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Minimizing Delay in Network Function
Virtualization with Shared Pipelines

Ori Rottenstreich, Isaac Keslassy, Yoram Revah and Aviran Kadosh

Abstract—Pipelines are widely used to increase throughput
in multi-core chips by parallelizing packet processing while
relying on virtualization. Typically, each packet type is served
by a dedicated pipeline with several cores, each implementing a
network service. However, with the increase in the number of
packet types and their number of required services, there are not
enough cores for pipelines. In this paper, we study pipeline sharing,
such that a single pipeline can be used to serve several packet
types. Pipeline sharing decreases the needed total number of
cores, but typically increases pipeline lengths and therefore packet
delays. We consider two novel optimization problems of allocating
cores between different packet types such that the average or the
worst-case delay is minimized. We study the two problems and
suggest optimal algorithms that apply under different assumptions
on the input. We also present greedy algorithms for the general
case. Last, we examine our solutions on synthetic examples as
well as on real-life applications and demonstrate that they often
achieve close-to-optimal delays.

Index Terms—Multicore Optimization, Network Function Vir-
tualization, Network Processors.

I. INTRODUCTION

A. Background

This paper introduces the novel problem of pipeline sharing,
which designers face when implementing the emerging class of
dedicated pipeline-based multi-core chips. This group encom-
passes multi-core network processors [2], [3], and application-
specific systems-on-chip (AS-SoC) such as telecommunication
applications [4] and high-end multiprocessors [5]. Recently,
NFV (Network Function Virtualization) was described as a
new networking framework. It suggests to implement various
network functions in identical virtual machines by relying on
virtualization [6]. Practically, such virtualization must consider
restrictions on the number of available cores.

Consider a set of numbered services, and a flow of incoming
packets, where each packet may need to go through a different
subset of services in an increasing order. Dedicated chips
used to be implemented with a single general-purpose core
that could provide all the needed services using software-
based algorithms. However, such a single software-based core
would not be scalable. Therefore, dedicated chips have become
implemented as multi-core chips, where each core (or engine)
is specifically designed to implement a single needed service.

This manuscript is an extended version of “Minimizing Delay in Shared
Pipelines”, which was presented in IEEE Hot Interconnects ’13, San Jose,
CA, USA, August 2013 [1].

O. Rottenstreich is with Princeton University, NJ, USA (email:
orir@cs.princeton.edu). I. Keslassy is with VMware, CA, USA and the
Technion, Israel (e-mail: isaac@ee.technion.ac.il). Y. Revah and A. Kadosh
are with Marvell, Israel (e-mails: {yoramr, aviran}@marvell.com).

Deep	  
packet	  

inspec,on	  

Packet	  type	  1	  
Delay	  =	  3	  

Ingress	  
ACL	  

Rou,ng	   Header	  
modifica,on	  

Packet	  type	  2	  
Delay	  =	  2	   Bridging	   Rou,ng	  

Packet	  type	  3	  
Delay	  =	  3	   Rou,ng	   Header	  

modifica,on	  

(a) Three pipelines with 8 cores (without pipeline sharing). The average delay
is T ≈ 2.67 time slots and the worst-case delay is D = 3 time slots.
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(b) Example of pipeline sharing: Two pipelines with only 6 cores. The average
delay is T ≈ 3.33 time slots and the worst-case delay is D = 4 time slots.

Fig. 1. Illustration of pipeline sharing.

Thus, each packet could go through all the corresponding cores
to obtain all its needed services.

Letting packets go through their needed cores one after
another would result in unpredictable queueing delays, and
therefore a lack of performance guarantees. Hence, an appeal-
ing solution is to use pipelines. Assume that packets are divided
into k different packet types, where each packet type needs a
specific set of services. Then, the chip can be implemented
using exactly k pipelines, where the pipeline that corresponds
to each packet type includes the cores that implement its
needed services. Incoming packets are simply forwarded to
their appropriate pipelines. If at most one packet arrives every
time slot, and each core processing takes one time slot, then it
is guaranteed that each packet will be done with processing in
the minimal needed time, without any potential conflict on its
processing path.

For instance, Fig. 1(a) illustrates a simplified example of
packet-processing chip. It accepts k = 3 packet types that are
respectively served by k = 3 dedicated pipelines, with a total
number of 8 cores. When a packet arrives it is assigned to a
pipeline that serves its type and is first served by the first core
on the pipeline. In each time slot, each core serves the packet
that was served in the previous core in the previous time slot, if
there was such a packet. The service of a packet is completed
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after a number of time slots that equals the number of cores
in its pipeline. If the k packet types are uniformly distributed,
the obtained average delay is (3 + 2+ 3)/3 ≈ 2.67 time slots.
Likewise, the worst-case (maximal) delay, is 3.

However, following the increase in (a) the number of packet
types, and (b) the pipeline lengths, the number of needed cores
does not fit multi-core chips anymore. Therefore, we need to
rely on pipeline sharing, such that different packet types may
need to go through the same pipeline. As a result, a pipeline
may include more services than needed by a packet. When a
packet encounters a core that it does not need, it simply does
not use it, but still spends time in it in order not to break
the pipeline. Therefore, while pipeline sharing decreases the
needed number of cores, it can also increase the packet delay.

Fig. 1(b) illustrates this pipeline sharing. The first and the
third packet types share the first pipeline, which includes the
4 cores required by at least one of these types. Hence, we
only need 6 cores instead of 8. On the other hand, since these
two types now require a larger delay of 4 time slots to go
through their shared pipeline, the average delay increases to
(4+2+4)/3 ≈ 3.33 and the worst-case delay is now 4 instead
of 3.

For a minimal implementation cost, the design assumes a
very simple control logic which basically maps an incoming
packet to the corresponding pipeline. Such a simple control
logic does not support skipping pipeline steps, early pipeline
termination or allowing packets to cross several pipelines.

There is a clear tradeoff between the number of needed cores
and the obtained average and worst-case packet delays. This
tradeoff creates capacity regions in the design exploration, in
the sense that the minimal possible delay is described for a
given upper bound on the number of cores. A designer cannot
go below these optimal bounds. This is illustrated in Fig. 2.
For instance, with at most 5 cores a single pipeline must serve
the three packet types with 5 distinct services and result in an
average delay and worst-case delay that both equal 5. Likewise,
allowing the existence of a seventh core cannot improve the
optimal delays that can be obtained with at most 6 cores. The
goal of this paper is to further analyze these optimality bounds.

In this paper we introduce pipeline sharing in multi-core
chips. A limited number of cores should be divided into
pipelines, each serving several packet types. To minimize the
delay of a packet we try reduce the lengths of these pipelines.

B. Related Work

Several past works have considered the problem of mapping
the pipelines onto the chip cores in order to reduce energy
consumption and bandwidth utilization [7]–[9]. These mapping
issues are outside the scope of the paper, and the mapping
solutions are complementary to our suggested algorithms, in
the sense that they can be applied on the resulting pipelines.

Pipeline scheduling was discussed in [10]. This work deals
with a simpler problem in which the hardware components
are not configurable and each of them can perform a single
predetermined task. For instance, given a formula with several
additions and multiplications, they study how to schedule
simultaneously several pipelines calculating the formula. They

Fig. 2. Tradeoff between the number of cores and the average or worst-case
delays, defining capacity regions for the two optimization problems. For a
limited number of cores, the minimal possible delays are presented. A designer
cannot go below these optimal bounds.

try to guarantee that in every time unit a single adder and a
single multiplier are not used by more than a single pipeline.

The design of multicore systems was discussed for a wider
range of environments besides pipelines. [11] analyzed the
number of cores that should implement each task based on
its utilization. [12] studied the obtained system throughput
as a function of the partition granularity of the different
requirements into small tasks. Finer granularity can improve
the performance but also complicates the mapping process.

In addition, network processors (NPs) may adopt additional
alternative architectural models. For instance, the multipass NP
architectural model is suggested in [13] as an alternative to
pipelining. While such a model may have less synchroniza-
tion issues than pipeline-based models, it may also provide
fewer guarantees of service. A multi-queued NP architecture
was suggested in [14] to serve packets with heterogeneous
requirements. They study a policy that may omit a packet upon
the arrival of a second packet with simpler requirements.

Our problem can also be viewed in the context of recent
ongoing research on NFV, including function assignment opti-
mization [15]. Consequences from our work can be useful also
in this framework, e.g. by deciding how many cores should
implement every function or what flows to serve by the same
pipeline.

II. MODEL AND PROBLEM DEFINITION

We start by introducing notations and formally defining the
problems discussed in this paper.

A. Traffic

We consider a system where each packet needs to perform a
set of required tasks among r possible tasks, {1, · · · , r}. Each
task is performed exactly once for each packet, in an increasing
index order. For instance, out of r = 10 possible tasks, a packet
may need to perform tasks {1, 2, 7}. It will successively run
tasks 1, then 2, and finally 7.

We further assume that there are k types of packets. Each
incoming packet has a probability pi > 0 of belonging to type
i, and packets of type i needs to perform a fixed set of tasks
Si. For instance, an incoming packet may either be of type 1
with probability p1 = 0.6 and require tasks S1 = {1, 2, 3}; or
it may be of type 2 with probability p2 = 0.4 and require tasks
S2 = {1, 4}.
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Our analysis and solution are not sensitive to whether each
packet of type i appears with probability pi independently of
its preceding packets or whether there are some dependencies
between subsequent packets (e.g., the existence of long flows
with several packets of the same type) that yield a stationary
distribution with these probabilities.

