
TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 1

Modeling the Interactions of Congestion Control
and Switch Scheduling

Alex Shpiner and Isaac Keslassy
Department of Electrical Engineering

Technion - Israel Institute of Technology
Haifa, 32000, Israel

{shalex@tx, isaac@ee}.technion.ac.il

Abstract—In this paper, we study the interactions of user-based
congestion control algorithms and router-based switch scheduling
algorithms. We show that switch scheduling algorithms that were
designed without taking into account these interactions can exhibit
a completely different behavior when interacting with feedback-
based Internet traffic. Previous papers neglected or mitigated
these interactions, and typically found that flow rates reach a fair
equilibrium. On the contrary, we show that these interactions can
lead to extreme unfairness with temporary flow starvation, as well
as to large rate oscillations. For instance, we prove that this is
the case for the MWM switch scheduling algorithm, even with a
single router output and basic TCP flows. We also show that the
iSLIP switch scheduling algorithm achieves fairness among ports,
instead of fairness among flows. Finally, we fully characterize the
network dynamics for both these switch scheduling algorithms.

I. INTRODUCTION

A. Congestion Control vs. Switch Scheduling

This paper is about combining two conflicting parallel views
of the Internet: a user-centric view, which considers that user-
based end-to-end congestion control algorithms regulate the
Internet and that routers are just passive elements of the
Internet; and a router-centric view, which considers that router-
based switch scheduling algorithms regulate the Internet and
that users are just passive elements of the Internet.

Both the congestion control and the switch scheduling
algorithms have the same common goal: regulate Internet
traffic so as to maximize link utilization, minimize packet loss,
and provide fairness among flows. However, they use quite
different means. User-based congestion control algorithms like
TCP regulate traffic by decreasing the rates of flows that
experience losses, and increasing the rates of flows that do not.
On the other hand, router-based switch scheduling algorithms
like Maximum Weight Matching (MWM) regulate traffic by
providing more services to long backlogged queues, and less
services to small queues.

While both traffic regulation algorithms reach high per-
formance when considered independently, we will show that
their interacting actions might conflict when put together, and
eventually cause more harm than good.

Figure 1 illustrates these issues on a toy model consisting
of two flows queued at two different inputs and destined for
the same output. Assume that these are TCP flows of rates
λ1 and λ2, and that the switch implements MWM by always
servicing the flow with the longest queue. Independently, both

Fig. 1. Simple network of two flows with common output link.

traffic regulation algorithms work fine: if the flows were using
TCP but not MWM, e.g. by sharing the same FIFO queue, then
they would reach the well-known TCP rate equilibrium [1]–[3].
Likewise, if the two flows were using MWM but not TCP, by
using a non-adaptive algorithm with fixed flow rates, then they
would both receive 100% throughput as long as λ1 + λ2 < 1
[4]–[6].

The problem arises when the two traffic regulation algo-
rithms interact. If the queue of the first flow gets larger, MWM
will keep servicing it, and therefore the first flow will increase
its rate even further in a vicious circle, because TCP will
keep receiving ACKs. On the other hand, the second flow will
not receive services and get starved. Thus the first flow will
overtake all the network resources. The combination of the
congestion control and the switch scheduling will cause an
extreme unfairness, which was absent when they were each
alone.

For router designers, this is no trivial result. It might
mean that their carefully-designed switch-scheduling algo-
rithms, which work perfectly with all the benchmarks based
on non-responsive flows, might break down when introduced
in real Internet networks with responsive TCP flows.

For network researchers, this is no trivial result either.
It might change the perceived value of many well-known
results. For instance, the Birkhoff-von Neumann (BvN) switch
scheduling algorithm, which measures the average flow arrival
rates and can provide proportional service rates, is known to
be fair for non-responsive flows [7]–[9]. In fact, it is one of the
only switch scheduling algorithms that are known to provide
both throughput and fairness guarantees in practical switch
architectures. However, as in the example above, providing
more services to a responsive flow might increase its arrival rate
in turn, thus increasing its share of the total traffic and leading
again to a vicious circle with extreme unfairness. Therefore, it
might be that the BvN scheduling algorithm simply does not

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 2

fit real Internet traffic, with the vast majority of the bandwidth
consisting of TCP responsive flows [10], [11].

These considerations show that congestion control and
switch scheduling algorithms cannot be designed and analyzed
without taking into account their interactions, both in practical
router benchmarks and in theoretical network models.

Further, to make things even worse, the example above
could also lead to different results, depending on the network
topology. For instance, if the queue of the first flow is the
longest one and keeps getting serviced, its service rate might
exceed its arrival rate, and therefore its size will decrease, until
both queue sizes are equal and the second flow gets serviced
as well. So it might be that the queue sizes get equalized and
stay equal. Or it might also be that the two flows alternately
overtake the whole link capacity. Unfortunately, as seen in this
paper, all these behaviors are possible, and highly depend on
network parameters. Therefore, this example also illustrates
the inherent analysis complexity associated to the interactions
between congestion control and switch scheduling.

B. Related Work

Known models of congestion control algorithms often as-
sume output-queued switching, i.e. the existence of a single
passive queue shared by all the flows destined to a switch-
output bottleneck link. For instance, these models have dealt
with flow rate equilibria [1]–[3], router buffer sizing [12], [14],
[16], [17], TCP dynamics [13], [18], TCP fairness [2], [3],
[23], Weighted Fair Queueing (WFQ) [19], and Active Queue
Management (AQM) analysis [20], [21]. Unfortunately, output-
queued switching cannot be implemented in high-speed routers
because of its required memory speedup [22]. Therefore, we
will analyze the more realistic input-queued routers and their
associated switch scheduling algorithms.

Known models of switch scheduling algorithms often assume
non-responsive traffic to analyze algorithms like MWM [4]–[6],
BvN [7]–[9], and the heuristic iSLIP [24], [25]. These models
attempt to achieve more realistic conditions by using admissible
non-responsive flows with either variable-size packets [26]–
[28], fixed traces [29], router measurements [30], or networked
switches [31], [32]. But most of Internet traffic is actually
responsive. In this paper, we also consider responsive flows
such as TCP flows.

Recently, research works have started modeling the interac-
tions of responsive flows with switch scheduling algorithms.
First, [33], [34] model the interaction of TCP sources and
the MWM scheduling algorithm. Their model relies on the
RED AQM scheme, and they convincingly prove that there
always exists a fair system equilibrium point. However, RED
mitigates the effects of MWM in that it discriminates against
longer queues, while MWM favors them. As a consequence,
this model does not reflect the possible extreme unfairness and
large rate oscillations that can occur without AQM.

In addition, [35], [36] measure packet delays in a real router
fed with a closed-loop ns2-generated TCP traffic. Such an
approach can accurately reflect delays at real Internet routers.
However, it is dependent on the router implementation, and
cannot model arbitrary switch scheduling algorithms.

Further, [37], [38] model the interactions of responsive
flows with switch scheduling algorithms in wireless networks.
However, they assume congestion control policies that are
fundamentally different from TCP.

C. Contributions

In this paper, we attempt to provide a first characterization of
the interactions between congestion control and switch schedul-
ing algorithms, using mostly TCP flows and droptail queues.
We compare the performances of an output-queued switch;
an input-queued switch implementing iSLIP, the scheduling
algorithm on which the Cisco 12000 GSR router is based [24];
and an input-queued switch implementing MWM.

By restricting our model to the tractable single-port case,
we characterize the system equilibria when they exist, and
compare their fairness properties. For instance, we show that
output-queued switches are fair for flows, while iSLIP-based
input-queued switches are fair for ports. We also characterize
the cases in which MWM leads to extreme unfairness with
temporary flow starvation.

Further, we discover three different modes of MWM: star-
vation, oscillation and equalization. We find that these modes
have fundamentally different properties, and highly depend on
the topology parameters.

Last, we completely describe the network dynamics for both
the iSLIP and MWM scheduling algorithms, using a set of
differential equations. We show that iSLIP can be modeled by
considering each (input, output) queue as a full output-queued
switch. We also find that the behavior of MWM is based on
synchronized congestion cycles.

The rest of the work is organized as follows. After defining
our model in Section II, we successively analyze the fairness
of OQ, iSLIP-based IQ and MWM-based IQ switches under
TCP traffic in Sections III, IV and V. Then, we characterize
the network dynamics of iSLIP and MWM in Section VI. We
finally show simulation results for these models in Section VII.

II. MODEL AND NOTATIONS

We now introduce and define our model and notations. We
first describe the general network topology and the congestion
control of each flow, and then focus on the switch and on its
scheduling algorithm.

A. Network Model

Figures 2 and 3 illustrate the general network topology, using
a central switch that can be either output-queued or input-
queued.

