

⌈
(W+1)+1

2

⌉
=(

W
2 + 1

)
. Therefore, to prove the tightness of the upper-bound,

it is sufficient to do it for the positive even values of W .
More specifically, for each positive even value of W , we

simply need to exhibit a left-extremal range RLE(W) ⊆
[0, 2W − 1] that cannot be coded in less than

(
W
2 + 1

)
TCAM

entries. As a consequence, this left-extremal range RLE(W)
would also suffice to prove the tightness of the upper-bound
for W + 1, because RLE(W) ⊆ [0, 2W − 1] ⊆ [0, 2W+1 − 1],
and

⌈
(W+1)+1

2

⌉
= W

2 + 1.
Therefore, we assume that W ≥ 2 is even. Define W -bit

string c(W) = 1010...10 = {10}W
2 . The binary value of c(W)

is

c(W) =

W
2 −1∑

k=0

2 · 22k =
2
3

(
2W − 1

)
(14)

Consider the left-extremal range RLE(W) =[
0, 2

3

(
2W − 1

)]
=

{{0}W , . . . , c(W)
} ⊆ [0, 2W − 1].

Then by Theorem 5, it suffices to show that in RLE(W) there
exists an alternating path of size W

2 + 1. Note that we already
showed this for W = 2 in Example 3, and will now generalize
the proof for any even W ≥ 2.

We define a1 = {01}W
2 , and then construct the alternating

path (a1, . . . , aW+1) by flipping each time the ith bit of ai

to obtain ai+1: by flipping the first bit of a1, we get a2 =
{11}{01}W

2 −1. Then by flipping the second bit of a2, we get
a3 = {10}{01}W

2 −1, and likewise until aW+1 = {10}W
2 =

c(W). Therefore, for i ∈ [1,W + 1], ai has the same first
i− 1 bits as aW+1 and the same last W − (i− 1) bits as a1.
As a consequence, by the hull definition (Definition 11), for
any i1, i2, i3 such that 1 ≤ i1 < i2 < i3 ≤ W + 1, ai2 ∈
H(ai1 , ai3), because ai2 shares its first i2 − 1 bits with ai3 ,
and its other bits with ai1 .

Now we only need to prove the alternation property of
(a1, . . . , aW+1). As defined in the alternating path definition
(Definition 12), we only need to show that the odd-indexed
elements are in RLE(W) = [0, aW+1] while the even-indexed
are not, i.e. ai ≤ aW+1 for i = 1, 3, . . . , W − 1, while
ai > aW+1 for i = 2, 4, . . . , W .

To compare between the two W -bit binary strings ai and
aW+1, we use the lexicographic order, i.e. ai < aW+1 iff there
exists some most significant different bit j such that their first
j − 1 bits are equal, and the jth bit of ai is 0 while the jth bit

of aW+1 is 1. In addition, we know that ai only shares the first
i−1 bits with aW+1, and all other bits are different. Therefore,
for i ∈ [1,W], the most significant different bit between ai and
aW+1 is the ith bit. Since the ith bit of aW+1 = c = {10}W

2

is 1 for odd i and 0 for even i, the result follows.

B. Range Expansion Optimality

We will now prove that the upper bound on the range
expansion fp(W) from Theorem 4 is actually tight among all
TCAM prefix coding schemes, and therefore their prefix coding
scheme is optimal among all prefix coding schemes for the
worst-case range expansion.

Theorem 7: For all W ∈ N∗, the optimal range expansion
among all prefix encoding schemes is exactly

fp(W) = W. (15)

Proof: We have proved earlier, using an alternating path,
that the expansion of extremal ranges on spaces of size 2W−1

is g(W − 1) =
⌈

W
2

⌉
.

We first assume that W is odd. We define
R1 =

[
1
3

(
2W−1 − 1

)
, 2W−1 − 1

]
, R2 =[

2W−1, 2W−1 + 2
3

(
2W−3 − 1

)]
. We then build a

hard-to-encode W -bit range R = R1
⋃

R2 =[
1
3

(
2W−1 − 1

)
, 2W−1 + 1

3 · 2W−2 − 2
3

] ⊆ [0, 2W − 1]
composed of a shifted right-extremal range R1 of size
c(W − 1) and a shifted left-extremal range R2 of size
c(W − 3).

The first range R1 is included in the sub-space [0, 2W−1 −
1] of size 2W−1 and the second range R2 in the sub-space
[2W−1, 2W−1 + 2W−3 − 1] of size 2W−3. Therefore in R1

we can build an alternating path of size g(W − 1), and in R2

another one of size g(W − 3). There are two approaches we
can use in order to encode R. We can either encode the range
itself or encode the complimentary range first and then add the
entry (∗W → 1).

We show that using prefix encoding, no matter which way
is chosen, we would then need a total number of (at least) W
TCAM entries.

If we were only encoding the range itself, we would have
to encode R1 and R2 separately. Then, we have at least

g(W − 1) + g(W − 3) =
⌈

W

2

⌉
+

⌈
W − 2

2

⌉

=
W + 1 + W − 2 + 1

2
= W

(16)

entries.
If the last entry is (∗W → 1) and we earlier encoded

the complementary of the range, i.e. the two complementary
ranges on the right and on the left, we must have encoded
them separately, since we are using prefix encoding. Therefore,
we must have in addition to the last entry, g(W − 1) − 1
entries dedicated for the complementary of R1 in [0, 2W−1−1].
Otherwise, using these entries and the last one, R1 can be
encoded in less than g(W −1)−1+1 = g(W −1) entries. For
the complimentary of R2 in [2W−1, 2W −1], we must have one
entry for the subrange [2W−1+2W−2, 2W−1] and g(W−3)−1
entries for R2 in the subrange [2W−1, 2W−1 + 2W−2 − 1].

8

Otherwise, using the same considerations as above, with the
addition of another entry R2 can be encoded in less than
g(W − 3) entries.

So, the total number of entries in the encoding of R is at
least

1 + (g(W − 1)− 1) + 1 + (g(W − 3)− 1)

= g(W − 1) + g(W − 3) =
⌈

W

2

⌉
+

⌈
W − 2

2

⌉

=
W + 1 + W − 2 + 1

2
= W

(17)

Therefore in any encoding of R we must have at least W
entries.

If W is even, we use similar considerations to show that the
range R =

[
2
32W−1 − 1

3 , 4
32W−1 − 2

3

] ⊆ [0, 2W − 1] cannot
be coded in less than W prefix TCAM entries.

Similarly to the equality g(W) = gp(W), we conjecture that
we have the same equality here, i.e. that non-prefix expansions
cannot obtain a better range expansion than prefix expansions.

Conjecture 1: For all W ∈ N∗, f(W) = fp(W) = W .

C. Range Expansion with Hierarchical Codes

We saw in the Introduction that encoding internally using
binary prefixes can be done in 2W −2 entries per rule, but can
be improved using Gray codes and similar codes to 2W−4 and
2W − 5 entries per rule, respectively [12], [16]. It is natural to
ask whether our lower bounds on the general binary encoding
still hold with different codes, such as a Gray code.

We show that counter-intuitively, Gray codes do not reduce
the worst-case expansion. We first define a general class of
hierarchical codes that includes both binary codes and Gray
codes, and then prove that they satisfy the exact same results
on extremal range expansion and range expansion, respectively.

Let a code σ : {0, 1}W → {0, 1}W be a bijection that
transforms a binary W -bit string representation into another
W -bit string, and let Σ denote the set of all such codes.
We first provide some useful definitions, and then prove that
hierarchical codes satisfy several equivalent properties.

Definition 13 (Suffix Distance): The suffix distance dS(a, b)
between two W -bit strings a and b is

dS(a, b) = W−max{j ∈ [0,W]| (a1, . . . , aj) = (b1, . . . , bj)}.
Definition 14 (Prefix Set): A prefix set S ⊆ {0, 1}W is a set

of all elements that share the same prefix, i.e. a W -bit string
a ∈ {0, 1}W and an index j ∈ [0,W] exist such that

S = {a1, . . . , aj} {0, 1}W−j
.

Theorem 8 (Hierarchical Codes): For any σ ∈ Σ, the fol-
lowing three properties are equivalent:
(i) σ is a graph automorphism on the tree representation, i.e.
it preserves all subtrees in the tree structure;
(ii) σ preserves prefix sets, i.e. if S is a prefix set, then σ(S)
is a prefix set as well;
(iii) σ preserves the suffix distance, i.e. dS(σ(a), σ(b)) =
dS(a, b).

We will denote by ΣH the set of all codes satisfying these
properties, and call them hierarchical codes.

Proof: We start by proving (i) ⇒ (ii). Consider the
subtree corresponding to the prefix set S. Since σ is a graph
automorphism, its image is a subtree with the same size. This
subtree corresponds to another prefix set S′.

Next, we show that (ii) ⇒ (iii). If dS(a, b) = d, then the
minimal size of a prefix set that contains both a and b is 2d. Let
denote by S such a set. By property (ii), we have that σ(S)
is a prefix set of the same size (2d) that contains both σ(a)
and σ(b). Therefore, dS(σ(a), σ(b)) ≤ d = dS(a, b). In order
to see that dS(σ(a), σ(b)) = dS(a, b), we show that assuming
that dS(σ(a), σ(b)) < dS(a, b) leads towards a contradiction.
We first observe that by property (ii) we must also have that
if σ(S) is a prefix set, then S is a prefix set as well, since the
total number of prefix sets is S and σ(S) is equal. Therefore,
assuming property (ii), we can deduce that σ−1 preserves prefix
sets as well. If dS(σ(a), σ(b)) < d = dS(a, b), there exists a
prefix set S′ of size smaller than 2d that contains both σ(a) and
σ(b). From the corollary above we have that σ−1(S′) is a prefix
set smaller than 2d that contains both a and b. Contradiction.

Last, we prove that (iii) ⇒ (i). In order to show this, we use
the equality between the suffix distance and half the distance
in the tree between the corresponding leaves. Therefore, by
property (iii) we have that the distance in the tree between any
two nodes is also preserved under σ. Thus, again using the
connection between the distance in the tree and the minimal
size of a tree that contains two points, we must have that
σ preserves all subtrees in the tree structure and is a graph
automorphism.