We restrict the model to consider tasks that can be ordered
as above. Clearly, in some systems two tasks might be required
in different orders by two packets and our study does not cover
them. Notice that it is impossible to share two pipelines, al-
though they include the exact set of tasks if the required orders
of one or more pairs of tasks are different. We take advantage
of this restriction to enable improved performance by being
able to share more pipelines. Indeed, this possibility to order
tasks is common for different networking systems. A recent
study [16] surveyed a wide range of middlebox applications. It
describes the implementation of each application as an ordered
list of processing steps. They name 10 processing steps in a
specific order such that each application is associated with
a subset of them according to the common order. Earlier, a
methodology to profile multiprocessor and network processor
applications by representing them as directed acyclic graphs
(DAG) was described [17], [18]. In this representation, nodes
represent computational tasks and links represent control and
data dependencies. Various types might require similar variants
of the application with part of the tasks, described as a path in
the graph. While the graph might enable degrees of freedom
in ordering the tasks, for any such DAG, our model can be
applied by selecting an arbitrary legal order. The pipeline
sharing performance is not affected by this selection.

Another application can be found in a simplified version
of the compilation of programming languages for packet for-
warding architectures such as the recently developed popular
language P4 [19]. In its compilation, a DAG is used to de-
scribe dependencies between logical tables, each implementing
a computation task. Assuming equal-size tables of a single
matching type, this translation can follow the model while
trying to implement these computation tasks by processing
cores.

Some applications can benefit from having more than a
single possible service path for the same packet type. Our
model gives higher priority to the reduction of the delay rather
than maintaining the flexibility. Keeping the cores required for
that for one flow decreases the core availability for other flows
and can enforce unnecessary pipeline sharing with an increased
delay.

B. Pipeline Sharing

We are now interested in studying how the set of cores in
a multi-core chip can be subdivided into shared pipelines that
can service the different packets.

We assume that the chip holds N cores. Each core is an
homogeneous general-purpose core that can be configured to
serve any task. By relying on virtualization, at run-time, the
chip manager configures each of the cores to serve a single
task among the set of possible tasks, e.g. by loading it with
a different code. Due to limitations on its memory size, the

core cannot be configured to serve two or more tasks. The
chip manager further subdivides the N cores into d pipelines
of multiple separate cores. Let Qi be the set of tasks served
by the ith pipeline.

For example, a chip with N = 9 cores could be subdivided
into one pipeline of 2 cores that respectively deals with tasks 1
and 2; another pipeline of 3 cores that processes tasks 1, 2, 3;
and another pipeline of 4 cores that deals with tasks 1, 3, 4, 5.
Note that each of the three pipelines holds a separate core that
processes task 1, i.e. several cores may be assigned the same
task.

In addition, the chip manager assigns a single pipeline to
each packet type, such that the pipeline contains all the tasks
required by this packet type. For instance, it may assign packets
of type 2 that needs the set of tasks S2 = {1, 4} to the last
pipeline of cores, which processes tasks 1, 3, 4, 5. In this case,
note that the packets will just go through the cores of tasks 3
and 5 without any processing.

C. Optimization Problems

We model the delay of a pipeline as equal to its length, i.e.
its number of cores. In our example, it will take 4 time-slots to
go through the pipeline of 4 cores that processes tasks 1, 3, 4, 5.
So if a packet that needs the task set S2 = {1, 4} goes through
this pipeline, it will still take 4 time-slots, out of which the
two slots for processing tasks 1 and 4 are useful, while the
two other slots are simply empty. Early pipeline termination
is not allowed and a packet cannot leave the pipeline before
reaching its last core due to the limited control of the system.

Thus, there is a clear tradeoff between the flexibility of a
longer pipeline, which can process more packet types, and its
higher delay. Given our set of N cores, our goal is to use this
tradeoff in order to reduce the average or the worst-case packet
delay.

Formally, we state our first problem as follows: Given N
cores, and the k sets of tasks Si of probability pi, our goal is
to find shared pipelines that will minimize the average packet
delay. We denote by TOPT (N) this minimal possible average
delay.

Likewise, in our second problem, given N cores and the k
sets of tasks Si of probability pi, our goal is to find shared
pipelines that will minimize the worst-case packet delay. We
denote by DOPT (N) this minimal possible worst-case delay.

Note that we use the term packet for the item served in
the pipelines. While this is especially relevant for network
processors, in other pipeline architectures the more general
term of element is also very common.

D. General Properties

We describe a property that can be useful for simplifying
instances to one of the two optimization problems. Intuitively,
if tasks can be divided into different kinds such that every
packet type requires tasks of one kind, there is no point to
share pipeline with tasks of different kinds. For instance, if a
packet type either requires security services (e.g. deep packet
inspection, firewall) or alternatively traffic shaping services
(e.g., load balancing, network address translation), we can
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avoid having pipelines that include both security and traffic
shaping tasks. The importance of this property is by helping
us, later in this paper, to find optimal solutions for families of
instances of the problems.

Proposition 1. Assume that the r tasks can be divided into two
categories such that each type requires tasks from one category,
i.e. the k packet types can be ordered such that

(⋃m
i=1 Si

)
∩(⋃k

i=(m+1) Si

)
= ∅ for some m ∈ [1, k]. Then, for each of the

problems, an optimal solution given N cores can be obtained
for some value N0 ∈ [0, N ] as the union of the pipelines in
optimal solutions for packet types [1,m] and for types [(m +
1), k] with N0 and (N −N0) cores, respectively.

Proof: Consider a pipeline in an optimal solution that
serves tasks from both sets

(⋃m
i=1 Si

)
,
(⋃k

i=(m+1) Si

)
. Then,

it can be partitioned into two smaller pipelines to reduce the
average delay without increasing the worst-case delay. Ac-
cordingly, we can distinguish between pipelines in an optimal
solution according to the category of tasks they serve.

Similarly, the next proposition shows that if the sets of tasks
(for the different packet types) served by a pipeline can be
divided into two disjoint unions of tasks, then this pipeline
can be divided into two shorter pipelines which will result
in a shorter average delay and at most the same worst-case
delay. The proof is similar to the last one and is omitted for
its simplicity.

Proposition 2. Let Si1 , · · · , Sib be the sets of tasks served by
one of the pipelines in a solution for one the two problems. If
for some m ∈ [1, b] we have

(⋃m
j=1 Sij

)
∩
(⋃b

j=(m+1) Sij

)
=

∅ then the pipeline can be divided into two pipelines without
increasing the number of cores. This results in a shorter
average delay and at most the same worst-case delay.

III. MINIMIZING AVERAGE DELAY

In this section, we study our first optimization problem of
minimizing the average delay. We present an optimal algorithm
that applies when the input satisfies a specific property, describe
some general properties of the problem, and provide a greedy
algorithm for the general case.

A. A simple case of the required tasks: Si = [1, Yi]

Finding an optimal solution of the problem that minimizes
the average delay is difficult in the general case. Here, we
consider a property of the sets of tasks required by the
different packet types S1, · · · , Sk that when satisfied allows
us to efficiently calculate an optimal solution that minimizes
the average delay.

In some applications all packet types demand several con-
secutive tasks starting from the first task. The different packet
types differ in the number of required tasks in each of them.
Then, the set of tasks of packet type i can be presented as
Si = {1, · · · , Yi} = [1, Yi] for Yi ∈ [1, r].

For instance, this scenario can describe a required packet
processing hierarchy for packets with different required levels
of security. If an Intrusion Detection System (IDS) service is

partitioned into smaller tasks in which disjoint pattern sets are
examined, a packet with a higher security level might require to
be compared with a larger set of patterns. This can be described
as additional tasks required by the packet. In particular, the
Snort IDS [20] defines the notion of severity level. It enables
customizable prioritization of alerts such that the severity level
of 32 predefined alert categories can be modified. Then, the
highest priority alerts (with lowest severity levels) are examined
by installing corresponding rules of all categories with up
to some specific severity level. A task can be described as
examining the rules of one level such that different packet types
would require running different number of the first tasks.

We show that in such cases an optimal solution has several
properties such as specific forms of its pipelines as well as
simplicity in the matching of the packet types to one of the
pipelines. These properties enable us to suggest an efficient
algorithm for finding an optimal solution.

In the rest of the section, we assume that S1 =
[1, Y1], · · · , Sk = [1, Yk] ⊆ [1, r] are ordered such that Ya ≤ Yb
if a < b. We then have that S1 ⊆ S2 ⊆ · · · ⊆ Sk−1 ⊆ Sk.
Indeed, by merging identical requirements, the set of tasks can
be ordered such that S1, · · · , Sk satisfy the required condition
whenever S1 ⊆ S2 ⊆ · · · ⊆ Sk−1 ⊆ Sk. Let Q1, · · · , Qd be
the set of tasks serviced by the cores in the d pipelines in an
optimal solution and let (B1, · · · , Bk) be a vector indicating
the serving pipeline for each packet type s.t. Bi ∈ [1, d]. For
short, we denote the range [1, 1] by [1].

The properties are summarized in the following lemmas. The
first lemma explains that the cores in a pipeline should be those
required by the packet type with the largest set of tasks among
the types it serves.