Network — The network includes N groups of flow sources.
Each group 1 ≤ i ≤ N consists of mi persistent TCP-Reno
sources and several UDP (or more generally non-responsive)
sources modeled as a single UDP Poisson source. All these flow
sources are connected to a group aggregation switch, which is
connected with its own link of capacity Cin to input port i of
the N × N switch. The switch is then connected to the flow
destinations with links of capacity Cout. Therefore, packets
sent by the sources are routed through the group aggregation

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 3

Fig. 2. Network topology based on an output-queued switch.

Fig. 3. Network topology based on an input-queued switch.

switch to the main switch, and then to their destination. Ac-
knowledgements (ACKs) come back in the same way. We now
make a few simplifying assumptions on the network properties
to make the problem more tractable. First, we assume that for
these flows, the only bottleneck links are the forwarding links
from the switch to the flow destinations.

Assumption 1: The only queues in the network are the
packet queues in the switch. In particular, all link capacities but
Cout are assumed to be infinite, and the backward propagation
times are assumed to be fixed.

Round Trip Time —There are m =
∑N
i=1mi TCP flows.

For each TCP flow k, let (wk(t), Qk(t), Ck(t)) respectively
denote the congestion window size, number of queued packets,
and switch service rate of flow k at time t. Also, let RTT k(t)
and τk denote its total (respectively propagation) round-trip
time (RTT), i.e. the total time from source to destination and
backwards with (without) counting queueing time.

In this paper, we will neglect sub-RTT variations of time-
dependent rates, in order to avoid intractable delayed non-linear
differential equations. For instance, if Qk(t) packets of flow k
are currently queued and they are currently serviced at rate
Ck(t), then we assume that an entering packet from flow k
will stay in the queue for Qk(t)/Ck(t) time-slots. Therefore,
the total round-trip time is

RTT k(t) = τk +
Qk(t)
Ck(t)

(1)

Further, for each input i and output j, let Sij be the set
of TCP flows going through input i and output j. Then, for
simplicity, we will assume that all flows in Sij have the same
propagation time.

Assumption 2: The propagation RTT of all flows k ∈ Sij is
equal and denoted τij(t)

4
= τk(t).

We now want to characterize the number of packets of each
flow in the network. We first make a simplifying assumption
to avoid distinguishing between services and departures.

Assumption 3: The service rate Ck(t) of flow k always
equals its departure rate, i.e. if Ck(t) > 0 then there are always
packets from flow k to service in the queue, so Qk(t) > 0.

Window — The total congestion window size Wij(t) of
TCP flows in Sij is denoted Wij(t)

4
=
∑
k∈Sij

wk(t). Let
w̃k(t) denote the number of packets in the network from flow
k at time t, including ACKs. Then, since packets depart from
the queue at rate Ck(t) and take a round-trip propagation time
of τk to come back, there are Ck(t) · τk packets on the links,
in addition to the Qk(t) packets in the queue, hence

w̃k(t) = Ck(t) · τk +Qk(t) (2)

Moreover, by definition of the congestion window, assuming
that TCP does not use the delayed-ACKs feature, we can
model [12]

wk(t) ≈ w̃k(t), (3)

which is usually accurate unless flow k just experienced a
congestion, in which case wk(t) falls faster than w̃k(t).

B. Switch Model

We now define the notations used for the switch arrivals,
schedules, and services.

Arrivals — For each (input, output) pair (i, j), we denote
λij(t) the total rate of packets arriving at input i and destined
for output j. We decompose this arrival traffic into two types:
• TCP traffic, with arrival rate λkij(t) for each flow k ∈ Sij ,

yielding a total arrival rate λTCPij (t); and
• Poisson UDP traffic, with fixed total arrival rate λUDPij .

Thus, we have: λij(t) = λTCPij (t) +λUDPij =
∑
k∈Sij

λkij(t) +
λUDPij .

Queues — We will assume that time is slotted, and that all
data packets have a fixed size, such that each switch output
can serve exactly one packet per time-slot.

Let Qij(t) denote the number of packets arrived at in-
put i, destined to output j, and queued in the switch at
time t. We will respectively denote the number of queued
TCP and UDP packets as QTCPij (t) and QUDPij (t). We saw
that the number of queued packets from flow k ∈ Sij is
Qk(t)

4
= Qkij(t). Therefore: Qij(t) = QTCPij (t) +QUDPij (t) =∑

k∈Sij
Qkij(t) + QUDPij (t). Likewise, the number of queued

packets arrived at input i (respectively destined to output j) is
Qi·(t) =

∑N
j=1Qij(t) (respectively Q·j(t) =

∑N
i=1Qij(t)).

Services — We saw that TCP flow k ∈ Sij receives a
service rate of Ck(t)

4
= Ckij(t). Likewise, the total service rate

of all flows belonging to the (input, output) pair (i, j) is de-
noted Cij(t), including CTCPij (t) for TCP flows and CUDPij (t)
for UDP flows, so that Cij(t) = CTCPij (t) + CUDPij (t) =∑
k∈Sij

Ckij(t) + CUDPij (t).

C. Switch Architecture

We will distinguish two types of switches. First, an N ×
N output-queued (OQ) switch (Figure 2) contains N queues,
located at the output ports of the switch. As packets arrive,
they are transferred immediately to their corresponding output
queue j of length Q·j(t).

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 4

An N×N input-queued (IQ) switch (Figure 3) is built using
N buffers, located at the input ports of the switch. Each input
buffer i is shared dynamically between N virtual output queues
(VOQs), which correspond to the N outputs and have total
length Qi·(t). When a packet arrives at input i and is destined
to output j, it is stored in the corresponding VOQ, denoted
V OQij , of length Qij(t).

In an IQ switch, after packet arrivals, a centralized switch
scheduler decides on a match between the N input ports and
the N output ports, so that no input (resp. output) is matched
to more than one output (resp. input). Then, the scheduler
picks the head-of-line packets of the selected VOQs to depart
according to this match. The scheduler can follow any switch
scheduling algorithm in order to decide which packet to serve.
Scheduling algorithms considered in this paper include:

• iSLIP, a round-robin-based algorithm [24], [25]. In iS-
LIP, each input (output) keeps a pointer to its preferred
output (input), which rotates in a round-robin order once
it is matched. Using an iterative process, the scheduler
attempts to find a match by giving preference to the inputs
and outputs indicated in the pointers. Note that iSLIP
reduces to a simple round-robin (RR) scheduler on a vector
of N VOQs, e.g. when there is only one input or output
with active flows.

• Maximum Weight Matching (MWM), which maximizes the
weight of the match, with weights given by the queue
lengths [4]–[6]. Intuitively, MWM favors larger VOQs.
Note that MWM reduces to the Longest Queue First
(LQF) policy on a vector of N VOQs.

In both switch architectures, the total buffer size at the switch
is NB, i.e. B per output in the OQ switch and B per input
in IQ switch. Further, all buffers implement a droptail policy,
i.e. an arriving packet is dropped iff its buffer is full. We will
define the set of congestion times for flow k by T k, where
t ∈ T k iff the size Q of the queue that contains flow k satisfies
Q(t−) < B and Q(t) = B.

D. Single-Port Model

To get a better grasp of the problem, we will introduce and
consider the single output-port model, in which a single output
has active flows. Thus, the switch reduces to an N × 1 switch,
with simpler notations and switch scheduling algorithms. In
this case, we will simplify notations by defining λi

4
= λi,1,

Qi
4
= Qi,1, and so on. Further, as mentioned above, the iSLIP

and MWM switch scheduling algorithms respectively reduce
to the round-robin and LQF algorithms.

III. FAIRNESS OF OQ SWITCHES

In the next sections, we want to compare OQ and IQ switches
from the point of view of fairness. To do so, we first define
two simple fairness measures: Jain’s fairness and utility-based
TCP fairness. Then, when considering the single-output case,
we show that OQ switches are fair.

A. Fairness Measures

Our objective is to analyze the fairness of OQ and IQ
switches, i.e. the way in which the available output link
capacity is divided between flows. We first define two fairness
measures, and then apply these measures to compare the
performance of the switches. First, we define Jain’s fairness
index [39]:

Definition 1 (Jain’s Fairness): Jain’s fairness index for m
flows is

F
4
=

(
∑m
i=1 Ci)

2

m ·
∑m
i=1 C

2
i

(4)

Next, we define the utility function of each TCP flow k, and
the resulting TCP-fair resource allocation.