Example 4: We want to show that both the binary code and
the Gray code have these three properties. For the binary code,
σ is the identity function and therefore preserves all subtrees in
the tree structure, the prefix sets and the suffix distance. Thus,
it satisfies these three properties.

For the Gray code we prove that it has property (i) by
induction. For W = 1 the Gray code is the same as the
binary code, and thus has the same properties. By the induction
hypothesis, we assume that all the subtrees of size smaller than
2W−1 are preserved under the code. For a general W , from the
reflection property of the Gray code, the values of [0, 2W − 1]
are assigned first to the left subtree of size 2W−1 and later to
the right one. Thus, the two subtrees of size 2W−1 are also
preserved, and the Gray code satisfies property (i) and the two
others by their equivalence.

Example 5: For W = 3, we present two additional codes,
φ, ψ ∈ Σ, defined in Table I. We show, by checking that the
properties are satisfied, that φ ∈ ΣH while ψ /∈ ΣH .

We start with ψ. For a = 000, b = 111, we have
dS(a, b) = dS(000, 111) = 3. However, dS(ψ(a), ψ(b)) =
dS(ψ(000), ψ(111)) = dS(000, 001) = 1 Therefore, ψ does
not satisfy property (iii) and ψ is not an hierarchical code.

Next, we examine the code φ. To show that it preserves
prefix sets and satisfies property (ii), we consider all the
possible prefix sets that contain more than one element. There
are four prefix sets of size two: S1 = {00} {0, 1} , S2 =
{01} {0, 1} , S3 = {10} {0, 1} , S4 = {11} {0, 1} and two
prefix sets of size four: S5 = {0} {0, 1}2 , S6 = {1} {0, 1}2.

9

TABLE I
EXAMPLE OF 2 ADDITIONAL CODES. φ IS HIERARCHICAL, ψ IS NOT.

φ ψ
000 011 000
001 010 010
010 001 100
011 000 110
100 100 111
101 101 101
110 110 011
111 111 001

We can see that φ maps S1 to S2, S2 to S1 and S3, S4, S5, S6

to themselves. Finally, the only prefix set of size 2W , ({0, 1}W)
is mapped, of course, to itself. Thus, φ satisfies property (ii)
and is a hierarchical code, i.e. φ ∈ ΣH .

Given a hierarchical code σH ∈ ΣH , define gH(W) and
fH

p (W) for this code as g(W) and fp(W) were defined for
the binary code, respectively. Then we obtain:

Theorem 9: In any hierarchical code σH ∈ ΣH , the extremal
range expansion and prefix-based general range expansion have
the same lower bounds as with a binary code:

gH(W) ≥
⌈

W + 1
2

⌉
= g(W), (18)

fH
p (W) ≥ W = fp(W). (19)

Proof: We start by proving the first part of the theorem.
As explained earlier in this paper, it is enough to prove the
theorem when W is even. The proof is by induction on W and
follows the proof of Theorem 6. For each W , we exhibit an
extremal range RLE and an alternating path of size

⌈
W+1

2

⌉
and show that given any hierarchical code σH ∈ ΣH , RLE

cannot be encoded in less than
⌈

W+1
2

⌉
TCAM entries. To do

so, we use the notation c(W) = 2
3

(
2W − 1

)
from Theorem 6

and consider the extremal range RLE = [0, c(W)]. Let α be
the indicator function of RLE , and for a bit value b let b′ be
the bit value 1− b.

Induction basis: We start with the case of W = 2. Here
R = [0, c(2)] = [0, 2]. Without loss of generality, the code σH

is of the form: σ(00) = (b1, b2), σ(01) = (b1, b
′
2), σ(10) =

(b′1, b3), σ(11) = (b′1, b
′
3). Here α((b1, b2)) = α((b1, b

′
2)) =

α((b′1, b3)) = 1, α((b′1, b
′
3)) = 0. There are two possible cases:

If b2 = b3, we look at σ(01), σ(10) and σ(11). We define
A2 = (a1, a2, a3), for a1 = σ(01) = (b1, b

′
2), a2 = σ(11) =

(b′1, b
′
3) and a3 = σ(10) = (b′1, b3). Then A2 = (a1, a2, a3) is

an alternating path of size 2 and
{
a1, a3

}
is an independent

set, because it satisfies the two needed conditions:
(i) Alternation: a1 ∈ RLE , a2 6∈ RLE , a3 ∈ RLE .
(ii) Hull: a2 = (b′1, b

′
3) = (b′1, b

′
2) ∈ H((b1, b

′
2), (b

′
1, b3)) =

H(a1, a3), because a2 shares its first bit with a3 and its second
bit with a1.

If b2 6= b3, we look at σ(00), σ(10) and σ(11). We define
A2 = (a1, a2, a3), for a1 = σ(00) = (b1, b2), a2 = σ(11) =
(b′1, b

′
3) and a3 = σ(10) = (b′1, b3). Then, A2 = (a1, a2, a3) is

again an alternating path of size 2.
Induction step: For a general even value of W , we have

RLE(W) = [0, c(W)] = [0, 2W−1 + c(W − 2)]. We can see
that RLE(W) = [0, 2W−1− 1]∪ [2W−1, 2W−1 + c(W − 2)] =
R1 ∪ R2, where R2 is a shifted version of RLE(W − 2),

and observe that 2W−1 < c(W) < (2W−1 + 2W−2). By
property (ii) of the hierarchical code σH , we must have that
the first two bits in the W -bit string of the code of the points
in [2W−1, 2W−1 + c(W)] ⊆ [2W−1, 2W−1 + 2W−2 − 1] are
equal. Further, if we denote them by (b1, b2), then all the points
with code that starts with the first two bits (b1, b

′
2) belong

to [2W−1 + 2W−2, 2W − 1] ⊆ (RLE(W))c. Further, all the
points with code that starts with the first bit {b′1} belong to
[0, 2W−1 − 1] ⊆ RLE(W). Let l =

⌈
W−2+1

2

⌉
=

⌈
W−1

2

⌉
and

Al = (a1, . . . , a2l−1) with a2l−1 = (a2l−1
1 , a2l−1

2 , . . . , a2l−1
W)

be the alternating path for RLE(W − 2). We build the al-
ternating path Bk = (b1, . . . , b2k−1) for k =

⌈
W+1

2

⌉
=⌈

W−2+1
2

⌉
+1 = l+1 as follows: We first define bi = (b1, b2)ai

for i ∈ [1, 2l − 1]. We get the next point by flipping the second
bit of b2l−1 to have b2l = (b1, b

′
2, a

2l−1
1 , a2l−1

2 , . . . , a2l−1
W). To

get the last point we flip in addition the first bit, b2l+1 =
(b′1, b

′
2, a

2l−1
1 , a2l−1

2 , . . . , a2l−1
W).

By the last observations we can see that Bk is an alternating
path of size k. It satisfies the two conditions:
(i) Alternation: Since Al is an alternating path, we have
that for i ∈ [1, 2l − 1], bi = (b1, b2)ai. If i is odd, bi ∈
R2 ⊆ RLE(W) since ai ∈ RLE(W − 2). If i is even,
bi ∈ [2W−1 + c(W − 2), 2W−1 + 2W−2 − 1] ⊆ (RLE(W))c,
since ai ∈ (RLE(W−2))c. From the previous observations we
also have that b2l ∈ [2W−1 + 2W−2, 2W − 1] ⊆ (RLE(W))c.
Last, b2l+1 ∈ [0, 2W−1−1] ⊆ RLE(W) and the first condition
is satisfied.

(ii) Hull: For any i1, i2, i3 such that 1 ≤ i1 < i2 <
i3 ≤ 2k − 1, if i3 ≤ (2l − 1) then bi2 ∈ H(bi1 , bi3) since
ai2 ∈ H(ai1 , ai3). If i3 = 2l, then b2l−1 ∈ H(bi1 , bi3),
bi2 ∈ H(bi1 , b2l−1) and therefore bi2 ∈ H(bi1 , bi3). We
use similar considerations to have also bi2 ∈ H(bi1 , bi3) if
i3 = 2l + 1 = 2k − 1.

We can now deduce that Bk is an alternating path of size k
and by Theorem 5 we have the result.

Next, we prove the second part of the theorem. The proof
follows the proof of Theorem 7. We consider again the W -bit
range

R = [2W−1 − 1− c(W − 1), 2W−1 + c(W − 3)]

=
[
1
3

(
2W−1 − 1

)
, 2W−1 +

1
3

(
2W−2

)− 2
3

]
⊆ [0, 2W − 1]

(20)

As explained earlier, the range R is composed of a shifted
right-extremal range R1 of size c(W − 1) + 1 and a shifted
left-extremal range R2 of size c(W−3)+1. By the proof of the
first part of the theorem, using only prefix encoding we may
have that also in this general hierarchical code, if we encode
the range itself, we must have at least g(W −1)+g(W −3) =
W entries. Using again the lower bound on the expansion of
the extremal ranges in any hierarchial code, if we first encode
the complementary of the range, its 2 parts must be encoded
separately and we must have, including the last entry, a total
number of 1 + (g(W − 1) − 1) + 1 + (g(W − 3) − 1) =
g(W − 1) + g(W − 3) = W TCAM entries.

10

VI. UNION OF RANGES

We have shown that any range can be encoded using
fp(W) = W entries. However, it is not straightforward that
encoding k ranges would also be possible in kW ranges.
For instance, if we encode some range R1 using external
encoding, i.e. by first encoding its complementary (R1)c, we
might encompass another range R2 ⊆ (R1)c, and therefore
yield a wrong encoding. A simple apparent solution is to
encode R2 first, but then we might need to encode it using its
complementary (R2)c first. This is again a problem because
R1 ⊆ (R2)c. Here is a simple example of such a phenomenon.