Lemma 1. The pipelines in an optimal solution Q1, · · · , Qd

satisfy for j ∈ [1, d] Qj ∈ {S1, · · · , Sk}, i.e. the sets of tasks
in the pipelines in an optimal solution are among the sets of
tasks of the different packet types in the input. In particular,
for j ∈ [1, d] Qj is of the form Qj = [1, Zj ] for Zj ∈ [1, r].

Proof: Let h be the number of packet types served by
pipeline Qj and let Si1 , Si2 , · · · , Sih−1

, Sih be the sets of tasks
of these packet types such that i1 < i2 < · · · < ih−1 < ih.
According to the order of S1, · · · , Sk, we have that Si1 ⊆
Si2 ⊆ · · · ⊆ Sih−1

⊆ Sih . By the correctness of the solution,
we have that

⋃h
m=1 Sim ⊆ Qj . In addition, by the optimality

of the solution, an equality must hold i.e.
⋃h

m=1 Sim = Qj .
Otherwise, cores could be eliminated to reduce the delay. Since
Si = [1, Yi] it follows that Qj =

⋃h
m=1 Sim = Sih = [1, Yih ].

The next lemma presents a property of the matching of
packet types to pipelines in an optimal solution.

Lemma 2. Assume that Q1, · · · , Qd are ordered such that
Q1 $ Q2 $ · · · $ Qd−1 $ Qd. Then, the packet types are
served by an increasing order of the pipelines, i.e. Bi ≤ Bj

for i < j. In particular, the packet types served by each pipeline
in the solution form a subset of consecutive packet types. In
particular, the last packet type is served by the last pipeline,
i.e. the kth packet type is served by QBk

= Qd = Sk.

Proof: First, such an order of Q1, · · · , Qd exists according
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Algorithm 1 Optimal Algorithm for Minimizing the Average
Delay for Si = [1, Yi] (Pseudo-code)

Input:
1 Packet types with sets of tasks S1 = [1, Y1], · · · , Sk =

[1, Yk] and probabilities p1, · · · pk.
2 Initialize: For n ≥ 0: T (0, n) = 0. For n < 0: T (0, n) =

∞. For i > 0, n ≤ 0: T (i, n) =∞. For n ≥ 0: B(0, n) =
() (an empty vector) and Q(0, n) = {} (an empty set of
pipelines).

3 Main:
4 for i = 1 to k do
5 for n = 0 to N do
6 Calculate T (i, n) according to Eq. (1)
7 Calculate Q(i, n) according to Eq. (2)
8 Calculate B(i, n) according to Eq. (3)

9 return Q(k,N), B(k,N)

to Lemma 1. Assume that the claim does not hold for an
optimal solution and let i, j be two indices such that i < j
and Bi > Bj . Then, based on the order of S1, · · · , Sk and
the correctness of the solution Si ⊆ Sj ⊆ QBj

$ QBi
and in

particular Si ⊆ QBj
. We can let packet type i be served by QBj

that satisfies |QBj | < |QBi | and reduce the average delay of the
solution in contradiction to its optimality. In addition, with the
last property if Bi = Bj (for i < j) then Bm = Bi = Bj for
all m ∈ [i, j] and every pipeline serves a subset of consecutive
packet types.

Following this lemma, we suggest a dynamic-programming
algorithm to find an optimal solution to this special case of the
problem. To do so, we suggest several additional definitions.
We denote by T (i, n) (for i ∈ [0, k], n ∈ [0, N ]) the minimal
possible weighted average delay that can be achieved in serving
the first i packet types given at most n cores. In the calculation
of this average we consider each of the i packet types with a
weight that is equal to its original probability such that for
i < k the sum of weights is smaller than one. If no such
solution exists we define T (i, n) = ∞. We later explain that
the optimal average delay TOPT (N) equals T (k,N). Likewise,
we denote by B(i, n) (for the same values of i, n whenever
T (i, n) 6= ∞) the vector of length i that indicates for each
packet type the serving pipeline in an optimal solution for the
first i packet types with at most n cores. Last, let Q(i, n) denote
the list of pipelines in this optimal solution. This list is ordered
as assumed in Lemma 2. The next example demonstrates these
definitions.

Example 1. Assume an input of k = 3, N =
8 and (S1, p1), (S2, p2), (S3, p3) = ([1], 0.3), ([1, 3], 0.2),
([1, 5], 0.5). With at most three cores, for instance, we can
serve the first type with a pipeline of a single core and thus
T (1, 3) = 0.3. Likewise, we can serve the first two types by a
pipeline of three cores that results in a delay of three for these
two types and accordingly, T (2, 3) = (0.3+0.2) ·3 = 1.5. For
this input, an optimal solution with at most N = 8 cores is
composed of two pipelines Q(k,N) = Q(3, 8) = {[1], [1, 5]} in
which the first type is served in the first pipeline in the solution

[1] = {1} while the second and third type are served by the
second pipeline [1, 5] = {1, 2, 3, 4, 5}. This is represented by
B(k,N) = B(3, 8) = (1, 2, 2). This result in an optimal delay
T (k,N) = T (3, 8) = 0.3 ·1+(0.2+0.5) ·5 = 3.8. To serve the
three types given at most 8 cores, we have several options that
differ in the number of additional types that are served with the
last type in the pipeline of 5 cores. Three cores are left for the
other pipelines. This can be either only the last type itself (with
probability of 0.5) or the second type together with the third
(with probability of 0.2 + 0.5 = 0.7) or all the three types
(with probability of 1). Accordingly, T (k,N) = T (3, 8) =
min (T (2, 3) + 0.5 · 5, T (1, 3) + 0.7 · 5, T (0, 3) + 1 · 5).

We present recursive formulas for the functions
T (i, n), Q(i, n) and B(i, n) based on the idea from the
example. For the correctness of the following recursive
formulas, we set T (0, n) = 0 for n ≥ 0, T (0, n) = ∞ for
n < 0 and T (i, n) =∞ for i > 0, n ≤ 0. Likewise, for n ≥ 0
we set B(0, n) = () (an empty vector) and Q(0, n) = {} (an
empty set of pipelines).

The intuition behind the formulas is the following. To
calculate T (i, n), we consider an optimal solution for the first
i packet types. By Lemma 2, the ith packet type (Si, pi) is
served by the last pipeline QBi = Si and has a delay of |Si|.
Additional packet types may be served by this pipeline. If we
denote the total number of packets served by this pipeline by j,
then j ∈ [1, i] and by the same lemma, we must have that these
are the packet types with indices [i − (j − 1), i]. To calculate
the minimal delay, we consider the best option for the value
of j from the above values. Since |Si| cores are used by the
last pipeline, the first (i − j) packet types can be served by
the other (n − |Si|) available cores. Their minimal possible
contribution to the average delay is T (i − j, n − |Si|) and it
can be achieved according to an optimal solution for these
parameters. To calculate Q(i, n) and B(i, n) we look at the
possible identities of the pipelines in such a solution. If there
exists a solution with j packet types served by the last pipeline,
we add to the pipelines in an optimal solution of the first i− j
packet types, an additional single pipeline of Si. The vector B
is now updated such that the last j packets are served by the
last pipeline with an index of |Q(i, n)|. Based on the above,
we can deduce the following.

Theorem 1. (i) For i ∈ [1, k], the variable T (i, n) satisfies

T (i, n) = min
j∈[1,i]

(
T (i− j, n− |Si|) +

(
i∑

m=(i−(j−1))

pm

)
· |Si|

)
(1)

(ii) Let j be the minimal value of the corresponding parameter
that minimizes the right-hand side of (i). Then, there exists an
optimal solution that satisfies

Q(i, n) = Q(i− j, n− |Si|) ∪ {Si}, and (2)

B(i, n) = B(i− j, n− |Si|) · (|Q(i, n)|, · · · , |Q(i, n)|)︸ ︷︷ ︸
j times

(3)

where · denotes the vector concatenation operation.
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Finally, we describe the suggested dynamic-programming
algorithm. Its pseudo-code is presented in Algorithm 1. We
first initialize T (0, n) = 0 for n ≥ 0, T (0, n) = ∞ for
n < 0, T (i, n) = ∞ if i > 0 and n ≤ 0, B(0, n) = ()
and Q(0, n) = {} for n ≥ 0 (line 2). We continue to calculate
in step i (for i ∈ [1, k]) the values of T (i, n) for n ∈ [0, N ]
according to the formulas presented in Theorem 1 based on the
values from previous steps (lines 4-8). In the required solution,
all the k packet types have to be served with N available cores.
Thus the optimal average delay TOPT (N), the pipelines in an
optimal solution and the matching of packet types to pipelines
are given by T (k,N), Q(k,N) and B(k,N), respectively.

We now discuss the time complexity of the suggested
algorithm. The algorithm is composed of k steps, in each step
i ∈ [1, k] we calculate the (N + 1) values of optimal delays
T (i, n) for n ∈ [0, N ]. For each value, by relying on Eq. (1)
from Theorem 1, we take the minimal value out of at most k
possible values (line 6, according to the maximal value of i in
this equation) or perform more simple calculations (lines 7-8).
Thus the time complexity is O(k2 ·N). The representation of
Q(i, n) for some i, n includes at most k pipelines with a length
that equals at most the number of distinct possible tasks r. The
algorithm keeps Q(i, n) for k values of the first parameter and
for (N + 1) values of the second. The memory required for
storing one value of T (i, n), B(i, n) is smaller. The memory
complexity of the algorithm is accordingly O(k2 ·N · r).