Definition 2 (TCP-Fair Resource Allocation): The utility
function of a TCP flow k is

Uk(Ck)
4
= − 2

(RTT k)2
· 1
Ck

(5)

Let S·j be the set of flows k that share output link j of
capacity Cout. Then a TCP-fair resource allocation is a resource
allocation that achieves

max
∑
k

Uk(Ck)

s.t.
∑
k∈S·j

Ck ≤ Cout ∀j

Ck ≥ 0 ∀k.

(6)

Since we assume a FIFO droptail queueing policy, it is hard
to analyze the precise behavior of each flow. Therefore, we
make a simplifying assumption on flows sharing the same
queue.

Assumption 4: Two flows sharing the same queue have
equal dropping probabilities. Further, their service rates are
proportional to their queue sizes.

B. Fairness analysis

We will now analyze the fairness measure of OQ switches,
and later compare it with IQ switches. For simplicity, we
consider the single output-port case, in which all flows are
switched to the same output port j. In this fairness analysis,
we assume that all round-trip times are equal, and that there is
no UDP traffic. We rely on the following approximation of the
steady-state throughput of a TCP flow k with round-trip time
RTT k [2]:

Ck =
√

2

RTT k ·
√
dk

(7)

where Ck and dk are the steady-state average values of the
capacity Ck(t) and the dropping rate dk(t). We neglect the
difference between the average over time and the average seen
by packet arrivals. The next theorem shows that the throughput
of all flows in the output-queued switch is divided equally at
the output link.

Theorem 1 (OQ Switch Throughput): In the OQ switch de-
fined above, the throughput of flow k is:

Ck =
Cout∑N
i=1mi

(8)

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 5

Fig. 4. 2× 1 switch example

Proof: By Assumption 4, all flows have the same dropping
probability. Therefore, using the steady-state throughput of a
TCP flow, as defined in Equation (7), all flows have the same
throughput. Finally, by Assumption 3, we have

∑
Ck = Cout,

hence the result.
Example 1: As illustrated in Figure 4, consider a 2× 1 OQ

switch with 10 flows in the first input (m1 = 10) and a single
flow in the second input (m2 = 1). Then, the service rate of
each flow is

Ck =
Cout

m1 +m2
=
Cout
11

, (9)

independently of its input.
Theorem 2: The OQ switch maximizes all fairness mea-

sures:
(i) Jain’s fairness index achieves its maximum F = 1, and
(ii) The total utility function achieves its maximum as well,
therefore the resource allocation is TCP-fair.

Proof: Since all flows share the total throughput equally,
Jain’s fairness is clearly equal to 1: if m =

∑N
i=1mi, then

F =

(
m · Cout

m

)2
m ·m ·

(
Cout

m

)2 = 1. (10)

Further, since the total utility function is defined as a sum of
equal concave functions of Ck with a single constraint on their
sum, the symmetric maximal resource allocation necessarily
achieves the maximum total utility function (as also seen
using Jensen’s inequality, Lagrange duality, or simple matroid
optimization). Denote α = 2/(RTT k)2. Then the total utility
function is

m∑
k=1

Uk(Ck) = m ·
(
−α

Cout/m

)
=
−αm2

Cout
(11)

IV. FAIRNESS OF IQ SWITCHES WITH ISLIP SCHEDULING

We saw above that OQ switches are fair. We now want to
analyze iSLIP-based IQ switches. We prove that IQ switches
using iSLIP scheduling are unfair in the general case, and show
that they provide port-fairness instead of flow-fairness.

In order to analyze the fairness of iSLIP-based IQ switches,
we assume the same setting as in the analysis of OQ fairness,
with a single output-port. In such a setting, the iSLIP algorithm
reduces to a simple round-robin (RR) scheduling scheme. In
the next theorem, we show that each input i receives an equal

share of the output capacity, divided equally among its mi > 0
flows.

Theorem 3 (iSLIP Throughput): In an IQ switch with iSLIP
scheduling, the throughput of flow k in input i is

Cki =
Cout
N ·mi

(12)

Proof: The round-robin algorithm provides the same share
of the output link capacity to each input. By Assumption 3,
this provided service rate also corresponds to departures, and
therefore all input ports have the same total departure rate and
the round-robin schedule does not need to skip queues in this
model. Thus, each input port behaves as an OQ switch of rate
Cout/N with mi flows sharing the queue. The result follows
from Theorem 1 on the OQ switch throughput.

Example 2: Consider again the network from Example 1, as
illustrated in Figure 4, this time with an IQ switch using an
iSLIP scheduler. Then, the service rate of each flow in the first
input port is Ck = Cout/20, and the service rate of the flow
in the second input port is Ck = Cout/2. This is clearly an
unfair allocation among flows.

Based on the Cauchy-Schwarz inequalities, the following
theorem shows that iSLIP is unfair under both fairness mea-
sures.

Theorem 4: The iSLIP-based IQ switch is unfair by both
fairness criteria, unless all inputs have the same number of
flows. Further,
(i) its Jain’s fairness index is

F =
N2(∑N

i=1mi

)
·
(∑N

i=1
1
mi

) , (13)

(ii) and its total utility function is∑
k

Uk(Ck) =
−αN
Cout

N∑
i=1

m2
i . (14)

Proof: The proof is presented in Appendix A. Both fair-
ness measures are shown to be unfair using different Cauchy-
Schwarz inequalities, with equality iff all the mi are equal.

The throughput allocation in an IQ switch using iSLIP is
unfair when all ports do not have the same number of flows.
More generally, the results above show that the OQ switch
maintains fairness among flows, while the iSLIP-based IQ
switch maintains fairness among ports.

V. FAIRNESS OF IQ SWITCHES WITH MWM SCHEDULING

A. Starvation Mode vs. Oscillation Mode

We now analyze the fairness of IQ switches with MWM
scheduling. For simplicity, we want to analyze the 2× 1 case
mentioned in the Introduction and shown in Figure 1. In such
a case, the MWM algorithm is reduced to a simple LQF
algorithm. We first neglect timeouts and UDP traffic, and later
take them into account.

There are two conflicting intuitions on the expected results
in the 2 × 1 case. First, we might believe that once a queue
becomes large, the MWM scheduler keeps servicing it, and so
its congestion window will keep growing until the flow takes

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 6

Fig. 5. Starvation mode for two TCP flows in a 2× 1 MWM switch

control over the whole service rate and causes other flows to
temporarily starve. So the MWM scheduler might be extremely
unfair in such a starvation mode.

On the other hand, if a flow has the largest queue and
keeps getting serviced, its queue can empty out faster, and then
another flow will in turn have a larger queue and get service,
thus overcoming the first flow. The service rate of each flow
will oscillate between 0 and the full capacity Cout. So over a
long average, the MWM scheduler might actually be somehow
more fair in this oscillation mode.

The following analysis shows that both intuitions can be
correct, and both the starvation and the oscillation modes can
occur, depending on the network parameters. For instance, let’s
assume that at some time t0 the first queue is longer than the
second one:

Q1(t0) > Q2(t0) (15)

Then the starvation mode occurs when this strict inequality
keeps holding at all times t ≥ t0, both in stable phases (when
queue sizes keep growing) and in congestion phases (when
queue sizes fall).

Figure 5 illustrates the typical behavior of the starvation
mode, in which the first flow keeps prevailing and the second
flow is starved. Since we always have Q1(t) > Q2(t), the first
flow keeps getting serviced at rate C1 = Cout. Therefore it
keeps increasing its window size, and its corresponding queue
arrival, until Q1 = B. This causes a packet drop, and the
window size is halved.

There is then a race condition between ∆tC , the time before
both the window and the queue of the first flow start growing
again, and ∆tE , the time it takes to equalize the queues lengths
Q1 and Q2. As we will prove, when ∆tC < ∆tE , the first
queue is always longer than the second one, and therefore the
network stays in starvation mode. However, if ∆tC > ∆tE ,
the two queue lengths get equal, and the other flow might start
growing faster, thus the network enters an oscillation mode as
shown in Figure 6.

In other words, during stable phases, a single prevailing
queue is always being serviced, and the other queue is starved

Fig. 6. Oscillation mode for two TCP flows in a 2× 1 MWM switch

— but in starvation mode, the same queue is always prevailing,
while in oscillation mode, the identity of the prevailing queue
might change during the congestion phase. As stated in the
following theorem, the mode depends in fact on the network
topology.

Theorem 5: In the MWM-based IQ scheduler described
above, assume that Q1(t0) > Q2(t0) at time t0. Then the
switch is in starvation mode with Q1(t) > Q2(t) for all t ≥ t0
iff the buffer size B satisfies

B > Cout · τ1 + 2Q2(t0) (16)

Furthermore, if B ≤ Cout · min(τ1, τ2), the switch is always
in oscillation mode.

