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Abstract—Hash tables form a core component of many algorithms as well as network devices. Because of their large size, they often
require a combined memory model, in which some of the elements are stored in a fast memory (for example, cache or on-chip SRAM)
while others are stored in much slower memory (namely, the main memory or off-chip DRAM). This makes the implementation of
real-life hash tables particularly delicate, as a suboptimal choice of the hashing scheme parameters may result in a higher average
query time, and therefore in a lower throughput.
In this paper, we focus on multiple-choice hash tables. Given the number of choices, we study the tradeoff between the load of a hash
table and its average lookup time. The problem is solved by analyzing an equivalent problem: the expected maximum matching size
of a random bipartite graph with a fixed left-side vertex degree. Given two choices, we provide exact results for any finite system, and
also deduce asymptotic results as the fast memory size increases. In addition, we further consider other variants of this problem and
model the impact of several parameters. Finally, we evaluate the performance of our models on Internet backbone traces, and illustrate
the impact of the memories speed difference on the choice of parameters. In particular, we show that the common intuition of entirely
avoiding slow memory accesses by using highly efficient schemes (namely, with many fast-memory choices) is not always optimal.

Index Terms—maximum matching, random bipartite graph, combined SRAM/DRAM memory model.
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1 INTRODUCTION

1.1 Background

Hash tables and their variations form a core building
block in various algorithms and architectures, such

as cache mechanisms, computer software, and network
devices. Ideally, all elements are stored in a fast memory
(e.g., SRAM or L1 cache) and can be accesses efficiently.
However, in many cases, it is often impossible to fit the
whole hash table within the fast memory; some elements
need to be stored in a slower memory (e.g., DRAM or L2
cache). This may significantly decrease the performance
of the hash table and, consequentially, the performance
of the entire system.

Network devices are a prime example in which such a
problem arises. These devices increasingly rely on hash
tables to efficiently implement their algorithms, in tasks
as diverse as load-balancing, peer-to-peer, state manage-
ment, monitoring, caching, routing, URL filtering, and
security [1]–[5]. As a result, the device designers often
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implement a standard hash table structure that is re-used
in several of those applications. Unfortunately, due to
stringent memory size constraints in network devices, it
is often impossible to fit the whole hash table within
on-chip SRAM. Remaining elements are stored in off-
chip DRAM, which is slower, but can also hold more
elements [6]–[10]. This is illustrated in Figure 1.

Unlike typical hash tables, network hash tables have
two specificities. First, they are rebuilt infrequently. For
all practical purposes, we can assume that they are
built offline. Second, they need to process elements with
query/modify requests extremely fast, using a small and
bounded number of memory accesses. For example, a
network hash table may store the states of a given
number of flows, or the bills of a given number of
customers. The set of flows or customers in the hash
table is assumed to be predetermined. However, at each
new packet arrival, the hash table needs to be accessed
immediately and within a bounded time. Thus, multiple-
choice hashing scheme are are particularly suitable to
network hash tables [10], [11]. In these schemes, each
element can only be stored in one of d possible fixed-size
buckets, usually of size 1. Consequentially, for perform-
ing lookup operation one need to check each one of the
d corresponding buckets.

In a typical setting of a network hash table, it needs to
support n elements using an SRAM size of m buckets.
Given that it relies on multiple-choice hashing, each of
the n elements can hash into d arbitrary buckets using
independent hash functions. Then, the network hash
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table designer faces several fundamental tradeoffs. For
example, if d is too small, i.e. each element can only
hash into a few buckets, the hashing scheme may not
be efficient. Therefore, more elements may need to be
placed in the slow DRAM. On the other hand, if d is
too large, even if all elements are stored in the SRAM, it
may take too long to check in which bucket (out of the d
potential SRAM buckets) each element actually resides.

As a result, incorrect hash-table settings can signifi-
cantly increase the average delay needed to deal with each
packet. Therefore, when incoming packets are processed
sequentially, incorrect settings can also significantly de-
crease the throughput of the network hash table. Naturally,
to maximize the throughput of the hash table given
the number of hash functions d, we should to store
the largest possible number of elements in the available
SRAM memory. Since lookup operations are typically the
vast majority of operations in network hash tables, we
focus on the case of d = 2. This ensures a fast lookup
operation, when the element is indeed in the SRAM.

In order to tackle this problem for any d, we consider
the bipartite graph formed by the n elements on one side,
the m (SRAM) buckets on the other, and d links leaving
each element for the buckets according to the hash values
of the element. Since we assume that the hash table is
practically built offline, then the largest number of ele-
ments that can be stored in the SRAM memory is exactly
the size of the maximum matching. Therefore, we place
these elements in the SRAM memory, and the remaining
elements in the slower DRAM memory. Furthermore,
this result provide a lower bound on the number of elements
that should be stored off-chip given any multiple-choice
hashing scheme with d choices, thus defining a capacity
region of these schemes.

Finally, although we are mainly interested in lookup
operations in network devices, updates (i.e., insertion of
new elements) can be made using a variation of cuckoo
hashing [12]. Upon arrival of a new element, it is placed
according to one of its d hash values. If all buckets are
full, it displaces another element, which is then moved to
one of its other d−1 buckets and so on. If after some pre-
determined number of element displacements no room
is found, the element that was last displaced is stored
in the slower memory. Since this algorithm is analogous
to the seminal Ford—Fulkerson algorithm [13], [14] of
finding augmenting paths in graphs, if the number of
allowed displacements is high enough, it practically
computes a maximum size matching on the new graph,
thus achieving the maximum capacity of the hash table.

1.2 Our Contributions

Our first contribution is that we study the best possible
performance of multiple-choice hashing schemes with d = 2.
While it has been shown that there is multiple-choice
hashing scheme (namely, cuckoo hashing) for which all
elements could fit in the hash table with high probability
up to a load n/m = 0.5 [15]–[18], we also analyze the best
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Fig. 1. Typical memory layout of a network device. The
dashed rectangle delimits the chip’s area. Most of the
hash table is generally stored in the on-chip memory,
while the remaining elements are stored in the slower off-
chip memory.

possible performance when the load gets beyond 0.5.
To do so, we essentially transform the problem into the
above-mentioned graph theory problem, then provide
a theoretical analysis, and later evaluate the real-life
behavior by using Internet backbone traces.