Example 6: Assume we want to encode k = 2 ranges of
W = 4-bit strings. Let R1 = [0, 11] = {{0000} , . . . , {1011}}
and R2 = [15, 15] = {1111}. We want to encode R1∪R2. Then
R1 can be encoded as (11 ∗ ∗ → 0, ∗ ∗ ∗∗ → 1), neglecting the
last default entry. Likewise, R2 can be encoded as (1111 → 1).
However, directly combining the entries would yield

(11 ∗ ∗ → 0, ∗ ∗ ∗∗ → 1, 1111 → 1),

which actually encodes R1 and not R1∪R2. Instead, a correct
encoding would have been

(1111 → 1, 11 ∗ ∗ → 0, ∗ ∗ ∗∗ → 1).

The example shows there might be a problem when the
encoding of a range defines treatment for values that appear
outside it but inside other ranges. Note that this problem does
not occur when the ranges are in different halves of the W-
bit range, since we can rely on prefix-based encoding. Further,
it does not occur if one of the two ranges is included in a
prefix sub-space and the second does not intersect it. In such
a case, the prefix of that sub-space may be used to avoid a
detrimental effect of the first encoding on the second, so we
can first encode the first range and later the second.

We want to generalize Theorem 4, which states that any
single range can be encoded in W entries, not including the
default one. We will consider a set of k distinct ranges, defined
in the same way as [20]. Namely, by a range, we mean a
non-default interval with the same resulting action. Therefore,
although two non-adjacent ranges can cut the space of all
2W elements into five intervals (successively corresponding
to default, then first range, then default, then second range,
and default again), we consider these as two ranges only. On
the other hand, if a first rule is strictly contained within a
second rule but has priority, then the two rules create three
ranges (successively corresponding to the second, first, and
again second rule).

Example 7: For W = 3, we consider the case of two ranges
R1, R2 defined with corresponding actions accept and log. Let
deny be the default action. As shown in Fig. 3(a), the range
R = R1 ∪R2 = [1, 3]∪ [5, 6] is considered as two ranges only
since R1, R2 are non-adjacent ranges. However, as shown in
Fig. 3(b), if R = R1 ∪ R2 = [3, 4] ∪ [1, 6]. R1 has priority
over R2 and R1 is strictly contained within R2, there are three
ranges.

This theorem follows directly from the tighter result pre-
sented below in Theorem 11. To prove Theorem 11, we will
first establish several lemmas based on the different types of
range unions.

010 011001 110100 101 111000

1 2 3 4 5 6 7

R2R1

0

(a)

010 011001 110100 101 111000

1 2 3 4 5 6 7

R1R2

0

R2

(b)

Fig. 3. Union of two ranges

Theorem 10: For all W ∈ N∗ and k ∈ N, any k ranges of
W -bit elements can be encoded using prefix encoding in at
most kW TCAM entries.

For any range Ri, we define its bit size W i as its number
of meaningful bits, i.e the number of bits that can vary in the
string representation of the elements of Ri, corresponding to
the maximum possible suffix distance within Ri. As usual, we
refer to W as the total number of bits in the definition in each
of the ranges, i.e. they are all defined over a sub-space of size
2W . From now on, we assume that each range Ri is defined
with a corresponding action ai.

In the following lemma, we give an upper bound on the
expansion of the union of two distinct ranges.

Lemma 4: Let R1 and R2 denote two ranges of respective
bit sizes W 1 and W 2. We consider their union R1 ∪R2.
1. If R1, R2 are both extremal ranges, their union can be
encoded in at most g(W 1) + g(W 2) TCAM entries.
2. If only R2 is an extremal range, their union can be encoded
in at most f(W 1) + g(W 2) + 1 TCAM entries.
3. If both R1 and R2 are not extremal ranges, their union can
be encoded in at most f(W 1) + f(W 2) + 2 TCAM entries.
All results can rely on prefix encoding.

Proof: The proof is by strong induction on W .
Induction basis: We prove the correctness for the cases of

W = 1 and W = 2.
For W = 1, there is one possible union of two ranges, R =

[0, 0] ∪ [1, 1], which can be simply encoded in 2 ≤ 1 + 1 =
g(0) + g(0) TCAM entries.

For W = 2, there are five possible unions of 2 ranges: Ra =
R1 ∪ R2 = [0, 0] ∪ [3, 3] is encoded as (00 → 1, 11 → 1),
Rb = R1∪R2 = [0, 0]∪ [2, 2] is encoded as (00 → 1, 10 → 1),
Rc = R1∪R2 = [0, 0]∪ [2, 3] is encoded as (00 → 1, 1∗ → 1),
Rd = R1∪R2 = [1, 1]∪[3, 3] is encoded as (01 → 1, 11 → 1),
and Re = R1∪R2 = [0, 1]∪[3, 3] is encoded as (0∗ → 1, 11 →

11

W1

W1 W2

W2

W3

Case 1.a

Case 1.b

(a) Type 1 union of 2 ranges

W1
W-2

W1

W1

Case 1.b.1

Case 1.b.2

Case 1.b.3

(b) Type 1 union of 2 ranges - detailed. View of
case 1.b

W-2
W1

W1

W1

W4 W6

W5

W7

Case 1.b.2.a

Case 1.b.2.b

Case 1.b.2.c

(c) Type 1 union of 2 ranges - detailed. View of
case 1.b.2

W-2

W2W1

W2

W2W1

W1

W6W5

W7

Case 1.b.3.a

Case 1.b.3.b

Case 1.b.3.c

(d) Type 1 union of 2 ranges - detailed. View of
case 1.b.3

W1 W2

W1

W2W1

W2
W1

W2

W3 W4

W3

Case 2.a

Case 2.b

Case 2.c

Case 2.d

(e) Type 2 union of 2 ranges

W1
W-2

W1

W1

W5W6

W4

W4

Case 2.c.1

Case 2.c.2

Case 2.c.3

(f) Type 2 union of 2 ranges - detailed. View of
case 2.c

W-2

W2W1

W2W1

W2W1

W5W7 W6

W8

Case 2.c.3.a

Case 2.c.3.b

Case 2.c.3.c

(g) Type 2 union of 2 ranges - detailed. View of
case 2.c.3

W2W1

W2W1

W2
W1

W3 W4

Case 3.a

Case 3.b

Case 3.c

(h) Type 3 union of 2 ranges

Fig. 4. Various unions of two ranges

1). Therefore, if W i is the bit size of one-dimensional range
Ri, all range unions are encoded in at most 2 ≤ min{g(W 1)+
g(W 2), f(W 1) + g(W 2) + 1, f(W 1) + f(W 2) + 2} TCAM
entries each.

Induction step: For W ≥ 3, to prove each result, we con-
sider all its possible subcases, distinguishing between different
locations of the two ranges with respect to the two halves of
the W-bit sub-space. All the proposed entries only use prefix
encoding.

Result 1 — We start by proving result 1 of the lemma
regarding a union of extremal ranges, which we denote as a type
1 union. We consider two possible cases as shown in Fig. 4(a).

In case 1.a, the two extremal ranges appear in two different
halves of the W-bit space and therefore we can simply merge
their encoding and encode the union in g(W 1)+g(W 2) TCAM
entries.

In case 1.b, w.l.o.g, the second range R2 intersects both
halves. Let W 3 be the number of meaningful bits of R2 ∩
[0, 2W−1− 1] (as illustrated in Fig. 4(a)). Then we distinguish
between two different cases according to the value of W 3.

If W 3 ≤ W − 2, we can again just simply merge the
encoding of the two halves of the W-bit space. By the induction
hypothesis, the left half can be encoded in g(W 1) + g(W 3)
TCAM entries and the right half with only one TCAM entry,
(1{∗}W−1 → a2). So, we have a total number of g(W 1) +
g(W 3) + 1 ≤ g(W 1) + g(W − 2) + 1 = g(W 1) + g(W) =
g(W 1) + g(W 2).

We now consider the case that W 3 = W−1. As illustrated in
Fig. 4(b), we distinguish again between 3 subcases according to
the subspace of [0, 2W−2−1]. In case 1.b.1, R1 ⊆ [0, 2W−3−1]
and R2 ⊆ ([0, 2W−3 − 1])c, so we can encode first R1 in
g(W 1) and then encode R2 in g(W 2) TCAM entries. In case
1.b.2 we have that W 1 = W − 2 (and again W 2 = W).
We make another distinction and consider 3 possibilities (as
shown in Fig. 4(c)). For all possibilities we denote by W 4 the
number of meaningful bits of R1∩ [2W−3, 2W−3 +2W−4−1],
by W 5 the number of meaningful bits of R1 ∩ [2W−3 +
2W−4, 2W−2 − 1], by W 6 the number of meaningful bits of
R2 ∩ [2W−3 + 2W−4, 2W−2 − 1], and by W 7 the number of
meaningful bits of R2∩[2W−3, 2W−3+2W−4−1]. It is easy to

