
TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 1

Constructing an Optical Router
with Minimum Complexity

Hadas Kogan, Isaac Keslassy
Department of Electrical Engineering

Technion - Israel Institute of Technology
Haifa 32000, Israel

{rhadas@tx,isaac@ee}.technion.ac.il

Abstract—In the past years, electronic routers have had
trouble keeping up with the increase in optical fiber capac-
ity. As their power consumption has grown exponentially
and already exceeds standards, it seems that an alternative
solution is mandatory. Many have suggested all-optical
routers as an alternative. However, these are deemed too
complex, especially given the need to implement both
switching and buffering, even though their fundamental
complexity has apparently never been analyzed.

In this paper, we study the number of fundamental
optical components (2 × 2 switches and fiber delay lines)
needed to emulate ideal routers. We first demonstrate
that an N × N router with a buffer size of B per port
needs at least Θ(N log(NB)) components, and then build
a construction that achieves this lower bound. Finally, we
generalize this result to different router architectures and
scheduling disciplines.

I. INTRODUCTION

Router processing, switching and buffering are done
today using electronics. Hence, the growth in router
capacity is closely linked to Moore’s law and to memory
bandwidth growth, which are historically slower than
the growth in optical link capacities [1], [2]. This is
why routers have increasingly become a bottleneck for
Internet communications. To keep up with incoming fiber
traffic, network operators now need to piece together
many routers per backbone node. In fact, it is not unusual
to find more than ten routers in a single POP (Point Of
Presence) [3]. Further, routers need to be packed more
densely. In the past years, the power consumption per
core router rack has increased exponentially, and now
reaches more than 10kW, while standard accepted power
consumption is about 2kW per rack [1], [4]. Clearly,
this trend cannot continue indefinitely. There needs to
be some future alternative.

A natural approach is to fully harness the power of
optics by using an all-optical router. However, there are
many obstacles on the road to optics, essentially due

to the diverse functions needed in a router. In fact, a
router can be seen as implementing three main stages.
First, a lookup stage processes each arriving packet and
determines its appropriate output link. Then, a switching
stage transfers the packet from its input link to its output
link. Finally, since different arriving packets might con-
tend for the same output link, a buffering stage queues
packets that lose in the contention. These three stages
currently need millions of gates and extensive electronic
memory in core routers, and therefore make all-optical
core routers seem too complex and out of reach.

We can wonder whether there is any fundamental rea-
son behind the complexity of these three stages. In fact,
if we consider the lookup stage (including the header
processing), it could be argued that its complexity is
essentially due to protocol choices, and would therefore
be much smaller in the future if network operators use
simpler routing protocols such as MPLS [5], [6]. In this
paper, we will analyze whether the complexity of the two
other stages is protocol-related as well, or whether there
exists some fundamental lower bound to this complexity.

There have been two main approaches to emulating
electronic buffers using optics. The first approach is
to slow – or stop – light [7]. However, this approach
requires gas environments with tight temperature and
pressure constraints, and currently seems impractical.
The second approach, which we will follow, is to let op-
tical packets circulate on switched fiber delay lines until
their turn to depart [8]. An architecture implementing
this approach only requires fiber delay lines with fixed
propagation delays, and basic 2 × 2 switches to orient
packets through them.

Using this approach, the switching and buffering
stages of a router can be emulated with a set of simple
2× 2 switches connected by fiber delay lines. The fun-
damental complexity of an all-optical router can then be
provided by the minimum number of basic components
(i.e., 2 × 2 switches and fiber delay lines) necessary
to construct such a router. The goal of this paper is



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 2

to analyze this fundamental complexity, and to provide
constructions with as few basic components as possible.

Several works have made significant progress in the
design of optical systems, with the switching as well
as the buffering stages. On the switching side, Shannon
showed in its seminal work that to realize all N ! possible
permutations, an N×N unbuffered switch fundamentally
needs at least Θ(log(N !)) basic components [9]. Subse-
quent research also focused on constructing minimum-
complexity unbuffered switches [10]–[14] and time-
space switches [15]–[17]. On the buffering side, there has
been extensive research on FIFO multiplexers [18], FIFO
queues [19], priority queues [20], time-slot interchanges
[16], [21] and flexible delay lines [22].

In this paper, we focus on building an optimal OQ
(Output-Queued) PIFO (Push-In-First-Out) router. An
OQ router is a router in which arriving packets are placed
immediately in the queue of their destination output.
It is a work-conserving router, and therefore is often
considered as the standard ideal router. Further, we allow
the departure policy to be any PIFO policy, thus enabling
the use of non-FIFO policies (such as WFQ, GPS and
strict priority), so as to provide QoS (Quality-of-Service)
guarantees.

Our main finding is that the fundamental complexity
of an N × N OQ-PIFO router with a port buffer size
B grows like Θ(N log(NB)). We further present a
construction that achieves this fundamental complexity
lower bound, and thus prove that it is achievable. Like-
wise, we show that it is also the fundamental complexity
of a PIFO shared memory router, and that the same OQ-
PIFO router construction can be used to emulate a PIFO
shared memory router as well. We also present two non-
optimal exact emulations of an OQ-FIFO switch.

Further, on the way to determine the fundamental
complexity of an OQ-PIFO switch, we also prove an
interesting result: the complexity of an optical buffer is
Θ(log(B)). We present a construction that emulates such
an optical buffer.

This paper is organized as follows: Section II presents
definitions related to systems and complexity of systems.
Section III reviews several optical constructions, which
we later use. In section IV, a lower bound on the practical
complexity of an OQ-PIFO switch is found. In order to
emulate an OQ-PIFO switch, we introduce in section
V an optical buffer. We present a construction of an
optical buffer and show that it is optimal. Then, Section
VI presents a construction emulating an optical OQ-
PIFO switch. In section VII, the more general case of a
PIFO shared memory is presented and emulated. Finally,
Section VIII presents two exact emulations of an OQ-
FIFO switch.

II. DEFINITIONS

A. Systems

We will refer to a system as an ideal network element
that has input links, output links and inner states. The
outputs of the system are uniquely determined as a
function of the inputs and the inner states of the system
during the entire time of operation. Packet size is fixed,
time is slotted and it takes one time-slot to transmit
a packet. If the packets have variable sizes, they are
segmented into fixed size blocks during arrival and
reassembled at departure. We distinguish systems with
memory, i.e., where the packets on the output links may
have arrived during previous time-slots, and systems that
are without memory, i.e., where the packets on the output
links have arrived on the current time-slot. Throughout
this paper we consider optical constructions consisting
only of fiber delay lines (FDLs) and optical 2 × 2
switches. The length of the fiber delay line determines its
delay. For example, if a packet is transmitted through a
FDL with length 5 at time t, it will depart from the other
side at time t + 5. Finally, for simplicity, we consider
that all FDLs use the same wavelength, even though we
believe that these results could be extended to WDM
fibers as well (when considering the action of wavelength
selection as dual to switching in space).

Definition 1: An optical construction emulates an
ideal system if, with identical arrivals, identical packets
depart from the construction with some bounded delay
compared to the packets departing from the ideal system
[23]–[25]. If the delay is fixed we say that the construc-
tion strongly emulates the system. If there is no delay we
say that the construction exactly emulates the system.