Specifically, we study the expected maximum matching
size in a random bipartite graph where the destinations
of the d outgoing edges from each left-side vertex are
chosen uniformly at random. This models typical in-
dependent perfect hash functions, that often yields an
excellent approximation of real-life hash functions [10],
[19]. We decompose each random bipartite graph into
connected components, and then separately analyze each
component and evaluate the size of its local maximum
bipartite match. Then, we count the number of connected
components in the graph and thus derive the size of
the maximum matching in the entire graph. Remarkably,
we can obtain an exact expression of the average best
possible performance in any finite system. This non-
asymptotic analysis is particularly needed when n and m
are known to be small, such as in cache architecture. We
further show that the actual maximum matching size is
sharply concentrated around its expected value. Thus,
the difference between n and the expected maximum
matching size provides, with high probability, the number
of elements that should be stored in the off-chip DRAM.

Second, we provide an exact analysis of a common
multiple-choice hashing implementation in which the
memory is (statically) partitioned into two segments,
such that each segment corresponds to the image of
one hash function; this implementation is particularly
attractive when using single-ported memories.

Third, we present exact analysis when, in order to
minimize the number of memory accesses, the average
number of choices is less than 2.

Fourth, we obtain a lower bound on the required
DRAM size when the number of hashes d exceeds 2.

We further evaluate our results on real-life Internet
packet traces from an OC192 backbone link, using a real-
life 64-bit mix hash function. We show that when the
load is 1, i.e. n = m, we can insert an average of 83.81%
of the packets within the hash table. Likewise, when
the load is 0.6, i.e. n = 0.6m, we can insert in average
99.38% of the packets, thus only storing 0.62% on off-



3

chip DRAM. We further confirm our analytical models
and show that our bounds for d > 2 are typically within
1% of the exact value.

Finally, we compare the network hash table through-
put using different numbers d of hash functions. We first
provide analytical results when the on-chip memory is
partitioned into two (unequal) segments. Then, we run
simulations and show that, unlike common belief, it is
still worth using d = 2 hash functions beyond a load
of 0.5, even though some of the packets are stored on
DRAM. We also illustrate that the exact load at which
a system with d = 3 outperforms a system with d = 2
depends on ratio between the SRAM and the DRAM
access times.

1.3 Related Work

There is a large literature on multiple-choice hashing
schemes for general hash tables [11], [20]. In particular,
regarding the cuckoo hashing scheme [6]–[9], [15]–[18],
[21]–[25], the main effort has been to find a load thresh-
old, such that for any load below the threshold, a perfect
matching exists with high probability. It is known that a
cuckoo hashing scheme with d = 2 succeeds to store all
elements with high probability if the load is less than 0.5,
but fails when the load is larger [16]. Recent works [15],
[17], [18] have also settled the problem of finding the
corresponding thresholds for d > 2. Moreover, [8] shows
that cuckoo hashing with a stash (in our case, DRAM)
of size s, d = 2, and a load less than 0.5 fails with
probability O (n−s). Our paper differs in that we also
consider the average efficiency of cuckoo hashing for
load values beyond 0.5 for d = 2. Moreover, while most
of the works investigate only the asymptotic behavior,
we also present in our paper analytical expressions for
finite random graphs along with the asymptotic ones. Fi-
nally, we assume that the DRAM size is not a constraint.

We are particularly interested in schemes for network
hash tables [10]. In such schemes, the lookup times are
often assumed to be bounded. For instance, the multi-
level hash table (MHT) [7], [26] scheme partitions the
SRAM memory into subtables, with a single hash func-
tion per subtable. Moreover, additional papers consider
the problem of off-chip memory. When the SRAM is too
small, an on-chip summary of the off-chip elements is
used to reduce the average number of off-chip accesses
to almost 1 per element query [27]. But note that as a con-
sequence, an off-chip access is performed in any hashing
operation. Another non-uniform memory model-based
hashing scheme is the peacock hashing, which also stores
clues in on-chip memory and improves upon MHT for
deletions [28]. Additional works also focus on hash
tables for specific applications, such as those based on
Bloom filters [5], [10], [29]. However, all these papers do
not focus on optimizing parameters in order to reduce
the overall latency in a combined SRAM/DRAM system,
which is the goal of this paper. Other related aspects of
multiple-choice hashing in multiple disks is also found
in [30].

Finally, there are several related results in graph the-
ory. [31], [32] provide the probability of a perfect match-
ing in several random bipartite graph models; however,
they do not provide the expected maximum matching
size when this probability is different from one. Several
studies investigate the expected maximum matching
size in other random graphs models, and especially
trees [33]–[36]. However, these results are not applicable
to random bipartite graphs, where each left-side vertex
chooses a constant number of right-side vertices, as
considered in this paper.

Paper Organization: We start by introducing the
preliminary definitions in Section 2. Then, Section 3 pro-
vides the expected maximum matching size of random
bipartite graphs with left-side vertex degree 2, where a
variation of the problem in which each left-side vertex
degree is at most 2 is considered in Section 4. Next, in
Section 5, we solve the more appealing problem in which
the right-side vertices are partitioned into two subsets,
and each left-side vertex has exactly one edge to each
of these subsets. Section 6 provides an upper bound on
the expected maximum matching size when the constant
left-side vertex degree is at least three. Last, in Section 7
we verify and evaluate our results, including by real-life
trace-based experiments. Note that due to space limits,
we present the less interesting proofs in the appendices
of this paper, which are published as “Supplemental
Material”.

2 BIPARTITE GRAPH MODEL

2.1 Model

In this section, we define multiple-choice hashing using a
bipartite graph, with the left-side vertices corresponding
to elements and the right-side vertices to SRAM buckets.

Formally, given two disjoint sets of vertices L and R
of size n and m respectively, we consider a random
bipartite graph G = 〈L+R,E〉, where each vertex
v ∈ L has d outgoing edges whose destinations are
chosen independently and uniformly at random among
all vertices in R. We allow two (or more) choices for
the same destination vertex, implying that G might have
parallel edges. For brevity, we sometimes say that v ∈ L
chooses a vertex v′ ∈ R if (v, v′) is in E. The load of G is
denoted by α = n

m .
We also consider a static partitioning of two choices; the

set R is partitioned into two disjoint sets Ru and Rd of
sizes β · m and (1− β)m. In that case, we consider a
random bipartite graph Gβ = 〈L+ (Ru ∪Rd), E〉, where
each vertex v ∈ L chooses independently and uniformly
at random exactly one vertex in Ru and another vertex
in Rd.