B. General Properties

We now describe some basic properties of this problem of
minimizing the average delay. These properties can be used by
a designer to understand the limits of the chip design capacity
region. The simple proof of the first of them is omitted due to
space limits.

The first property discusses the value of the optimal delay as
a function of the number of cores. Intuitively, for a too small
number, we cannot serve some the tasks and for a large enough
number, each type can have a dedicated pipeline.

Proposition 1. (i) For all N ≥ 0, the optimal average delay
is at least as large as the (weighted) average size of a set of
tasks, i.e. TOPT (N) ≥

∑k
i=1

(
pi · |Si|

)
.

(ii) TOPT (N) =
∑k

i=1

(
pi · |Si|

)
for N ≥

∑k
i=1 |Si|.

(iii) The number of cores should be at least the number of dis-
tinct tasks in the input, i.e. TOPT (N) =∞ for N < |

⋃k
i=1 Si|.

The next property presents a condition that must be satisfied
for every packet in an optimal solution.

Proposition 2. In any optimal solution (i.e. a solution with a
delay of TOPT (N)), every packet type is served by a pipeline
that has the minimal length among the pipelines that serve all
the tasks of the packet type.

Proof: Clearly, if this is not the case for one of the packet
types, we can let this packet type be served by an existing
pipeline with shorter length and reduce the average delay.

C. Pipeline Merging Algorithm for Minimizing the Average
Delay

We suggest an efficient greedy algorithm for reducing the
average packet delay for a general input. Intuitively, it can be
efficient to serve within the same pipeline several packet types
with a large number of common tasks, so that their merging
would result in a small delay increment. The algorithm starts
with an initial state in which there is a pipeline for each of
the packet types. This initial state would need many cores to
be implemented, and would typically exceed the number of
available cores on the multi-core chip. Therefore, our algorithm
iteratively reduces the number of needed cores. Specifically, at
each iteration, it merges two of the remaining pipelines into a
single shared pipeline. It only ends when the merged pipelines
can finally be implemented using the multi-core chip (or when
there is clearly no solution).

In other words, consider a given iteration of the algorithm.
Assume that its pipelines currently use n cores. If n ≤ N , the
pipelines can be implemented and the current state is returned
as the solution. Else, we select two pipelines and merge them.
Then, packet types that make use of these pipelines might
observe a larger delay after this operation.

For a given pair of pipelines, let x be the increment in the
average delay if these pipelines are merged. Further let y be
the corresponding decreased number of cores. Intuitively, it is
better to merge a pair of pipelines with a small ratio x/y.

We calculate x, y for every pair of pipelines. Let Ai (for
i ∈ [1, 2]) be the set of cores in each of the two pipelines of
the pair. This set of cores is the union of the cores required by
the packet types served by this pipeline. Likewise, let zi be the
probability of an arbitrary packet to belong to a packet type
served by this pipeline. This is the sum of the probabilities for
a packet to belong to one of the packet types served by the
merged pipeline.

We consider only meaningful pairs of pipelines, i.e. pairs
with common cores. Merging pipelines with disjoint sets of
cores cannot reduce the number of cores. For these valid pairs,
we examine the three following criteria. (a) Large number of
common cores, (b) Small number of non-common cores, and
(c) Low probability for an arbitrary packet to belong to a type
served by the merged pipelines.

The additional delay for packets previously served by the
first pipeline (fraction of z1 of all packets) is |A2 \ A1|.
Likewise, for packets served by the second pipeline (z2 of
all packets) the additional delay is |A1 \ A2|. Thus the in-
crease in the average delay if these pipelines are merged is
x = z1 · |A2 \A1|+ z2 · |A1 \A2|. This is the cost. If the two
pipelines in the pair are merged, the total number of cores is
reduced by the number of common cores y = |A1 ∩ A2| > 0.
This is the gain in such merging.

For this pair, we define the ratio R as the marginal cost, i.e.
R = x/y = (z1 · |A2 \A1|+ z2 · |A1 \A2|)/|A1 ∩A2|. In each
step of the algorithm we simply merge the pair of pipelines
with the minimal marginal cost.

Since a pair of pipelines is merged in each step, the number
of outer loops of the algorithm is at most k. In each step we
compare less than k2 pairs by checking the union of sets with
size of at most r. Thus the time complexity is O(k3 ·r). Notice
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that in this algorithm, keeping the current set of pipelines is
required only for the last outer loop. Other variables require
a smaller amount of memory. Thus the memory complexity is
O(k · r).

Example 2. Consider again the input from Example 1
with k = 3, N = 8 and (S1, p1), (S2, p2), (S3, p3) =
([1], 0.3), ([1, 3], 0.2), ([1, 5], 0.5). For i, j ∈ [1, 3], let Ri,j

be the value of the ratio R as defined above for the pair of
packet types (Si, pi) and (Sj , pj). Here, R1,2 = (0.3 · 2+0.2 ·
0)/1 = 0.6, R1,3 = (0.3 · 4 + 0.5 · 0)/1 = 1.2 and R2,3 =
(0.2·2+0.5·0)/3 ≈ 0.133. Since the minimal ratio is R2,3, the
suggested algorithm merges the second and third pipelines. We
then obtain a solution with two pipelines Q1 = [1], Q2 = [1, 5]
which is the optimal solution for this input.

In Section VI, we show experiments for which the suggested
(greedy) algorithm results in a delay that often equals (or is
very close), to the minimal possible delay. However, as demon-
strated in these simulations, the algorithm is not necessarily
optimal.

IV. MINIMIZING WORST-CASE DELAY

In this section, we consider a new objective function of min-
imizing the worst-case delay, i.e. the maximal delay obtained
by one of the packet types. Here, given a limited number of
cores N , a set of k packet types S1, · · · , Sk (with positive
probabilities p1, · · · , pk > 0), we are looking for shared
pipelines that minimize the worst-case delay of all packet types,
i.e. the maximal length of a pipeline. We denote by DOPT (N)
the minimal possible worst-case delay as a function of the
number of cores.

A. General Properties

Our first observation is that a solution that minimizes the
average delay does not necessarily minimizes also the worst-
case delay. It is illustrated in the following example.

Example 3. Let k = 3, N = 6 and (S1, p1), (S2, p2), (S3, p3)
= ({1, 2, 3}, 0.2), ({3, 4}, 0.2), ({4, 5}, 0.6). To minimize the
average delay, it is better to merge the first two pipelines of
types with smaller probabilities obtaining pipelines Q1,1 =
{1, 2, 3, 4}, Q1,2 = {4, 5} with average delay T1 = 0.4 ·
4 + 0.6 · 2 = 2.8 and worst-case delay of D1 = 4. To
minimize the worst-case delay, it is better to merge the two
last shorter pipelines obtaining two pipelines of length 3,
Q2,1 = {1, 2, 3}, Q2,2 = {3, 4, 5} with average delay and
worst-case delay that both equal T2 = D2 = 3.

Another immediate observation is the independence of
DOPT (N) of the exact values of the positive probabilities of
the packet types p1, . . . , pk. That is because the optimization
function depends on the length of the longest pipeline regard-
less of any of the probabilities. Likewise, any of the constraints
on a legal solution does not involve these probabilities. Accord-
ingly, in this section we will characterize a packet type simply
by its required set of tasks Si.

We now describe some basic properties of this new problem,
considering the worst-case delay. Next we present bounds on

this delay as a function of the number of cores N . As in the
case of the average delay, these bounds can be helpful for a
designer to understand the dependence of DOPT (N) on N .

Proposition 1. (i) For all N ≥ 0, DOPT (N) = ∞ or
DOPT (N) ∈ {1, 2, · · · , r}, namely whenever the worst-case
delay is finite, it has an integer value of at most r.
(ii) For all N ≥ 0, the optimal worst-case delay is at least
as large as the optimal average delay, i.e. DOPT (N) ≥
dTOPT (N)e.
(iii) For all N ≥ 0, the optimal worst-case delay is at least
as large as the size of the largest set of tasks in the input, i.e.
DOPT (N) satisfies DOPT (N) ≥ maxi∈[1,k] |Si|.
(iv) For a large enough number of cores, the worst-case delay
exactly equals the size of the largest set of tasks in the input,
i.e. DOPT (N) = maxi∈[1,k] |Si| for N ≥

∑k
i=1 |Si|.

(v) The number of cores should be at least the number of dis-
tinct tasks in the input, i.e. DOPT (N) satisfies DOPT (N) =∞
for N < |

⋃k
i=1 Si|.

Proof: Whenever all packet types are served, the worst-
case delay is the delay of the longest pipeline in the solution.
The solution is of course composed of pipelines with an integer
number of cores. The length of each pipeline equals at most
the number of possible tasks r. In addition, the length of
the longest pipeline is clearly not shorter than the (weighted)
average length of the pipelines. In any solution a packet type
with a set of tasks Si is served by a pipeline Qj that satisfies
Si ⊆ Qj . The delay |Qj | that the packet type encounters
equals |Qj | ≥ |Si| and the worst-case delay among all the
k packet types must satisfy DOPT (N) ≥ maxi∈[1,k] |Si|. For
a large enough number of cores (satisfying N ≥

∑k
i=1 |Si|),

each packet type Si is served separately by a pipeline of
length |Si| and the worst-case delay is simply DOPT (N) =
maxi∈[1,k] |Si|. Last, since each of the |

⋃k
i=1 Si| distinct tasks

must be implemented by a dedicated core, any legal solution
cannot be found whenever N < |

⋃k
i=1 Si|.