12

k1 2 k-1

k1 2 k-1

k1 2 k-1

Case 1

Case 2

Case 3

(a) Three types of unions of k ranges

k1+k21 k1 k1+1

1 k1+1 k1+k2+1k1 k1+2

Case 1.a

Case 1.b

(b) Type 1 k-union

k1+k21 k1 k1+1

1 k1+1 k1+k2+1k1 k1+2

Case 2.a

Case 2.b

(c) Type 2 k-union

k1+k21 k1 k1+1

1 k1+1 k1+k2+1k1 k1+2

Case 3.a

Case 3.b

(d) Type 3 k-union

Fig. 5. Various unions of k ranges

see that in all the three possibilities W 4,W 5, W 6 and W 7 are
all bounded by W−4. In the first possibility, numbered 1.b.2.a,
R1 ⊆ [0, 2W−3+2W−4−1] and R2 ⊆ ([0, 2W−3+2W−4−1])c.
We first encode the sub-space [2W−3, 2W−3 + 2W−4 − 1] in
g(W 4) and later the sub-space [2W−3 + 2W−4, 2W−2 − 1] in
g(W 6) TCAM entries. Then we add three more entries. The
first (001∗W−3 → 0) is used for the range [2W−3, 2W−2− 1].
The second (000∗W−3 → a1) is used to define the part of
R1 included in [0, 2W−3 − 1], and the third (∗W → a2) to
complete the encoding in the whole sub-space [0, 2W − 1]. So
we have here g(W 4)+g(W 6)+3 ≤ g(W −4)+g(W −4)+3
= g(W) + g(W − 2) = g(W 1) + g(W 2) TCAM entries.
In the second possibility (1.b.2.b) of Fig. 4(c), we start
by encoding the sub-space [2W−3 + 2W−4, 2W−2 − 1] in
g(W 5) + g(W 6), and add another entry (0011∗W−4 → 0)
to complete the definition of this sub-space. Then we add
two more entries. The first (00∗W−2 → a1) to complete the
range [0, 2W−2 − 1]. The last (∗W → a2) to complete the
encoding in all the entire sub-space [0, 2W − 1]. So we have
here g(W 5) + g(W 6) + 3 ≤ g(W − 4) + g(W − 4) + 3
= g(W)+g(W −2) = g(W 1)+g(W 2) TCAM entries. In the
third and last possibility (1.b.2.c) of Fig. 4(c), we encode first
the sub-space [2W−3, 2W−3 + 2W−4 − 1] in g(W 4) + g(W 7),
and use one more entry (0010∗W−4 → 0) to complete the
definition of this sub-space. Then we add two more entries.
The first (000∗W−3 → a1) to define the part of R1 included
in [0, 2W−3−1]. The last (∗W → a2) to complete the encoding
in the whole sub-space [0, 2W − 1]. So we have also in this
case g(W 4) + g(W 7) + 3 ≤ g(W − 4) + g(W − 4) + 3
= g(W) + g(W − 2) = g(W 1) + g(W 2) TCAM entries.

We now deal with the third subcase of Fig. 4(b), numbered
1.b.3, in which (R2)c ⊆ [0, 2W−3 − 1]. We again make
another distinction and consider 3 possibilities of this case (as

shown in Fig. 4(d)). In the first possibility, numbered 1.b.3.a,
R1 ⊆ [0, 2W−4 − 1] and R2 ⊆ ([0, 2W−4 − 1])c, so we can
encode first R1 in g(W 1) and then encode R2 in g(W 2)
TCAM entries. In the second possibility (1.b.3.b), we have
that W 1 = W − 3. Here, we denote by W 5 the number
of meaningful bits of R1 ∩ [2W−4, 2W−3 − 1] and by W 6

the number of meaningful bits of R2 ∩ [2W−4, 2W−3 − 1].
Now we have that either (W 5 ≤ W − 4 and W 6 ≤ W − 5)
or (W 5 ≤ W − 5 and W 6 ≤ W − 4) since the length of
[2W−4, 2W−3 − 1] is 2(W−4). We first encode the sub-space
[2W−4, 2W−3 − 1] in g(W 5) + g(W 6) TCAM entries. Then
we add three more entries. The first entry (0000∗W−4 → a1)
for the range [0, 2W−4−1]. The second entry (000∗W−3 → 0)
is used to define the range complementary which is included
in [0, 2W−3 − 1], and the third (∗W → a2) to complete the
encoding in the whole sub-space [0, 2W − 1]. So we have
here g(W 5) + g(W 6) + 3 ≤ g(W − 4) + g(W − 5) + 3
= g(W −3)+g(W) = g(W 1)+g(W 2) TCAM entries. In the
last possibility (1.b.3.c), (R1∪R2)c ⊆ [0, 2W−4−1]. We denote
by W 7 the number of meaningful bits of R2 ∩ [0, 2W−4 − 1],
and have that W 7 ≤ W − 4. We encode first the sub-space
[0, 2W−4 − 1] in g(W 1) + g(W 7). Then we add two more
entries. The first entry (0000∗W−4 → 0) is used to define
the range complementary included in [0, 2W−4 − 1], and the
second (∗W → a2) to complete the encoding in the whole
sub-space [0, 2W − 1]. We have here g(W 1) + g(W 7) + 2 ≤
g(W 1) + g(W − 4) + 2 ≤ g(W 1) + g(W) ≤ g(W 1) + g(W 2)
TCAM entries.

Result 2 — Next, we prove result 2 of the lemma regarding
a union of an extremal range and a non-extremal range, which
we denote as a type 2 union. To do so, we consider four possible
cases presented in Fig. 4(e).

13

In the first case, numbered 2.a, the two extremal ranges are
both included in a smaller sub-space and we can deduce the
result by the induction hypothesis.

In case 2.b, R1 and R2 appear in two different halves of the
W-bit space, so their encodings can be merged and we encode
the union simply in f(W 1) + g(W 2) ≤ f(W 1) + g(W 2) + 1
TCAM entries.

The proof of case 2.c is not short and is very similar to the
proof of case 1.b. We start by considering two possible cases
according to the value of W 3, which denotes the number of
meaningful bits of R2∩ [0, 2W−1−1]. If W 3 ≤ W −2, we can
again just simply merge the encoding of the 2 halves of the
W-bit space. By the induction hypothesis, the left half can be
encoded in f(W 1) + g(W 3) + 1 TCAM entries and the right
half with only one TCAM entry, (1{∗}W−1 → a2). So, we
have a total number of f(W 1) + g(W 3) + 1 + 1 ≤ f(W 1) +
g(W−2)+1+1 = f(W 1)+g(W)+1 = f(W 1)+g(W 2)+1.

We now consider the case that W 3 = W−1, and distinguish
again between several subcases according to the subspace
of [0, 2W−2 − 1]. In Fig. 4(f) we can see the 3 different
subcases. We use W 4 to denote the number of meaningful
bits of R2 ∩ [0, 2W−2 − 1]. In the first subcase, numbered
2.c.1, R1 ⊆ [0, 2W−3 − 1] and R2 ⊆ ([0, 2W−3 − 1])c, so
we can encode first R1 in f(W 1) and then encode R2 in
g(W 2) TCAM entries. In the second subcase, numbered 2.c.2,
we have that W 1 = W −2, and we denote by W 5 the number
of meaningful bits of R1 ∩ [2W−3, 2W−2 − 1], and by W 6

the number of meaningful bits of R1 ∩ [0, 2W−3 − 1] . Since
the length of [2W−3, 2W−2 − 1] is 2W−3 we must have that
W 4 ≤ W−3,W 5 ≤ W−4 or W 4 ≤ W−4, W 5 ≤ W−3. We
first encode the sub-space [2W−3, 2W−2−1] in g(W 4)+g(W 5)
TCAM entries. Then, we encode the sub-space [0, 2W−3 − 1]
in at most g(W − 3) TCAM entries. Next, we add two more
entries. The first entry (00∗W−2 → 0) is used to define the
range complementary which is included in [0, 2W−2 − 1], and
the second (∗W → a2) to complete the encoding in the whole
sub-space [0, 2W − 1]. So we have here g(W 4) + g(W 5) +
g(W − 3) + 2 ≤ g(W − 3) + g(W − 4) + g(W − 3) + 2
=

⌈
W−2

2

⌉
+

⌈
W−3

2

⌉
+1+g(W −3)+1 = W −2+1+g(W −

3) + 1 ≤ W − 2 + 1 + g(W) = f(W 1) + g(W 2) + 1 TCAM
entries.

For the third case (2.c.3) of Fig. 4(f), in which (R2)c ⊆
[0, 2W−3− 1], we make another distinction and consider three
possibilities of this case, presented in Fig. 4(g). In the first
possibility, numbered 2.c.3.a, R1 ⊆ [0, 2W−4 − 1] and R2 ⊆
([0, 2W−4−1])c, so we can encode first R1 in f(W 1) and then
encode R2 in g(W 2) TCAM entries. In the second, numbered
2.c.3.b, we have that W 1 = (W − 3). Here, we denote by W 5

the number of meaningful bits of R1 ∩ [2W−4, 2W−3 − 1], by
W 6 the number of meaningful bits of R2∩ [2W−4, 2W−3−1],
and by W 7 the number of meaningful bits of R1 ∩ [0, 2W−4−
1]. Now we have that (W 5 ≤ W − 4 and W 6 ≤ W − 5)
or (W 5 ≤ W − 5 and W 6 ≤ W − 4) since the length of
[2W−4, 2W−3 − 1] is 2(W−4). We first encode the sub-space
[2W−4, 2W−3−1] in g(W 5)+g(W 6) TCAM entries. Then, we
encode the sub-space [0, 2W−4 − 1] in at most g(W 7) TCAM
entries. Next, we add two more entries. First (000∗W−3 → 0)
is used to define the range complementary which is included

in [0, 2W−3 − 1], and the second (∗W → a2) to complete the
encoding in the whole sub-space [0, 2W − 1]. So we have here
g(W 5)+g(W 6)+g(W 7)+2 ≤ g(W−4)+g(W−5)+g(W−
4)+2 =

⌈
W−3

2

⌉
+

⌈
W−4

2

⌉
+1+g(W −4)+1 = W −3+1+

g(W−4)+1 ≤ W−3+1+g(W) = f(W 1)+g(W 2)+1 TCAM
entries. In the third and last possibility (2.c.3.c), (R1∪R2)c ⊆
[0, 2W−4−1]. We denote by W 8 the number of meaningful bits
of R2∩ [0, 2W−4−1]. and have that W 8 ≤ W −4. We encode
first the sub-space [0, 2W−4−1] in f(W 1)+g(W 8)+1. Then
we add two more entries. The first entry (0000∗W−4 → 0)
is used to define the range complementary which is included
in [0, 2W−4 − 1], and the second (∗W → a2) to complete the
encoding in the whole sub-space [0, 2W − 1]. We have here
f(W 1) + g(W 7) + 1 + 2 ≤ f(W 1) + g(W − 4) + 1 + 2 ≤
f(W 1) + g(W) + 1 ≤ f(W 1) + g(W 2) + 1 TCAM entries.