We want to find both the expected maximum matching
size as well as the normalized limit expected maximum
matching size for the above-mentioned graph models. To
do so, we model our hash functions as fully random,
which often yields an excellent approximation [10], [19].
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Definition 1: For any graph G, let µ (G) be the expected
size of the maximum size matching.
Notice that if G is a deterministic graph, then µ (G) is
simply the size of its maximum size matching.

Definition 2: The normalized limit expected maximum

matching size γ = limn→∞
µ(·)
n is the limit percentage of

the expected maximum matching size (out of the number
of the vertices in L).
Note that often we are interested in n−µ(G), which cor-
responds to the expected number of unmatched left-side
vertices in the graph. This corresponds to the number of
elements that should be stored in the off-chip DRAM.

Finally, our goal is to model the throughput of the
network hash table. To do so, we first assume that each
access to on-chip SRAM takes a unit amount of time,
while each access to off-chip DRAM takes a latency of
b (where b > 1, e.g. b = 10). Also, all accesses are
sequential. For instance, assume that we use with d = 2,
and a given element is in the DRAM. Then a query for
this element would first successively check the d = 2
SRAM buckets, then the DRAM, for a total latency of
b+ 2.

We further assume that all the elements in the hash
table are equally likely to be accessed. We define the
average latency as the average total access latency over
all elements in the hash table, including the elements
in the SRAM as well as in the DRAM. We further
define the throughput of the network hash table as the
inverse of its average latency. For example, if it takes
on average 2 accesses to query an element, then the
hash table throughput is 1

2 . Our goal is to maximize this
throughput.

2.2 Assumptions

In our paper, we make several key assumptions that may
limit the reach of our results.

First, we assume that the network hash table is built
offline. So we can store a number of elements in the
SRAM as large as the maximum matching size. Fur-
thermore, we assume that the d buckets can only be
accessed serially. Therefore, although no multiple-choice
algorithm with d = 2 can beat the above SRAM uti-
lization, it may theoretically yield a better throughput.
This is because it may be better to store less elements in
the SRAM, most of them in their first choice. This may
improve the overall delay although more elements need
to be stored in the DRAM.

Our second assumption is that the hash table is ac-
cessed sequentially, such that each new packet needs
to wait for the end of the former packet. As a result,
throughput is inversely proportional to packet delay.
This assumption is designed to cope with general hash
tables, in which several applications may share the hash
table, and therefore each packet may need to access and
modify several elements in the hash table according to
different application-based keys. Since the modifications
of each packet may also affect the next packets, it is

simpler to wait for its processing to end. The hash table
may be made more efficient by processing packets of
different application-based flows in parallel. But such
a scheme may become too hard to implement for a
large number of applications, because each key of each
packet needs to be compared with the relevant keys of
all previous packets currently accessing the hash table.
We make this assumption also when analyzing schemes
that are originally meant to work in parallel (such as in
Section 5). In any case, our results can also be extended
to such parallel accesses.

Our third assumption is that all element queries are for
elements that are indeed stored in the hash-table. This
assumption is common in several networking applica-
tions [10], while in others it requires a set membership
query before actually accessing the hash-table. To obtain
the expected latency, we further assume that all elements
in the hash table are equally likely to be accessed.

Finally, our last assumption is that each access to
DRAM is b times slower than an access to SRAM,
i.e. the impact of DRAM is mainly through its access
time. We do not take into account the chip in/out pin
capacity, which may further reduce the range of hashing
options available. As a first approximation, we also do
not consider the DRAM division into banks, and do not
consider non-uniform DRAM access times.

3 BIPARTITE GRAPHS WITH d = 2

We are now interested in evaluating the expected best
performance of multiple-choice hashing schemes with
d = 2. As explained above, we approach the problem
using a graph-theory perspective, since it is the same as
evaluating the expected maximum matching size of the
random bipartite graph G.

To do so, we consider the connected components
of the random bipartite graph G. We start by stating
some lemmas on these connected components, before
establishing our main result on the expected matching
size. Note that further evaluation of the results reported
here appears in Section 7.

3.1 Expected Maximum Matching Size

We first consider an arbitrary bipartite graph H =
〈LH +RH , EH〉, where each left-side vertex in LH

chooses d = 2 right-side vertices in RH (parallel edges
are allowed), with |LH | = s and |RH | = q.

Figure 2 illustrates such a bipartite graph with s = 3,
q = 4, and left-side vertex degree 2. Dashed lines
represent edges not in the maximum size matching,
while solid lines represent edges in the maximum size
matching.

We start by quoting a few useful and straightfor-
ward lemmas, before stating our result. These lemmas
basically state that for any connected component in a
bipartite graph with left-side vertex degree 2, either (a)
the number of left-side vertices is bigger or equal to
the number of right-side vertices, or (b) the number of
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Fig. 2. Example of bipartite graph with left-side vertex
degree 2.

left-side vertices equals the number of right-side vertices
minus one. Furthermore, while in the former case (a) the
maximum matching size of the connected component is
exactly the number of right-side vertices, in the latter
case (b) it equals the number of right-side vertices minus
one.

These lemmas are proved in the appendices of this
paper which are published as “Supplemental Material”.

Lemma 1: If s ≤ q − 2, then H is not connected.

Lemma 2: If H is connected and s ≥ q, then µ (H) = q.

Lemma 3: If H is connected and s = q−1 then µ (H) =
s.

Lemma 4: For any graph with s = q−1, H is connected
if and only if it is a tree.

Lemma 5: The number Ts of labeled connected bipartite
graphs H whose |LH | = s and |RH | = s + 1 is Ts =
(s+ 1)

s−1
s!

We can now prove the next theorem on our random
bipartite graph G, which is the main theoretical result
of this paper. This theorem provides the exact expected
maximum matching size µ (G) with d = 2, and therefore
the exact expected number of elements that can fit the
on-chip SRAM memory in that case. Therefore, a corol-
lary is that n−µ (G) also gives us the expected number of
elements that are left outside the chip.

Our basic approach to compute µ (G) with d = 2 is by
computing the expected number of right-side vertices
that are left out of any maximum matching, and then
subtracting this value from m. Note that the specific
rights-side vertices that are left out may differ from
one maximum matching to another, but their number is
always the same. To compute their number, we consider
the connected components of G for which there is no
matching consisting of all the right-side vertices of the
component. This is only possible in connected coponents
where the number of left-side vertices equals the number
of right-side vertices minus one, for which exactly one
right-side vertex is left out of any maximum matching.
Therefore, our problem translates into counting these
connected components. This is reflected in the following
theorem where the s-th term in the summation cor-
responds to the expected number of connected com-
ponents with s left-side vertices and s + 1 right-side
vertices.

