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Abstract—It is often claimed that future systems will
necessarily be all-optical, because electronic devices are not
fast enough to keep up with the increase in fiber capacity.
However, two objections are commonly raised: first, optical
systems need many basic optical components, which are
typically very expensive; and second, optical systems need
many switch reconfigurations, which are typically very
slow.

In this paper, we examine whether these two costs
can be fundamentally bounded. First, we develop the
equivalence between coding theory and optical system
design by introducing the concept of super switches. Then,
we show how the minimal expected number of switch
reconfigurations is almost equal to the state space entropy
of the optical system. Finally, we point out the trade-off
between the two types of costs.

I. INTRODUCTION

Network systems such as routers, network processors
or buffers are commonly implemented today using elec-
tronics. Consequently, their scaling abilities are limited
by Moore’s law and memory bandwidth growth, which
have historically grown slower than optical link capac-
ities [1]. As incoming fibers become faster, it becomes
harder and harder for them to cope with the incoming
traffic.

Because of this growth discrepancy, it is often claimed
that future systems will necessarily be all-optical. How-
ever, two objections are commonly raised. First, optical
systems need many basic optical components, which are
typically very expensive. And second, optical systems
need many switch reconfigurations, which are typically
very slow, especially when compared to electronic switch
reconfiguration times and packet arrival speeds. Is is
unclear, though, whether these two types of costs are
fundamentally present in all optical systems, and whether
they can be lowered if we have some knowledge on the
arrival traffic.n this paper, our goals will first be to model
these two types of costs, then present fundamental lower

bounds on these costs in general optical systems, and
finally build optical constructions that reach these lower
bounds.

The research in this area started when Shannon pub-
lished his paper on the memory requirements of a
telephone exchange [2]. Then, the discussion on the
complexity of connecting networks was further extended
in [3]–[5], which introduced links to information the-
ory. Also related are works on time-slot-interchange
complexity [3], minimum-complexity combined time-
space switching [6]–[8] and minimum-complexity op-
tical queues [9], [10]. Below, we will consider and
explain many results of these papers under the angle of
the two types of costs.

In this paper, we first consider the question of mini-
mizing the expected number of switch reconfigurations.
We find equivalences between optical constructions and
coding theory. In fact, we find that the question of
designing an optical system with as few switch recon-
figurations as possible is very similar to the question
of designing an optimal code. This is due to the fact
that a 2 × 2 switch, which can be set either to ”cross”
or ”bar” state, could be thought of as equivalent to a
binary digit, which can be set either to zero or to one.For
each state of the system, we define the switches that
take part in the formation of that state as active, and the
switches that are irrelevant to the formation of that state
as passive. We further define the theoretical complexity
C∗ of the system as the minimum expected number of
active switches, where the expectation is taken over the
state space. This helps us provide close lower and upper
bounds on the theoretical complexity of the system. In
fact, if we denote the entropy of the state space by H ,
we prove that

H ≤ C∗ ≤ H + 1.

Moreover, we present a general construction that
achieves these bounds given some probability distribu-
tion. A construction with an expected number of switch



TECHNICAL REPORT TR06-02, COMNET, TECHNION, ISRAEL 2

reconfigurations that is equal in growth to the theoretical
complexity is said to be theoretically optimal.We then
discuss the question of minimizing the number of 2× 2
switches in the system. We show that if the number of
possible states is K and the time it takes to perform one
state is T , the practical complexity C is lower bounded
as follows:

C ≥ d log K

T
e.

A construction with a practical complexity that grows
like this lower bound is said to be practically optimal.
We show that there is a certain tradeoff between design-
ing a system that is practically optimal, and a system that
is theoretically optimal. This tradeoff appears usually
when the states have a highly non-uniform distribution.

It is important to note that this paper mostly presents
a fundamental approach to the complexity of optical sys-
tems, without putting a stress on practical implementa-
tions. By defining complexity and explaining how lower
bounds on complexity can be obtained, it is laying the
ground for more practical papers. In [11], we use these
fundamental results to present constructions of optical
buffers and optically-buffered routers that are practically
optimal, i.e., have a number of basic components that
grows like the practical complexity lower bound defined
in this paper.

This paper is organized as follows. First, Section II
presents definitions related to systems and complexity
of systems. Then, Section III presents links between
coding theory and the complexity of systems. The theo-
retical complexity of a construction is defined to be the
theoretical minimum on the expected number of switch
reconfigurations, where the expectation is calculated with
respect to the states space. We find lower and upper
bounds on the practical complexity of constructions,
and define theoretically optimal constructions. Finally,
Section IV, the practical complexity is defined to be the
theoretical minimum on the number of 2 × 2 switches
in a construction, and the tradeoff between the practical
complexity and the theoretical complexity is presented.

II. DEFINITIONS

We will refer to a system as an ideal network element
that has input links, output links and inner states. The
outputs of the system are uniquely determined as a
function of the inputs and the inner states of the system
during the entire time of operation. Packet size is fixed,
time is slotted and it takes one time-slot to transmit a
packet. If packets have variable sizes, they are segmented
into fixed size blocks during arrival and reassembled at
departure. Let’s first review the definition of external
states and internal states, as defined in [3].

C

Fig. 1. A controlled 2× 2 switch

Definition 1: A system has a set T of external states,
where each external state is a distinguishable possible
system output.

Definition 2: A system has a set S of internal states,
where each internal state is a different setting of the
system elements.

Consider the mapping σ : S → T , linking each
internal state to the resulting external state. By causality,
to each external state corresponds some internal state,
i.e., σ is surjective. Therefore, in order to reach T
different outputs, at least an equal number of internal
states is required: |S| ≥ |T |.