Definition 2: A frame F(N,B,D) is the collection of
packets arriving on N links during B time-slots, where
D is some constant time offset. For example, the kth

frame is composed of packets arriving on N links during
times t ∈ [(k − 1)B + D + 1, kB + D].

We will denote a frame of packets arriving on the
input links as an input frame, and a frame of packets
departing on the output links as an output frame.

Definition 3: A system is independent between frames
if the kth output frame is composed only of the packets
of the kth input frame.

Definition 4: A frames switch [15], [17] with N in-
puts, N outputs, buffer size B and delay D is a network
element that operates on frames such that the elements of
the kth output frame FO(N, B, d+D) are a permutation
both in time and in space of the elements of the kth input
frame FI(N,B, d), for every k.

Figure 1 illustrates such a frames switch. Packets
arrive on two input links. The frames switch performs



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 3

456

123

101112

789

t=1t=2t=3t=4t=5t=6

341

625

1278

11910

t=1t=2t=3t=4t=5t=6t=7t=8t=9

Output 1

Output 2

Input 1

Input 2

Frames

Switch

Input 1

Input 2

Output 1

Output 2

Fig. 1. A frames switch with N = 2, B = 3

Input 1

Input N

… …

Output 1

Output N

Fig. 2. An output-queued switch

a permutation along the time and space axis, where
the frame size is B = 3 and N = 2. The permuted
packets depart on the two output links. The operation of
interchanging is performed after all the packets of the
kth input frame arrived to the system, and before the
departure of the output frame starts. Therefore, we say
that there is an inherent delay of B time-slots.

Example 1: A Time-Slot Interchange (TSI) ( [11],
[16]) is a network element with one input link and one
output link that permutes the arriving packets in time. It
is a special case of a frames switch with N = 1, as it
operates only on one input link.

Example 2: An N ×N switch has N input links and
N output links, where the outputs are a permutation
along the space of the inputs. It is a special case of
a frames switch with B = 1.

Definition 5: An Output-Queued (OQ) Switch ( [24],
[25]) with N input links, N output links and buffer
size B is a switch in which arriving packets are placed
immediately in the queue of their destination output. An
output buffer of size B can contain at most B packets
destined to this output, and is forced to drop packets
upon the arrival of additional packets.

An example of an OQ switch is shown in Figure 2.
Packets arrive on N input links. They are switched into
the buffers according to their destination, where they wait
for their turn to depart. Of course, if B ≥ N , each output
buffer must be able to accept up to N packets at any
time-slot, since all inputs might have a packet destined
to this output.

Definition 6: A departure policy determines the order
in which the packets depart from the queue. The depar-

ture policy may be first-in first-out (FIFO) or push-in
first-out (PIFO) [24], we call it an OQ-FIFO switch or
an OQ-PIFO switch respectively.

A PIFO departure policy is necessary for implement-
ing a scheduling algorithm that schedules the packets
to depart in an order different from their arrival order.
As such, OQ-PIFO switch can be used to implement a
variety of QoS scheduling disciplines such as WFQ, GPS
and strict priorities.

B. Complexity

In this section, we will introduce notions of complex-
ity and optimality of systems, expanding the original
definitions by Shannon [9], [11], [15], [26].

Definition 7: The practical complexity [26] of a sys-
tem is a measure of the minimal number of basic
elements, i.e., 2× 2 switches, necessary to compose the
system. The practical complexity is given by

C∗ = lim
t→∞d

log(#statest)
t

e,
where statest is the set of all the possible states of the
system during time interval [0, t].

Example 3: At each time-slot, an N ×N switch can
choose between N ! permutations. Therefore, the number
of states of an N × N switch during interval [0, T ] is
given by (N !)T , because there are N ! possible states at
the end of each of the T time-slots, and the system is
independent between time-slots. Therefore, the practical
complexity of the switch is

C∗ = lim
T→∞

log((N !)T )
T

= log(N !),

which is exactly Shannon’s result of the complexity of
an N ×N switch [9].

It is not always possible to emulate a system with a
construction that achieves the practical complexity. For
instance, consider the Example 3 above: even with this
simple example, when N ≥ 3, it has been argued that no
construction can ever achieve the lower bound provided
by the switch practical complexity [27]. Consequently,
we will say that for a construction to be optimal, it
suffices that its complexity does not grow faster with
N than the practical complexity lower bound.

Definition 8: Denote by C the number of 2 × 2
switches composing a specific construction emulating a
system S, and by C∗ the practical complexity of system
S. We say that a construction is optimal if C = Θ(C∗),
i.e., there is some constant k such that C∗ ≤ C ≤ kC∗.

Example 4: A Benes network has N log N 2 × 2
switches. According to the Stirling formula,

C = N log N = Θ(log(N !)) = Θ(C∗)



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 4

Therefore the Benes network is said to be optimal.
Note again that the number of 2 × 2 switches does

not have to be identical to the theoretical minimum in
order to be called optimal. In this last example, a Benes
network has N log N switches, which is more than the
practical complexity log(N !) for N ≥ 3 . Nevertheless,
it will be said to be optimal.

Our goal is to build an optimal construction of an
OQ-PIFO switch. We will first find the practical com-
plexity of an OQ-PIFO switch, and then we will build a
construction that achieves the practical complexity lower
bound.

III. PREVIOUS CONSTRUCTIONS

In this section, we review several optical constructions,
which have already been introduced in the literature and
will be used throughout this paper.
• Memory cell: An optical memory cell is capable of

receiving and storing one packet. When a read re-
quest arrives the stored packet departs on the output
link. Reference [18] shows an implementation of an
optical memory cell with a 2×2 switch and a fiber
delay line (FDL) with length 1. The state of the
switch determines if it is in a ”read”/”write” state
or in a ”store” state.

• Priority queue: An optical priority queue of size B
is a network element with one input link, one output
link and one lost link. When a departure request
arrives, the packet with the highest priority is sent
on the output link. When there is an arrival and the
queue is full, the packet with the lowest priority
among the arriving packet and the packets stored in
the buffer is sent on the lost link. References [19],
[20] prove that a construction containing a switch
of size

√
B × √

B and
√

B feedback delay lines
suffices to exactly emulate a priority queue.

• FIFO multiplexer: An optical FIFO multiplexer
with buffer B is a network element that has N
input links, one output link and N − 1 lost links.
The multiplexer is capable of receiving up to N
packets in one time-slot and store them in the buffer.
If the buffer is full, arriving packets are lost. The
multiplexer is non-idling: whenever there is at least
one packet stored in the buffer there is a departure
according to FIFO policy. Reference [18] suggests
a recursive construction of a multiplexer N → 1
with buffer B using logN (B) N ×N switches.

• FIFO queues: An optical FIFO queue has one input
link, one output link and one control link. If there
are packets stored in the buffer and the control
link is enabled packets can depart from the queue.

Reference [19] presents a recursive construction of
an optical FIFO queue with 2 logN (B + 1) 2 × 2
switches, as well as a construction of a 2 → 1 FIFO
queue.