Theorem 1: Let d = 2 and ℓ = min (n,m− 1). The

expected maximum matching size µ (G) is

µ (G) = m−
ℓ
∑

s=0

{(

n

s

)

·

(

m

s+ 1

)

·

(

1−
s+ 1

m

)2(n−s)

·

(

s+ 1

m

)2s

·
2ss!

(s+ 1)s+1

}

Proof: Let M be a maximum matching of G. Our
proof is based on counting the expected number of
vertices in R that are not part of M , and on the decom-
position of G into its connected components.

Lemma 1 yields that any connected component of G
with s left-side vertices has at most s + 1 right-side
vertices. We call a connected component with s left-side
vertices and s + 1 right-side vertices a deficit component
of size s. Lemma 3 implies that the maximum matching
size of any such deficit component is s. Therefore, exactly
one of its right-side vertices is not part of M . Notice that
in all other connected components, where q < s+ 1, the
maximum matching size of G is exactly q (Lemma 2),
implying that all their right-side vertices are part of M .

Thus, in order to calculate the size of M , it suffices
to count the number of deficit components x. The size of
M is m− x because exactly x right-side vertices do not
participate in M , one for each deficit component.

Consider a random bipartite graph, with s left vertices,
each of degree 2, and s + 1 right vertices, and let Ps =
2sTs

(s+1)2s
be the probability that it is connected. Note that

we multiply Ts by 2s because Ts only counts connected
bipartite graphs, which are necessarily trees (Lemma 4),
with no distinction between the two edges connected to
each left vertex, while in the denominator we count all
possible instances of random bipartite graphs as above,
where we distinct between the two edges connected to
each left vertex.

The expected number of deficit components of size

s is
(

n
s

)(

m
s+1

)

·
(

1− s+1
m

)2(n−s) ·
(

s+1
m

)2s · Ps. The above
expression consists of the following factors (in order):
(i) choosing the s vertices in L;
(ii) choosing the s+ 1 vertices in R;
(iii) the probability that all s + 1 vertices in R may be
connected only to the chosen s vertices in L;
(iv) the probability that all s vertices in L are only
connected to the s+ 1 vertices in the right side; and,
(v) the probability that all chosen vertices are connected.

Finally, we calculate x by summing over all possi-
ble values on s. As mentioned before, the expected
size of M is given by m − x. We get: µ (G) = m −
∑ℓ

s=0

(

n
s

)(

m
s+1

)

·
(

1− s+1
m

)2(n−s) ·
(

s+1
m

)2s · Ps, where ℓ =

min (n,m− 1), Ps =
2sTs

(s+1)2s
, and Ts = (s+ 1)

s−2 ·(s+ 1)!,

as found in Lemma 5.
The following example provides a simple illustration

of the above theorem when n = m = 2.
Example 1: Consider the case n = m = 2 (and d = 2).

Then in all random graphs the maximum matching size
is 2, except for the two extreme cases where all 4 edges
are connected to a specific vertex in R, and then the
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maximum matching size is 1. Each such case occurs

with probability
(

1
2

)4
. Hence, µ (G) =

(

2 ·
(

1
2

)4
)

· 1 +
(

1− 2 ·
(

1
2

)4
)

· 2 = 15
8 = 1.875. Theorem 1 looks at

it differently, and first computes the expected number
of connected components where the number of left-
side vertices equals the number of right-side vertices
minus one. In the setting where n = m = 2, it is
only possible for connected components that consist of a
single right-side vertex (corresponding to s = 0). Finally,
by subtracting this value from the total number of right-

side vertices m, we get µ (G) = 2−2·
(

1
2

)4
= 15

8 , precisely
as we obtained initially in this example.

3.2 Concentration Result

We next show that the size of the maximum matching
is highly concentrated around its expectation µ(G). This
implies that the number of off-chip elements will be close
to its average value.

In order to prove this result, we apply Azuma’s in-
equality to a Doob martingale (more specifically, the
martingale is a vertex exposure martingale of the left-
side vertices). Note that as long as all left-side vertices
pick their edges independently, this concentration result
holds regardless of the value of d, and more generally
regardless of the specific distribution over which the
hash functions are defined. Therefore, the concentration
result also applies to the settings of the next sections.

Theorem 2: Let H be a specific instance of the random
graph G, as defined in Section 2. For any λ > 0,

Pr(|µ(H)− µ(G)| > λ
√
n) < 2e−λ2/2.

Notice that if we are interested only in one-sided
bounds, we can get a slightly tighter result: Pr(µ(G) −
µ(H) > λ

√
n) < e−λ2/2. This is exploited in the following

corollary, which shows that to obtain a given overflow
fraction, the number of off-chip elements grows sub-
linearly with n beyond its average value.

Corollary 3: With probability at least 1− ǫ, the number
of elements that need to be stored in off-chip DRAM is
less than n− µ (G) +

√

2n · ln (1/ǫ), where µ(G) is as in
Theorem 1.

3.3 Limit Normalized Expected Maximum Matching
Size

Our results above provide exact expressions, given n
elements and m SRAM buckets. We now want to study
the scaling properties of the hash table, and are inter-
ested in the asymptotic expression where n → ∞ with
α = n

m constant. To do this, we compute the limit

of µ(G)
n as n → ∞ such that α = n

m . It results in
an interesting connection between the limit normalized
expected maximum matching size and the Lambert-W
function, and even a connection between the perfect
matching threshold and the radius of convergence of the
Lambert-W function [37].

For further details on the Lambert-W function, see also
Appendix B (under “Supplemental Material”).

Theorem 4: Let d = 2. The limit normalized expected

maximum matching size γ = limn→∞
µ(G)
n is given by:

γ =
1

α
+

1

2α2
·W
(

−2α · e−2α
)

+
1

4α2
W 2

(

−2α · e−2α
)

, (1)

where the Lambert-W function is the inverse function of
the function ω(x) = xex.

Proof: We compute the limit of µ(G)
n as n → ∞ such

that α = n
m :

γ = lim
n→∞

1

n
·
(

m−
ℓ
∑

s=0

{

(

n

s

)

·
(

m

s+ 1

)

·

(

1− s+ 1

m

)2(n−s)

·
(

s+ 1

m

)2s

· 2ss!