We now prove case 2.d, which is the fourth and last case of
Fig. 4(e). Here R1 intersects the two halves of the W -bit space.
We encode each of the halves separately and simply merge the
encodings. We use W 3 to denote the number of meaningful bits
of R1∩[0, 2W−1−1] and W 4 for the number of meaningful bits
of R1∩[2W−1−1, 2W−1]. We can see that W 3,W 4 ≤ W−1.
Thus, we encode the left half in g(W 3) and the second by the
induction hypothesis in g(W 4)+g(W 2) TCAM entries, to have
a total number of g(W 3) + g(W 4) + g(W 2) ≤ g(W − 1) +
g(W−1)+g(W 2) ≤ ⌈

W
2

⌉
+

⌈
W
2

⌉
+g(W 2) ≤ W+1+g(W 2) =

f(W 2) + g(W 2) + 1.
Result 3 — Last, we prove result 3 of the lemma regarding

a union of two non-extremal ranges, which we denote as a
type 3 union. We consider three possible cases as illustrated in
Fig. 4(h).

In the first case, numbered 3.a, the two ranges are both
included in a smaller sub-space and we can deduce the result
by the induction hypothesis.

In the second, numbered 3.b, the encoding of R1 and R2

can be simply merged, and we encode the union in f(W 1) +
f(W 2) ≤ f(W 1) + f(W 2) + 2 TCAM entries.

In the third (3.c), R1 intersects the two halves of the W -bit
space. We again simply merge the encodings of the two halves.
We use W 3 to denote as the number of meaningful bits of
R1 ∩ [0, 2W−1− 1] and W 4 for the number of meaningful bits
of R1∩ [2W−1−1, 2W −1] and deduce that W 3,W 4 ≤ W−1.
Thus, we encode the left half in g(W 3) and the second right
half by the induction hypothesis in g(W 4)+f(W 2)+1 TCAM
entries, to have a total number of g(W 3)+ g(W 4)+ f(W 2)+
1 ≤ g(W − 1) + g(W − 1) + f(W 2) + 1 ≤ ⌈

W
2

⌉
+

⌈
W
2

⌉
+

f(W 2)+ 1 ≤ W +1+ f(W 2)+ 1 = f(W 1)+ f(W 2)+ 2.
We now provide a definition that defines three possible types

of a union of k disjoint ranges. It is illustrated in Fig. 5(a).
Definition 15 (Union of ranges types): Let a general k-

union of disjoint ranges denote a union of the form
⋃k

i=1 Ri =⋃k
i=1 [yi

1, y
i
2], where (∀i ∈ [1, k])(yi

1 ≤ yi
2) ∧ (∀i ∈ [1, k −

1])((yi
2 + 1) < yi+1

1) and Ri is assigned with an arbitrary
action ai.
Let a k-union with two extremal ranges denote a k-union where
y1
1 = 0 and yk

2 = (2W − 1). We also call this union a Type 1
k-union.
Let a k-union with an extremal range denote a k-union where
y1
1 6= 0 and yk

2 = (2W − 1). We also call this union a Type 2

14

k-union.

Let a k-union with no extremal ranges denote a k-union where
y1
1 6= 0 and yk

2 6= (2W − 1). We also call this union a Type 3
k-union.

Next, we provide another lemma regarding the expansion of
the different unions of k disjoint ranges.

Lemma 5: The different types of a union of k ranges have
the following expansion.
a. A k-union with two extremal ranges

⋃k
i=1 Ri can be encoded

in at most g(W 1) +
∑k−1

i=2 (f(W i) + 1) + g(W k) TCAM
entries.
b. A k-union with an extremal range can be encoded in at most∑k−1

i=1 (f(W i) + 1) + g(W k) TCAM entries.
c. A general k-union can be encoded in at most∑k

i=1 (f(W i) + 1) TCAM entries.

Proof: The proof of the lemma is by induction on k.

Induction basis: The case of k = 2 corresponds to Lemma 4.

Induction step: In each step, we prove the three parts of the
lemma for the current value of k based on its correctness for
lower values.

We start by proving part (a) of the lemma. To do so, we
consider two possible cases for Type (1) k-union, as shown in
Fig. 5(b).

In the first case, numbered 1.a, the k ranges are divided
into k1 ranges (including one extremal) in the left sub-
space of size 2W−1 and k2 = k − k1 (with another ex-
tremal) in the right sub-space of that size. In this case,
using the induction hypothesis (of part (b)), we can simply
merge the encodings of the two halves to obtain g(W 1) +∑k1

i=2 (f(W i) + 1) +
∑k1+k2−1

i=k1+1 (f(W i) + 1) + g(W k1+k2)
= g(W 1) +

∑k−1
i=2 (f(W i) + 1) + g(W k) TCAM entries.

In the second case, numbered 1.b, out of the k ranges there
are k1 ranges (including one extremal) which are included in
the left sub-space of size 2W−1, one range that intersects both
of the halves and k2 = k − k1 − 1 (with another extremal)
that are included in the right half. We use W k1+1,L to denote
the number of meaningful bits of Rk1+1 ∩ [0, 2W−1 − 1]
and W k1+1,R for the number of meaningful bits of Rk1+1 ∩
[2W−1, 2W − 1]. Here we again merge the encoding of the
ranges and have (now by the induction hypothesis of part (a))
the following number of TCAM entries:

g(W 1) +
k1∑

i=2

(f(W i) + 1) + g(W k1+1,L) + g(W k1+1,R)

+
k1+k2∑

i=k1+2

(f(W i) + 1) + g(W k1+k2+1)

≤ g(W 1) +
k1∑

i=1

(f(W i) + 1) + g(W − 1) + g(W − 1)

+
k1+k2∑

i=k1+2

(f(W i) + 1) + g(W k1+k2+1)

= g(W 1) +
k1∑

i=1

(f(W i) + 1) +
⌈

W

2

⌉
+

⌈
W

2

⌉

+
k1+k2∑

i=k1+2

(f(W i) + 1) + g(W k1+k2+1)

≤ g(W 1) +
k1∑

i=1

(f(W i) + 1) + (W + 1)

+
k1+k2∑

i=k1+2

(f(W i) + 1) + g(W k1+k2+1)

= g(W 1) +
k1−1∑

i=1

(f(W i) + 1) + (f(W k1+1) + 1)

+
k1+k2∑

i=k1+2

(f(W i) + 1) + g(W k1+k2+1)

= g(W 1) +
k−1∑

i=2

(f(W i) + 1) + g(W k)

(21)

The proofs of parts (b) and (c) of the lemma are very similar
and use the same notations again. In each of them we use
the induction hypothesis, considering two possible cases, as
illustrated in Fig. 5(c) and Fig. 5(d).

In the first case of (b), as illustrated in case 2.a in Fig. 5(c),
we have

k1∑

i=1

(f(W i) + 1) +
k1+k2−1∑

i=k1+1

(f(W i) + 1) + g(W k1+k2)

=
k−1∑

i=1

(f(W i) + 1) + g(W k)

(22)

TCAM entries, while in the second case (2.b) we have

k1∑

i=1

(f(W i) + 1) + g(W k1+1,L) + g(W k1+1,R)

+
k1+k2∑

i=k1+2

(f(W i) + 1) + g(W k1+k2+1)

≤ · · · ≤
k−1∑

i=1

(f(W i) + 1) + g(W k)

(23)

Last, in the first case of (c), numbered 3.a and illustrated in
Fig. 5(d), we have an expansion of

k1∑

i=1

(f(W i) + 1) +
k1+k2∑

i=k1+1

(f(W i) + 1)

=
k∑

i=1

(f(W i) + 1)

(24)

15

and in its second case (3.b) we have

k1∑

i=1

(f(W i) + 1) + g(W k1+1,L)

+ g(W k1+1,R) +
k1+k2+1∑

i=k1+2

(f(W i) + 1)

≤
k∑

i=1

(f(W i) + 1).

(25)

We can deduce the following theorem directly from the last
lemma and Theorem 3.

Theorem 11: For all W ∈ N∗ and k ∈ N, any k ranges{
Ri

}
1≤i≤k

of W -bit elements can be encoded in at most∑k
i=1 (W i + 1) TCAM entries.
Last, we prove the asymptotic optimality of the theorem

above.
Theorem 12 (Asymptotic Optimality): In the general case,

as k →∞,
(i) any k ranges of W -bit strings can be encoded in at most
k · (W − log k + o(log k)) TCAM entries.
(ii) there are k ranges of W -bit strings that cannot be encoded
using prefix encoding in less than k · (W − log k + o(log k))
TCAM entries.

Proof: First, let’s prove (i). Given three distinct ranges,
at most one can have W significant bits, and at most two can
have W − 1 significant bits, because at most one range can
cross the cut in the middle of the element space. Likewise,
given seven ranges, at most one can have W significant bits,
two can have W − 1 significant bits, and four can have W − 2
significant bits. Summing up for the case of k elements, we
have

∑k
i=1 W i + 1 ≤ k + kW − ∑l

i=1 i · 2i, for l such that
k =

∑l
i=1 2i = 2l+1 − 1, i.e. l = log(k + 1) − 1. Using the

formula (for r 6= 1),
∑n

i=1 i · ri = r−rn+2

(1−r)2 − (n+1)rn+1

1−r , this
upper bound equals k +kW − ((2−2l+2)+ ((l+1) ·2l+1)) =
k + kW − (2 + (l− 1) · 2(l+1)) = k · (W + 1− (l−1)·2(l+1)+2

k).
Using the value of l, we have k ·(W +1− (log(k+1)−2)(k+1)

k) =
k ·(W +3− k·log(k+1)+log(k+1)−2

k) = k ·(W +3− log(k+1)−
log(k+1)

k)− 2 = k · (W − log(k)− o(log(k))). We can see that
k elements can get a maximum average number of significant
bits that decreases as log k · (1 + o(1)).

To prove (ii), when k = 2l, we cut the space of 2W into k
sub-spaces of 2W−l elements each, and apply Theorem 7 on
each subspace to get a lower-bound on the encoding of each
range in log(2W−l) = W − l = W − log k entries, with a total
number of k · (W − log k) entries. Using prefix encoding, we
can see that the ranges cannot be encoded together.