The external states are not necessarily equiprobable.
Using their probability distribution, we are now able to
define the system entropy.

Definition 3: Assume that there exists a probability
distribution PT on the set of external states T , with∑

ti∈T PT (ti) = 1. The system entropy is given by the
entropy of the external states:

H = −
∑

ti∈T

PT (ti) log(PT (ti))

Example 1: Consider the case of an N × N switch,
where all the permutations are equiprobable. There are
N ! equiprobable external states. Therefore, the entropy
of an N ×N switch is given by:

H = −
∑

i=1,..,N !

1
N !

log(
1

N !
) = log(N !)

Definition 4: An optical construction emulates an
ideal system if, under identical arrivals, identical pack-
ets depart from the optical construction within some
bounded delay compared to the ideal system [12]. If
the delay is fixed, we say that the construction strongly
emulates the system. If there is no delay, we say that the
construction exactly emulates the system.
he basic element in our optical constructions is an optical
2× 2 switch.

Definition 5: An optical 2 × 2 switch is a network
element with 2 inputs, 2 outputs and a control input c,
see Figure 1. If c = 0, the switch is in a ”bar” state,
and the inputs are passed forward to the output links. If
c = 1, the switch is in a ”cross” state, and the outputs
are the inputs with interchanged positions.



TECHNICAL REPORT TR06-02, COMNET, TECHNION, ISRAEL 3

Definition 6: A system is with memory, when the
packets on the output links may have arrived during
previous time-slots. A system is memoryless, when the
packets on the output links arrived on the current time-
slot.

Definition 7: A Frames Switch [6], [13] is a network
element that has N input links and a frame size of B
packets, where the output frame is a permutation both in
space and time of the corresponding input frame.

Definition 8: A Time Slot Interchange (TSI) [3], [7]
is a frames switch with one input link and one output
link.

Definition 9: The state duration TS of a system is the
time it takes to form a single external state.

Example 2: The state duration of an unbuffered N ×
N switch is TS = 1.

Example 3: The state duration of a TSI with buffer
size B is TS = B.

III. THEORETICAL COMPLEXITY AND RELATIONS TO

CODING THEORY

A. Complexity of optical systems

There is an intuitive connection between the construc-
tion of optical systems and coding theory [2], [3]. In
fact, a 2 × 2 switch could be thought of as equivalent
to a binary digit. In the same way as the binary digit
can be set to zero or to one, the 2 × 2 switch can be
set to a ”cross” or a ”bar” state. For instance, Shannon
has famously argued that the number of 2× 2 switches
needed to construct an N ×N switch able to realize all
possible N ! permutations is at least C = log(N !) [2],
which is exactly the number of digits required to code
N ! symbols with uniform distribution.

Our goal is to build constructions with minimal com-
plexity. We will relate to two notions of complexity of
optical constructions. The first notion is the expected
number of connection reallocations necessary to set
the system states. The second notion is the number of
switches in the construction. We would like to find the
connection between the probability distribution of the
external states, and these two notions of complexity. It
seems that if the external states are not equiprobable, we
could use the prior knowledge on the probability of the
states so as to design a switch that is more economic
in some ways. For example, consider an output-queued
switch with N links and queue size B. As shown in [11],
at least Θ(N log(NB)) 2 × 2 switches are required to
emulate it if all packet arrival patterns are allowed. But
what if we know in advance that the packet arrival pattern
is not uniform? For instance, if the packets on input link
i are destined either to output link i or to output link

(i+1) mod N? Intuitively, such a prior knowledge might
help reduce the number of switch reallocations and the
number of 2× 2 switches.

B. Definition of theoretical complexity

In this section we will define a metric for the number
of switch reconfigurations. We will denote it as the
theoretical complexity, and present connections to coding
theory.

We would first like to examine whether there is any
connection between the entropy of the external states and
the complexity of a network element, as would seem
natural. The following example demonstrates that we
should not measure the complexity of a network element
only using its number of 2× 2 switches, but also using
some other metrics.

Example 4: Consider a system with N inputs:
(I1, I2, ..., IN ) and N outputs: (O1, O2, ..., ON ), where
N is even and N ≥ 4. The system chooses between two
equiprobable states: either the outputs are equal to the
inputs, or the system interchanges the positions of every
two consecutive inputs:

(O1, O2, ..., ON ) ∈ {(I1, I2, I3, I4..., IN−1, IN )

(I2, I1, I4, I3, ..., IN , IN−1)}

In other words, the probability distribution over the set
of all possible N ! permutations is given by:

PT = {1
2
, 0, ..., 0,

1
2
, 0, ..., 0}

The entropy of a system with two equiprobable states is
H = 1. However, it is not possible to construct such a
system with less than N

2 2 × 2 switches, because there
are N changeable inputs. Therefore, this simple example
shows that the number of 2× 2 switches of a system is
not necessarily equal, or even close, to its entropy.

Let’s introduce a new type of construction to bridge
this apparent gap between entropy and complexity. As
illustrated in Figure 2, a construction emulating the
previous example is a column of N

2 switches, which are
all controlled by the same control input. If the common
control input is set to the ”bar” state, the inputs are
passed forward to the output. If the control input is set
to the ”cross” state, the locations of each pair of inputs
are interchanged. We will define such a set of switches,
which are all controlled by a single control input, as a
super switch.

Definition 10: A super switch is an ensemble of 2×2
switches, which are all controlled by the same control
input (see Figure 2). The number of 2 × 2 switches
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C

Fig. 2. A super switch

composing a super switch is called the size of the super
switch.