(s+ 1)
s+1

})

We find through differentiation that
(

1− s+1
m

)2(n−s)
is

an increasing function with respect to n (where m = n
α ).

Moreover, the expansion of 1
n ·
(

n
s

)(

m
s+1

)

·
(

s+1
m

)2s
shows

that it is also an increasing function. Therefore, their
product is also increasing and, by the monotone con-
vergence theorem [38], we get

γ = lim
n→∞

m

n
−

∞
∑

s=0

lim
n→∞

(

1

n
·
(

n

s

)(

m

s+ 1

)

·

(

1− s+ 1

m

)2(n−s)

·
(

s+ 1

m

)2s

· Ps

)

where by convention
(

u
v

)

= 0 for u < v. By substituting
the expression for Ps, and using the facts that

(

n
s

)

=
ns

s! +O
(

ns−1
)

and limn→∞ (1 + a/n)
n
= ea, we deduce:

γ = lim
n→∞

m

n
−

∞
∑

s=0

lim
n→∞

(

1

n

ns

s!

ms+1

(s+ 1)!
e−2α(s+1)·

(s+ 1)
2s

m2s
· 2

s (s+ 1)
s−1

s!

(s+ 1)
2s

)

By substituting m = n
α , and simplifying the above

expression, we get:

γ =
1

α
− 1

α
·

∞
∑

s=0

αs · 2s · (s+ 1)
s−1

(s+ 1)!
· e−2α(s+1)

=
1

α
− 1

2α2
·

∞
∑

j=1

(

−2α · e−2α
)j · (−j)

j−2

j!

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a formal power series,

where by substituting x = −2α · e−2α we get the above
expression. By differentiating T (x) and multiplying by
x, we get:

x · d

dx
T (x) = −

∞
∑

j=1

(−j)
j−1

j!
· xj = −W (x) ,

where the Lambert-W function is the inverse function
of the function ω(x) = xex [37], and the last equality
follows from its known Taylor expansion that converges
as long as x is within the radius of convergence with
|x| ≤ e−1 [37].
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Given that x · d
dxT (x) = −W (x), we compute T (x):

T (x) =

∫

1

x
· (−W (x)) dx = −W (x)− 1

2
W 2 (x) ,

with convergence within |x| ≤ e−1.
Interestingly, the function f (α) = −2α · e−2α gets

its minimum at α = 0.5, where it precisely equals the
radius of convergence −e−1. Therefore, for all α we can
substitute x = −2α · e−2α, since we are within the radius
of convergence of T (x), and we finally derive the result.

We note that this particular asymptotic result can be
also achieved by the theory of giant components in
random graphs [39], [40]. However, this technique is not
applicable for finite n and m, and cannot be used to
derive most of the other results in this paper. (A proof
outline using this technique appears in the appendices
which are published as “Supplemental Material”).

The following simple illustration of the result shows
that any multiple-choice hashing scheme with d = 2 can
only reach about 84% of SRAM occupancy when the load
is 1.

Example 2: In case α = 1, that is n = m, the normalized
limit expected maximum matching size is

γ = 1 +
1

2
·W

(

−2 · e−2
)

+
1

4
W 2

(

−2 · e−2
)

≈ 0.8381.

The following corollary shows that when the load is
below 1

2 , the probability for a right-side vertex to be part
of a maximum matching goes to 1. This corollary also
follows from the previously known result that there is a
perfect matching with high probability in cuckoo hash
tables with load α ≤ 1

2 [16].
Corollary 5: Let d = 2 and α = n

m ≤ 1
2 . Then the

limit normalized expected maximum matching size is

γ = limn→∞
µ(G)
n = 1.

Proof: In case α ≤ 1
2 , W

(

−2α · e−2α
)

equals −2α,

thus, γ = 1
α + 1

2α2 · (−2α) + 1
4α2 (−2α)

2
= 1

4 LOW MEMORY BANDWIDTH: BIPARTITE
GRAPHS WITH LOW MEMORY BANDWIDTH

In this section we are interested in a low-memory-
bandwidth version of the hash algorithm. We now let each
element choose either 1 or 2 buckets instead of only 2
buckets, to force them to access less buckets and use less
memory I/O bandwidth.

The idea behind this algorithm is that it may use
less SRAM accesses than a full hashing algorithm. On
the other hand, it will be less memory-efficient and
therefore will also need to access the DRAM more often.
We are interested in the tradeoff between these two
considerations.

Formally, we relax the constraint that each vertex in
L chooses exactly 2 vertices in R, and let each left-side
vertex choose either 1 or 2 right-side vertices. Since we
can divide the set of vertices either deterministically or
randomly, we will discuss the results in both cases. See
also [41] for a similar model.

4.1 Model

Definition 3: Let dv be the number of choices of each
vertex v ∈ L. The average number of choices a is the

average left-side vertex degree, i.e. a =
E(

∑
v∈L dv)
n =∑

v∈L E(dv)

n .
First, in the deterministic case, we find the expected

maximum matching size of the graph Ga = 〈L+R,E〉,
where each vertex v ∈ L independently chooses a
predetermined number dv ∈ {1, 2} of random vertices
in R, such that a = d1+2·d2

n .
Second, in the random case, we analyze the slightly

different case of a random bipartite graph Gp =
〈L+R,E〉 where each vertex chooses two vertices with
probability p and one vertex with probability 1 − p.
This implies that in Gp, the average number of choices
a = 1 + p.

4.2 Connected Components in Deterministic
Graphs

As in Section 3.1, we now consider a deterministic
bipartite graph H = 〈LH +RH , EH〉, with |LH | = s and
|RH | = q. We assume that the degree of each vertex in
LH is at most 2.

Proposition 1: Lemmas 1, 2, and 3 hold also when
the degree of each vertex in LH is at most (but not
necessarily) 2.
Note that the proofs remain almost identical to the
original proofs, replacing a few equalities with the cor-
responding inequalities.

Lemma 6: Let s + 1 = q. If H is connected then the
degree of each vertex in LH is 2.

4.3 Expected Maximum Matching Size

Predetermined Number of Choices—We assume that
each vertex v ∈ L independently chooses 1 ≤ dv ≤ 2
random vertices in R, where dv is predetermined. The
following result provides the expected maximum match-
ing size in this case.