VII. MULTIDIMENSIONAL RANGES

A. Exponential Number of TCAM Entries

Our objective is to find an encoding scheme of a classifica-
tion rule R = ((R1, . . . , Rd) → a) defined over d fields, given
that we already have some encoding schemes for each range
rule Ri in field (dimension) Fi, where i ∈ [1, d]. While the

result is well-known when using internal binary-prefix encod-
ing, the following theorem deals with any encoding, including
external encoding that starts with encoding the complimentary
range.

Theorem 13: Given a classification rule R =
((R1, . . . , Rd) → a) and d encoding schemes {φi}d

i=1 of
the ranges {Ri}d

i=1 with expansions {nφ1(R1), . . . , nφd
(Rd)},

(i) R can be encoded in at most n =
∏d

i=1 nφi
(Ri) TCAM

entries;
(ii) in particular, given d′ ≤ d fields with range rules, R can
always be encoded in W d′ TCAM entries.

Proof: We first prove the first part of the lemma. Assume
that φi =

(
Si

1 → ai
1, . . . , S

i
n → ai

nφi
(Ri)

)
. We define a new

encoding φ with expansion nφ =
∏d

i=1 nφi
(Ri) entries as

follows: Each entry of φ is a concatenation of d entries, one
from each encoding scheme of the different ranges in their
given order. The first will be built from the first entry in each
of the schemes. The second will be built from the second entry
in the encoding scheme of the first range (R1) and the first entry
in the last d− 1 encoding schemes. The (nφ1(R1)) -th will be
built from the last entry of φ1 and the first entry in {φi}d

i=2.
The next one from the second entry in φ2 and the first of the
others. In general: Using the notation li =

∏i−1
j=1 nφi(Ri) (and

l1 = 1), if t =
∑d

i=1 cili, then in the t-th entry in φ the (ci+1)-
th entry of φi appears in the concatenation (except the case of
i = 1 where its (c1)-th entry appears). The t-th action will be
a iff all the actions are a. If at least one of them is default
action ad, it will also be ad. φ clearly has nφ =

∏d
i=1 nφi(Ri)

entries.
In order to show that φ actually encodes R, we will first

look at packet header with d fields x = (x1, x2, . . . , xd) ∈ R.
From their correctness, for all i ∈ [1 . . . d], there is at least one
entry in φi which matches the relevant field of the input xi

and the first of those has an action of a. By the discription of
the building of φ, an entry that is built from earlier entries of
the different encodings of all the ranges will appear earlier to
other entries. Another distinction is that an entry that matches
the input x, is built from entries that all of them match the
relevant field of x. Thus, the first entry in φ that matches x
is built from the first entries mentioned above (and such an
entry always exists). Therefore, from the description above, the
relevant action in φ, will be a, so this input will be encoded
correctly by φ.

For a header x = (x1, x2, . . . , xd) /∈ R, there is at least
one dimension i ∈ [1 . . . d], in which (xi /∈ Ri). Thus, in
the encoding φi, xi does not match any entry or that its first
matching entry has an action of ad.In the first case x does not
match any of the entries of φ and in the second, if it matches
an entry, the first one has an action of ad. For this reason, the
result follows.

The second part of the lemma directly follows Theorem 3
and the first part of the lemma.

Example 8: Consider a general range of two W -bit fields
R = (R1, R2), presented in Fig. 7(a). For i = 1, 2 let ri be
the expansion of Ri using internal encoding, and let r′i be the
expansion of Ri using our improved encoding scheme. It is
well-known that R can be encoded with r1 · r2 ≤ (2W−2)2

16

(00 , 11) (01 , 11) (10 , 11) (11 , 11)

(00 , 10) (01 , 10) (10 , 10) (11 , 10)

(00 , 01) (01 , 01) (10 , 01) (11 , 01)

(00 , 00) (01 , 00) (10 , 00) (11 , 00)

R

a1 a2a3

a4

a5

Fig. 6. Two-dimensional alternating path: The two-dimensional range R
requires at least three TCAM entries using any coding scheme.

TCAM entries. Likewise, it can be encoded with r′1 · r′2 ≤
f(W)2 ≤ W 2 TCAM entries.

B. Two-dimensional Range Expansion Optimality

We will later see that it is possible to encode ranges using
a number of TCAM entries that increases only linearly with
the number of fields, provided we have additional logic. We
now prove using extremal ranges that no matter the amount of
additional logic, binary-encoded TCAM entries cannot encode
two fields in less than nearly twice the number needed to
encode a single field. This result is independent of both the
order of the entries and the logic-based post-processing.

Theorem 14: Consider d range fields of W bits, and define
alternating paths as previously using concatenated strings of
d · W bits. Therefore, a d-field classifier function with an
alternating path of size nd cannot be encoded in less than
nd binary-encoded TCAM entries, no matter the amount of
external post-processing logic.

Proof: The proof is exactly the same as that of Theorem 5.
Here, each of the binary strings in the alternating path is defined
on d fields. By the same considerations, given an alternating
path And

of this kind, a TCAM entry cannot encode two
elements in And

that belong to the range without also including
an element in And

that is not in the range.
Theorem 15: Let g2(W) denote the worst-case extremal

range expansion on two range fields of W bits each. Then
using binary-encoded TCAM entries, no matter the amount of
external post-processing logic,

g2(W) ≥ 2 · g(W)− 1 = 2 ·
⌈

W + 1
2

⌉
− 1 ≥ W. (26)

Proof: The proof uses RLE from Theorem 6 and its
alternating path A = (a1, . . . , aW+1) of size W

2 + 1 and
classifier function α : {0, 1}W → {0, 1}. We consider the two-
dimensional range R = RLE × RLE and build an L-shaped
alternating path in the two-dimensional space composed of
the two single-dimensional alternating paths joined together.
Let β : {0, 1}W × {0, 1}W → {0, 1} be the classifier
function of the two-dimensional range R. It is easy to see
that β((x, y)) = α(x) · α(y). We define the alternating path
BW = (b1, . . . , bW+1, . . . , b2W+1) of size W in which each
element is composed of a pair of elements from the original
single-dimensional alternating path.

(i) bi = (ai, aW+1) for i ∈ [1,W + 1].
(ii) bi = (aW+1, a2W+2−i) for i ∈ [W + 1, 2W + 1].

Based on the fact that A is an alternating path, we now show
that BW satisfies the two required conditions:

(i) Alternation:

β(b1) = α(a1) · α(aW+1) = α(a1) = 1

For i ∈ [1, W
2],

β(b2i) = α(a2i) · α(aW+1) = α(a2i) = 0, and

β(b2i+1) = α(a2i+1) · α(aW+1) = α(a2i+1) = 1. (27)

For i ∈ [W
2 + 1,W],

β(b2i) = α(aW+1) · α(a2W+2−2i) = α(a2W+2−2i) = 0, and

β(b2i+1) = α(aW+1) · α(a2W+1−2i) = α(a2W+1−2i) = 1.
(28)

(ii) Hull: We want to show that for any i1, i2, i3 such that
1 ≤ i1 < i2 < i3 ≤ 2W + 1, bi2 ∈ H(bi1 , bi3) and consider
several cases.

(ii.a) If i1 < i2 < i3 ≤ W + 1,

bi2 = (ai2 , aW+1) ∈
H((ai1 , aW+1), (ai3 , aW+1)) = H(bi1 , bi3),

since ai2 ∈ H(ai1 , ai3). (29)

(ii.b) If W + 1 ≤ i1 < i2 < i3 ≤ 2W + 1,

bi2 = (aW+1, a2W+2−i2) ∈
H((aW+1, a2W+2−i1), (aW+1, a2W+2−i3)) = H(bi1 , bi3),

since a2W+2−i2 ∈ H(a2W+2−i1 , a2W+2−i3). (30)

(ii.c) If i1 < i2 ≤ W + 1 ≤ i3 ≤ 2W + 1,

bi2 = (ai2 , aW+1) ∈
H((ai1 , aW+1), (aW+1, a2W+2−i3)) = H(bi1 , bi3),

since ai2 ∈ H(ai1 , aW+1). (31)

(ii.d) If i1 ≤ W + 1 ≤ i2 < i3 ≤ 2W + 1,

bi2 = (aW+1, a2W+2−i2) ∈
H((ai1 , aW+1), (aW+1, a2W+2−i3)) = H(bi1 , bi3),

since a2W+2−i2 ∈ H(aW+1, a2W+2−i3). (32)

We now deduce that BW is an alternating path of size W +1
and apply Theorem 14 to have the requested result.

Example 9: Assume d = 2 fields of W = 2 bits each, and
let R = [0, 2]× [0, 2], a two-dimensional version of Example 3.
As shown in Fig. 6, no matter the amount of logic, R needs at
least three TCAM entries to be encoded.

C. Linear Number of TCAM Entries

The main drawback of encoding a hyper-rectangle with
d dimensions is the curse of dimensionality, i.e. the typical
exponential dependency in the number of fields d. We show
here how to encode a hyper rectangle with a linear dependency
in d.

Example 10: Consider again the range R from Example 8.
As illustrated in Fig. 7(b), we can first negatively encode the

17

2
R

1
R R

(a)

R

(b)

Fig. 7. Two-dimensional range R = (R1, R2)

four striped regions, using an encoding of the corresponding
four one-dimensional extremal intervals (using at most 4W
entries [14]), and then add a default positive entry (using one
entry), thus yielding a linear expansion upper-bound of 4W +1.
More generally, we get the following tighter upper-bound:

Theorem 16: Any classification rule R of d fields can be
encoded in at most d · (2W − 2) + 1 TCAM entries without
any additional logic.

Proof: We remind that an extremal W -bit range R can be
internally encoded in at most W TCAM entries [14]. Further,
if the extremal W -bit range R is not a shifted version of one
of the ranges [0, 2W − 2], [1, 2W − 1] then R can be internally
encoded in at most W − 1 TCAM entries.