Proof: The proof is presented in Appendix C.
In particular, if Q2(t0) = 0, then the condition for the

starvation mode corresponds to the well-known rule-of-thumb
for the buffer size of an OQ switch [12]. With such a buffer
size, we guarantee that the buffer of the first flow never goes
empty, and therefore that it is always picked by the MWM
scheduler.

In addition, both in the starvation and the oscillation modes,
we can quantify the inter-congestion time Ti of the prevailing
flow i. This will help us evaluate the fairness of MWM-based
IQ switches.

Theorem 6 (Inter-Congestion Time): Both in the starvation
and the oscillation modes, the inter-congestion time Ti of the
prevailing flow i is:

Ti =
3 · (τi · Cout +B)2

8 · Cout
(17)

Proof: The proof is presented in Appendix D.
Note that when we assume the existence of timeouts in

starvation mode, Q2 slightly grows at each timeout. However,
even through the second queue is serviced from time to time,
the fundamental network properties are unchanged and it is still
in starvation mode, with a negligible service rate for Q2.

We further discuss the network properties in Appendix B.

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 7

B. UDP Flows and Equalization Mode

We now want to analyze the influence of UDP flows on
the network. We show that when the UDP flows have a low
rate, their influence is negligible and we still have the same
starvation and oscillation modes. However, for a slightly higher
UDP flow rate, we prove the apparition of a third mode, the
equalization mode, which keeps all queue sizes equal.

Assume that Q1(t0) > Q2(t0) at time t0. The intuition is
that starvation will happen whenever dQ1

dt (t0) > dQ2
dt (t0), i.e.

Q1(t0) is longer than Q2(t0) and their difference keeps in-
creasing. Otherwise, if dQ1

dt (t0) < dQ2
dt (t0) and their difference

keeps decreasing, queue 2 will exceed queue 1 at some time
t1 (i.e., Q2(t1) > Q1(t1)), and queue 2 will be serviced in
turn. Therefore, we may obtain in turn dQ1

dt (t1) > dQ2
dt (t1),

and eventually queue 1 will exceed again queue 2. Thus, no
queue will always prevail. Further, if this equalization happens
fast, both queue sizes will remain nearly equal.

We first make the following simplifying assumption, and
deduce the conditions for this equalization mode.

Assumption 5 (Arrivals and departures of UDP packets):
We assume that the rate of the UDP packets is sufficiently
low relatively to the service rate, so that during congestions
the amount of dropped UDP packets is negligible. Therefore
CUDPij (t) = λUDPij .

Theorem 7 (Equalization mode): In the MWM-based IQ
scheduler described above, the switch is in equalization mode
at time t0 whenever the arrival rate of UDP packets λUDP is
sufficiently large and satisfies

λUDP2 >
Cout

Q(t0) + Cout · τ1
and λUDP1 >

Cout
Q(t0) + Cout · τ2

.

In particular, if

λUDP2 >
Cout

B + Cout · τ1
and λUDP1 >

Cout
B + Cout · τ2

,

then the switch is always in equalization mode. Further, if UDP
traffic is negligible and satisfies

λUDP2 <
Cout

B + Cout · τ1
and λUDP1 <

Cout
B + Cout · τ2

,

then as previously the switch is either in a finite-time starvation
mode or in oscillation mode.

Proof: The proof is presented in Appendix E.

C. Fairness measures of MWM switch modes

We now analyze the fairness of the starvation, oscillation,
and equalization modes in the simple 2 × 1 switch example
shown in Figure 1, where each input queue serves a single
flow.

Starvation Mode — In this case one of the queues is
always being serviced, while the other is always starved, i.e.
C1 = Cout, C2 = 0. We establish the following fairness result
showing that the starvation mode is fundamentally unfair.

Theorem 8: In starvation mode,
(i) Jain’s fairness index is F = 1

2 ,
(ii) The total utility function is

∑
i Ui(Ci) = −∞.

Proof: First, Jain’s fairness index is: F = C2
out

2C2
out

= 1
2 . Fur-

ther, the total utility function is
∑
i Ui(Ci) = − 2

(RTT1)2
1
C1
−

2
(RTT2)2

1
C2
, with C2 = 0.

Oscillation Mode — Assume that in oscillation mode, the
flow prevailing is determined at each congestion in a round-
robin manner. Then we obtain:

Theorem 9: Denote αi = τi · Cout +B. Then in oscillation
mode,
(i) Jain’s fairness index is F = (α2

1+α
2
2)

2

2(α4
1+α

4
2)
.

(ii) The total utility function is∑
i

Ui(Ci) =
−2(α2

1 + α2
2)

Cout
(

1
α2

1 ·RTT 2
1

+
1

α2
2 ·RTT 2

2

) (18)

Proof: Using the inter-congestion times from Theorem 6,
C1 = Cout

T1
T1+T2

and C2 = Cout
T2

T1+T2
, and therefore C1 =

Cout
α2

1
α2

1+α
2
2

and C2 = Cout
α2

2
α2

1+α
2
2

. We conclude by assigning
C1 and C2 in fairness Equations (4) and (5).

Equalization Mode — We first prove the following lemma,
before characterizing fairness in equalization mode.

Lemma 1: In equalization mode, the approximate service
rate Ci of queue i is

Ci = Cout
τj

τi + τj
, (19)

where i 6= j.
Proof: In equalization mode, Qi = Qj . Using Qi = Wi−

Ci ∗ τi and Ci + Cj = Cout, we get

Ci =
Wi −Wj + Cout · τj

τi + τj
(20)

Approximating the average value of Wi (and Wj) as the
average between its maximum and minimum values, where the
minimum equals half the maximum,

Wi ≈
Wi,max +Wi,max/2

2
=

3(B + Ciτi)
4

(21)

Substituting into the previous equation, we get the result.
Theorem 10: In equalization mode,

(i) Jain’s fairness index is F = (τ1+τ2)
2

2(τ2
1 +τ2

2)

(ii) The total utility function is∑
i

Ui(Ci) = −2(τ1 + τ2)
Cout

(
1

(RTT1)2 · τ2
+

1
(RTT2)2 · τ1

)
Proof: By assigning C1 and C2 from Lemma 1 into

Equations (4) and (5).
UDP Mode — The analysis of UDP Mode is in Appendix

F.

VI. NETWORK DYNAMICS USING IQ SWITCHES

In the next section we introduce more general models that
rely on differential equations to model the network dynamics,
while not restricting the number of inputs and the number of
flows per input.

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 8

A. Model

We consider again the simplified single-output switch model.
We now want to describe the network dynamics in the cases
of the iSLIP and MWM switch scheduling algorithms. To do
so, we first use many small building blocks, which describe
the behaviors of the network components. Then, we connect
them in a single set of equations. Finally, we reduce this set of
general equations to a simplified set of equations, from which
all other equations can be deduced. For instance, the simplified
set only considers queue sizes and services rates — and once
we solve it, we can deduce window sizes, arrival rates, long-
term rate averages, fairness measures, etc.

We will see that the simplified set of equations has an
interesting structure: it is always a double set of equations,
reflecting the two sides of the interactions, i.e. both the con-
gestion control and the switch scheduling algorithms. In fact,
there are two equations per flow, one corresponding to the
congestion control and one to the switch scheduling. In total,
there are 2(m + N) equations, for the m TCP and N UDP
flows. Further, the congestion control equations are different
when TCP is in stable phase and congestion phase, i.e. between
drops and during drops.

There is still one step left beyond this double set of equa-
tions. We need to determine when a flow has a packet drop
and enters congestion. For instance, we previously defined
T k, the set of congestion times for flow k. Likewise, we
define the set of congestion times for input i by Ti, where
t ∈ Ti iff Qi(t−) < B and Qi(t) = B. Then if input i
experiences congestion, not necessarily all flows going through
this input will experience congestion as well — only those that
experience packet drops. Further, a flow with more packets
has more chance to experience packet drops. Thus, we need a
model linking queue congestion and flow congestion. We will
simply use the mean-field model from [13], and assume that
the probability that flow k of input i experiences congestion
given that input i experiences congestion is

P (t ∈ T k|t ∈ Ti) = 1−
(

1− wk

Ci · τi +B + |Si|

)|Si|

(22)

In the remainder, we first describe the two simplified sets
of equations for iSLIP and MWM. Then, we introduce in
subsequent lemmas a few interesting building blocks that were
used to construct this simplified set of equations. We present
the full proofs in Appendix G.

B. Network Dynamics Theorems

First, we present the dynamics of the iSLIP-based network
topology. In the next theorem, the switch-scheduling equations
are based on the intuition that iSLIP equally divides output
capacity among incoming ports, and divides a port capacity
among flows proportionally to their number of queued packets
(Equation (23)). In addition, the congestion-control equations
successively model TCP flows in stable phase, TCP flows in
congestion phase, and UDP traffic (Equation (24)).