Theorem 6: Given a predetermined average number of
choices a, let d1 = (2− a) · n and d2 = n− d1 = (a− 1) ·
n be the number of vertices in L that choose one and
two vertices in R, respectively. The expected maximum
matching size µ (Ga) is given by:

µ (Ga) = m−
ℓ
∑

s=0

{(

d2

s

)

·

(

m

s+ 1

)

·

(

1−
s+ 1

m

)2(d2−s)+d1

·

(

s+ 1

m

)2s

·
2ss!

(s+ 1)s+1

}

where ℓ = min (d2,m− 1).
Proof: As in the proof of Theorem 1, our proof is

based on counting the expected number of vertices in L
that are not in some specific maximum matching M of
G, based on the decomposition of G into its connected
components. The proof is almost identical, with the
modification that, due to Lemma 6, we only take into
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account the d2 vertices that have a degree of 2 (instead
of all n vertices in the proof of Theorem 1).

Thus, the expected number of connected components
in G with s elements in L and s+ 1 in R is given by:

(

d2
s

)(

m

s+ 1

)

·
(

1− s+ 1

m

)2(d2−s)+d1

·
(

s+ 1

m

)2s

· Ps,

where the above expression consists of the same con-
siderations as in the proof of Theorem 1. Finally, as
before, adding the expressions for all possible s’s and
subtracting the sum from m yields the claimed result.

Random Number of Choices—We assume that each
vertex v ∈ L independently chooses 1 ≤ dv ≤ 2
random vertices in R, where for each v ∈ L, dv equals
2 with probability p, and it equals 1 with probability
1−p. The following result reflects the expected maximum
matching size in this case.

Theorem 7: The expected maximum matching size
µ (Gp) is given by

µ (Gp) =

n
∑

d2=0

(

n

d2

)

· pd2 · (1− p)n−d2 · µ
(

G
a=1+

d2
n

)

,

where µ (Ga) is given by Theorem 6.

Proof: The number of vertices in L with degree 2
follows a Binomial distribution with n experiments and
a probability of success p. In Theorem 6 we found the
expected maximum matching size of each such instance.
Thus, by the law of total expectation, the claimed result
is given by computing the weighted average, where we
compute a by the equations d1+d2 = n and d1+2 ·d2 =
a · n.

4.4 Limit Normalized Expected Maximum Matching
Size

Predetermined Number of Choices—We are also inter-
ested in the asymptotic expression, where n → ∞, such
that we fix both the load α = n

m and the average number
of choices a = d1+2·d2

n of the vertices. This is reflected in
the following theorem.

Theorem 8: The limit normalized expected maximum

matching size γa = limn→∞
µ(Ga)

n with average number
of choices a ∈ (1, 2] is given by:

γa =
1

α
+
W (−2α (a− 1) · e−aα)

2α2 · (a− 1)
+
W 2 (−2α (a− 1) · e−aα)

4α2 · (a− 1)
.

For a = 1, it is γa = 1
α − 1

α · e−α.

Interestingly, if even a small fraction of the elements
do not have choice, then the limit normalized expected
maximum matching size is not 1. This is reflected in the
following corollary.

Corollary 9 ((No) Perfect Matching): If 1 ≤ a < 2 then
γa < 1.

Proof: We show that γa is strictly monotonically
increasing, thus γa < 1 for 1 ≤ a < 2, since γa = 1 for

a = 2. This is shown by differentiating γa with respect
to a:

dγa

da
=−

1

4α2 (a− 1)2
·
(

W
(

−2α (a− 1) · e−aα
)

+ 2α (a− 1)
)

·

W
(

−2α (a− 1) · e−aα
)

Both the first factor − 1
4α2(a−1)2

and the third factor

W (−2α (a− 1) · e−aα) are negative. Thus, if the second
factor is positive then dγa

da is an increasing function with
respect to a ∈ [1, 2).

If α > 0.5, then 2α (a− 1) > 1, and since W (x) is
minimized for x = − 1

e where it equals −1, the second
factor is positive. On the other hand, consider that
α ≤ 0.5. Since W

(

−2α (a− 1) · e−2α(a−1)
)

= −2 (a− 1)α
and W (x) is an increasing function, then we have to
show that −2α (a− 1) · e−2α(a−1) < −2α (a− 1) · e−aα,
that is, −2α (a− 1) > −aα. The last inequality can easily
be shown for 1 ≤ a < 2.

Random Number of Choices—We now study the case
of the random bipartite graph Gp = 〈L+R,E〉, where
each vertex chooses two vertices with probability p, and
a single vertex with probability 1−p. As we show in the
next theorem, the asymptotic expression can be derived
from γa.

Theorem 10: The limit expected maximum matching

size γp = limn→∞
µ(Gp)

n is γp = γa=1+p.

5 STATIC PARTITIONING OF 2 CHOICES

We now consider a popular multiple-choice hashing im-
plementation variant in which the buckets are statically
partitioned into two equal sets, and each element holds
one hash function to each set. This variant is easier to
implement in hardware, because it can be implemented
using two simple single-ported memories, instead of a
single dual-ported one.

Formally, we consider the random bipartite graph
Gβ = 〈L+ (Ru ∪Rd), E〉, where R is now partitioned
into two disjoint subsets Ru and Rd with |Ru| = β · m
and |Rd| = (1− β)m. Each vertex v ∈ L independently
chooses a single random vertex in Ru and another single
random vertex in Rd. This corresponds, for example,
to a hashing scheme that selects non-overlapping sets
of buckets as images of its hash functions (e.g., as in
multilevel hashing scheme [26] or d-left [2]).

Note that further evaluation of the results reported in
this section can be found in Section 7.3.

5.1 Connected Components in Deterministic
Graphs

The following lemma counts all the possible bipartite
graphs Hud of the form 〈LH + (RHu

∪RHd
), EH〉 with

degree 2 for each vertex in LH , where |LH | = s, |RHu
| = i

and |RHd
| = j, such that each vertex v ∈ LH is connected

using a single edge to some vertex in RHu
and another

single edge to some vertex in RHd
.

Proposition 2: Lemmas 1, 2, 3, and 4 hold for this case
as well.
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Lemma 7: Let s = i+j−1. The number Ti,j of connected
bipartite graphs is Tij = ij−1 · ji−1 · s! = ij−1 · ji−1 ·
(i+ j − 1)!

5.2 Expected Maximum Matching Size

In the next theorem we find the expected maximum
matching size with a static partition of the right-side
vertices.