For a general d-dimensional rule R, we assume that its i-th
dimension range is Ri = [a, b]. We also assume that a 6= b.
Otherwise, Ri is an exact match and its encoding does not
require any additional TCAM entries besides the encodings of
the other dimensions. We define RLE = [0, a−1] and RRE =
[b+1, 2W − 1] such that RLE

⋃
Ri

⋃
RRE = [0, 2W − 1]. We

want to show that we can internally encode the extremal ranges
RLE , RRE in a total number of 2W − 2 TCAM entries. We
consider 3 possible cases:

(i) If a ≤ 2W−1− 1 and b ≥ 2W−1, i.e. RLE ⊆ [0, 2W−1−
1], RRE ⊆ [2W−1, 2W − 1], then RLE , RRE are (W − 1)-
bit ranges and therefore each of them can be encoded using
internal encoding in at most W − 1 TCAM entries.

(ii) Else if b < 2W−1 , i.e. Ri ⊆ [0, 2W−1 − 1], then the
(W − 1)-bit range RLE holds RLE 6= [0, 2W−1 − 2] and can
be encoded in at most W − 2 TCAM entries. By internally
encoding RRE in at most W TCAM entries, we have a total
number of at most 2W − 2 TCAM entries.

(iii) Else a > 2W−1 − 1 and Ri ⊆ [2W−1, 2W − 1]. We
internally encode RRE 6= [2W−1+1, 2W −1] in at most W−2
TCAM entries and RLE in at most W TCAM entries, having
a total number of at most 2W − 2 TCAM entries.

Therefore, after adding the last default positive entry, we
have in all cases at most d · (2W − 2) + 1 TCAM entries.

D. Linear Number of TCAM Entries with Additional Logic

The above two multidimensional results assume that the
classifier has only one classification rule. In Section VIII we
suggest hardware changes that enable us to efficiently encode
k > 1 classification rules, as stated in the following theorem.

Theorem 17: Let C = (R1, ..., Rk) be a classifier with k
classification rules defined over d fields. Using additional logic,
C can be encoded in at most k · d ·W TCAM entries.

VIII. TCAM ARCHITECTURES

A. Suggested Architectures

In this section we suggest several TCAM architectures that
enable us to implement range encoding more efficiently using
logical gates, and illustrate them with a simple example.
These TCAM architectures trade better range expansions, and
therefore less TCAM entries, for more complex logic within
the TCAM. Note that the use of logic gates to process TCAM
results is not generally new [18], [19], but these logic-based
architectures apparently are.

Fig. 8 illustrates the different TCAM architectures. We
assume d = 2 fields of W = 4 bits each. We want to
encode k = 2 multi-dimensional ranges R1 and R2, where
R1 = [1, 14] × [5, 14], R2 = [7, 10] × [2, 3], and each range
leads to a different action. We assume that the default action
is predefined in the parallel encoder (PE), and therefore there
is no need to add TCAM entries for it. We also use an input
example, equal to 8 = {1000} in the first field and 7 = {0111}
in the second, and denote in parentheses the values that are
transmitted on each line.

First, Fig. 8(a) presents the standard INTERNAL-PRODUCT
architecture. As usual, using internal binary-prefix encoding, it
encodes each range by using the product of its TCAM entries
along each dimension. In this case, it uses 6 × 5 entries to
encode R1, and 3× 1 entries to encode R2, yielding a total of
33 entries.

Next, Fig. 8(b) introduces the proposed COMBINED-
PRODUCT architecture. Instead of encoding each range only
internally, the COMBINED-PRODUCT architecture encodes it
using its complementary as well, in at most fp(W) = W
entries instead of 2W−2 above, and uses more logic to process
the results. In this example, it uses 12 entries for R1 and 3 for
R2, i.e. a total of 15.

Specifically, each field of each range behaves like a single
TCAM block. The results of each TCAM entry are entered
into a chained logic part that outputs a (1) on each line if it is
the first entry that matches the header, and (0) otherwise (i.e.,
either there was no match on this line or there was a match
on a previous line). Note that the chained logic can also be
replaced with a more efficient hierarchical logic.

In the second logic part, a logic gate with a control input
either behaves like a pass-through gate or like a zeroing gate,
depending on whether the encoded entry corresponds to the
range or to its complement. Thus, the output is a (1) iff it is
the first matching entry and it belongs to the range. Last, an
OR gate checks whether the first matching entry belongs to the
range, i.e. whether the range is matched. The PE then outputs
the first matching range.

Next, Fig. 8(c) introduces the proposed INTERNAL-SUM
architecture. Instead of encoding the product of all fields, each
field is encoded separately, and simple logic gates combine
between the two fields. In this example, we need 6 + 5 = 11
entries for R1, and 3 + 1 for R2, i.e. a total of 14.

Therefore, instead of range expansion of (2W − 2)d TCAM
entries per range, the INTERNAL-SUM architecture only needs
d · (2W − 2) entries, yielding a linear increase instead of
an exponential one. For instance, in our example, the header

18

0001 - 0101

0001 - 011*

0001 - 10**

10** - 011*

1110 - 10**

1110 - 110*

1110 - 1110

� � �

� � �

0111 - 001*

100* - 001*

1010 - 001*

PE

header

1000.0111 (range 1)

(0)

(0)

(0)

(0)

(0)

(0)

(1)

(0)

(0)

(0)

(a) INTERNAL-PRODUCT

0111 - 001*

100* - 001*

1010 - 001*

0 0 0 0 - 0 1 0 1

0 0 0 0 - 0 1 1 *

0 0 0 0 - 1 1 1 1

0 0 0 0 - * * * *

1 1 1 1 - 0 1 0 1

1 1 1 1 - 0 1 1 *

1 1 1 1 - 1 1 1 1

1 1 1 1 - * * * *

* * * * - 0 1 0 1

* * * * - 0 1 1 *

* * * * - 1 1 1 1

* * * * - * * * *

(0)

(1)

header

1000.0111
PE (range 1)

� � �
(1)

(0)

(b) COMBINED-PRODUCT

0001 - ****

001* - ****

01** - ****

10** - ****

110* - ****

1110 - ****

0111 - ****

100* - ****

1010 - ****

**** - 0101

**** - 011*

**** - 10**

**** - 110*

**** - 1110

**** - 001*

(0)

(1)

(1)

(0)

header

1000.0111
PE (range 1)

(1)

(1)

(0)

(1)

(0)

(0)

(1)

(0)

(1)

(c) INTERNAL-SUM

0000 - ****

1111 - ****

**** - 00**

**** - 0100

**** - 1111

00** - ****

010* - ****

0110 - ****

1011 - ****

11** - ****

(0)

(1)

**** - 000*

**** - 01**

**** - 1***

(0)

(0)

(0)

(1)

(0)

(0)

header

1000.0111
PE (range 1)

(d) EXTERNAL-SUM

0000 - ****

1111 - ****

**** - ****

0111 - ****

100* - ****

1010 - ****

**** - 0101

**** - 011*

**** - 1111

**** - ****

**** - 001*

(0)

(1)

(1)

(0)

header

1000.0111
PE (range 1)

(1)

(1)

(1)

(1)

(1)

(e) COMBINED-SUM

0000 - ****

1111 - ****

**** - ****

0111 - 001*

100* - 001*

1010 - 001*

**** - 0101

**** - 011*

**** - 1111

**** - ****

(0)

(1)

(1)

header

1000.0111

PE (range 1)

(1)

(1)

(1)

(1)

(f) COMBINED-SUM-PRODUCT

Fig. 8. TCAM Architectures

matches both fields of the first range and the first field of the
second range (1), but not the second field of the second range
(0). As a result, the second range is not matched by the AND
gate (0). In any case, since the first range is matched, because
both field inputs of the first AND gate are matched, the PE
causes the corresponding first action.

Likewise, Fig. 8(d) illustrates the proposed EXTERNAL-SUM
architecture. It is extremely similar to the INTERNAL-SUM
architecture. However, instead of encoding the elements of each
range along each field, it encodes the complimentary of each
range along each field, and then applies a general NOR gate
on all entries. In our example, we need 2 + 3 = 5 entries for
R1, and 5 + 3 = 8 for R2, yielding a total of 13 entries.

Next, Fig. 8(e) shows the proposed COMBINED-SUM archi-
tecture. Each field of each range is encoded separately, by using
chaining as in the COMBINED-PRODUCT architecture. Then, in
a second stage, an AND gate checks whether all fields have a
match. In this example, R1 is encoded using 3+4 = 7 entries,
and R2 using 3 + 1 = 4, with a total of 11 entries.

Finally, in Fig. 8(f), the COMBINED-SUM-PRODUCT ar-
chitecture combines the COMBINED-SUM and COMBINED-
PRODUCT architectures, by picking a different architecture in
each range. To do so, it simply needs to add control inputs
to some of the logical gates, making them behave either
as COMBINED-SUM or as COMBINED-PRODUCT depending
on which of the two architectures encodes each range more
efficiently. We will see later that this architecture obtains the
best performance in experiments; However, it also needs the
most involved logic, yielding a clear trade-off.

Table II summarizes the bounds on the worst-case rule
expansion for each architecture. The first two results follow
from Theorem 13. The third one comes from the d single-
dimensional binary-prefix encodings of 2W−2 each, while the

TABLE II
UPPER BOUND ON RULE EXPANSIONS OF TCAM ARCHITECTURES

Architecture Expansion upper Values for k = 1,
bound W = 16, d = 2

INTERNAL-PRODUCT k · (2W − 2)d (30)2 = 900
COMBINED-PRODUCT k ·W d (16)2 = 256
INTERNAL-SUM k · d · (2W − 2) 2 · 30 = 60
EXTERNAL-SUM k · d · 2W 2 · 32 = 64
COMBINED-SUM k · d ·W 2 · 16 = 32
COMBINED-SUM-PRODUCT k · d ·W 2 · 16 = 32

fourth result comes from the 2d encodings of extremal ranges
of W entries each, since there are at most 2 extremal-range
complements of each range in each of the d fields [12]. The
last two results come from applying Theorem 7 on each field,
with W ≥ 2 for the last result.