• A time-slot interchange: A time-slot interchange
(TSI) [11] is a network element with one input link
and one output link, that is capable of interchanging
the positions of B arriving time-slots according to
any permutation. Throughout this paper a time-slot
interchange with frame size B will be denoted as
πB . [16] presents optical implementations of a TSI,
with 2 log B − 1 2× 2 switches.

IV. A LOWER BOUND ON THE PRACTICAL

COMPLEXITY OF AN OQ-PIFO SWITCH

Our goal is to find the practical complexity of an OQ-
PIFO switch, and then to build an optimal construction
with a number of 2 × 2 switches that grows like its
practical complexity. However, it appears that finding
the practical complexity of an OQ-PIFO switch is far
from straightforward. At each time-slot, its output state
depends on the previous time-slots — contrarily to
systems that are independent between frames or time-
slots, such as TSIs and unbuffered switches. Therefore, it
is not possible to divide the time into frames and to count
the number of different states within one frame. Thus,
a straightforward calculation of the practical complexity
will require the identification of all the possible groups
of states during the entire time of operation. However,
building such a state space seems extremely hard, as
there are many parameters that we should consider, such
as the relative priorities, arrival ordering and lost packets
in cases where some queues are full.

In the following, we will introduce an alternative way
to find the practical complexity of an OQ-PIFO switch,
without any need to find the whole state space. First, we
will introduce a lower bound on the practical complexity.
Then we will find a construction that achieves that lower
bound, proving that the practical complexity is equal to
the lower bound.

The lower bound is introduced by showing that a
frames switch is a special case of an OQ-PIFO switch.
Therefore the practical complexity of an OQ-PIFO
switch is no less than the practical complexity of a
frames switch, which constitutes a lower bound on the
practical complexity of an OQ-PIFO switch1. (For the

1Of course, a frames switch cannot serve as an OQ-PIFO switch.
Consider for example the case of a packet that is stored in one of the
output queues, and continuously suffers from arriving packets with
higher priority that keep coming and pushing it backwards. In an
ideal OQ-PIFO switch, that packet will suffer from an unbounded
delay, which is impossible using a frames switch.



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 5

sake of presentation, all proofs in this paper are presented
in the Appendix.)

Lemma 1: Denote by C∗
P the practical complexity of

an output-queued PIFO switch with N inputs, N outputs
and buffer size B, and by C∗

F the practical complexity
of a frames switch with N inputs, N outputs and frames
size B. It holds that C∗

P ≥ C∗
F .

The practical complexity of a frames switch is the log-
arithm of the number of permutations in space and time,
divided by the time it takes to perform a permutation
[15], [17]. A fixed delay does not change the practical
complexity, as the delay divided by time goes to zero as
the time goes to infinity.

Lemma 2: The practical complexity of a frames
switch with delay D is given by C∗

F = Θ(N log(NB)).
Example 5: A Time-Slot Interchange (TSI) [11], [16]

is a special case of a frames switch with N = 1. The
practical complexity of a TSI is Θ(log B) as it performs
one of B! permutations during B time-slots.

Example 6: An N ×N switch is a special case of a
frames switch with B = 1. The practical complexity of
an N ×N switch is Θ(N log N) as it performs one of
N ! permutations during one time-slot.

By combining Lemma 1 and Lemma 2 we get a
lower bound on the practical complexity of an OQ-PIFO
switch.

Theorem 1: Denote by C∗
P the practical complexity

of an output-queued PIFO switch with N inputs, N
outputs, buffer size B and delay D, it holds that C∗

P =
Ω(N log(NB)).

These results can be intuitively explained as follows:
An OQ-PIFO switch contains at least one N×N switch,
which routes the arriving packets to the appropriate
output queue, and N PIFO output queues of size B
that store the packets. The practical complexity of the
switch is Θ(N log N); and the practical complexity of
each of the N PIFO queues is no less than the practical
complexity of a TSI, Θ(log B). Therefore, the practical
complexity of the OQ-PIFO switch will be no less than
the sum of practical complexities, Θ(N log N + N ·
log B), which is exactly the derived lower bound.

Now, we want to find a construction that has a number
of switches that equals the lower bound derived in this
section. If we find such a construction, it will prove
that the practical complexity of an OQ-PIFO switch
equals the lower bound. In order to do that, we will first
introduce in the following section a new construction of
an optical buffer.

V. OPTIMAL EMULATION OF AN OPTICAL BUFFER

In this section, we will define and emulate an optical
buffer. We will use our construction of an optical buffer

in constructing an optimal emulation of an OQ-PIFO
switch.

A. Definition of an optical buffer

A buffer in electronics is an element that receives
packets and stores them. When a departure request for
a specific packet arrives, the buffer sends the desired
packet on the departure link. We will now define and
implement an optical buffer with a similar functionality
to that of an electronic buffer.

Definition 9: An optical buffer B is a network element
with one input link and one output link that can store
up to B packets. When the buffer receives a departure
request for a certain packet, the packet is sent on the
departure link.

In this general definition, it is interesting to note
that the relative departure order of packets that are
stored in an optical buffer can arbitrarily change after
the packets arrive to the buffer, unlike other buffering
structures presented earlier such as priority queues and
FIFO queues.

In addition, from a more practical standpoint, it is
worth noting that practical electronic buffers need a delay
of several clock cycles between the arrival of a read
request and the read operation itself. Similarly, in our
constructions of optical elements emulating electronic
buffers, we will allow for some bounded delay between
the arrival of a departure request and the departure of
the desired packet. This bounded delay is included in
the emulation definition (Definition 1).

B. The practical complexity of an optical buffer

We will present here two constructions emulating an
optical buffer, both with O(log B) 2 × 2 switches. We
claim that those constructions are optimal. In order to
prove that, we will use arguments similar to those used
with an OQ-PIFO switch.

We will first show that a lower bound on the practical
complexity of an optical buffer is given by C∗

B =
Ω(log B). A lower bound on the practical complexity
of an optical buffer is derived by showing that a TSI
is a special case of an optical buffer. Therefore, the
practical complexity of an optical buffer is not lower
than the practical complexity of a TSI. Note that a
bounded emulation delay does not change the practical
complexity.

Theorem 2: Denote by C∗
B the practical complexity

of an optical buffer with capacity B, it holds that C∗
B =

Ω(log(B)).



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 6

P1 P2 P3
arrivals departures

Fig. 3. Illustration of the optical buffer emulation principle

Next, we will present two constructions of an optical
buffer, both with O(log B) switches. Since the construc-
tions have a number of switches that grows like the lower
bound, the practical complexity equals the lower bound

C∗
B = Θ(log(B)),

and the constructions will be said to be optimal.

C. Construction overview

The idea of the construction is demonstrated in Figure
3. Consider three buckets P1, P2 and P3, where P1

holds the packets that arrived during the last time frame,
P2 holds the packets that were stored in the buffer
at the beginning of the last time frame, and P3 holds
the departing packets. A central controller divides the
packets stored in P1 and P2 into two groups: packets
that should remain in the buffer, and packets that should
depart from the buffer. The packets that should remain in
the buffer are written into P2 and the packets that should
depart from the buffer are written into P3. The packets
that are stored in P3 are rearranged before departure
according to the desired departure ordering.