We now shortly consider the simple case of S1, · · · , Sk

described in Section III-A, for which the sets of required tasks
are of the form Si = {1, · · · , Yi} = [1, Yi] for Yi ∈ [1, r]. It is
easy to see that for this case an optimal solution for the worst-
case delay is simply given by a single pipeline with the cores
required by the largest set in the input. Clearly, any solution
that serves all packet types requires at least that number of
cores and entails such a delay.

We present additional properties of an optimal solution that
minimizes the worst-case delay for a general input. The fol-
lowing property is useful to decrease the algorithm complexity,
and will be used in Section VI of simulations. Intuitively, with
regard to the worst-case, a packet type with a set of tasks Si

can always be served by a pipeline that serves a packet type
with a set Sj that is a super set of Si.

Lemma 1. Assume that the k sets of required tasks can be
ordered in such a way that for some m, each of the first m
sets is a subset of one of the last (k − m) sets, namely for
every Si ∈ {S1, · · · , Sm} we can find Sj ∈ {Sm+1, · · · , Sk}
satisfying Si ⊆ Sj . Then, the set of pipelines in an optimal
solution for the input Sm+1, · · · , Sk is also an optimal solution
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for the input S1, · · · , Sk (with the same value of the parameter
N ). In extending this solution, by simply serving each pipeline
in Si ∈ {S1, · · · , Sm} using the pipeline that serves Sj ∈
{Sm+1, · · · , Sk} s.t. Si ⊆ Sj , we can obtain a solution that
achieves DOPT (N).

Proof: By considering the sets of tasks Sm+1, · · · , Sk, a
subset of the original sets of tasks, the optimal solution has
a delay D ≤ DOPT (N). Namely, this delay cannot be longer
than the optimal delay DOPT (N) for the larger set S1, · · · , Sk.
By serving each of type Si ∈ {S1, · · · , Sm} by a pipeline that
serves type Sj s.t. Si ⊆ Sj , the set of pipelines in the solution is
not changed and the same delay D satisfying D ≤ DOPT (N)
is obtained for the original input. Thus, clearly D = DOPT (N)
and the set of pipelines is optimal also for S1, · · · , Sk.

B. A simple case of the required tasks: Si = [Xi, Yi]

We discussed earlier a simple case of the input for which a
solution achieving an optimal average delay can be found. We
now present an algorithm that achieves the optimal worst-case
delay for a generalized class of possible inputs. The algorithm
applies when the sets of required tasks are all of the form of
ranges, namely each set includes some consecutive tasks and
for i ∈ [1, k] the set Si is of the form Si = [Xi, Yi]. Clearly,
this case generalizes the set of legal inputs discussed earlier of
the form Si = [Xi, Yi].

This case is applicable for instance in a network in which a
task is associated with a network layer in which it is served,
e.g. traffic segmentation and error correction at layer 2, routing
at layer 3 or load balancing at layer 7. If a packet type requires
the tasks of several consecutive layers (for instance, the tasks
of layers 2-4), the demands of the different packets can be
presented in the above form by simply ordering each task
according to the layer it belongs to.

Based on Lemma 1, we also assume that none of the ranges
is fully contained in another range. If this is the case for some
of the ranges, we could ignore them while trying to find the
optimal solution. In addition, we assume that these k sets of
tasks S1 = [X1, Y1], · · · , Sk = [Xk, Yk] are ordered in an non-
decreasing order of the first value in each range, i.e. Xi ≤ Xi+1

for i ∈ [1, k − 1]. Likewise, if Xi = Xi+1, we must have in
contradiction to our assumption that either Si ⊆ Si+1 (if Yi ≤
Yi+1) or Si+1 ⊆ Si (if Yi+1 ≤ Yi). Therefore, Xi < Xi+1.
By Lemma 2, we can consider an optimal solution for the
worst-case delay satisfying that any of its pipelines cannot be
partitioned into two pipelines.

There are three options of the form of two consecutive ranges
Si = [Xi, Yi], Si+1 = [Xi+1, Yi+1] with Xi < Xi+1. They are
illustrated in Fig. 3. In the first, described in (a), Xi < Xi+1 ≤
Yi < Yi+1. In the second, in (b) Xi ≤ Yi < Xi+1 ≤ Yi+1. A
third option described in (c), in which Xi < Xi+1 ≤ Yi+1 ≤
Yi, is not possible due to our assumption that a range is not
fully contained in another range.

Next, we partition the k sets of tasks S1, · · · , Sk into blocks
of consecutive sets such that two consecutive sets are in
the same block if they intersect, as in case I described in
Fig. 3(a). For any pair of consecutive sets in a block, we
have Xi < Xi+1 ≤ Yi < Yi+1. In addition, there is no

intersection between any two sets of different blocks. Let φ(i)
(for i ∈ [1, k]) denote the block index for packet type i. We
can now assume the existence of an optimal solution in which
each pipeline serves only tasks from sets in one block.

The following lemma explains that there exists an optimal
solution in which the packet types served by any of the
pipelines are sequential.

Lemma 2. There exists an optimal solution without pipelines
that can be partitioned, satisfying that a pipeline that serves
packet types a, b (for a < b), serves also all packet types in
[a, b].

Proof Outline: In such a solution, let i (and j) be a
maximal (respectively minimal) index such that all types with
indices in [a, i], (respectively [j, b]) are served in the pipeline
serving types a, b. We explain that necessarily Si∩Sj 6= ∅ and
we can let types i + 1, · · · , j − 1 by served by that pipeline
without increasing its delay.

Following the described properties, we can suggest a
dynamic-programming algorithm that finds an optimal solu-
tion that minimizes the worst-case delay for this case of the
problem. The algorithm is similar to the algorithm from Sec-
tion III-A although they consider different objective functions
and have different assumptions on the input.

We denote by D(i, n) (for i ∈ [0, k], n ∈ [0, N ]) the minimal
possible worst-case delay that can obtained in serving the first
i packet types using at most n cores. If no such solution exists,
D(i, n) = ∞. Likewise, we denote by B(i, n) the vector of
length i that indicates for each packet type the serving pipeline
in the corresponding optimal solution for the parameters i, n
and by Q(i, n) the list of pipelines in this solution. While trying
to serve the first i types, we will examine all options for the
number of consecutive packet types that are served within the
same pipeline as the ith type. These types can be among the
previous packet types that have the same block index as the
ith type. For each of these options, the last pipeline includes a
number of cores that equals the total number of distinct tasks
required by one of the types it serves. If this number is denoted
by h, the other packet types can be served by the left n − h
cores. The algorithm will be based on the correctness of the
recursive formulas described in the following theorem.

Theorem 2. (i) For i ≥ 1, the variable D(i, n) satisfies

D(i, n) = min
j∈[1,i],φ(i−j+1)=φ(i)

(
max

(
D(i− j, n− h), h

))
, (4)

for h = |
i⋃

`=i−j+1

S`|.

(ii) Let j be the minimal value of the corresponding parameter
that minimizes the value of D(i, n) in its formula. Then,

Q(i, n) = Q(i− j, n− h) ∪ {
i⋃

`=i−j+1

S`}, and (5)

B(i, n) = B(i− j, n− h) · (|Q(i, n)|, · · · , |Q(i, n)|)︸ ︷︷ ︸
j times

. (6)
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(a) Case I: Xi < Xi+1 ≤ Yi < Yi+1 (b) Case II: Xi ≤ Yi < Xi+1 ≤ Yi+1 (c) Case III: Xi < Xi+1 ≤
Yi+1 ≤ Yi

Fig. 3. Three cases of the form of two consecutive (range) sets of tasks Si = [Xi, Yi], Si+1 = [Xi+1, Yi+1] satisfying Xi < Xi+1. In 3(a) (Case I),
Si ∩ Si+1 6= ∅ but Si ( Si+1, Si+1 ( Si. In 3(b) (Case II), Si ∩ Si+1 = ∅. In 3(c) (Case III), Si+1 ⊆ Si. Case III is not possible due to the assumption
that a range is not fully contained in another range after processing the input.

Algorithm 2 Optimal Algorithm for Minimizing the Worst-
Case Delay for Si = [Xi, Yi] (Pseudo-code)

Input:
1 Packet types with sets of tasks S1 = [X1, Y1], · · · , Sk =

[Xk, Yk]
2 Initialize: For n ≥ 0: D(0, n) = 0. For n < 0: D(0, n) =

∞. For i > 0, n ≤ 0: D(i, n) =∞. For n ≥ 0: B(0, n) =
() (an empty vector) and Q(0, n) = {} (an empty set of
pipelines).