Theorem 11 (iSLIP Dynamics): The dynamics of Internet
traffic going through an iSLIP switch can be modeled using the

following set of 2(m+N) equations on the 2(m+N) flow vari-
ables {(Qk(t), Ck(t))1≤k≤m, (QUDPi (t), CUDPi (t))1≤i≤N}:
(i) m+N switch scheduling equations:

Ck(t) = Qk(t)∑
k′∈Si

Qk′ (t)+QUDP
i

(t)
· Cout

N ∀i, k ∈ Si

CUDPi (t) = QUDP
i (t)∑

k′∈Si
Qk′ (t)+QUDP

i
(t)
· Cout

N ∀i
(23)

(ii) m + N congestion control equations, reflecting stable
phases and congestion phases:

d
dt (Q

k(t) + Ck(t)τk)2 = 2Ck(t) if t 6∈ T k

Qk(t+) + Ck(t+)τk = Qk(t−)+Ck(t−)τk

2 if t ∈ T k
dQUDP

i

dt = λUDPi − CUDPi (t)

(24)

The next theorem presents the dynamics of the MWM-based
network topology. The switch-scheduling equations express
the full service rate provided to the longest queue by MWM
(Equation (26)). As in Theorem 11, the congestion-control
equations model TCP and UDP flows (Equation (27)).

Theorem 12 (MWM Dynamics): The dynamics of
Internet traffic going through an MWM switch can
be modeled using the following set of 2(N + m)
equations on the 2(N + m) input variables
{(Qk(t), Ck(t))1≤k≤m, (QUDPi (t), CUDPi (t))1≤i≤N}:
(i) m + N switch scheduling equations: let A(t) denote the
set of inputs with the longest queue at time t, i.e.

A(t) = {i : Qi = max
j
Qj}, (25)

then

Cki (t) =
∑

k′∈Si
Ck′ (t)+CUDP

i (t)∑
k′∈Si

Qk′ (t)+QUDP
i

(t)
·Qki (t)

CUDPi (t) =
∑

k′∈Si
Ck′ (t)+CUDP

i (t)∑
k′∈Si

Qk′ (t)+QUDP
i

(t)
·QUDPi (t)∑

k∈Si
Qi(t) =

∑
k∈Sj

Qj(t) if i, j ∈ A(t)
d
dt

∑
k∈Si

Qki (t) = 0 if i /∈ A(t)∑m
k=1 C

k +
∑N
i=1 λ

UDP
i = Cout

(26)

where the number of independent equations for each equation
line is successively (m − N,N, |A(t)| − 1, N − |A(t)|, 1),
yielding a total of m+N .
(ii) m + N congestion control equations, reflecting stable
phases and congestion phases:

d
dt (Q

k(t) + Ck(t)τk)2 = 2Ck(t) if t 6∈ T k

Qk(t+) + Ck(t+)τk = Qk(t−)+Ck(t−)τk

2 if t ∈ T k
dQUDP

i

dt = λUDPi − CUDPi (t)

(27)

As mentioned above, the full proofs appear in Appendix G.
We also explain there why the model for the N × 1 iSLIP
switch is in fact a combination of N independent models of
1 × 1 switches, i.e. N FIFO queues. Further, in Appendix H,
we provide some additional intuition on the related case of a
1×N switch with a single input port.

We provide below a proof example, in which we demonstrate
the congestion control equations in the stable phase.

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 9

Fig. 7. Simulation of OQ and IQ-iSLIP cumulative average throughput.

Lemma 2: In the stable phase, the network satisfies

d

dt
((Qk(t) + Ck(t)τk)2) = 2Ck(t) (28)

Proof: First, all flows k in the same input i have the
same round-trip time RTTi(t)

4
= RTT k(t) = τk + Qk(t)

Ck(t)
,

because they have the same τk(t) (Assumption 2) and because
their share of the input bandwidth (Ck(t)) is proportional
to their share of the queue size (Qk(t)) (Assumption 4).
Next, in the stable phase, from Equations (2) and (3), the
congestion window size of each input i is assumed to satisfy
wk(t) = Ck(t) · RTT k(t) Further, for each flow k, dwk(t)

dt =
1

RTTk(t)
= 1

RTTi(t)
, thus d

dt (Q
k(t) +Ck(t)τi)2 = d

dtw
k(t)2 =

2wk(t) · ddtw
k(t) = 2

(
Ck(t) ·RTT k(t)

)
· 1
RTTk(t)

, hence the
result.

VII. SIMULATIONS

A. Simulation Settings

We now want to evaluate the correctness of our models by
comparing them with simulation results. We ran ns2 simula-
tions of the network dynamics, and compared them with Matlab
implementations of the differential equations in the iSLIP- and
MWM-based IQ switch models.

In our simulations, we used default ns2 protocol implementa-
tions. For i, j ≥ 0, we assumed that the round-trip propagation
time of flows at input i and output j is τij = (i+ j + 1) · τ00,
with a base propagation time τ00 = 100 ms. We also assumed
a uniform packet size of 1 KB.

B. Fairness of OQ and IQ-iSLIP Switches

Figure 7 displays simulation results for the 2 × 1 switch
example with 11 flows, as shown in Figure 4 and discussed in
Examples 1 and 2. It plots the cumulative average throughput
of one flow from each input, assuming both OQ and iSLIP-
based IQ. The simulation used Cout = 10 Mbps, B = 28 KB,
and a total average rate of UDP flows equal to 1% of the output
link capacity Cout.

The figure confirms the results presented in the analysis.
In the OQ switch, the throughput of different flows equalizes
over time even if they are from different inputs, thus resulting
in a fair allocation. However, in the IQ-iSLIP switch, the
throughput of the flow from the second input tends to be ten
times larger than the throughput of each of the ten flows from
the first input, thus resulting in a large unfairness.

C. MWM Modes

Figures 8(a), 8(c) and 8(b) show the evolution of the in-
stantaneous queue lengths of each input in the three MWM
modes, assuming the 2 × 1 switch setting. All these figures
were obtained using the same switch architecture, but different
network topology conditions (different buffer sizes, propagation
times, and output capacity).

Figure 8(a) shows the starvation mode, where queue 1 is the
prevailing serviced queue and queue 2 is the starved queue. It
used a single flow per input, no UDP packets, Cout = 1 Mbps
and B = 41 KB.

Figure 8(b) shows the oscillation mode, where only one of
the queues gets full service rate at each time. In between two
full-service states the queue apparently goes through an equal-
ization phase between t = 565 seconds and t = 575 seconds.
As opposed to the starvation mode, we can see that the full
service is passing from one queue to another. It used five flows
per input, no UDP packets, Cout = 5 Mbps and B = 150 KB.

Finally, Figure 8(c) plots the equalization mode, in which
queue lengths are kept equal. It used a single flow per input,
Cout = 2 Mbps, a total UDP rate of 20% · Cout, and B =
31 KB.

These simulations can be used to validate Theorems 5 and
7. For instance, in the starvation mode settings, the following
condition of Theorem 5 holds:

Cout · τ1 + 2Q2(t0) ≈ 2 · 106/8 · 0.1 + 2 · 14 · 103/8
= 40.5KB < 41KB = B

D. Switch Dynamics

Figures 9(a) and 9(b) are showing the modeled dynamics
and the ns2 simulation results of the 2× 1 iSLIP switch with
100 TCP flows per input, using Cout = 100 Mbps, a total
UDP rate of 5% ·Cout, and B = 180 KB. On the graphs, Q1,2

represents the sizes of each of the queues and C1,2 the amount
of serviced packets in last 25 ms for each of the queues. We
can observe the constant and equal service rate of both queues
and the similar graphs of the queue dynamics in the model and
in the simulation.

Further, Figures 10(a) and 10(b) compare the MWM switch
dynamics in an ns2-based network simulation and in an imple-
mentation of the differential-equations model, both being run
under the same topology conditions. We assumed a 2×1 switch
five TCP flows per input, using Cout = 5 Mbps, a total UDP
rate of 5% · Cout, and B = 70 KB.

In both plots, the two queues appear to be in equalization
mode, with both queue plots barely distinguishable. The queue
dynamics seem quite similar in the model and in the simulation,
thus providing a partial validation of the model. In particular,
there is similarity in the minimal values, maximal values, and
slopes of the respective functions.

E. MWM Modes in N ×N Switches

We finally want to evaluate the behavior of MWM in N×N
switches. Such switches are much harder to analyze than N×1
switches, because of the many interactions between queues. We

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 10

(a) 2× 1 MWM – Starvation mode. (b) 2× 1 MWM – Oscillation mode. (c) 2× 1 MWM – Equalization mode.