D. Construction I

One straightforward emulation of optical buffer fol-
lowing the above overview is presented in Figure 4. The
construction is composed of an FDL of length B storing
the packets that arrived during the last B time-slots (P1).
A FIFO queue with 2 inputs stores the packets that are
in the buffer (P2). A FIFO multiplexer with 2 inputs
followed by a time-slot interchange hold and rearrange
the departing packets according to the desired ordering
before departure (P3). There is a central controller that
controls the 2 × 2 switches. The central controller is
aware of all the packets that are stored in the construction
and their priorities, and receives the departure requests
arriving from an external source. The central controller
decides for each packet if it should remain in the buffer
or depart. (For the sake of presentation, all proofs in this
paper are presented in the Appendix.)

Theorem 3: The construction presented in Figure 4
emulates an optical buffer with delay D = 3B.

P2 might need to store more than B packets: although
the number of stored packets is at most B at the start

FIFO

B+x

πB

B

Mux

B

P1

P2

P3

departure

arrivals

Fig. 4. Emulating an optical buffer - construction I

and end of each time interval [kB+1, (k+1)B], it might
exceed B inside the time interval. The following lemma
specifies what the size of P2 should be.

Lemma 3: The capacity of P2 in Figure 4 should be
at least 3B

2 (i.e., x = B
2 ) in order to maintain the correct

behavior of the construction.

E. Construction II

A second construction of an optical buffer is presented
in Figure 5. It includes one FDL of length B that delays
the arriving packets (P1). The FDL is followed by a
TSI of size B that rearranges the arriving packets before
switching the packets either into the buffer or to the
departure line. The TSI is followed by a memory cell
with capacity B that holds the stored packets (P2), and
a second TSI of size B that rearranges the departing
packets before sending them on the departure link (P3).
Stages A-E demonstrate the way the construction works.
Consider the dark packets as the packets that should
depart in the next time frame and the white packets
as the packets that should remain in the buffer. The
numbers displayed on the dark packets stand for the
desired departure ordering. The first TSI rearranges the
frame of arriving packets (A) to create frame B. The
packets in frame B are arranged such that no collision
occurs: each dark packet in B arrives to the 2×2 switch
simultaneously with a white packet that is stored in the
buffer (C), similarly, white packets in B arrive simul-
taneously with dark packets in C. As a consequence,
the packets that depart from the central switch (D) are
all dark and the packets that remain in the buffer are all
white. But the departing packets are still not organized by
the desired departure ordering, therefore the second TSI
arranges the packets such that their ordering is exactly
the desired departure ordering (E).
This construction is a strong emulation of an optical
buffer, i.e., it has a fixed delay that is composed of the
sum of delays of the two TSIs.

Theorem 4: The construction presented in Figure 5
strongly emulates an optical buffer, with a fixed delay
D = 3B.



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 7

B

departureB
π

B
π

6 31

2

5

4

631 631 254

124 356

A B

C

D

E

Fig. 5. Emulating an optical buffer - construction II

F. Proof of optimality

Both constructions include elements such as FIFO
queues, FIFO multiplexers and time-slot interchanges. In
[19] a summary of the complexities of all these elements
can be found. All these elements can be implemented
with O(log B) 2×2 switches. Therefore, O(log B) is an
upper bound on the practical complexity of an optical
buffer. Moreover, we have shown earlier that a lower
bound on the practical complexity of an optical buffer is
given by C∗

B = Ω(log B). The combination of the lower
and upper bounds results in a practical complexity of
Ω(log B). (Note that a fixed additional delay does not
change the practical complexity in the definition, since
the delay divided by time goes to zero as time goes to
infinity.)

Theorem 5: The practical complexity of an optical
buffer is C∗

B = Θ(log(B)).
Since the two constructions of an optical buffer pre-

sented earlier have C = Θ(C∗
B) 2× 2 switches, they are

said to be optimal according to Definition 8.
Corollary 1: The two constructions of an optical

buffer presented in Figures 4 and 5 are optimal.
To conclude, we have presented two optimal con-

structions emulating an optical buffer, both with delay
D = 3B. The second construction is a strong emulation,
i.e., it has a fixed delay. Next, we will build an optical
OQ-PIFO switch that uses our second construction of an
optical buffer.

VI. OPTIMAL COMPLEXITY OQ-PIFO SWITCH

We have found a lower bound on the practical com-
plexity of an OQ-PIFO switch C∗

P = Ω(N log(NB)). In
this section we will find the practical complexity of an
OQ-PIFO switch and present an optimal construction.
First, we present two naive constructions that exactly
emulate an OQ-PIFO switch. These naive constructions
will introduce a loose upper bound on the practical
complexity of an OQ-PIFO switch. Then, we will present
a construction emulating an OQ-PIFO switch, using the
pigeonhole principle and the optical buffer constructions
presented above. We will show that the construction of an
OQ-PIFO switch by the pigeonhole principle is optimal.

A. Naive constructions of an output-queued PIFO switch

We describe here two naive constructions that ex-
actly emulate an output-queued PIFO switch with output
queue size B. The first construction implements sepa-
rately each of the NB memory cells of the OQ-PIFO
switch, while the second construction implements sepa-
rately N2 buffers corresponding to the N2 (input,output)
pairs. We will see that both naive constructions have a
high complexity because they do not fully use the output
buffer multiplexing properties.

The first construction is presented in Figure 6(a).
Packets arrive on N input links. Then, they are sent to
empty memory cells [18] through an N × NB switch.
Finally, when packets should depart, they are read from
the memory cells, and an NB × N switch sends them
on the corresponding output link. There are NB parallel
memory cells, as there should be up to B packets stored
for each buffer.

Lemma 4: The construction in Figure 6(a) is
a naive emulation of an OQ-PIFO switch, with
O(NB log(NB)) 2× 2 switches

The second construction is presented in Figure 6(b).
Packets arrive on N input links. Then, they are sent to
priority queues [20] through an N × N2 switch. There
are N2 priority queues, one for each (input,output) pair.
Finally, when a packet should depart, it is read from the
corresponding priority queue, through an N2×N switch
that sends it on the correct output link.

Lemma 5: The construction in Figure 6(b) is
a naive emulation of an OQ-PIFO switch, with
O(N2

√
B log(B)) 2× 2 switches.

The naive constructions present an upper bound on the
practical complexity.

Lemma 6: An upper bound on the practical com-
plexity of an OQ-PIFO switch is given by C∗

P =
O(min{N2

√
B log(B), NB log(NB)})

B. Emulating an OQ-PIFO switch by the pigeonhole
principle

As shown in [28], it is possible to use the pigeonhole
principle to emulate an OQ-PIFO switch. Pigeons repre-
sent packets, pigeonholes represent buffers, and packets
follow a set of rules called the Constraint Set.