3 Simplify Input: Sort S1, · · ·Sk with incr. values of |Si|
4 for i = 1 to k do
5 if Si ⊆ Sj for some j ∈ [i+ 1, k] then
6 Remove Si

7 Main: Sort S1, · · ·Sk with incr. values of Xi

8 φ(1) = 1
9 for i = 2 to k do

10 φ(i) = φ(i− 1);
11 if Si−1 ∩ Si = ∅ then
12 φ(i) = φ(i− 1) + 1

13 for i = 1 to k do
14 for n = 0 to N do
15 Calculate D(i, n) according to Eq. (4) with φ(·)
16 Calculate Q(i, n) according to Eq. (5)
17 Calculate B(i, n) according to Eq. (6)

18 return Q(k,N), B(k,N)

Proof: We consider all options for the number of packet
types j that are served together with packet type i in the
pipeline. This number of types satisfies j ∈ [1, i] and these j
types must be in the same block as type i. In this case the delay
(number of cores) of the last pipeline is h = |

(⋃i
`=i−j+1 S`

)
|

and the worst-case delay is the maximum of this delay and
the delay obtained in the optimal solution for the first (i− j)
types with (n−h) cores. For a given j, the last pipeline (with
index |Q(i, n)|) supports tasks

(⋃i
`=i−j+1 S`

)
and serves

types [i− j + 1, i].
A pseudo-code of the dynamic-programming algorithm is

given in Algorithm 2. We set the initial values of D(0, n) = 0
for n ≥ 0, D(0, n) =∞ for n < 0, D(i, n) =∞ if i > 0 and
n ≤ 0, B(0, n) = () and Q(0, n) = {} for n ≥ 0 (line 2). We
then calculate in step i (for i ∈ [1, k]) recursively the values of

D(i, n) for n ∈ [0, N ] based on Theorem 2 (line 15) as well
as of D(i, n), B(i, n) (lines 16-17). Finally, the optimal worst-
case delay DOPT (N), the pipelines in an optimal solution
and the matching vector for the packet types are given by
D(k,N), Q(k,N) and B(k,N), respectively. It takes O(k2)
to look for subsets that are included in others (lines 4-6). Since
we have k types, n ∈ [0, N ] and we consider at most k options
to calculate a value of the recursive formula of D(i, n) (line
15), the time complexity of the algorithm is O(k2 · N). The
memory complexity is O(k2 · N · r) since we keep O(k · N)
values of Q(i, n) each with a memory complexity of k · r.

Example 4. We consider the set of tasks from Ex-
ample 3 with k = 3, (S1, p1), (S2, p2), (S3, p3) =
({1, 2, 3}, 0.2), ({3, 4}, 0.2), ({4, 5}, 0.6) and N = 6 cores.
Of course, the exact values of p1, p2, p3 > 0 have no influence
on the optimal worst-case delay. Since S1 ∩ S2 6= ∅ and
S2 ∩ S3 6= ∅, all these three sets are in the same block.

Here, D(0, 0) = D(0, 1) = 0, D(1, 3) = 3. Based on Theo-
rem 2, D(2, 4) = min

(
max(D(1, 2), 2),max(D(0, 0), 4)

)
=

min
(
max(∞, 2),max(0, 4)

)
= 4. In the first option

of this formula, type 2 is served by a dedicated
pipeline, while in the second option, type 1 is served
by the same pipeline as type 2. Likewise, D(3, 6) =
min

(
max(D(2, 4), 2),max(D(1, 3), 3),max(D(0, 1), 5)

)
=

min
(
max(4, 2),max(3, 3),max(0, 5)

)
= 3. The optimal

delay of D(k,N) = D(3, 6) = 3 is obtained for the
second option among the three above, using j = 2. Thus
in the optimal solution, the last j = 2 types S2, S3 are
served in the same pipeline. Finally, Q(k,N) = Q(3, 6) =
Q(1, 3) ∪ {S2 ∪ S3} = {{1, 2, 3}, {3, 4, 5}} and B(k,N) =
B(3, 6) = B(1, 3) · (|Q(3, 6)|, |Q(3, 6)|) = (1, 2, 2). We
can see that this solution is indeed the optimal solution for
minimizing the worst-case delay as described in Example 3.

C. Pipeline Merging Algorithm for Minimizing the Worst-Case
Delay

We now describe a greedy algorithm for trying to minimize
the worst-case delay. In Section VI, we examine also this
algorithm and show that it can often obtain the minimal
possible worst-case delay, although it is not optimal in the
general case. We later refer to this algorithm as the second
greedy algorithm.

The first step of the algorithm is to check for each set of
tasks in the input whether it is a subset of another set. If this
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is the case for some of the sets, by Lemma 1 we can reduce
the number of types that have to be considered by ignoring the
corresponding types.

We remind that the number of possible tasks is r. By
Proposition 1, whenever it is finite, the value of the optimal
worst-case delay satisfies DOPT (N) ∈ [maxi∈[1,k] |Si|, r]. The
second step of the algorithm considers all these possible values
for the delay. For each possible value, it starts with a state in
which all the types (that have not been eliminated in the first
step) have dedicated pipelines. As long as pairs of pipelines
that can be merged without increasing the assumed worst-case
delay can be found, the algorithm merges a pair among these
pairs that its two packet types have the maximal number of
tasks in common. Otherwise, the pair is selected among all
pairs according to the same criteria till satisfying the constraint
on the number of cores. Finally, the solution is selected as the
best one for the different values of the delay.

The time complexity of the algorithm is O(k3 · r2). It first
takes O(k2 · r) to examine the possibility of simplifying the
input. The number of outer loops (values of D) equals at most
the maximal value of the worst-case delay r. In each step we
perform O(k) merging operations. For each such operation we
compare at most k2 pairs, with a union of size of at most r. Its
memory complexity is O(k · r) to keep the best solution found
so far.

Example 5. Let k = 4, S1 = {1, 2, 3, 4}, S2 = {2, 3, 5},
S3 = {3, 5} and S4 = {5, 6} with N = 7. Since S3 ⊆ S2,
we can neglect S3 and later serve it by the pipeline serving
S2. We consider value in [maxi∈[1,k] |Si|, r] = [4, 6] for the
worst-case delay. 9 cores are required if S1, S2, S4 are served
separately. First, we try to achieve a worst-case delay of 4. We
can only merge S2, S4 by avoiding having a pipeline with more
than 5 cores. Then. we have the two pipelines {1, 2, 3, 4} and
{2, 3, 5, 6} that must be merged to satisfy the constraint on the
number of cores obtaining a single pipeline with a delay of 6.
While trying to achieve a worst-case delay of 5, we first merge
S1, S2 that have 2 tasks in common, more than any other pair.
We have the pipelines {1, 2, 3, 4, 5} and {5, 6} with 7 cores and
an improved worst-case delay of 5. We get a similar solution
in the next option for the delay. Thus the greedy achieves a
worst-delay of 5 with pipelines {1, 2, 3, 4, 5} serving packet
types 1,2,3 and {5, 6} serving packet type 4. While this is also
the optimal solution for this input, we demonstrate later that
the algorithm is not necessarily optimal.

V. MODEL GENERALIZATION

Our model includes various assumptions as described in
Section II. We discuss how we can easily support relaxation of
some of them.
Tasks with different processing delays. If the tasks have non-
identical processing delays, the clock period of a pipeline can
be modeled as the longest task it implements. For j ∈ [1, r],
let τj be the delay of task j. The clock period of a pipeline
Q ⊆ [1, r] is accordingly τQ = maxj∈Q(τj). Then, a packet
observes a delay that equals the number of cores in a pipeline
times its clock period, i.e. |Q| · τQ for a packet served by
pipeline Q. In this scenario, when considering the merging of

two pipelines, the clock period of each should also be taken
into account. This change affects both average and worst-case
delay. We demonstrate that for the average delay. Consider
for instance three packet types with S1 = {1, 4, 5}, S2 =
{2, 4}, s3 = {3, 4, 6}, p1 = p2 = 0.3, p3 = 0.4 and N = 7
available cores. If the processing delays of all tasks are identical
(i.e. τ1 = τ2 = τ3 = τ4 = τ5 = τ6), a solution that minimizes
the average delay has two pipelines {1, 2, 4, 5} (for the first two
packet types) and {3, 4, 6} (for the third type) and is obtained
by merging the pipelines of the two types with the smaller
probability. Assume now that the processing time of task 2 is
τ2 = 2µs while for all other tasks (j ∈ {1, 3, 4, 5, 6}) it is only
τj = 1µs. Then, the clock period of a pipeline that contains task
2 is 2µs while the clock period of a pipeline without this task is
1µs. By merging the first two pipelines, we have one pipeline
with four cores Q1,1 = {1, 2, 4, 5} serving 0.3 + 0.3 = 0.6
of the traffic and a second with three cores Q1,2 = {3, 4, 6}
serving 0.4 of the traffic. The clock periods yield an average
delay of (p1 + p2) · |Q1,1| · τQ1,1

+ p3 · |Q1,2| · τQ1,2
=

0.6 · 4 · 2 + 0.4 · 3 · 1 = 6µs. An optimal solution is achieved
by merging the pipelines of the first and the third packet types,
obtaining Q2,1 = {1, 3, 4, 5, 6}, Q2,2 = {2, 4}. This results
in a delay of (p1 + p3) · |Q2,1| · τQ2,1 + p2 · |Q2,2| · τQ2,2 =
0.7 ·5 ·1+0.3 ·2 ·2 = 4.7µs. To support this generalization, we
can simply change our greedy algorithms to take into account
the possible change in the clock period in the calculation of
the additional delay for each possible pipeline merging.
Generalized traffic arrival patterns. The assumption that
at most a single packet arrives at each time slot guarantees
that no more than one packet enters a shared pipeline. With
this assumption, a large ratio of the cores, that depends on
the number of existing pipelines, remains idle at each time
slot. Of course, by sharing pipelines, the ratio of idle cores
decreases. The assumption can be relaxed in three ways. First,
by assuming that packet types are divided into families, namely
each packet type i ∈ [1, k] is associated with a family id βi,
such that in every time slot at most one packet arrives in each
family. Then, pipelines can be shared while satisfying the above
guarantee according to the restriction that a shared pipeline
serves packet types of the same family, i.e. satisfying βi = βj
for packet types i, j. In a second possible generalization, at
each time slot at most one packet appears for each packet
type while more than a single packet can appear for different
types. Likewise, we can assume a shared pipeline can serve
up to h packets in a time slot for some h ≥ 1. Accordingly,
a shared pipeline is restricted to serve at most h packet types
and two pipelines serving together more than h types cannot
be merged. A third generalization enables queueing packets
waiting for the service of a pipeline. Even while serving only
a single packet per time slot in a pipeline, with the cost of
memory and additional queueing delay, packets arriving at the
same time can be stored with the assumption that the total
server rate of the pipeline is larger than the arrival of all types
it serves.