Fig. 8. Fairness simulation graphs for all modes.

(a) Model. (b) Simulation.

Fig. 9. 2× 1 iSLIP switch with 100 TCP flows per input.

(a) Model. (b) Simulation.

Fig. 10. 2× 1 MWM switch dynamics with five TCP flows per input.

show below that their observed behavior in simulations reflects
the MWM modes analyzed in N × 1 switches.

Figures 11(a) and 11(b) illustrate the behavior of a 3 × 3
MWM switch under different topology parameters. Both plot
the 3! = 6 possible permutations weights, i.e. the total number
of packets in the corresponding VOQs. Both assume 100
flows per (input,output) pair, i.e. a total of 900 flows. Further,
Figure 11(a) used Cout = 100 Mbps, B = 2.5 MB, and
τ00 = 100 ms, while Figure 11(b) used Cout = 10 Mbps,
B = 10 MB, and τ00 = 1 ms.

We can see that in Figure 11(a), the switch is in equalization
mode, under which all permutation weights tend to stay equal.
On the other hand, in Figure 11(b), the switch is in starvation

(a) Equalization mode.

(b) Starvation mode.

Fig. 11. Simulation graphs of 3x3 MWM switch with 100 flows per VOQ.

mode, with a single permutation having a weight higher than
the others, and therefore always being served. (Note that other
permutation weights steadily increase because of UDP and
timeout packets that keep arriving.) Therefore, the N × N
switch dynamics reflect the dynamics analyzed in the N × 1
switch; instead of dealing with packets queued in a specific
queue, these are now the dynamics of all packets queued in a
specific permutation.

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 11

VIII. DISCUSSIONS

Let’s now briefly discuss the correctness and generality of
the assumptions made in this paper.

Single bottleneck — Assumption 1 presumes a single
bottleneck in the network, and therefore neglects the influence
of the other queues. This assumption relies on the observation
that in the Internet, few flows practically have more than one
bottleneck, and they mostly depend on their most congested
queue [12]. Thus, this assumption seems realistic enough.
However, we also assumed that the congestion only affects
packets, not ACKs. This assumption is too restrictive, and ACK
congestion is left for future study.

Equal round trip times — Assumption 2 neglects the RTT
variations between flows in the same input port. In simulations,
we varied the RTTs of different flows, while keeping them
ordered by their RTTs to have similar RTTs in each port. We
only found an impact of 1–2 % on the resulting flow capacities.

Non-empty queues — Assumption 3 relies on non-empty
queues in the iSLIP switch. While this assumption is obviously
wrong in the general case, we found that it mostly holds when
buffer sizes are large enough. For instance, in our simulations,
queue were typically empty less than 1 % of the time.

Drop-tail queues — Assumption 4 presupposes equal drop-
ping probabilities for flows at the same queue. In simulations,
we found that this assumption held when averaged over some
sufficiently large time period (over 5 seconds), as long as
the number of flows was large enough and the loss rate was
reasonable.

UDP loss rate — Assumption 5 neglects the number of lost
UDP packets compared to the total number of lost packets. We
found that it held in simulations as well, as long as the total
UDP rate was negligible.

IX. CONCLUSIONS

In this paper we modeled the interactions of user-based con-
gestion control algorithms and router-based switch scheduling
algorithms. Using single-port switches, we found that these
interactions can lead to extreme unfairness and flow starvation,
as well as to large rate oscillations. Further, we discovered three
modes of MWM behavior, namely the starvation, oscillation
and equalization modes. We also modeled the dynamics of both
iSLIP and MWM switches, and showed in simulation results
that our models were quite close to simulated dynamics.

In this paper, none of the studied arbitration modes in IQ
switch schemes was found to be fair, further emphasizing the
fairness issues resulting from the interactions of congestion
control and switch scheduling.

In this paper, we did not exhibit any fair and efficient IQ
scheme. Given our assumptions, iSLIP can be seen as less
unfair than MWM, because it arbitrates equally across ports and
does not discriminate against flows with large RTTs. However,
iSLIP does not always provide 100% throughput [24]. Finding
a fair scheme that guarantees 100% throughput is not an easy
task — we conjecture that it can be reached using credit-based
fairness mechanisms, but leave it for future work.

ACKNOWLEDGEMENT

This work was partly supported by European Research
Council Starting Grant n ◦ 210389.

REFERENCES

[1] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP through-
put: a simple model and its empirical validation,” ACM SIGCOMM,
1998.

[2] F. Kelly, “Mathematical modelling of the Internet,” In Mathematics
Unlimited - 2001 and Beyond, Springer-Verlag, 2001.

[3] R. Srikant, “Models and methods for analyzing Internet congestion
control algorithms,” In Advances in Communication Control Networks,
Springer-Verlag, 2004.

[4] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks, IEEE Trans. Automatic Control, vol. 37, no.
12, pp. 1936-1948, Dec. 1992.

[5] N. McKeown, V. Anantharan, and J. Walrand, “Achieving 100% through-
put in an input-queued switch,” IEEE Infocom ’96, vol. 1, pp. 296–302,
San Francisco, CA, March 1996.

[6] J.G. Dai, B. Prabhakar, “The throughput of data switches with and
without speedup,” Proceedings of IEEE INFOCOM, vol. 2, pp. 556–564,
Tel Aviv, Israel, March 2000.

[7] T. T. Lee, and C. H. Lam, “Path switching-a quasi-static routing scheme
for large scale ATM packet switches,” IEEE Journal on Selected Areas
of Communications, vol. 15, pp. 914–924, 1997.

[8] T. Weller, and B. Hajek, “Scheduling nonuniform traffic in a packet
switching system with small propagation delay,” IEEE/ACM Transactions
on Networking, vol. 5, no. 6, pp. 813–823, 1997.

[9] C. S. Chang, W. J. Chen, and H. Y. Huang, “On service guarantees for
input buffered crossbar switches: a capacity decomposition approach by
Birkhoff and von Neumann,” IEEE IWQoS’99, pp. 79–86, London, UK,
1999.

[10] C. Fraleigh et al., “Packet-level traffic measurements from the Sprint IP
backbone,” IEEE Network, vol. 17, pp. 6–16, 2003.

[11] M. Fomenkov et al., “Longitudinal study of Internet traffic in 1998-2003,”
WISICT, vol. 58, pp. 1–6, 2004.

[12] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM, Portland, OR, 2004.

[13] M. Wang, “Mean-field analysis of buffer sizing,” Globecom’07, Wash-
ington DC, Nov. 2007.

[14] D. Wischik and N. McKeown, “Part I: Buffer sizes for core routers,”
ACM SIGCOMM Computer Communication Review, Jul. 2005.

[15] G. Raina, D. Towsley and D. Wischik, “Part II: Control theory for buffer
sizing,” ACM SIGCOMM Computer Communication Review, Jul. 2005.

[16] R. S. Prasad, C. Dovrolis, and M. Thottan, “Router buffer sizing revisited:
the role of the input/service rate ratio,” ACM CoNext, New York, 2007.

[17] M. Shifrin and I. Keslassy, “Modeling TCP in small-buffer networks,”
Networking, Singapore, May 2008.

[18] R. Shorten, F. Wirth and D. Leith, “Modelling TCP congestion control
dynamics in drop-tail environments,” Automatica, 2007.

[19] H. Hassan, O. Brun, J. M. Garcia, and D. Gauchard, “Integration of
streaming and elastic traffic: a fixed point approach,” SIMUTools, 2008.

[20] T. Bu and D. F. Towsley, “A fixed point approximation of TCP behavior
in a network,” ACM Sigmetrics, 2001.

[21] S. Deb and and R. Srikant, “Rate-based versus queue-based models of
congestion control,”, ACM Sigmetrics, June 2004.

[22] F. Abel et al., “Design issues in next-generation merchant switch fabrics,”
IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp. 1603–1615,
2007.

[23] J. Lee, S. Bohacek, J. P. Hespanha and K. Obraczka, “A study of TCP
fairness in high-speed networks,” Technical Report, USC, July 2005.

[24] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE Transactions on Networking, vol. 7, no. 2, pp. 188–201,
Apr. 1999.

[25] N. McKeown and T. E. Anderson, “A quantitative comparison of schedul-
ing algorithms for input-queued switches,” Computer Networks and ISDN
Systems, 1998.

[26] M. Ajmone Marsan, et al., “Packet-mode scheduling in input-queued
cell-based switches,” IEEE/ACM Transactions on Networking, vol. 10,
no. 5, pp. 666–678, Oct. 2002.