The basic rule is that only one packet (pigeon) can
enter or depart a buffer (pigeonhole) at each time.
Therefore, a packet scheduled to leave at time D cannot
enter a buffer in which there is already a packet about
to depart at time D. It introduces a certain difficulty on
the straightforward emulation of a PIFO discipline: since
the departure time is not known in advance with a PIFO



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 8

NxNB NBxN
1

…

1

…

Output 1

Output N

1

1

…

(a) Construction I

B*

B*

… …

NxN2 N2xN

B*

B*
… …

B*

B*

… …

…

Output 1

Output 2

Output N

(b) Construction II

Fig. 6. Naive constructions of an OQ-PIFO switch

discipline, it is not possible to prevent conflicts in the
departure process.

A possible solution presented in [28] is to modify the
departure process to prevent memory conflicts amongst
packets destined to different outputs. Instead of sending
only one packet to each output every time-slot, choose
one output every time-slot and send several packets to
that output. The outputs are chosen in a round robin
fashion. More formally, consider an OQ-PIFO switch
with N ports. Assume that Ok(t) is the packet departing
on output link k at time t, and Pl(t) is the packet stored
in the buffer that should depart to destination l at time
t, 1 ≤ k, l ≤ N . With the original departure process,

Ok(t) = Pk(t), ∀1 ≤ k ≤ N,

while with the modified departure process,

Ok(t) = Pt mod N (b t

N
cN + k), ∀1 ≤ k ≤ N.

With the modified departure process it is possible
to implement an OQ-PIFO switch according to the
pigeonhole principle. Now, every packet can potentially
collide only with the N − 1 previous packets and the
N −1 consequent packets scheduled to the same output,
and not with packets scheduled to other output links. In
order to avoid these collides during departure, when a
packet arrives to the buffer, it cannot enter the buffers in
which the N−1 previous packets or the N−1 consequent
packets are stored.

There are no conditions on the packets that are stored
in the buffers. Their departure time is not known in

advance, it is not even bounded. Their relative departure
ordering does not have to remain fixed once they are
already stored in the buffers. The optical buffer we
have presented earlier is flexible enough to match these
requirements. Therefore, we will use our construction
of an optical buffer in an emulation of an OQ-PIFO
switch. We will find the practical complexity of an OQ-
PIFO switch and show that an emulation of an OQ-PIFO
switch by the pigeonhole principle with our emulation
of optical buffers is optimal.

C. Optimal emulation of an OQ-PIFO switch

Finally, we present a construction that emulates the
behavior of an OQ-PIFO switch with Θ(N log(NB))
switches. The construction will give us a tight upper
bound on the practical complexity, and we will show
that it is optimal. The construction uses the pigeonhole
principle and it includes parallel optical buffers. We
will use the construction presented in Figure 5 as an
emulation of an optical buffer.

There are two main differences between the behavior
of the optical buffer presented here and the electronic
buffers in [28]. The first difference is that the packets
arrive to the optical buffer and depart from it on different
links, therefore read and write operations can be made
simultaneously. The second difference is that for an
optical buffer there is a storage limitation that presents
an additional constraint, whereas for electronic buffers
the storage capacity is huge and there is no need to take
it into account. The constraint set is therefore slightly



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 9�� � � � � � � � � � � � 	 
 � � 
�� � �
�� � � ���

� � � � � � � � � 	 
 � �  ������������
� � � �
� � � �� � � �

Fig. 7. An emulation of an OQ-PIFO switch

NxN

1

2

N

N-1

N-2
O
1

O
2

O
N

1

I
1

I
2

I
N

NxN

Fig. 8. A concatenator

different from the constraint set introduced in [28] for
an OQ-PIFO switch. The first difference relaxes N
constraints, and the second difference presents additional
N constraints.

A construction of an optical OQ-PIFO switch is pre-
sented in Figure 7. Arriving packets are sent through
an N × (4N − 2) switch to optical buffers. The op-
tical buffers are implemented as in Figure 5. Departing
packets are read from the corresponding optical buffers
through an (4N − 2) × N switch and are sent on the
output links. If there are already B packets with the same
destination that are stored in the buffer, the packets with
the lowest priority with that destination are lost through
the lost links. The packets depart from the optical buffers
according to the modified departure process described
in section VI-B, through a concatenator that rearranges
them according to the original departure process. The
concatenator is presented in Figure 8.

(For the sake of presentation, all proofs in this paper
are presented in the Appendix.)

Theorem 6: The construction presented in Figure 7 is
a strong emulation of an optical OQ-PIFO switch with
O(N log(NB)) 2× 2 switches and delay D = 3B +N .

The delay of the construction is the sum of the delay
resulting from the modified departure process and the
delay of the optical buffer. The practical complexity is a
lower bound on the number of 2× 2 switches necessary
to build a construction. Therefore, the number of 2× 2
switches in our construction of an OQ-PIFO switch is
an upper bound on the practical complexity of an OQ-

PIFO switch. We will now find the practical complexity
of an OQ-PIFO switch, by combining the lower bound
derived in Theorem 1, and the upper bound introduced
by the number of 2 × 2 switches in the construction in
Figure 7.

Theorem 7: The practical complexity of an OQ-PIFO
switch is C∗

P = Θ(N log(NB)).
Since the construction of an OQ-PIFO switch in

Figure 7 has C = Θ(C∗
P ) 2 × 2 switches, it is said

to be optimal according to Definition 8, as stated in the
following corollary.

Corollary 2: The construction of an OQ-PIFO switch
presented above is optimal.

To conclude, we have found the practical complexity
of an OQ-PIFO switch, and presented an optimal con-
struction emulating it.

VII. OPTIMAL COMPLEXITY SHARED MEMORY

Until now we have discussed the emulation of an OQ-
PIFO switch with N output queues, each with capacity
B. Now we would like to expand our discussion also to
the case of a router with shared memory. We consider
the case of an optical shared memory with capacity NB.
Arriving packets are written to the shared memory if it
is not full, and wait there for their turn to departure. The
difference between this shared memory architecture and
an OQ architecture is that there is no further limitation
on the number of packets destined to the same output
link that can be stored in the shared memory. However,
it is interesting to note that our construction of an OQ-
PIFO switch also does not impose a limitation on the
maximum number of packets with the same destination
that are stored in the buffer. Therefore, it is also possi-
ble to emulate a shared memory with the construction
presented in Figure 7.

Theorem 8: The construction presented in Figure 7 is
an emulation of a shared memory with PIFO departure
policy.

An OQ-PIFO switch with N output buffers, each with
capacity B, can be emulated using a shared memory with
a PIFO departure policy and capacity NB. Therefore, the
practical complexity C∗

S of the shared memory is lower
bounded by the practical complexity of an OQ-PIFO
switch: C∗

S = Ω(C∗
P ). Further, since we have shown that

the same optimal construction of an OQ-PIFO switch
can be used to implement a shared memory as well, we
also get an upper bound on the practical complexity of
a shared memory.

Corollary 3: The practical complexity of a shared
memory with a PIFO departure policy is C∗

S =
Θ(N log(NB)).



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 10

Corollary 4: The construction of a a shared memory
with a PIFO departure policy presented above is optimal.