The number of super switches in a construction equals
the number of independent controls. These independent
controls determine the internal states of the construction.
Our goal will be to state a connection between the
number of independent controls and the entropy of the
network element.

In coding theory, the goal is to design a code such
that the average length of codewords is minimized [14].
An optimal code is designed using the knowledge of the
probabilities of source symbols.

It appears that the key in the connection between
coding and switching lies in the number of independent
controls introduced above: each digit in the codeword
corresponds to one independent control. Similarly, each
codeword corresponds to a given set of independent con-
trols. However, the connection is not entirely straightfor-
ward: the number of digits in the codewords is not fixed,
while the hardware in a construction is fixed. Therefore,
we will define active and passive controls. For a specific
external state, active controls are those that participate in
forming that state, while the value of passive controls is
irrelevant in forming the state. (Of course, controls that
are active in forming one external state, might in turn be
passive in forming another external state.)

Definition 11: A control input is called active for
a specific external state if its value depends on the
state. A control input is called passive if its value is
predetermined independently of the state.

For instance, in the example above with the super
switch (Figure 2), there is a single control input that is
always active. If there were additional control inputs for
switches that are never used, then these control inputs
would be called passive.

Now we will define the theoretical complexity of
an optical network element as the minimum expected
number of active controls over all possible constructions
emulating it. Our motivation will be to build optical
constructions that reach that minimum.

Definition 12: Assume that there exists a probability
distribution PT on the set of external states T , and that
lti

is the number of active controls necessary to form a
state ti ∈ T in a given construction. The theoretical
complexity C∗ of a network element is the minimal
expected number of active controls, where the minimum
is taken over all possible emulating constructions:

C∗ = min
∑

ti∈T

PT (ti)lti

For instance, consider the example above. There is
a single control that is always active, therefore the
expected number of active controls in the above con-
struction is 1. This is an upper bound on the minimum
expected number, thus C∗ ≤ 1. (In fact, we will see
below that C∗ = 1.)

We will now find lower and upper bounds on the
theoretical complexity of a network element. First, we
will only discuss memoryless network elements. Then,
we will extend our discussion and also consider network
elements with memory.

C. A lower bound on the theoretical complexity

The derivation of the lower bound on the theoretical
complexity will parallel the derivation of the lower
bound on the expected length of codewords in coding
theory [14].

A known result related to coding is Kraft’s inequality.
It states that if the length of the codewords for code L
are l1, l2, ..., lm, then it holds that

∑
i 2
−li ≤ 1. Now, we

can state an equivalent theorem also for switches. We
will use this theorem in finding a lower bound on the
theoretical complexity. (For the sake of presentation, all
proofs in this paper are presented in the Appendix.)

Lemma 1: (Kraft’s inequality) Assume that the num-
ber of active controls for an external state ti ∈ T is given
by lti

. It holds that
∑

i

2−lti ≤ 1.

By minimizing the expected number of active controls
under Kraft’s inequality, we get a lower bound on the
theoretical complexity:

Theorem 1: Assume that the number of active con-
trols for an external state ti ∈ T is given by lti

and
that its probability is given by pti

. Then the theoretical
complexity of the network element is lower bounded by
its entropy:

C∗ ≥ H.

Example 5: Consider a system with 4 input links
I1, I2, I3, I4. The outputs may be one of three possible
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permutations of the inputs, with the following probability
distribution:

P ((O1, O2, O3, O4) = (I1, I2, I3, I4)) =
1
2

P ((O1, O2, O3, O4) = (I2, I1, I4, I3)) =
1
4

P ((O1, O2, O3, O4) = (I3, I4, I1, I2)) =
1
4

All the other permutations have a probability that is equal
to zero.
The entropy of the system is provided by

H =
1
2

log
1
2

+ 2 ∗ 1
4

log
1
4

=
3
2

Therefore, by Theorem 1, a lower bound on the theoret-
ical complexity is given by: C∗ ≥ 3

2 .
To achieve the lower bound, we will build another
construction that uses the prior knowledge of state prob-
abilities, as demonstrated in Figure 3. Assume that if
the control input is 0, the switch is in a ”bar” state,
and if the control input is 1, the switch is in a ”cross”
state. The packets arrive to a super switch of size 4.
The super switch is controlled by C1. If C1 = 0, the
inputs pass forward to the outputs. In this case, the value
of C2 is irrelevant, and we say that C2 is passive. If
C1 = 1, the inputs are passed to the lower super switch
which is controlled by C2. C2 chooses between the two
permutations with lower probability. A calculation of the
expected number of active controls L shows that for this
construction:

L =
∑

ti∈T

PT (ti)lti
=

1
2
∗ 1 +

1
4
∗ 2 +

1
4
∗ 2 =

3
2
.

Therefore the expected number of active controls in the
construction is equal to the entropy of the system. We
can conclude that in that case, the theoretical complexity
is equal to its entropy lower bound:

C∗ = L = H =
3
2
.

The previous example presented a construction with
a theoretical complexity that achieves the entropy lower
bound. Note that the way that construction was built is
similar to the construction of an optimal code, such as a
Huffman code [14]. The idea is that the most probable
states are formed by a small number of active controls,
and the least probable states are formed by a larger
number of active controls.