[27] Y. Ganjali, A. Keshavarzian, and D. Shah, “Input queued switches: cell
switching vs. packet switching,” Infocom ’03, vol. 3, pp. 1651–1658,
Mar. 2003.

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 12

[28] H. Attiya, D. Hay, and I. Keslassy, “Packet-mode emulation of output-
queued switches,” ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’06), Cambridge, MA, August 2006.

[29] P. Giaccone, M. Mellia, L. Muscariello, and D. Rossi, “Switches under
real internet traffic”, IEEE HPSR, Phoenix, Arizona, USA, April 2004.

[30] N. Hohn et al., “Bridging router performance and queuing theory,” ACM
Sigmetrics, New York, June 2004.

[31] M. Andrews and L. Zhang, “Achieving stability in networks of input-
queued switches,” IEEE/ACM Transactions on Networking, vol. 11, no. 5,
pp. 848–857, 2003.

[32] M. Ajmone Marsan, P. Giaccone, E. Leonardi, and F. Neri, “On the
stability of local scheduling policies in networks of packet switches
with input queues,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 4, pp. 642-655, May 2003.

[33] P. Giaccone, E. Leonardi and F. Neri, “On the behavior of optimal
scheduling algorithms under TCP sources,” International Zurich Seminar
on Communications, pp. 94–97, Feb. 2006.

[34] P. Giaccone, E. Leonardi and F. Neri, “On the interaction between
TCP-like sources and throughput-efficient scheduling policies,” Technical
report, Politecnico di Torino, July 2006.

[35] R. Chertov, S. Fahmy, and N. B. Shroff, “A black-box router profiler,”
IEEE Global Internet, May 2007.

[36] R. Chertov, S. Fahmy, and N. B. Shroff, “A device-independent router
model, Infocom 2008, Phoenix, Arizona, May 2008.

[37] M.J. Neely, E. Modiano and C.-P. Li “Fairness and optimal stochastic
control for heterogeneous networks, Infocom ’05, pp. 1723–1734, Miami,
FL, Mar. 2005.

[38] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control, Infocom
’05, pp. 1794–1803, Miami, FL, Mar. 2005.

[39] R. Jain, D. M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared systems,” DEC
Research Report TR-301, 1984.

APPENDIX A
PROOF OF THEOREM 4

Proof: Jain’s fairness index is:

F =

(∑N
i=1

∑mi

k=1
Cout

N ·mi

)2

(∑N
i=1mi

)
·
(∑N

i=1

∑mi

k=1

(
Cout

N ·mi

)2
)

=

(∑N
i=1mi · 1

mi

)2

(∑N
i=1mi

)
·
(∑N

i=1mi · 1
m2

i

)
=

N2(∑N
i=1mi

)
·
(∑N

i=1
1
mi

)
(29)

By the Cauchy-Schwarz inequality,

N2 =

(
N∑
i=1

√
mi ·

1
√
mi

)2

≤

(
N∑
i=1

mi

)
·

(
N∑
i=1

1
mi

)
, (30)

i.e. F ≤ 1, with equality iff all the mi are equal. Likewise,
denote α = 2/(RTT k)2. Then the total utility function is∑

k

Uk(Ck) =
N∑
i=1

mi∑
k=1

(
− α

Ck

)
= −α

N∑
i=1

mi∑
k=1

N ·mi

Cout

=
−αN
Cout

N∑
i=1

m2
i

=
−α
Cout

(
N∑
i=1

12

)(
N∑
i=1

m2
i

)
(a)

≤ −α
Cout

(
N∑
i=1

1 ·mi

)2

=
−αm2

Cout
,

(31)

where (a) follows from the Cauchy-Schwarz inequality, with
equality iff all the mi are equal.

APPENDIX B
STARVED QUEUE LENGTH IN MWM-STARVED MODE

The maximal length of the starved queue is the minimal
length of the prevailing queue. Otherwise, it contradicts the
existence of starvation.

Proposition 1 (Starved queue length): The length of the
starved queue 2 behaves according to

dQ2(t)
dt

=
⌊
log2

(
t

RTO
+ 1
)⌋

(32)

where RTO is either the maximum Retransmission Time-Out
value or the RTT of the last successful ACK as measured by
the source, and

Q2,max = Q1,min (33)

Proof: Based on the properties of the TCP-Reno re-
transmission timer. The first retransmission timer expires after
the last previous measured RTT or the predefined maximum
Retransmission Time-Out value:

TO1
4
= RTO = min(RTT,MAXRTO) (34)

Each next retransmission timer is twice longer than the previous
one:

TOi = 2 · TOi−1 (35)

So, suppose that at time t = 0, Q2(t) = 0. Then:

Q2(t) = 1 if RTO ≤ t < 3 ·RTO
= 2 if 3 ·RTO ≤ t < 7 ·RTO
= i if (2i − 1) ·RTO ≤ t < (2i) ·RTO

i.e.
Q2(t) = i if i ≤ log

(
t

RTO
+ 1
)
< i+ 1 (36)

So,
dQ2(t)
dt

=
⌊
log2

(
t

RTO
+ 1
)⌋

(37)

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 13

APPENDIX C
PROOF OF THEOREM 5

We prove Theorem 5 by first proving three lemmas on the
general dynamics of flow k, and then using them to characterize
the needed conditions for the starvation mode.

The first lemma characterizes the dynamics of the window
size of flow k. It distinguishes the congestion times

(
t ∈ T k

)
in which the window size is halved, the times that follow
congestion in which the window size does not change as
long as it’s less than the number of packets in the network(
w̃k(t) ≥ wk(t)

)
, and the other times in which the growth rate

of the window size is 1/RTT k(t).
Lemma 3: The congestion window size wk(t) of flow k is

approximated by:
wk(t+) = wk(t−)

2 if t ∈ T k
dwk(t)
dt = 0 if w̃k(t) > wk(t), t 6∈ T k

dwk(t)
dt = 1

RTTk(t)
if w̃k(t) ≤ wk(t), t 6∈ T k

(38)

Proof: These equations are based on the behavior of the
TCP-Reno protocol, as explained above.

The next lemma characterizes the arrival rate of flow k.
Lemma 4: The arrival rate λk(t) of flow k is approximated

by

λk(t) =

{
0 if w̃k(t) > wk(t)
wk(t)

RTTk(t)
if w̃k(t) ≤ wk(t)

(39)

Proof: When w̃k(t) > wk(t), just after congestion, the
source of flow k stops sending packets, therefore λk(t) = 0,
until w̃k(t) ≤ wk(t) again. Then, there are w̃k(t) ≈ wk packets
on the network (Equation (3)) distributed over a total time of
RTT k, so the sending rate is the ratio of these quantities.

The last lemma compares the arrival rate λk(t) with the
service rate Ck(t).

Lemma 5: When w̃k(t) ≤ wk(t), the arrival rate λk(t) of
flow k follows

λk(t) = Ck(t) +
1

RTT k(t)
− dCk(t)

dt
τk (40)

and therefore

dQk(t)
dt

=
1

RTT k(t)
− dCk(t)

dt
· τk (41)

Proof: We know that wk(t) = Qk(t) + Ck(t) · τk from
Equations (2) and (3). Therefore, after differentiation and using
Lemma 3, we get dQk

dt = 1
RTTk(t)

− dCk

dt τ
k. Finally, using

dQk

dt = λk(t)− Ck(t) (Assumption 3), we get the result.
We are finally ready to prove Theorem 5.

Proof of Theorem 5: First, let’s prove that Q1(t) > Q2(t)
in the stable phase following t0 and preceding congestion.
Assume by contradiction that this is only the case until time
t0 + ∆t. By the proof of Lemma 5, dQ

k

dt = 1
RTTk(t)

− dCk

dt τ
k.

If until t0 + ∆t the first flow is serviced at rate Cout while
the second flow does not receive any service, then the queues
keep growing at the same rate, because round-trip times are
presumed equal. Therefore Q1(t0 + ∆t) > Q2(t0 + ∆t) and
there is contradiction.

Next, let’s analyze the congestion phase. By Lemma 3,
before congestion at time T ∈ T k, the window size w1 is
at its maximum and equal to the maximum number of packets
of flow 1 in the network:

w1(T−) = w1,max = Cout · τ1 +B. (42)

During congestion the window size is halved and w̃1(T+) ≈
w1(T−) > w1(T+). The congestion period ends when w̃1(t) ≈
w1(t) again, i.e. once w1,max/2 packets have been transmitted
at rate Cout. Thus the congestion period lasts

∆tC =
w1,max/2
Cout

=
B

2Cout
+
τ1
2

(43)

Further, the time period needed to equalize queues lengths after
congestion is

∆tE =
B −Q2(t0)

Cout
(44)

This is because there are Q1(T−) = B packets of flow 1 and
Q2(T−) = Q2(t0) packets of flow 2 before congestion, while
Q1 decreases at rate Cout while Q2 is kept constant. Therefore,
to keep ∆tC < ∆tE , we obtain the lower-bound on B stated
in the theorem. Q2 is then kept constant during both the fluid
and congestion phases, and therefore the same results can be
obtained in the following stages as well.