Theorem 11: Given the static partitioning of the bi-
partite graph Gβ , the expected maximum matching size
µ (Gβ) is

µ
(

Gβ

)

= m−

n
∑

s=0

(n

s

)

ℓ2
∑

i=ℓ1

(β ·m

i

)((1− β) ·m

s+ 1− i

)

(

1−

i

β ·m

)n−s

·

(

1−

s+ 1− i

(1− β) ·m

)n−s ( i

β ·m

)s ( s+ 1− i

(1− β) ·m

)s

·

Pi,s+1−i,

where ℓ1 = max {0, s+ 1− (1− β) ·m},
ℓ2 = min (s+ 1, β ·m), Pij =

Tij

(i·j)i+j−1 , and

Tij = ij−1 · ji−1 · (i+ j − 1)!.
Proof: Similarly to the proof of Theorem 1, our proof

is based on counting the expected number of vertices in
L that are not in some specific maximum matching M of
Gβ , based on the decomposition of G into its connected
components. As in the proof of Theorem 1, we consider
the number of connected components with exactly s
vertices in L and q = s+1 vertices in Ru∪Rd, where we
have to sum over all possible combinations (i, s+ 1− i),
where i corresponds to the number of vertices taken
from Ru and s + 1 − i corresponds to those taken from
Rd.

Thus, the expected number of connected components
in Gβ with s vertices in L, i vertices in Ru and s+ 1− i
vertices in Rd is given by:
(

n

s

)

·

(

β ·m

i

)(

(1− β) ·m

s+ 1− i

)

·

(

1−
i

β ·m

)n−s

·

(

1−
s+ 1− i

(1− β) ·m

)n−s

·

(

i

β ·m

)s

·

(

s+ 1− i

(1− β) ·m

)s

· Pi,s+1−i,

The above expression consists of the following factors
(in order):
(i) choosing the s vertices in L;
(ii) choosing the i vertices in Ru;
(iii) choosing the s+ 1− i vertices in Rd;
(iv) the probability that all i vertices in Ru may be
connected only to the chosen s vertices in L;
(v) the probability that all s + 1 − i vertices in Rd may
be connected only to the chosen s vertices in L;
(vi) the probability that all s vertices in L are only
connected to the i vertices in Ru;
(vii) the probability that all s vertices in L are only
connected to the s+ 1− i vertices in Rd; and,
(viii) the probability that all chosen vertices are con-
nected.

Finally, adding the expressions for all possible s’s and
i’s and subtracting it from m yields the claimed result.

Up until now we were only interested in the maximum
matching size. However, to determine the latency and
throughput of our hash table, we also need to know
how many elements are in each of the two partitions.
Note that there are many matchings with the maxi-
mum matching size. Among those, we are interested in
the matchings that maximize the expected number of
elements in the first partition. This is reflected in the
following theorem.

Theorem 12: Given the static partitioning of the bipar-
tite graph Gβ , there is a maximum matching such that
the expected number of elements in the first partition is

µ1 (Gβ) = βm ·
(

1−
(

1− 1

βm

)n)

.

Moreover, there is no other maximum matching with a
higher expected number of elements in the first partition.

Proof: The proof follows the fact that there is a
matching whose size is maximum and all buckets in the
first partition with at least one element hashed to them
are occupied. It follows by considering the connected
components in the corresponding bipartite graph. From
Proposition 2 it follows that we should care only for the
connected components with s vertices in L and s + 1
vertices in Ru ∪ Rd (for some s). In all other connected
components all the buckets are occupied (Proposition 2).

Consider a connected components with vertex set
LH ∪RHu

∪RHd
, such that |LH | = s,|RHu

∪RHd
| = s+1,

LH ⊆ L, RHu
⊆ Ru, and RHd

⊆ Rd. Further assume a
maximum matching (of size s, by Proposition 2), with
one vertex vr ∈ RHu

that is not matched. Since the
connected component is a tree, there is a path from vr
to some other matched vertex in RHd

. Moreover, this
path alternates between edges in the matching and edges
that are not in the matching. By switching between the
two sets of edges we get a new matching whose size
is maximum and all vertices in RHu

are matched. Since
the first partition size is βm, and there are n elements,
the probability that no element hashes into some bucket

in the first partition is
(

1− 1
βm

)n

. It then follows that

the expected number of occupied buckets in the first
partition is as claimed in the theorem.

5.3 Limit Normalized Expected Maximum Matching
Size

As in the previous sections, we are also interested in
the asymptotic best behavior of the partitioned hashing
scheme where n → ∞ with both fixed load α = n

m and
fixed partition β. We obtain the following theorem.

Theorem 13: Given the static partitioning of the bipar-
tite graph Gβ , the limit normalized expected maximum

matching size γβ = limn→∞
µ(Gβ)

n for β ∈ (0, 1) is given
by:

γβ =
1

α
− β · (1− β)

α2
· (t1 + t2 − t1 · t2) ,

where t1, t2 are provided by the following equations:
α

1− β
· e

−α
β = t1 · e

−t2 ,
α

β
· e

− α
1−β = t2 · e

−t1 (2)



10

and satisfy the condition t1 · t2 ≤ 1.
For β ∈ {0, 1} (namely, the trivial partitions), the limit

normalized expected maximum matching size γβ is 1
α −

1
α · e−α.

Proof: As in the proof of Theorem 4, we compute

the limit of µ(G)
n as n → ∞. We consider the case where

α = n
m and 0 ≤ β ≤ 1 are fixed. So γβ = limn→∞

µ(Gβ)
n ,

that is,

γβ = lim
n→∞

1

n
·



m−

n
∑

s=0

(n

s

)

·

b2
∑

i=b1

(β ·m

i

)((1− β) ·m

s+ 1− i

)

·

(

1−

i

β ·m

)n−s

·

(

1−

s+ 1− i

(1− β) ·m

)n−s

·

(

i

β ·m

)s

·

(

s+ 1− i

(1− β) ·m

)s

· Pi,s+1−i

)

By substituting the expression for Pi,s+1−i from Theo-
rem 11, and moving

(

n
s

)

inside the second summation,
we get:

γβ = lim
n→∞

(

1

α
−

1

n

n
∑

s=0

s+1
∑

i=0

(n

s

)(βm

i

)((1− β)m

s+ 1− i

)

(

1−

i

βm

)n−s

·

(

1−

s+ 1− i

(1− β) ·m

)n−s

·

(

i

β ·m

)s

·

(

s+ 1− i

(1− β) ·m

)s

·

i(s+1−i)−1
· (s+ 1− i)i−1

· (i+ (s+ 1− i)− 1)!