C
2

C
1

Fig. 3. An example of a construction that achieves the theoretical
complexity

D. An upper bound on the theoretical complexity

In this section, we will find an upper bound on the
theoretical complexity of memoryless network elements.
The upper bound will be found by building a con-
structing that uses the Huffman coding. We will build
a construction emulating a general system that has N
inputs, M outputs and K states. It can perform a set of
mappings, from a subset of inputs to the outputs. The
only limitation on the operation of the system is that
arriving packets cannot be duplicated, i.e., an input link
cannot be connected to two output links. We will build
a general emulation of such a system and show that an
upper bound on the theoretical complexity is given by
C∗ ≤ H + 1.

Definition 13: A generalized space switch is a net-
work element with N inputs, M outputs and K states.
There is a probability distribution over the states that is
given by {πi}, 1 ≤ i ≤ K.

We will build a construction emulating the generalized
space switch. In order to do that, we will first define
and implement two network elements: a distributer (also
known as de-multiplexer), and a multiplexer.

Definition 14: A 1 → K distributer is a network
element with 1 input link, K output links and control
links. The distributer places the arriving packet on one
of the output links, according to the state of the controls.

Definition 15: A K → 1 multiplexer is a network
element with K input links, 1 output links and control
links. According to the state of the controls, the packet on
one of the input links is chosen and sent to the departure
link.

Now, we will build a construction of a generalized
space switch that uses distributers and multiplexers. The
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C1,…,CR

1
I 1 K→

N
I

2
I

1
O

M
O

2
O

1K →

1K →

1K →

… …

1 K→

1 K→

Fig. 4. A general construction with minimum expected number of
active controls

construction is presented in Figure 4. It is built as
follows: each input is connected to a 1 → K distributer
and each output is a departure link of a K → 1
multiplexer. There is some interconnection pattern that
connects the outputs of the 1 → K distributers to the
inputs of the K → 1 multiplexers. That pattern is set
in advance according to the desired external state space,
it includes only fiber lines without any additional 2× 2
switches. The same control links are connected to the
multiplexers and to the distributers. The control links
are set according to the desired state.

Theorem 2: The construction presented in Figure 4 is
an emulation of a generalized space switch, with N input
links, M output links and with K states.

We will present an example of such a construction.
Example 6: Consider a system with 4 inputs and 4

outputs. The outputs are a permutation of the inputs,
and there are 4 possible equiprobable permutations:

(O1, O2, O3, O4) ∈ {(I2, I1, I4, I3)

(I1, I4, I3, I2)

(I3, I4, I2, I1)

(I4, I1, I2, I3)}

A construction emulating that system is given in Figure
5. The inputs arrive to four parallel 1 → 4 distributers.
According to the chosen permutation j, each input is
placed on the jth output link of the corresponding 1 →
4 distributer. The packets are then sent to four parallel
4 → 1 multiplexers, where the links are preset according
to the set of permutations. Finally, the multiplexers are
set according to the chosen permutation, and the outputs
exactly follow the desired permutation.

Now, we want to minimize the expected number of
active controls. Since the control inputs only affect
the multiplexers and distributers, we should focus on
building constructions of multiplexers and distributers

C
1

1
I 1 4→

4
I 1 4→

3
I 1 4→

2
I 1 4→

4 1→
1
O

4
O

3
O

2
O

C
2

4 1→

4 1→

4 1→

Fig. 5. An example of a construction of a generalized space shift

ClogK

1
O

2
I

K
I

3
I

4
I

ClogK-1

C1

1
I

1K
I

−

C2

…

Fig. 6. A theoretically optimal construction of a K → 1 multiplexer

with a minimum expected number of active controls. We
will first present constructions of these elements for the
case where the number of inputs/outputs is a power of 2
and all states are equiprobable. Then, we will show how
to build a construction for the general case.

• A K → 1 multiplexer has K different states, as
the number of input links that might be chosen is
K. Therefore, the entropy of a K → 1 multiplexer
is H = log K. The construction of a K → 1
multiplexer is presented in Figure 6. The control
inputs are the inverse of the binary representation
of the output link.

• A 1 → K distributer has K different states, as the
number of output links on which the arriving packet
can depart is K. Therefore, the entropy of a 1 →
K distributer is H = log K. A construction of a
1 → K distributer is a mirror of the construction
presented in Figure 6. The control inputs are equal
to the binary representation of the output link.

Now, we will discuss the general case, where the states
are non equiprobable and the number of inputs/outputs
is not necessarily a power of 2. We will first bring an
example, demonstrating the way to construct a 1 → K
distributer in the general case.

Example 7: Consider a system with one input and six
outputs, where the probabilities that the input is routed
to the ith output are given by: π = (1

4 , 1
4 , 1

5 , 1
10 , 1

10 , 1
10)
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C
1

1
I

C
2

C
3

C
4

1
O

2
O

3
O

4
O

5
O

6
O

Fig. 7. A construction of a 1 → 6 distributer using the Huffman
coding

With this example, the entropy is given by:

H = −
∑

i

πi log πi = 2.461

Using the Huffman procedure to generate a code that
matches these probabilities, we get

Code = {00, 01, 10, 110, 1110, 1111}
A construction of a 1 → 6 distributer that matches that
code is demonstrated in Figure 7.

By calculating the expected number of active controls
we get:

L =
∑

i

πiCodei = 2.5

The Huffman code in that case does not achieve the
lower bound, but it is very close. Note that a construction
of a 6 → 1 multiplexer with the same probabilities will
be a mirror of the construction presented in Figure 7.