VI. EXPERIMENTAL RESULTS

We conduct experiments to examine the efficiency of the sug-
gested greedy algorithms from Section III and Section IV for
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minimizing the average and the worst-case delays, respectively.
When possible, we compare them with the optimal solutions.
In the experiments, we rely on synthetic examples. For space
reasons, additional experiments with real-life applications can
be found in the Appendix. We denote the number of possible
solutions for sharing k packet types without a restriction on
the core number by G(k). This equals the number of options
to divide the k types into up to k pipelines. For a small k, we
can calculate the optimal delays by considering all possible
solutions.

We start by assuming a variety of k = 8 types with tasks
among r = 10 possible tasks, {1, · · · , r = 10}. The tasks
required by each type are selected randomly. The results are
based on the average of 103 simulations.

In our first experiment, each type requires a specific task
with probability q = 0.5, without any dependency between
the different types and the different tasks, i.e. for every
i ∈ [1, k], j ∈ [1, r] Pr(j ∈ Si) = q = 0.5. Fig. 4 presents
the obtained average delay (in time slots) as a function of the
number of cores.

We assume a first subcase in which all types have identical
probabilities of 1

k = 0.125. For a given set of types and a
maximal value of N cores, we compare the average delay
obtained by the (first) greedy algorithm with the minimal
possible delay found while considering all possible solutions
satisfying the constraint on the number of cores. Here, the
total number of solutions for each input is G(k = 8) = 4140.
Clearly, the minimal value of N that guarantees that all tasks
can be satisfied is N = r = 10. In addition, the maximal
observed total number of tasks in the k = 8 types is smaller
than 60. Thus, we examine the values of N ∈ [10, 60]. The
results are presented in the first two upper curves in Fig. 4.
For example, for large enough values of N , each type has its
own pipeline and the average delay equals the average number
of tasks per type, r · q = 10 · 0.5 = 5. In general, the average
delay obtained by the greedy algorithm is relatively close to
the optimal delay and it becomes even closer for larger N .
For instance, for N = 16 the average greedy delay is 8.470,
larger by 4.4% than the optimal delay of 8.110. This option
suggests a reduction of (60− 16)/60 = 73.3% in the number
of cores with a cost of a delay larger by 70% or 62.8%. For
N = 40 the delay of the greedy is 5.122 when the minimal
possible average delay (5.112) is smaller by less than 0.2%.
The average difference, for N ∈ [10, 60], between the two
delays is 0.103 time slots.

For the presented scheme of the selection of the tasks, we
examine also a second subcase in which the types appear with
variable probabilities. We set the probabilities to be geometri-
cally decreasing such that the k = 8 probabilities of the k types
are α·2−1, α·2−2, α·2−3, α·2−4, α·2−5, α·2−6, α·2−7, α·2−8
for α = 256/255. These non-homogenous probabilities enable
us to distinguish between the types to further improve the
obtained average delay. For instance, we might prefer to have a
dedicated pipeline for the most common type containing only
cores for its required tasks. The observed delays, again by the
greedy algorithm and the exhaustive search are illustrated in
the two additional curves in Fig. 4. For instance, again for
N = 16 the observed average delays are 7.310 and 7.090,

Fig. 4. Average delay (in time slots) as a function of the number of available
cores (N ) for the first experiment with synthetic data. Here, the probability
for a packet type to require each task is 0.5. The two upper curves present the
delay when the k = 8 types appear with a uniform distribution. The two bottom
curves examine the case where the types appear with geometrically-decreasing
probabilities. The results are based on the average of 103 experiments. The
greedy algorithm performs relatively close to the optimal one.

Fig. 5. The average delay (in time slots) as a function of the number of
available cores (N ) for the second experiment with synthetic data. Here, the
probability for a packet type to require each task is either 0.9 or 0.1, according
to one of three predetermined distributions. The two upper curves present the
delay when the k = 8 types appear with a uniform distribution. The two bottom
curves examine the case where the types appear with geometrically-decreasing
probabilities. The results are based on the average of 103 experiments. Again,
the greedy algorithm achieves close-to-optimal results.

respectively. Both delays are shorter by approximately a single
time slot than the corresponding delays in the homogenous
case. Here, the average difference between the average delay
of the greedy algorithm and the minimal possible average delay
is even shorter and equals 0.061 time slots.

We also want to check whether a possible dependency be-
tween the different types can further improve the effectiveness
of our approach. In a second experiment, the tasks required by
the types are selected in a different manner. We first randomly
produce three task distributions. Each distribution randomly
defines for each of the r tasks whether it will be required with a
high probability of 0.9 or only with a smaller probability of 0.1.
For each task, both options are obtained with equal probabilities
of 0.5. Next, each of the k = 8 types is assigned with a
distribution and its tasks are randomly selected accordingly.
In this experiment, the probability of a type to require a task
is 0.5 · 0.9 + 0.5 · 0.1 = 0.5, as in the first experiment. The
results are displayed in Fig. 5.

Informally, we expect two types selected from the same
distribution to have relatively similar sets of tasks. Therefore, a
merging operation of their pipelines will result in an additional
delay that is relatively small. We consider the same two options
for the probabilities for the different types as in the first
experiment (identical and geometrically decreasing). In the first
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TABLE I
SUMMARY OF THE SYNTHETIC EXPERIMENTS FOR THE AVERAGE DELAY

FOR N ∈ [10, 60]

(A) Average value of the delay (in time slots)
Experiment Identical Prob. Variable Prob.

Greedy Optimal Greedy Optimal
(i) Independent 6.197 6.094 5.788 5.726

types
(ii) Distribution-based 5.652 5.603 5.515 5.469

types

(B) Delay for N = 16 (in time slots)
Experiment Identical Prob. Variable Prob.

Greedy Optimal Greedy Optimal
(i) Independent 8.470 8.110 7.310 7.090

types
(ii) Distribution-based 6.802 6.649 6.401 6.223

types

Fig. 6. The worst-case delay (in time slots) as a function of the number
of available cores (N ) (with the same scale as in Fig. 4 and Fig. 5). The
worst-case delay is independent of the probabilities of the different packet
types and accordingly we do not distinguish between the two options of these
probabilities. The two upper curves present the delay when the k = 8 types are
drawn independently (as in Fig. 4). The two bottom curves examine the case
where the types are drawn based on one of three task distributions (as in Fig. 5).
In all cases, the worst-case delay is not shorter (and in most cases longer) than
the average delay in the corresponding experiment. In this experiment, the
delays obtained by greedy algorithm are even closer to the optimal delays.

subcase, with identical probabilities for the k types, illustrated
in two upper curves, the average (over N ∈ [10, 60]) of the
optimal delay is 5.603 in comparison with a corresponding
average delay of 6.094 in the first experiment. Likewise, for
N = 16 the greedy delay is 6.802 and the optimal delay is
6.649. In the second subcase, with non-homogenous probabili-
ties, as shown in the two last curves, the average optimal delay
is even shorter and equals 5.469. Here, for N = 16 the delay of
the greedy algorithm is 6.401 and of the optimal equals 6.223
time slots. The results, in both experiments, of the average
delay (over N ∈ [10, 60]) and the obtained delays for N = 16
are summarized in Table I.

We now examine the worst-case delay in the same synthetic
simulations. We again compare the results of the relevant
greedy algorithm with the optimal solution. Since the prob-
abilities for the different packet types do not influence the
worst-case delay, we do not distinguish between the two op-
tions discussed above of identical or geometrically decreasing
probabilities. However, the dependency between the sets of
tasks (selected independently or according to one of three task
distributions) is still important.

The results are based again on the average of 103 experi-

TABLE II
SUMMARY OF THE SYNTHETIC EXPERIMENTS FOR THE WORST-CASE

DELAY FOR N ∈ [10, 60]

(A) Average value of the delay (in time slots)
Experiment Greedy Optimal

(i) Independent types 7.838 7.820
(ii) Distribution-based types 7.162 7.158

(B) Delay for N = 16 (in time slots)
Experiment Greedy Optimal

(i) Independent types 9.369 9.273
(ii) Distribution-based types 7.699 7.678

ments and are presented in Fig. 6. The two upper curves present
the delay when the k = 8 types are drawn independently (as
in Fig. 4). The two bottom curves examine the case where
the types are drawn based on one of three task distributions
(as in Fig. 5). For this metric of the worst-case delay, the
results of the (second) greedy algorithm are even closer to
the optimal solution. For the independent types, the average
value of the optimal worst-case delay is 7.820 while the greedy
algorithm obtains an average value of 7.838 (larger by only
0.23%). The obtained values of the worst-case delays are of
course larger than the corresponding values of the average
delays discussed earlier. When the sets of tasks are selected
based on one of predetermined distributions, the delays are
shorter and equals 7.158 and 7.162, respectively. Considering
again the independent sets of tasks, the value of the optimal
worst-case delay when N = 16 equals 9.273 time slots. When
the number of cores is N = 60, the k = 8 pipelines can be
served separately and the value of the worst-case delay equals
the average value of the maximal number of tasks per type,
7.196. A short summary of the results is given also in Table II.