B. Implementation Considerations

Turning Off Entries: In the figures, we only represent
the active entries. A simple way to implement the TCAM is
to divide it by blocks, each block representing the maximum
number of entries per range (Table II). Then, when some entries
are not used, it is possible to turn them off. To do so, we add a
transistor to switch voltage on and off, together with an SRAM
array of 1 bit per entry that remembers the correct action.

Hot Updates: Since the TCAM is clearly divided between
ranges, and the implementation of each range is independent
of the other ranges, hot classifier updates are surprisingly
easy to apply in this architecture compared to typical TCAM
architectures.

Combining with Existing Algorithms: The logic gates
before the PE could have the same number of outputs and
inputs, so that the number of inputs to each PE would be equal

19

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

range expansion

ex
ac

t d
is

tr
ib

ut
io

n

Binary Prefix

Suggested scheme

Fig. 9. Range expansion distribution for W = 8.

to the number of TCAM entries. In that case, by having control
inputs that turn off the actions of each gate, it is possible to
make the logic part transparent.

Therefore, a TCAM could implement any algorithm in most
of the entries by turning off the associated logic using the
control inputs. Then, for ranges that are particularly hard to
encode efficiently, it could turn on the corresponding logic
gates and use the desired algorithm. Of course, since blocks
would be implemented at periodic intervals of N entries, there
might be up to a loss of up to N − 1 entries to reach the start
of the block. Nonetheless, the bound on the range expansion
would still decrease, e.g. from 900 entries to 2N − 1 = 59
entries.

PE Size: The number of inputs and outputs of the PE is
reduced. It now equals the number of ranges, i.e. the number of
rules, instead of the number of TCAM entries. In a sense, the
PE is implemented in a hierarchical fashion, with the first logic
block being the one shown in the figure (e.g. using chaining).
In addition, the size of the SRAM that follows the PE can
decrease as well from the TCAM size (number of entries) to
the classifier size (number of rules).

IX. EXPERIMENTAL RESULTS

A. Worst-Case Range Expansion (Theorem 3)

Figure 9 presents the range expansion distribution over all
the ranges in [0, 2W − 1] with W = 8 bits. The worst-case
expansion of the internal binary-prefix approach is 2W − 2 =
14 (with negligible probability), while it is W = 8 in our
suggested scheme, thus confirming Theorem 3. In addition, the
average range expansion is reduced as well.

B. Effectiveness on Synthetic Packet Classifiers

We evaluate the suggested architectures on large synthetic
classifiers generated by the ClassBench benchmark tool [23],
using the 12 standard available files based on real classifiers
and the same parameters as [24].

Table III shows the average expansion ratio of each of the six
architectures with each of the twelve classification databases.
We can see that COMBINED-PRODUCT and COMBINED-SUM-
PRODUCT had the same performances, as there were no non-
trivial two-field range products, and therefore the COMBINED-
SUM-PRODUCT architecture did not use the sum feature. These
two architectures outperformed all other architectures. In par-
ticular, on each of the twelve classifiers, they outperformed the
standard INTERNAL-PRODUCT architecture based on internal

TABLE IV
AVERAGE EXPANSION RATIOS WITH REAL-LIFE CLASSIFIERS.

Parameters All rules 1 range-field 2 range-fields
Fraction of all rules (%) 100% 26% 1.5%
INTERNAL-PRODUCT 2.68 7.32 47.18
COMBINED-PRODUCT 1.63 3.38 20.09
INTERNAL-SUM 3.16 6.37 13.73
EXTERNAL-SUM 2.80 7.76 22.99
COMBINED-SUM 2.45 3.69 8.80
COMBINED-SUM-PRODUCT 1.46 2.74 8.75

binary-prefix encoding. Compared to the baseline INTERNAL-
PRODUCT architecture, they reduced the total number of re-
quested TCAM entries by 47%.

Additionally, the INTERNAL-SUM and COMBINED-SUM did
not perform well due to their need for at least one TCAM entry
per range-field, even when that field is trivial. They are only
expected to perform well when there are several non-trivial
ranges in the two range-fields.

C. Effectiveness on Real-life Packet Classifiers

We evaluate the suggested architectures on a real-life
database of 120 separate rule files and about 215, 000 rules
originating from various applications (such as firewalls, ACL-
routers and intrusion prevention systems). The database was
previously used in [3], [12], [13], [25].

As shown in Table IV, the COMBINED-SUM-PRODUCT
architecture outperformed again all other architectures. With
respect to the baseline INTERNAL-PRODUCT architecture, it im-
proved by nearly half (46%) the total number of TCAM entries,
and in particular by 63% and 92% the number of TCAM entries
needed with one and two range-fields, respectively. Again, as
in the previous experiment, the COMBINED-PRODUCT archi-
tecture performed well, while the other architectures performed
relatively poorly, partly because of the low proportion of two
range-fields.

X. CONCLUSION

This paper is unique in that it deals with the fundamental
capacity region of TCAMs. In the paper, we presented new
upper-bounds on the TCAM worst-case rule expansions. In
particular, we proved that a W -bit range can be encoded
in W TCAM entries using prefix encoding, improving upon
the previously-known bound of 2W − 5. We also introduced
fundamental analytical tools based on independent sets and
alternating paths, and used these tools to prove the tightness of
the upper bounds.

In addition, we suggested several modified TCAM archi-
tectures that can trade better range expansions, and therefore
less TCAM active entries, for more complex logic within the
TCAM. Last, we showed that it is possible to encode ranges
using a number of TCAM entries that increases only linearly
instead of exponentially with the number of fields.

ACKNOWLEDGMENT

This work was partly supported by the European Research
Council Starting Grant no. 210389.

20

TABLE III
AVERAGE EXPANSION RATIOS WITH THE CLASSBENCH SYNTHETIC CLASSIFIERS.

Parameters acl1 acl2 acl3 acl4 acl5 fw1 fw2 fw3 fw4 fw5 ipc1 ipc2 total
Number of ranges 49870 47276 49859 49556 40362 47778 48885 46038 45340 45723 49840 50000 570527
INTERNAL-PRODUCT 1.36 2.04 1.84 1.74 1.29 3.47 1.89 2.79 6.3 2.32 1.38 1 2.27
COMBINED-PRODUCT 1.27 1.15 1.24 1.22 1.11 1.24 1.18 1.17 1.74 1.15 1.07 1 1.21
INTERNAL-SUM 2.36 3.04 2.84 2.74 2.29 2.84 2.9 2.6 5.12 2.45 2.38 2 2.79
EXTERNAL-SUM 2.45 1.07 2.65 2.67 1.86 1.07 1.0 1.06 1.9 1.11 1.63 1 1.63
COMBINED-SUM 2.27 2.15 2.24 2.22 2.11 2.17 2.18 2.12 2.64 2.11 2.07 2 2.19
COMBINED-SUM-PRODUCT 1.27 1.15 1.24 1.22 1.11 1.24 1.18 1.17 1.72 1.15 1.07 1 1.21

We would like to acknowledge Anat Bremler-Barr for kindly
accepting to run several simulations. We would also like to
thank David Hay, Danny Hendler, Ran Ginosar, Zigi Walter
and Tuvi Etzion for their helpful participation and suggestions.

REFERENCES

[1] O.Rottenstreich and I.Keslassy, “Worst-case TCAM rule expansion,” in
IEEE INFOCOM Mini-Conference, 2010.

[2] ——, “On the code length of tcam coding schemes,” in IEEE ISIT, 2010.
[3] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”

ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.
[4] G. Varghese, Network Algorithmics. Morgan Kaufmann, 2005.
[5] J. Chao and B. Liu, High Performance Switches and Routers. Wiley,

2007.
[6] J. Naous et al., “Implementing an OpenFlow switch on the NetFPGA

platform,” in ACM ANCS, San Jose, CA, 2008.
[7] NetLogic Microsystems. [Online]. Available: www.netlogicmicro.com/
[8] Renesas. [Online]. Available: www.renesas.com/
[9] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-
State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[10] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” Michigan State
University, Technical Report MSU-CSE-09-1, Jan. 2009.

[11] J. Baliga et al., “Photonic switching and the energy bottleneck,” in
Photonics in Switching, Aug. 2007, pp. 125–126.

[12] A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based classifi-
cation using Gray coding,” in IEEE Infocom, 2007, pp. 1388–1396.

[13] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary CAMs,” in ACM SIG-
COMM, 2005, pp. 193–204.

[14] V. Srinivasan et al., “Fast and scalable layer four switching,” in ACM
SIGCOMM, 1998, pp. 191–202.

[15] B. Schieber, D. Geist, and A. Zaks, “Computing the minimum DNF rep-
resentation of Boolean functions defined by intervals,” Discrete Applied
Mathematics, vol. 149, no. 1-3, pp. 154–173, 2005.

[16] R. Roth, Personal communication.
[17] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM razor: A systematic

approach towards minimizing packet classifiers in TCAMs,” in ICNP,
2007, pp. 266–275.

[18] E. Spitznagel, D. E. Taylor, and J. S. Turner, “Packet classification using
extended TCAMs,” in ICNP, 2003, pp. 120–131.

[19] H. Hwang et al., “Minimization of acl storage by adding minimal
hardware of range matching and logical gates to TCAM,” in HSPR, 2008.

[20] S. Suri, T. Sandholm, and P. R. Warkhede, “Compressing two-
dimensional routing tables,” Algorithmica, vol. 35, no. 4, pp. 287–300,
2003.

[21] T. Sasao, “On the complexity of classification functions,” in ISMVL, 2008,
pp. 57–63.

[22] R. Cohen and D. Raz, “Simple efficient TCAM based range classifica-
tion,” in IEEE INFOCOM Mini-Conference, 2010.

[23] D. E. Taylor and J. S. Turner, “Classbench: a packet classification
benchmark,” in IEEE Infocom, 2005, pp. 2068–2079.

[24] P.-C. Wang et al., “Performance improvement of two-dimensional packet
classification by filter rephrasing,” IEEE/ACM Trans. Netw., vol. 15, no. 4,
pp. 906–917, 2007.

[25] A. Bremler-Barr et al., “Layered interval codes for TCAM based classi-
fication,” IEEE Infocom, 2009.