Recall that the Huffman code is optimal [14], in the
sense that it minimizes the expected length of code-
words. We claim that it is always possible to build a
construction of a multiplexer or a distributer using the
Huffman procedure, and that the expected number of
active controls is minimized. Note that the number of
controls is not necessarily minimized. For example, in
the previous example, 4 controls are needed. If we use
a construction of a 6 → 1 multiplexer with equiprobable
states as presented in Figure 6, we will need only 3
controls. But since all the controls are active all the time
that way, the expected number of active controls will be
higher.

Lemma 2: It is possible to build a K → 1 multiplexer
or a 1 → K distributer given some probability distri-
bution by using the Huffman procedure. The resulting
construction has a minimal expected number of active
controls.
From coding theory, it is known that the expected length
of codewords L of a code constructed by the Huffman
procedure is upper bounded by L ≤ H + 1. Now, we
can state an equivalent upper bound here as well.

2
I

C
1

1
I

C
1

4
I

3
I

6
I

5
I

8
I

7
I

C
2

2
O

C
3

1
O

4
O

3
O

6
O

5
O

8
O

7
O

Fig. 8. A theoretically optimal construction of a shifter of 8 inputs

Theorem 3: The theoretical complexity is upper
bounded as follows:

C∗ ≤ H + 1

Now that we have close lower and upper bounds, we
get a good measure of the optimality of a construction
by using the expected number of active controls.

E. Theoretically optimal constructions

We saw that it is always possible to build a con-
struction by using the Huffman procedure, and that this
construction is theoretically optimal. However, most of
the time, this naive construction will not be practical due
to the very high number of 2 × 2 switches necessary.
Therefore, we will loosen the strict theoretical condition
by only requiring that the expected number of active
controls would grow like the theoretical complexity.
Constructions satisfying this condition will be called
theoretically optimal.

Definition 16: A construction is called theoretically
optimal if its expected number of active controls is equal
in growth to the theoretical complexity: L = Θ(C∗).

Let’s show two examples of theoretically optimal
constructions. The first example is a shifter, in which
the inputs are shifted in space; and the second example
is a switch with non equiprobable permutations.

Definition 17: A shifter is a system with N input links
and N output links. The outputs of the shifter are equal
to the inputs shifted by 0 ≤ k ≤ N − 1, i.e.,

(O1, ..., ON ) = (I(k mod N)+1, ..., I((k+N−1) mod N)+1).

Example 8: We will build a theoretically optimal em-
ulation of a shifter operating on N inputs with equal
shifting probabilities, where N is a power of 2. A
shifter has N different states, because k can receive
N different values. Therefore, the entropy of a shifter
is H = log N . A shifter construction can be built as
follows. The construction has log N stages, each stage
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C1

Benes

NxN

C2

C3-NlogN

Fig. 9. A construction performing non-equiprobable permutations

is controlled by a single control input. The first stage
can shift the inputs by N

2 , the second stage can shift
the inputs by N

4 , and so on. We present in Figure 8 an
example of a shifter, operating on 8 inputs. Since the
number of independent controls is equal to the entropy
of the shifter, the construction is theoretically optimal.

Example 9: Consider an N × N switch, where two
permutations have a very high probability and the rest
of the permutations have a very low probability, i.e., the
probabilities of the permutations are given by:

π = (
1− ε

2
,
1− ε

2
,

ε

N !− 2
, ...,

ε

N !− 2
),

where 0 < ε ¿ 1. The entropy of this system is
approximately given by:

H ≈ 1 + ε log(N !)

Now, consider the construction in Figure 9. For sim-
plicity of drawing, each switch represents a super switch
of length N . This construction has three main stages. The
first stage chooses between performing the first dominant
permutation or continuing to the other options. The
second stage chooses between performing the second
dominant permutation or continuing to the other options.
The third stage is a full Benes network [15], [16] that
performs the permutations with the lower probability.
Note that although the number of switches in this con-
struction is almost similar to the number of switches in
a regular Benes network, the number of switch reconfig-
urations is much lower in this construction. This is due
to the fact that a Benes network is optimized to the case
where all permutations are equiprobable, while here, the
state probabilities are far from being equal. Therefore,
the proposed construction using the a-priori knowledge
of the state probabilities is more suitable.
We will now show that this construction is theoretically
optimal. In order to do so, we will calculate the expected

number of active controls with this construction:

L =
∑

i

πilti

=
1− ε

2
∗ 1 +

1− ε

2
∗ 2 + ε ∗ (N log N + 2)

≈ H +
1
2

Therefore this construction is theoretically optimal.
We have shown bounds on the theoretical complexity,

defined theoretical optimality and shown examples for
memoryless systems. Now, we will extend our discus-
sion also to systems with memory. We will show that
all the results derived so far are relevant also to systems
with memory.

F. Systems with memory

We will use a space-time transformation [3], [6], [7],
to show that the results for memoryless systems are
valid also for systems with memory. The time-space
transformation is constructed by using fiber delay lines
that align the packets arriving on different times to
the same time and vice versa. First, we will have to
define what is the expected number of active controls
for systems with memory.

Definition 18: Assume that the external states form a
set A, the state duration is TS and there is a probability
distribution associated with the set Pa, a ∈ A. The
theoretical complexity C∗ of a network element is the
minimal expected number of active controls over all
possible constructions. The number of active controls per
state is the sum of active controls over the entire state
duration.

C∗ = minPa

∑

t∈TS

la(t),

where la(t) is the number of active controls on time-slot
t for state a.

Note that a control is passive if its value is predeter-
mined only as a function of time, independently of the
state. The next example demonstrates how to calculate
the number of active controls for systems with memory.