VIII. EXACT EMULATION OF AN OQ-FIFO SWITCH

In section VI we have shown three different emula-
tions of an OQ-PIFO switch. The first two were naive
constructions, exactly emulating an OQ-PIFO switch,
but with high complexity. The third was an optimal
emulation, with a number of switches that equals in
growth to the practical complexity, but with a certain
delay. Note that an OQ-FIFO switch is a special case
of an OQ-PIFO switch, therefore all three constructions
are valid also for the case of an OQ-FIFO switch. In
addition, the practical complexity of an OQ-FIFO switch
is not higher than the practical complexity of an OQ-
PIFO switch.

The case of an OQ switch with a FIFO discipline
seems easier to emulate than the case of an OQ switch
with a PIFO discipline. In this section we present two
constructions based on the pigeonhole principle, exactly
emulating an OQ-FIFO switch, both with lower com-
plexity than the naive constructions presented in section
VI. The constructions that we present exactly emulate
emulate a non-idling OQ-FIFO switch: whenever there
are packets destined to some output stored in the buffer,
there is a departure to that output.

By the pigeonhole principle, it is possible to construct
an output-queued FIFO switch that is non-idling (i.e.,
ci(t) = 1 for all t and for 1 ≤ i ≤ N ) with 2N − 1
parallel buffers [28]. Note that now the relative ordering
of the packets stored in the buffers does not change
once written to the buffer. Instead of using our optical
buffer emulation, which has low complexity but non-
zero delay bound, it is possible to use one of the
following structures, so as to exactly emulate an OQ-
FIFO router with no additional delay. In each case, we
use 2N −1 parallel buffers, each time implementing the
buffers using a different structure.

• Using priority queues: The construction of a non-
idling OQ-FIFO switch using 2N − 1 parallel pri-
ority queues has

C = O(N log N + N
√

B log B)

2× 2 switches.
• Using flexible delay lines: A flexible delay line

is a network element that can realize different
mappings in time without delay. It can be emulated
using Cantor networks with O(log2(B)) 2 × 2
switches [22]. Thus, we could use a construction
that uses 2N−1 parallel flexible delay lines, as was

also independently proposed in [29]. The number
of 2× 2 switches in such a construction is

C = O(N log N + N log2(B))

Both these constructions are not optimal, because their
complexities are higher than the practical complexity of
an OQ-FIFO switch, and they also cannot emulate any
OQ-PIFO switch. Nevertheless, as these constructions
are without delay, they can be a good choice when the
implementation of a non-idling FIFO switch is needed
and delay is critical.

IX. CONCLUSION

This paper dealt with the fundamental number of com-
ponents required to build all-optical routers. We showed
that an N ×N optical router with a port buffer size B
needs at least Θ(N log(NB)) components. Further, we
presented a construction that achieves this fundamental
lower bound, and thus proved that it is achievable.

This paper has two main consequences. First, it proves
that the fundamental number of components of optical
routers cannot be arbitrarily low. Therefore, advances in
routing protocols cannot reduce the number of compo-
nents to arbitrarily low levels. This extends the observa-
tion already made by Shannon for unbuffered switches
over fifty years ago [9]. On the other hand, this paper
also quantifies the effect of reducing the buffer size on
the number of components, and thus sheds a ray of light
on the possibility of implementing basic optical routers
with small buffers. In fact, it shows how the recent papers
on reducing the buffer size B in routers have a dramatic
influence on the expected fundamental complexity of all-
optical routers [30], [31].

ACKNOWLEDGMENTS

The authors would like to thank Ami Litman and C.-S.
Chang for their helpful comments, and to acknowledge
the support of the ATS-WD Career Development Chair.

REFERENCES

[1] N. McKeown, Internet routers: past, present and future, BCS
Ada Lovelace Lecture, London, 2006.

[2] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard and N. McKeown, Scaling Internet routers using
optics, ACM SIGCOMM, Karlsruhe, Germany, 2003.

[3] N. Spring, R. Mahajan, D. Wetherall and T. Anderson, Measur-
ing ISP topologies with rocketfuel, IEEE/ACM Transactions on
Networking, Vol. 12, No. 1, pp. 2–16, 2004.

[4] C. Minkenberg, R.P. Luijten, F. Abel, W. Denzel and M. Gusat,
Current issues in packet switch design, Computer Communica-
tion Review, Vol. 33, No. 1, pp. 119–124, 2003.



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 11

[5] W. Wang, L. Rau and D. J. Blumenthal, All-optical label switch-
ing/swapping of 160 Gbps variable length packets and 10 Gbps
labels using a WDM Raman enhanced-XPM fiber wavelength
converter with unicast/multicast operation, Optical Fiber Com-
munications Conference and Exhibit (OFC), postdeadline paper
PDP8, 2004.

[6] R. Takahashi, T. Nakahara, H. Takenouchi and H. Suzuki, 40-
Gbit/s label recognition and 1× 4 self-routing using self-serial-
to-parallel conversion, IEEE Photonics Technology Letters, Vol.
16, pp. 692–694, 2004.

[7] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, Light
speed reduction to 17 metres per second in an ultracold atomic
gas, Nature, Vol. 397, pp. 594–597, 1999.

[8] E. F. Burmeister and J.E. Bowers, Integrated gate matrix switch
for optical packet buffering, Photonics Technology Letters, Vol.
18, No. 1, 2006.

[9] C. E. Shannon, Memory requirements in a telephone exchange,
Bell System Technical Journal, Vol. 29, pp. 343–349, 1950.

[10] C. Clos, A study of non-blocking switching networks, Bell
System Technical Journal, Vol. 32, no. 2, pp. 406–424, 1953.

[11] M. J. Marcus, New approuches to the analysis of connecting
and sorting networks, Technical Report, 1972.

[12] V. E. Benes, Mathematical theory of connecting networks and
telephone traffic, New York: Academic Press, 1965.

[13] J. Hui, Switching and traffic theory for integrated broadband
networks, Boston: Kluwer Academic Publishers, 1990.

[14] N. Pippenger, The complexity theory of switching networks,
Technical Report, 1973.

[15] D. K. Hunter and D. G. Smith, New architectures for optical
TDM switching, IEEE J. Lightwave Technology, Vol. 11, pp.
459–511, 1993.

[16] F. Jordan, D. Lee, K.Y. Lee and S.V. Ramanan, Serial array time
slot interchangers and optical implementations, IEEE Transac-
tions on Computers ,Vol. 43, No. 11, pp. 1309–1318, 1994.

[17] R. Kannan, D. Lee, K.Y. Lee and H.F. Jordan, Optical TDM
sorting networks for high-speed switching, IEEE Transactions on
Communications, Vol. 45, Issue 6, pp. 723–736, 1997.

[18] C.S. Chang, D.S. Lee and C.K. Tu, Recursive construction
of FIFO optical multiplexers with switched delay lines, IEEE
Transactions on Information Theory, Vol. 50, pp. 3221–3233,
2004.

[19] C. S. Chang, Y. T. Chen and D. S. Lee, Construction of optical
FIFO queues and non-overtaking delay lines, Technical Report,
2005.

[20] A. D. Sarwate and V. Anantharam, Exact emulation of a
priority queue with a switch and delay lines, submitted to
Queueing Systems Theory and Applications.