APPENDIX D
PROOF OF THEOREM 6

Proof of Theorem 6: [12] introduced the following model
for the evolution of the congestion window size:

wk(t) =
√
Cout · t+ (wk(0))2. (45)

Assigning wk(0) = wmax

2 = 2Cout·τ+B
2 , and wk(T) =

2Coutτ +B, we get the result.

APPENDIX E
PROOF OF THEOREM 7

In order to prove Theorem 7, we first prove the following
preliminary lemmas.

Lemma 6: The length of the serviced queue Q1 is expressed
by
dQ1

dt
(t) = λTCP1 (t) + λUDP1 (t)− CTCP1 (t)− CUDP1 (t)

=
1

RTT1(t)
− dCTCP1

dt
τ1 (46)

Proof: Follows from Assumption 5 and Theorem 5.
Lemma 7: The length of the unserved queue 2 is expressed

by
dQ2

dt
(t) = λUDP2 (47)

Proof: For the unserved queue, there is no service so
C2 = 0. Because TCP packets are not serviced, they are
also not acknowledged, and as a result, no new TCP packets
arrive, thus λTCP2 = 0 (neglecting timeout packets, as assumed
previously).

Proof of Theorem 7: Starvation happens if dQ1
dt (t) >

dQ2
dt (t) for all t. Combining Equations (46) and (47) and

assigning Q1,max = B, we get the final result.

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 14

Fig. 12. 2× 1 iSLIP model.

APPENDIX F
FAIRNESS MEASURES OF MWM SWITCHES - UDP MODE

We now analyze the case where traffic only consists of UDP
flows, without any TCP flows.

Lemma 8 (UDP Mode Throughput): In a 2 × 1 MWM
switch with only UDP flows the approximated service rate Ci
of queue i is

Ci =
Cout + λUDPi − λUDPj

2
(48)

where i 6= j.
Proof: Assume λUDPi > λUDPj . The amount ∆λUDPi,j =

λUDPi − λUDPj is the first to depart from queue i. The rest
(Cout −∆λUDP1,2) is divided equally between the queues:

Ci = ∆λUDP1,2 +
Cout −∆λUDP1,2

2
(49)

Cj is found using Cj = Cout − Ci.
Theorem 13 (Fairness of UDP Mode): Jain’s fairness index

is
F =

1

1 +
(
λUDP

1 −λUDP
2

Cout

)2 (50)

Proof: By assigning C1 and C2 from Lemma 8 into
Equation (4).
Note that the total TCP utility function does not apply to this
case.

APPENDIX G
NETWORK DYNAMICS: PROOFS OF THEOREMS 11 AND 12

In the proofs below, for each congestion time T ∈ Ti we
distinguish two different times for simplicity. Let t = T− be
the time when the congestion of the flow happened and t = T+

be the time when the flow recovered form the congestion.
Figures 12 and 13 illustrate the notations and behavior of

the dynamics model for iSLIP and for MWM. The model
composed of two phases: the stable phase and the congestion
phase.

The stable phase models the stable situation, when queues
are not full. The output link is fully utilized, the congestion

Fig. 13. 2× 1 MWM model.

windows are continuously increasing (because there are no
drops), so the queues are continuously increasing too (Equa-
tions (2) and (3)). During the stable phase of queue i, the
arrival rate exceeds the service rate, i.e. λi ≥ Ci.

The congestion phase starts immediately after the congestion
indication. Following congestion, there is window halving:
the source waits for packets to be acknowledged, in order
to equalize the number of packets on the fly to the window
size. Meanwhile, the arrival rate decreases, and therefore the
queue length decreases as well, because the arrival rate is lower
then the service rate. Therefore, during the congestion phase
of queue i, λi < Ci.

TCP stable phase — We already proved in Lemma 2 the
following N equations of the TCP stable phase.

d

dt
((Qk(t) + Ck(t) · τk)2) = 2Ck(t) (51)

TCP congestion phase — Next is the set of m equations
of the TCP congestion phase.

Lemma 9 (TCP congestion phase equations): In the con-
gestion phase, each TCP flow k satisfies

Qk(T+) + Ck(T+) · τk =
Qk(T−) + Ck(T−) · τk

2
(52)

Proof: Resulting immediately from the properties of TCP-
Reno and based on the dynamics of wk that were shown in
Lemma 3 (in Appendix C):

wk(T−) = Qk(T−) + Ck(T−) · τk

wk(T+) = wk(T−)
2

(53)

iSLIP switch scheduling — The service rate of queue i in
an iSLIP switch is defined by the number of input ports (N),
as shown in the following lemma.

Lemma 10 (iSLIP switch equations): The service rate Ci(t)
of input queue i in an N × 1 iSLIP switch is defined by the
next equation:

Ci(t) =
Cout
N

(54)

Proof: The service rate of the switch is divided equally
between the inputs, as showed in Theorem 3.

TECHNICAL REPORT TR08-03, COMNET, TECHNION, ISRAEL 15

Note that the N × 1 iSLIP switch with service rate Cout
can be modeled as N FIFO queues with service rate Cout/N ,
as each queue receives an equal service rate independently of
each other.

MWM switch scheduling — We denote A(t) as the set
of active queues at time t, i.e. queues with Ci(t) > 0. Then
using MWM, all queues i, j ∈ A(t) tend to have equal length:
Qi(t) = Qj(t) at time t.

Lemma 11 (Queue equalization): If 0 < Ci(t), Cj(t) <
Cout, the lengths of the queues i, j behave according to

Qi(t) = Qj(t) (55)

Proof: MWM scheduling gives service to the longest
queue. If at some time several queues were serviced, they all
have the longest queue length, and therefore can be modeled
as equal.

Next is the set of the N equations of the MWM switch
scheduling.

Lemma 12 (MWM switch scheduling equations):
Qi(t) = Qj(t) if i, j ∈ A(t)
dQTCPi (t) = 0 if i /∈ A(t)∑N
i=1 Ci = Cout

(56)

Proof: Resulting form Lemma 11 and the TCP-Reno
properties.

Per-flow equations — The service rate of each TCP flow
satisfies the following lemma.

Lemma 13 (Per-flow equations): Each TCP flow k in input
i behaves according to the next set of equations:{

Cki (t) = Ci(t) · Q
k
i (t)

Qi(t)
dQk

i

dt = λki (t)− Cki (t) = dwk
i

dt −
dCτi

dt − C
k
i (t)

(57)

The dynamics of wki are shown in Lemma 3 (in Appendix C).
Proof: The first equation results from Assumption 4, stat-

ing that the service rates of two flows sharing the same queue
are proportional to their queue sizes. The second equation
results from the queue dynamics [12].

UDP equations — The next set of equations describes the
influence of UDP traffic.

Lemma 14 (UDP equations):
QUDPi = Qi −QTCPi

CUDPi = Ci − CTCPi

CUDPi = QUDP
i

Qi
Ci

dQUDP
i

dt = λUDPi − CUDPi

(58)

Proof: The first two equations result from the definitions
of QUDPi and CUDPi . As in Lemma 13, the third equation
comes from Assumption 4, stating that the service rates of two
flows sharing the same queue are proportional to their queue
sizes. The last equation comes from Assumption 3.

APPENDIX H
INTUITION ON THE 1×N SWITCH

Consider the 1×N single-port model with a single input and
many outputs. In this case the input buffer of size B is shared
between all the VOQs of flows destined to different outputs.

Therefore, gaining some intuition is much more complex,
because of the interactions between all the flows. However,
the analysis above helps provide some intuition.

iSLIP — Considering Assumption 3, which basically as-
sumes that queues are never empty, we conclude that a 1×N
iSLIP switch should behave similarly to an N × 1 switch,
i.e. each queue should receive Cout/N of the bandwidth
independently of the other queues, and can be modeled as N
FIFO queues with service rate of Cout/N .

MWM Starvation and Oscillation Mode— The maximal
queue length now depends on the length of other queues
because of the queue sharing, therefore the buffer size in
condition in Theorem 5 should change from B to B−Q2(t0).

MWM Equalization Mode— Because of the queue equal-
ization effect, an N×1 MWM switch with buffer size B should
be similar to a 1×N MWM switch with buffer size B/N , i.e.
the maximal length of each VOQ should be B/N . Theorem
7 is changed accordingly as the buffer size should be B/N
instead of B.