Example 10: Consider the emulation of TSI presented
in [7]. The construction includes 2 log B−1 consecutive
switches. The control of each switch is predetermined to
the ”cross” state during half of the times, independently
of the state. During the other half, the value of the each
control is set independently according to the desired
state. We say that it is passive when it is predetermined
to ”cross”, and that it is active when its value is set
according to the state. A total of B packets pass through
each switch, therefore there are B

2 active controls for



TECHNICAL REPORT TR06-02, COMNET, TECHNION, ISRAEL 9

each switch. The total number of active controls in that
case is:

L =
B(2 log B − 1)

2
= B log B − B

2
In order to define theoretical optimality also for the

case of systems with memory, we will check if the lower
and upper bounds on the theoretical complexity are still
valid.

The lower bound derived in Theorem 1 is still valid,
as the arguments we used in proving it were related only
to the number of states and their probabilities. We will
show now that the upper bound derived in Theorem 3 is
still valid. This is done using a space-time transformation
[3], [6], [7]. The idea is that we can use a construction
performing operations in space, in order to perform
operations in time. Since the upper bound in Theorem 3
was proved by building a specific construction, the same
construction is relevant also for systems with memory.

Theorem 4: Assume that the theoretical complexity
is defined as in Definition 18. By using a time-space
mapping, we get the following bounds on the theoretical
complexity:

H ≤ C∗ ≤ H + 1

Definition 16 of theoretically optimal constructions is
valid also for systems with memory. Let’s present an
example of a theoretically optimal system with memory.

Example 11: Consider the entropy of a TSI, where all
the permutations in time are equiprobable. It is equal to
the entropy of a space switch:

H = log(N !).

The theoretical complexity is therefore bounded as fol-
lows:

log(N !) ≤ C∗ ≤ log(N !) + 1.

The expected number of active controls in the emulation
of TSI presented in [7] is:

L =
B(2 log B − 1)

2
= B log B − B

2
= Θ(C∗)

Therefore, the construction is theoretically optimal.
To conclude, in this section we have presented equiv-

alences between coding theory and the construction of
switching networks. We have defined the theoretical
complexity of a system as the minimal expected number
of active controls. We have found lower and upper
bounds on the theoretical complexity, and shown that
it is almost equal to the entropy of external states of
the system. We have defined theoretical optimality, and
shown examples of theoretically optimal constructions.

Until now, the measure of optimality we were inter-
ested in was the expected number of active controls,

which is related to the number of switch reallocations.
Now, we will consider the question of minimizing the
number of 2× 2 switches in the construction.

IV. PRACTICAL COMPLEXITY VERSUS THEORETICAL

COMPLEXITY

A. Definition of practical complexity

Until now, we considered only the number of different
states and their probabilities in calculating the theoretical
complexity. The structure of states themselves had no
significance. For example, the theoretical complexity of
an unbuffered switch that performs N ! permutations is
identical to the theoretical complexity of a TSI that
performs N ! permutations in time. In this section, we
want to find bounds on the actual number of 2 × 2
switches required to build a network element. It is clear
that now we have to take into account also what the states
are, and not only the number of states. For example,
much less 2 × 2 switches are required to emulate a
TSI performing N ! time permutations than to emulate
an N × N switch performing N ! space permutations.
Intuitively, this is because an N × N switch has to
perform many actions simultaneously in order to set the
state, and the actions the TSI has to perform are spread
over the time frame.n this section, we will define the
practical complexity of a network element as the number
of 2 × 2 switches required to emulate a system, and
illustrate the tradeoff between practical and theoretical
complexity.

Definition 19: The practical complexity C of a con-
struction is the number of 2×2 switches in the construc-
tion.

In order to find the connection between the number
of states and the practical complexity, we will consider
the state duration. We will assume that all the states
have equal state duration. In order to find the connection
between the number of states and the practical complex-
ity we will use arguments similar to those mentioned
in [5]. Consider the operation of C switches during
T time-slots. If each switch is a single switch, i.e.,
not a part of a super switch, and is always active, the
maximal number of internal states formed is 2CT . Since
the number of internal states is lower bounded by the
number of external states, we get the following theorem:

Theorem 5: Assume that the number of different
states in the construction is K. It holds that number of
2× 2 switches C is lower bounded as follows:

C ≥ d log K

T
e,

where T is the state duration.
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Note that if the states are equiprobable, the theoretical
complexity is C∗ = log K, and we get C ≥ C∗

T . Now
we can define a practically optimal construction to be a
construction with a number of 2×2 switches that grows
like the introduced lower bound.

Definition 20: Denote by C the practical complexity
of a system with K states, and with state duration T .
We say that a construction is practically optimal if C =
Θ( log K

T ), i.e., there is some constant a such that

d log K

T
e ≤ C ≤ a

log K

T

To illustrate this result, in [11], we present construc-
tions of optical buffers and optically-buffered routers that
are practically optimal. We first use the definitions above
to provide a lower bound on the number of 2×2 switches
required, and then present practical constructions with a
number of 2× 2 switches that grows like the introduced
lower bound.

Definition 21: A construction that is both practically
optimal and theoretically optimal will be called optimal.

Note that not every practically optimal construction
is also a theoretically optimal construction, and not ev-
ery theoretically optimal construction is also practically
optimal. In fact, there often exists a tradeoff between the-
oretical and practical optimality. Let’s present examples
demonstrating this tradeoff.