[21] C. S. Chang, J. Cheng and D. S. Lee, A simple proof for the
constructions of optical priority queues, submitted to Queueing
Systems, 2005.

[22] C. S. Chang, Y.T Chen, J. Cheng and D.S. Lee, Constructions
of linear compressors, non-overtaking delay lines, and flexible
delay lines for optical packet switching, submitted to IEEE/ACM
Transactions on Networking, 2006.

[23] S. Chuang, A. Goel, N. McKeown and B. Prabhakar, Matching
output queueing with a combined input/output-queued switch,
IEEE Sel. Areas in Communications, Vol. 17, no. 6, pp. 1030–
1039, 1999.

[24] S. Iyer and N. McKeown, Techniques for fast shared memory
switches, HPNG Technical Report – TR01–HPNG–081501, Stan-
ford, CA, Aug 2001.

[25] H. Attiya, D. Hay and I. Keslassy, Packet-mode emulation of
output-queued switches, ACM SPAA 06, Cambridge, MA, 2006.

[26] H. Kogan and I. Keslassy, Fundamental complexity of optical
systems, IEEE Infocom ’07 minisymposium, Anchorage, AK,
2007.

[27] A. Waksman, A permutation network, J. Assoc. for Comput.
Mach., Vol. 15, No. 1, pp. 159-163, 1968.

[28] S. Iyer, R. Zhang and N. McKeown, Routers with a single stage
of buffering, ACM SIGCOMM 02, Pittsburgh, USA, 2002.

[29] C. S. Chang, Packet switch architectures course, Chapter 4g,
http://gibbs.ee.nthu.edu.tw/COM5353.htm

[30] G. Appenzeller, I. Keslassy and N. McKeown, Sizing router
buffers, ACM SIGCOMM ’04, Portland, Oregon, 2004.

[31] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown and T. Rough-
garden, Routers with very small buffers, IEEE Infocom ’06,
Barcelona, Spain, 2006.

APPENDIX

A. Proof of Lemma 1

The proof is given by showing that it is possible to
use an output-queued PIFO switch with a certain strategy
as an implementation of a frames switch. Assume that
every packet has a departure label and a priority label.
The departure label indicates the packet’s desired output
link. The priority label dictates the departure ordering
from the queues. The packets do not depart from the
output queues until all the packets that belong to the
current time frame arrive. The strategy is composed of
the following rules:
• During the first B time-slots of operation, the

packets do not depart from the queues.
• Set the departure label of each packet to be the

desired output link.
• Set the priority label of each packet according to

the desired departure time.
Since given an output-queued PIFO switch it is possi-

ble to implement a frames switch, the practical complex-
ity of a PIFO switch is lower bounded by the practical
complexity of a frames switch, C∗

P ≥ C∗
F .

B. Proof of Lemma 2

In order to calculate the complexity of a frames switch
we have to take the logarithm of the number of different
states during time interval [0, T ], and divide it by T . By
taking T = KB and given the delay D, the total number
of states #SF is bounded as follows:

(NB)!K−d
D

B
eB ≤ #SF ≤ (NB)!K−b

D

B
cB (1)

Stirling’s formula indicates that:

log(N !) = N log N −N + O(log N).

Thus there exist N0, C1, C2 such that

C1N log N ≤ log N ! ≤ C2N log N,

for every N ≥ N0. In order to find the complexity we
will take the logarithm of the number of states and divide



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 12

it by the time. Therefore, the minimal complexity of the
combined space time permutation is given by:

C1α1N(log(NB)) ≤ C∗
F ≤ C2α2N(log(NB)),

where

α1 =
K − dD

B eB
K

and

α2 =
K − bD

B cB
K

.

Taking K →∞ leads to

C∗
F = Θ(N(log(NB))).

C. Proof of Theorem 2

First, we will show that a TSI can be emulated using
an optical buffer. This is done the following way: while
the input frame is being written into the buffer, no packet
that belongs to the current input frame is departing. Once
all the packets have been written to the buffer, they start
to depart according to the desired departure ordering.

We have found in Lemma 2 that the practical com-
plexity of a frames switch with a certain delay is given
by C∗

F = Θ(N log(NB)). The practical complexity of
a TSI is given by the practical complexity of a frames
switch where N = 1:

C∗
T = Θ(log B).

Since a TSI is a special case of an optical buffer,
the practical complexity of an optical buffer is lower
bounded by the practical complexity of a TSI:

C∗
B = Ω(log B).

D. Proof of Theorem 3

We will prove by induction that the construction
presented in Figure 4 is an emulation of an optical buffer.
For simplicity we will mark the fiber delay line of length
B by P1, the FIFO queue of size B + x by P2 and the
FIFO multiplexer of size B by P3.

First step of the induction: Assume that at time 0,
P1, P2 and P3 are empty. At time B, the packets that
arrived until now are stored in P1. During time interval
[B + 1, 2B] the packets in P1 pass through the 2 × 2
switch, and the central controller decides for each packet
whether to direct it to P2 or to P3. The central controller
sorts the packets using the departure requests during
time interval [1, B] and the priorities of the packets.
The packets that should have departed from the ideal
buffer during time interval [1, B] are switched to P3. The
packets that should have remained in the ideal buffer and
switched to P2. Until time 2B, all the packets that should

have departed from an ideal buffer during time interval
[1, B] are sent to P3 and are reordered before departing.
To conclude, at time 2B, P2 contains the packets that
should have been stored in an ideal buffer at time B and
P1 contains the new packets that arrived during time
interval [B + 1, 2B].

Induction assumption for time kB, where k > 2:
Assume that P1 holds the packets that arrived during
time interval [(k−1)B+1, kB], P2 holds the packets that
should have been stored in the ideal buffer at time (k−
1)B, and P3 holds the packets that should have departed
from the ideal buffer at times [(k− 2)B + 1, (k− 1)B].

The induction assumption holds at time (k+1)B: Dur-
ing time interval [kB+1, (k+1)B], the central controller
sorts the packets that are stored in P1 and P2: packets
that should have remained in the buffer until time kB+1
are written to P2. Packets that should have departed
from the buffer during time interval [(k − 1)B + 1, kB]
are written to P3. The length of time interval in which
the sorting procedure is held is B. Since there are no
more than B packets in P1 and B packets in P2 at the
beginning of the time interval, all the packets are being
sorted. By the end of the time interval, all the packets
that should have departed from the buffer during time
interval [(k− 1)B + 1, kB] are either in the multiplexer
or in the time-slot interchange. P2 contains the packets
that arrived during time interval [kB +1, (k +1)B], and
P1 contains the packets that should have been stored in
the ideal buffer at time kB.

The delay introduced by this construction is a sum of
three factors, D = d1 + d2 + d3:
• d1 = B: at time kB + 1 P3 starts to receive the

packets that should have departed from the ideal
buffer at time interval [(k − 1)B, kB]

• The FIFO multiplexer P3 is not necessarily empty
at time kB + 1. There might still be packets from
time interval [(k − 2)B + 1, (k − 1)B] that had
not departed yet. The maximum number of packets
from that time interval that are still stored in P3

is B
2 . Therefore, the additional introduced delay is

d2 = B
2 .