As demonstrated in Example 3, there often exists a tradeoff
between the two metrics of the average delay and the worst-
case delay. We study this tradeoff by comparing both delays of
the solutions for the two greedy algorithms. The first algorithm
that tries to minimize the average delay, might achieve far-
from-optimal worst-case delay while the second algorithm
that optimizes the worst-case delay can result in a relatively
high average delay. We examine this for the same instance
from Fig. 4 (k = 8 types with r = 10 distinct tasks, each
required with probability of 0.5 by each type, identical type
probabilities, 103 experiments). The results are illustrated in
Fig. 7 and Fig. 8.

Fig. 7(a) shows the result of the first algorithm for mini-
mizing average delay and Fig. 7(b) the results of the second
algorithm for minimizing worst-case delay. For N ∈ [10, 60],
in (a) the average value of the average delay is 6.197 and that
of the worst-case delay is 8.05. In (b), the average value of
the average delay is 6.709 and that of the worst-case delay is
7.811. As expected, they are much closer in (b) that optimizes
the worst-case delay, which is always larger.

This is demonstrated also in Fig. 8(a) that examines the ratio
of the worst-case delay by the average delay in the results for
the two algorithms. While in both algorithms, the worst-case
and the average delays have similar values for small number of



13

Number of cores (N)
10 20 30 40 50 60

D
e

la
y
 (

ti
m

e
 s

lo
ts

)

4

5

6

7

8

9

10
Worst-case delay (D)
Average delay (T)

(a) Algorithm for minimizing the average delay

Number of cores (N)
10 20 30 40 50 60

D
e

la
y
 (

ti
m

e
 s

lo
ts

)

4

5

6

7

8

9

10
Worst-case delay (D)
Average delay (T)

(b) Algorithm for minimizing the worst-case delay

Fig. 7. Algorithm comparison: The worst-case and average delay in the results of the two algorithms. In (a), the algorithm for minimizing average delay. In
(b), the algorithm for minimizing worst-case delay. For both algorithms, minimizing one delay results in an increase for the other.
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Fig. 8. Algorithm comparison: (a) presents the ratio of the worst-case delay and the average delay in both algorithms. The ratio is smaller when the worst-case
delay is minimized. (b) illustrates the relative increase of each of the delays as a result of minimizing the other.
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(a) Average-case delay vs. number of distinct tasks (r)
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Fig. 9. Algorithm scalability: (a) presents the average delay as a function of the number of distinct tasks (r) (with k=8 packet types). (b) describes the
worst-case delay as a function of the number of packet types number (k) (with r=10 distinct tasks). Results are calculated based on the corresponding greedy
algorithms.

cores (where the solution is often composed of a single pipeline
with all cores), for larger values of N ∈ [10, 60] we can see
different ratios in the two algorithms. In the first algorithm the
ratio grows up to 1.443, while in the second the maximal value
of the ratio is 1.239. Fig. 8(b) describes the increase in each
of the delays achieved by running the other algorithm. The
worst-case delay increases by up to 8.4% by using solutions
for the first algorithm. For a large enough number of cores, the
solution of the first algorithm serves each type separately and
also often achieves an optimal worst-case delay that equals the
largest demand in the input. For the average delay, the increase
is larger and can equal up to 16.5%. This larger increase follows
an inherent property of the algorithm for minimizing the worst-
case delay that simplifies its input by colliding two types when

the required tasks of one is a subset of the demand of another.
Thus a type can often be served unnecessarily by a longer
pipeline. While this never influences the worst-case delay, it
can increase the average delay. Accordingly, even for a large
number of cores, we can see an increase in the average delay
considering solutions of the second algorithm.

In Fig. 9, we examine the scalability of the results by
considering larger values of the distinct tasks number r or
the number of types k. We again let a task be required by
a type with a probability of 0.5. In (a), we examine the
dependency in r (with k = 8 types). Longer delays are
obtained for larger demands and the minimal number of cores
equals of course r. The number of required cores to obtain
the minimal delay by separating each type in a dedicated
pipeline, is correlated to (and larger than) the expected number
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of required tasks (0.5 · k · r). It equals 55,98,189 and 365 for
r = 10, 20, 40, 80, respectively. We also compare the results
of the greedy algorithm to the optimal delays obtained by
considering all possible solutions. We find out that these results
are also close-to-optimal even for larger r. For each value of
r, we compare the two delays for N ∈ [r, 0.5 ·k · r], values for
which the dependency in N is strong. The average difference
in the delay was 0.163, 0.353, 0.665 and 1.162 time slots for
the different values of r = 10, 20, 40, 80, respectively. We are
encouraged by the fact the average relative increase in the delay
is 2.24%, 2.38 %, 2.24% and 1.98%, i.e. relatively small and
not increasing as a function of r.

In (b), we consider various values of types number k (with
r = 10) and examine the worst-case delay. With more types, the
probability to have at least one large demand is increasing and
for a given number of cores enforces to share the pipelines of
more types. For instance, for k = 16 it takes N = 79 cores to
obtain a minimal worst-case delay of 6.569, while for k = 128
a delay of 8.874 is obtained with 170 or more cores. Generally,
for large k this number is smaller than the expected number of
required tasks (0.5 · k · r) since a single pipeline for each type
is not necessarily required to minimize the worst-case delay.
We cannot compare these results to the optimal ones to the
increasing number of solutions for larger k.

VII. CONCLUSION

In this paper we introduced the pipeline sharing problem
in multi-core chips. We explained the tradeoff between the
number of needed cores and the obtained delay. We studied
two optimization problems of minimizing the average delay
or alternatively the worst-case delay given a limited number
of cores. We suggested optimal algorithms for each of the
problems that apply under different assumptions on the input.
We also described greedy algorithms for the two problems for
the general case. Finally, we presented experimental results that
demonstrated that the greedy algorithms often achieve delays
that are close to optimal. They also showed the often-existing
tradeoff between the two metrics.
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[14] K. Kogan, A. López-Ortiz, S. I. Nikolenko, and A. Sirotkin, “Multi-
queued network processors for packets with heterogeneous processing
requirements,” in IEEE COMSNETS, 2013.

[15] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE Com-
munications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[16] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: Enabling innova-
tion in middlebox applications,” in ACM SIGCOMM HotMiddleboxes,
2015.

[17] E. S. H. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multipro-
cessor scheduling,” IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 2, pp.
113–120, 1994.

[18] N. Weng and T. Wolf, “Profiling and mapping of parallel workloads on
network processors,” in ACM SAC, 2005.

[19] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in USENIX NSDI, 2015.

[20] J. Koziol, Intrusion Detection with Snort. SAMS, 2003.
Ori Rottenstreich is a Postdoctoral Research Fellow
at the department of Computer Science, Princeton
university, working with Prof. Jennifer Rexford. He
received the B.S. in Computer Engineering (summa
cum laude) and Ph.D. degree from the Electrical
Engineering department of the Technion, Haifa, Israel
in 2008 and 2014, respectively. He is a recipient of
the Rothschild Yad-Hanadiv postdoctoral fellowship,
the Google Europe PhD Fellowship in Computer
Networking, the Andrew Viterbi graduate fellowship,
the Jacobs-Qualcomm fellowship, the Intel graduate

fellowship and the Gutwirth Memorial fellowship. He also received the Best
Paper Runner Up Award at the IEEE Infocom 2013 conference.

Isaac Keslassy (M’02, SM’11) received his M.S.
and Ph.D. degrees in Electrical Engineering from
Stanford University, Stanford, CA, in 2000 and 2004,
respectively. He is currently an associate professor in
the Electrical Engineering department of the Tech-
nion, Israel. His recent research interests include the
design and analysis of high-performance routers and
multi-core architectures. He is the recipient of the
European Research Council Starting Grant, the Alon
Fellowship, the Mani Teaching Award and the Yanai
Teaching Award.
Yoram Revah received the B.S. (cum laude) and
M.S. degrees in Electrical Engineering from the
Technion, Israel in 1997 and 2001, respectively. He
worked as a VLSI Engineer and a research assistant in
the Electrical Engineering department at the Technion
until 2003. He received his Ph.D (summa cum laude)
from the Communication Systems Department at Ben
Gurion University of the Negev, Israel in 2008, where
he held a Kreitman Foundation Fellowship. Currently,
he is working in Marvell Israel in a position of
Research & Academic Relationship engineer.
Aviran Kadosh received his B.S. degree in com-
puter engineering (cum laude) from the Electrical
Engineering department of the Technion, Haifa, Is-
rael in 1999. With over 15 years of experience
in VLSI development and networking technologies,
Aviran has served in various positions throughout
the development cycle. His areas of interest is fabric
networks, traffic management and network-on-chip
technologies.