Example 12: In Example 4, the construction emulat-
ing the system is a super switch of length N

2 . When
the control c = 0, the inputs are simply passed forward
to the output. When the control c = 1, the positions
of every two consequent packets are interchanged. The
theoretical complexity of this system is C∗ = 1 since
there are only two states. Therefore, the construction is
theoretically optimal, because C∗ = H . However, it is
not practically optimal, since the practical complexity is
C = N

2 À 1.
Example 13: The theoretical and practical complexity

of an N × N switch with equiprobable permutations
are given by C∗ = log(N !) = Θ(N log N). Further,
the number of switches (and of independent controls)
of a Benes network is also Θ(N log N) [15], [16].
Therefore, a Benes network is both practically optimal
and theoretically optimal. Hence, it is called optimal.

Example 14: Consider the case of an N ×N switch
with two dominant permutations as presented in Example
9. On the one hand, emulating this system with a
Benes network is practically optimal, but not necessar-
ily theoretically optimal (because if the two dominant
permutations are those from Example 4, it can easily be
shown that a Benes network needs at least N/2 super
switches). On the other hand, the construction presented

in Figure 9, while theoretically optimal, would require
more 2× 2 switches than the Benes network.

The previous example illustrates the tradeoff between
theoretical and practical complexity. Assuming that the
reallocation of connections is an operation that requires
time, we do not want to ”waste” many reallocations on
states that are very frequent. So for this example, a Benes
network is highly wasteful and not theoretically optimal,
even though it is practically optimal. On the other hand,
note that a theoretically optimal construction for this
case will require slightly more switches – although it is
both practically optimal and theoretically optimal, and
therefore optimal.

Example 15: The theoretical complexity of a TSI with
buffer size B is given by log B!, and its state duration is
B. Therefore, its practical complexity is lower bounded
as follows:

C ≥ log(B!)
B

= Θ(log B)

In [7] a construction of a TSI with 2 log B − 1 2 × 2
switches is presented. This construction is both prac-
tically optimal and theoretically optimal, and therefore
optimal.

Example 16: The theoretical complexity of a frames
switch with N input links and buffer size B is given by
log((NB)!), and the state duration is B. Therefore, the
practical complexity is lower bounded as follows:

C ≥ log((NB)!)
B

= Θ(N log(NB))

In [6] a construction of a frames switch with
O(N log(NB)) 2 × 2 switches is presented. This con-
struction is both practically optimal and theoretically
optimal, and therefore optimal.
To conclude, we have presented a lower bound on the
practical complexity, i.e., the minimal required number
of 2 × 2 switches. We have defined a construction as
practically optimal if the number of 2 × 2 switches in
the construction achieves the lower bound. We have
discussed the tradeoff that exists, in cases of non-
equiprobable states, between the practical complexity
and the theoretical complexity. A construction that is
both practically optimal and theoretically optimal is
simply called optimal.

V. CONCLUSION

In this paper we were interested in two different cost
measures: number of switches and expected number
of switch reconfigurations. First, we presented links
between switching theory and coding theory. We found
that the design of a network element with a minimized
expected number of switch reconfigurations is equivalent
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to the construction of optimal codes. Then, we presented
a general construction of a switch that achieves cost
lower bounds given some state probability distribution.
Finally, we argued that such a construction is not always
practical, and discussed the question of minimizing the
number of 2× 2 switches in the system.

As noted above, this paper lays a fundamental ground,
by providing lower bounds on the complexity of practical
implementations. In [11], we use these fundamental
results to present constructions of optical buffers and
optically-buffered routers that are practically optimal,
i.e., have a number of basic components that grows
like the practical complexity lower bound defined in this
paper.
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APPENDIX

A. Proof of Lemma 1

The proof is based on the proof of Kraft’s inequality
provided in [14]. First, let’s show that the controls of
the construction form a prefix code. (A code is called
a prefix code if no codeword is the prefix of another
codeword.) Let’s assume that this is not the case. Then
there would exist at least one case in which packets either
form a state (i.e., the controls form a codeword), or they
continue being routed through other switches (i.e., the
controls form a prefix for another codeword). Since these
other switches are not influenced by the controls, they are
passive. But by definition, the above case cannot happen,
because passive switches cannot lead to two different
states. Therefore, it is not possible that the controls do
not form a prefix code.

Now, assume that the number of control inputs is L,
and the number of active controls for an external state
ti ∈ T is given by lti

. It holds that:

L ≥ max
i

lti

Let S be the set of internal states, and T the set of
external states. We already saw that |T | ≤ |S|. Further,
since the number of active controls is upper-bounded by
L, and each of these controls does not have more than
two possible settings, we get |S| ≤ 2L. Therefore, the
total number of external states |T | is upper bounded as
follows:

|T | ≤ |S| ≤ 2L.

For each state defined by lti
active controls, there

exists a group of ”descendant internal states” that is
formed by setting the passive controls in all the pos-
sible combinations. Each state has no more than 2L−lti

descendant states, due to the fact that there are 2L−lti dif-
ferent combinations of passive controls. The descendant
internal states of different states are disjoint, because the
controls form a prefix code. Since the maximal number
of internal states is 2L, we get the following inequality:

∑

i

2L−lti ≤ 2L,

or: ∑

i

2−lti ≤ 1.

B. Proof of Theorem 1

The proof is based on [14]. Assume that the number
of control inputs is L, and the number of active controls
for an external state ti ∈ T is given by lti

. The expected
number of active controls is given by

L =
∑

i

pilti
.
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We would like to minimize the expected number of
active controls under the condition of Lemma 1:

∑

i

2−lti ≤ 1.

Obviously, since the theoretical complexity C∗ is the
result of the same minimization, but over a set that is
included in the above (by Lemma 1), the result of this
minimization will be a lower bound on C∗.