• d3 = 3B
2 : the inherent delay of a TSI [16].

The total resulting delay is D = B + B
2 + 3B

2 = 3B.

E. Proof of Lemma 3

During time interval [kB +1, (k+1)B], at each time-
slot at most one packet enters the queue and at most one
packet departs from the queue. Therefore, the number of
packets stored in P1 might increase by one, decrease by
one, or remain the same. Also, at the edges of the time
interval, no more than B packets are stored in the queue.



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 13

Therefore, the maximum number of packets stored in the
queue at the middle of the time interval is 3B

2 .

F. Proof of Theorem 4

The construction in Figure 5 operates in a way similar
to that of the construction in Figure 4. Consider the
operation of the central 2 × 2 switch. If it is in a
cross state, a packet from P1 is sent to P2, and the
corresponding packet from P2 is sent to P3. If it is in
a bar state, a packet from P1 is sent to P3, and the
corresponding packet in P2 remains in P2. The first time
interchange synchronizes the packets in P1 such that no
collision occurs:
• A packet in P1 that should enter P2 reaches the

switch simultaneously with a packet in P2 that
should enter P3.

• A packet in P2 that should remain in P2 reaches
the switch simultaneously with a packet in P1 that
should enter P3.

The delay introduced by this construction is composed
of the sum of the delays of the two time-slot interchang-
ers. Each time-slot interchange has delay D = 3B

2 , and
the total delay of the construction results in 3B. The
delay with this construction is fixed, therefore it strongly
emulates an optical buffer.

G. Proof of Lemma 4

We will show that the construction in Figure 6(a) is
an exact emulation of an OQ-PIFO switch. The arriving
packets are stored in a column of memory cells, where
a memory cell is constructed as in [18] by combining
a 2 × 2 switch and an FDL with length 1. The packets
arriving on the input links are directed to empty memory
cells through an N × NB switch. The packets that are
scheduled to depart are read from the memory cells
and placed on the appropriate output links through an
NB ×N switch. The input and output switches can be
implemented using O(NB log(NB)) 2×2 switches [9],
[12]. Therefore, a total number of

C = O(NB log(NB))

2× 2 switches is necessary.

H. Proof of Lemma 5

We will show that the construction in Figure 6(b) is
an exact emulation of an OQ-PIFO switch. There are N2

parallel priority queues, one for each input-output pair.
The arriving packets are sent to the appropriate priority
queue according to the input link and the desired depar-
ture link. A central controller sends a departure request in

each time-slot to the elements storing the packets about
to depart in the current time-slot. Each construction
of priority queue is emulated as described in [20]. It
requires a

√
B × √B switch and

√
B feedback FDLs.

Therefore, each priority queue requires O(
√

B log B)
2× 2 switches to implement. Therefore, a total number
of

C = O(N2
√

B log(B))

2× 2 switches is necessary.

I. Proof of Theorem 6

We will prove that the construction presented in
Figure 7 is a strong emulation of an optical OQ-PIFO
switch with O(N log NB) 2 × 2 switches and delay
D = 3B + N . The OQ-PIFO switch is implemented
using the pigeonhole principle with a modified departure
process as explained in section VI-B. The constraint set
is composed of the following rules:

1) Only one packet can enter a buffer at each time.
2) A packet will not enter a buffer on which there

are N − 1 previous packets or N − 1 consequent
packets destined to the same output link.

3) A packet will not enter a buffer which already
contains B packets.

The first rule implies that a packet might collide with
N − 1 other arriving packets. The second rule implies
that a packet must not enter at most 2N − 2 buffers
which store packets that are potential to collide at the
departure. The third rule implies that a packet must not
be assigned to at most N buffers which already have B
stored packets. Therefore, a minimal number of 4N −
2 buffers in parallel is necessary. We will emulate an
optical buffer with the construction presented in Figure
5. A central scheduler controls the assignment of arriving
packets into optical buffers and the departure of packets
from optical buffers. The central scheduler’s policy is as
follows:
• Lost packets: If B − x packets destined to output

link j are stored in the OQ switch, and y packets
arrive to destination j such that y > x, the y − x
packets with the lowest priority labels amongst the
stored packets and arriving packets are lost. Lost
packets that have just arrived to the OQ switch do
not enter the OQ switch at all. For packets that are
stored in the middle loop and should be lost, their
position is marked as ”empty”. When a new packet
enters the middle loop instead of the lost packet, the
lost packet is simultaneously sent to the lost output
link.

• Assignment policy: For each arriving packet with
destination j that should enter the OQ switch, the



TECHNICAL REPORT TR06-01, COMNET, TECHNION, ISRAEL 14

scheduler chooses a buffer such that the N − 1
previous packets or N − 1 consequent packets to
the same destination are not stored in this buffer.
According to the pigeonhole principle it is possible
to find such an assignment.

• Departure requests: At each time-slot, the scheduler
chooses one of the N destinations, in a round robin
fashion. The scheduler sends departure requests to
the buffers holding the N packets with the highest
priority waiting to depart to the chosen destination.
The N packets can depart simultaneously since
they are stored on N different buffers due to the
assignment policy.

The N departing packets are then concatenated in time
according to their priorities. In addition, in order to have
a strong emulation of an OQ-PIFO switch, i.e., to have a
fixed delay for all the destinations, additional fiber delay
lines are added at the output. The destination that is
chosen first in the round robin encounters an additional
delay of N − 1 time-slots, whereas the destination that
is chosen last doesn’t encounter any additional delay.

The number of 2× 2 switches in the construction is:

C(PIFO) = 2C(Switch4N−2) + 2(4N − 2)C(πB)

+ 2C(SwitchN ) + (4N − 2)

≤ 16(N log N + N log B)

= O(N log(NB))

The delay of the construction is given by the sum
of the delay of the optical buffer and the delay of the
modified departure process, D = 3B + N .

J. Proof of Theorem 7

By Lemma 2, the practical complexity of a frames
switch with any bounded delay is

C∗
F = Θ(N log(NB)).

From Lemma 1 it holds that:

C∗
P = Ω(C∗

F ) = Ω(N log(NB)).

The construction presented in Figure 7 switch introduces
an upper bound on the practical complexity of an OQ-
PIFO:

C∗
P = O(N log(NB)).

Combining the upper bound and the lower bound, the
practical complexity of an OQ-PIFO switch with delay
D = 3B + N is given by

C∗
P = Θ(N log(NB)).

K. Proof of Theorem 8

We will prove that the construction presented in Figure
7 is an emulation of a shared memory with capacity NB
and PIFO departure policy. The difference between an
OQ-PIFO switch with N output links and queues with
capacity B and a PIFO shared memory with capacity
NB is the lost mechanism. With a PIFO shared memory,
arriving packets are lost only when there are already NB
packets stored in the buffer. There is no limitation on
the number of packets with the same destination that are
stored in the buffer. The shared buffer is implemented
with the same modified scheduling policy described in
section VI-B, and 4N − 2 parallel optical buffer suffice
with the same constraint set.