Using Lagrange multipliers, we should minimize the
following term:

J =
∑

i

pilti
+ λ(

∑

i

2−lti − 1).

Differentiating with respect to li we obtain:

∂J

∂li
= pi − λ2−li log 2.

Setting the derivative to zero and substituting in the
constraint, we finally get an expression for l∗i :

l∗i = − log pi.

(Note that this number of control inputs is not necessarily
an integer.) The resulting minimum expected number of
control inputs is:

L∗ =
∑

i

pil
∗
i = −

∑
pi log pi = H.

Therefore, the theoretical complexity C∗ is lower
bounded by the entropy of the network element: C∗ ≥
H .

C. Proof of Theorem 2

We will show that the construction presented in Figure
4 is an emulation of a generalized space switch, with N
input links, M output links and with K states. Each state
is a mapping of a subset of the input packets P1, ..., PN

to the outputs. Assume that the states are described by:

Si = {Pj1,k
, ..., PjM,k

}, k = 1, ..., K

We want to emulate that set of states by using the
construction presented in Figure 4. At the output stage,
when state Sk is chosen by setting the control inputs
accordingly, packets {Pjl,k

, ..., PjM,k
} must be valid at

the kth inputs of the M multiplexers. At the input stage,
when state Sk is chosen by the same control inputs,
the arriving packets are sent to the kth outputs of the
distributers.

The routing of packets to the appropriate outputs is
done by setting connecting wires between the outputs
of the distributers and inputs of multiplexers. For ex-
ample, the setting of the kth state is done by setting a
connection between the kth output of each distributer

to the appropriate kth input of each multiplexer. If the
packet Pji,k

must be valid at the kth input of the ith

multiplexer, than a connection must be set between the
kth output of distributer ji,k and the kth input of the
ith multiplexer. If the appropriate connections are set in
advance, than the appropriate packets are valid at the
inputs of the multiplexers and the corresponding states
are set.

D. Proof of Lemma 2

It is proven in [14] that given some probability distri-
bution, the Huffman coding is optimal. If C∗ is the Huff-
man code and C is any other code, then L(C∗) ≤ L(C),
where L is the expected length of codewords.

Here, we will show that it is possible to build a
K → 1 multiplexer or a 1 → K distributer, given
some probability distribution, by using the Huffman
procedure. For simplicity, we will not not prove here
that the expected number of active controls is minimized,
as the proof with induction is similar to the proof for
codewords.

The first stage in the construction of a K → 1
multiplexer or a 1 → K distributer is to construct a
Huffman code for the given probability distribution. This
is done by combining the two least likely states, where
the combined state receives the probability of the sum,
until we are left with only one combined state. Then,
codewords are assigned to the states. The number of
bits in a codeword is equal to the number of times it
was combined with other states. That procedure forms a
tree, where the leafs are the codewords.

An optical construction of a 1 → K distributer by
the Huffman coding is built by forming the tree, where
the input is the root, the leafs are the outputs and the
nodes are 2×2 switches. The number of active switches
for a specific state is the codeword representing that state
with the Huffman coding. The expected number of active
switches is minimized because the expected code length
is minimized with Huffman procedure.

An optical construction of a K → 1 distributer is
a mirror construction of the corresponding 1 → K
multiplexer with the same probability distribution.

E. Proof of Theorem 3

It is shown in [14] that with Shannon coding, the
length of a codeword is

lti
= −dlog pie.

Since the expected code length with Huffman coding is
lower that the expected length of any other code, it is
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Fig. 10. A system with memory performing K states with non-
equiprobable permutations

also lower than the expected code length with Shannon
code, therefore:

C∗ ≤ −
∑

i

pidlog pie,

and since dlog pie ≤ log pi + 1

C∗ ≤ −
∑

i

pi log pi +
∑

i

pi = H + 1.

F. Proof of Theorem 4

We will use a time-space mapping, so as to build a
system operating in time using a system operating in
space. We will show that the extra switches necessary to
implement the space-time mapping do not increase the
theoretical complexity, as their switching pattern is pre-
determined as a function of the time and is independent
of the chosen state.

Assume that we want to implement a system with
memory, that receives a time frame of B slots. The
outputs are one of K states, where each state defines
a subset of the inputs, permuted according to some
ordering.

A construction emulating this system is shown in
Figure 10. The input link is connected to a 1 → B
distributer that operates in a round robin fashion. Output
i of the distributer is delayed by B − i time-slots.
Therefore, the B packets of the time frame are aligned
in time and reach together the central block. The central
block is a memoryless system as presented in Figure 4,
with K states emulated using the Huffman coding. The
ith output is delayed by i−1 time-slots, and the outputs
are concatenated using a B → 1 multiplexer. Therefore,
the system performs the K desired states in time, by
transforming the inputs to the space domain, performing
the operation in space, and transforming back to the time
domain.

Now, consider the theoretical complexity of this con-
struction. The transformations to the space domain and

back do not increase the number of active switches,
as they depend only on time and not on the desired
state. Therefore, the theoretical complexity of a system
performing K states in time with some probability
distribution on the states is identical to that of a system
performing K states in time with the same probability
distribution. And the upper bound C∗ ≤ H + 1 holds
also for systems with memory.

G. Proof of Theorem 5

Consider the operation of C switches during T time-
slots. There are |S| = 2CT internal states. Since there
are K external states and the number of internal states
is lower bounded by the number of external states, we
get the following inequality:

2CT ≥ K.

Since C, the number of switches in the construction,
must be an integer, we get the following inequality:

C ≥ d log K

T
e.