(i · (s+ 1− i))i+(s+1−i)−1

)

By substituting α = n
m , we get:

γβ = lim
n→∞





1

α
−

1

n

n
∑

s=0

s+1
∑

i=0

(n

s

)( β

α
n

i

)( 1−β

α
n

s+ 1− i

)

(

1−

i
β

α
n

)n−s

·

(

1−

s+ 1− i
1−β

α
· n

)n−s

·

(

i
β

α
· n

)s

·

(

s+ 1− i
1−β

α
· n

)s

·

i(s+1−i)−1
· (s+ 1− i)i−1

· (i+ (s+ 1− i)− 1)!

(i · (s+ 1− i))i+(s+1−i)−1

)

As in the proof of Theorems 4 and 8, using the monotone
convergence theorem [38], we can put the limit inside the
sum. By further simplifying the above expression with
similar consideration to the proofs of Theorems 4 and 8,
we get eventually:

γβ =
1

α
−

β · (1− β)

α2

∞
∑

s=0

s+1
∑

i=0

i(s+1−i)−1 · (s+ 1− i)i−1

i! · (s+ 1− i)!
·

(

α

β
· e

− α
1−β

)s+1−i

·

(

α

1− β
· e

−α
β

)i

We switch the order of summation and get that i ∈
{0, 1, . . .} and s goes from max{0, i − 1} to ∞. We also
substitute j = s+ 1− i (or s = i+ j − 1). Thus,

γβ =
1

α
−

β · (1− β)

α2

∞
∑

i=0

∞
∑

j=max{0,i−1}

ij−1 · ji−1

i! · j!
· (3)

(

α

1− β
· e

−α
β

)i

·

(

α

β
· e

− α
1−β

)j

Let T (x, y) =
∑

j+i≥1
ij−1·ji−1

i!·j! ·xi·yj . This expression has
been previously found [16] to be the multivariate formal
power series about the point (x0, y0) = (0, 0) of t (x, y) =
t1 (x, y) + t2 (x, y)− t1 (x, y) · t2 (x, y) where t1 (x, y) and

t2 (x, y) are given by the following implicit multivariate
functions:

x = t1 (x, y) · e−t2(x,y) , y = t2 (x, y) · e−t1(x,y) (4)

However, the mentioned range of convergence in [16] is
insufficient for our case. (Note also that in [16] the sums
should be over i+ j ≥ 1 and not over i, j ≥ 0.)

Since we compute the limit normalized expected max-
imum matching, then the expression for γβ in Equa-
tion (3) is bounded from below by 0, thus, by Equa-
tion (3) the double summation is bounded from above
by a constant. On the other hand, all terms in the
summation in Equation (3) are positive. Then, if we look
at the partial-sum series (by defining an arbitrary order),
we get an increasing series which is bounded. Thus, by
the monotone convergence theorem the double series
converges for any values x and y satisfying x = α

1−β ·e
−α

β

and y = α
β · e− α

1−β .
However, the multivariate functions in Equation (4)

have multiple branches (as the Lambert-W function
does [37]), that is, for a given x and y there is more than
one solution. We aim to find this branch in terms of t1
and t2. We use the implicit function theorem to find the
derivatives singularities. The Jacobian is given by

J =

(

e−t2(x,y) −t1 (x, y) · e−t2(x,y)

−t2 (x, y) · e−t1(x,y) e−t1(x,y)

)

,

and it is invertible wherever |J | 6= 0. Thus, there is a
derivative singularity in case t1 (x, y)·t2 (x, y) = 1, which
is the only solution. Therefore, as the given formal power
series in Equation (3) is about the point (x0, y0) = (0, 0)
(which corresponds to α = 0), where t1 = t2 = 0, it
converges to the branch where t1 (x, y)·t2 (x, y) ≤ 1 (note
that both t1 (x, y) and t2 (x, y) are always positive).

We deduce the following two corollaries. The first
one states that the best performance of multiple-choice
hashing scheme with equal partition is asymptotically
equivalent to this of a one with no partition. The second
one states how close partition needs to be to equal in
order to reach an ideal average matching.

Corollary 14 (Asymptotic Equivalence): Let d = 2. The
limit normalized expected maximum matching size of
Gβ with β = 0.5 is the same as the limit expected
maximum matching size of G.

Proof: We substitute β = 0.5 in the expression from
Theorem 13, and get α

0.5 ·e−
α
0.5 = t1 ·e−t2 , α

0.5 ·e−
α
0.5 =

t2 · e−t1 . One of the solutions of the above equations is
t1 = t2 = −W

(

−2αe−2α
)

. In the proof of Theorem 4,
we showed that −W

(

−2αe−2α
)

≤ 1. Thus, t1 · t2 < 1.
By substituting this solution in the expression for γβ
from Theorem 13 , we get the exact expression as in
Equation (1).

Corollary 15: Let d = 2, α ≤ 1
2 , and fix a partition β. The

limit normalized expected maximum matching size γβ =

limn→∞
µ(Gβ)

n is 1 whenever 1−
√
1−4α2

2 ≤ β ≤ 1+
√
1−4α2

2 .
Proof: One of the solutions to Equation (2) is given

by: t1 = α
1−β , t2 = α

β . By substituting t1 and t2 in the
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expression for γβ from Theorem 13, we get that the limit
normalized expected maximum matching size is 1. We
also have to verify that t1 · t2 ≤ 1. Since α

1−β and α
β are

both positive, we are left with α
1−β · α

β < 1. By solving
the quadratic inequality, we get the claimed condition.
Note that for α = 1/2 the range reduces to β = 1/2.

As in the last section, we are also interested in the
limit normalized expected fraction of elements in each
of the partitions. This following theorem corresponds to
Theorem 12.

Theorem 16: Given the static partitioning of the bipar-
tite graph Gβ , in the scaled system, there is a maximum
matching such that the asymptotic expected fraction of
elements in the first subtable is

γ1
β =

β

α
− β

α
e−

α
β

Moreover, there is no maximum matching with a higher
expected fraction.

Proof: The proof is obtained by taking the limit of
the expression in Theorem 12, normalized by n.

Finally, given the off-chip memory access latency b, the
following corollary shows the throughput of the hash
table. It follows immediately from Theorems 13 and 16,

Corollary 17: Given an on-chip SRAM with two parti-
tions and access latency 1, an off-chip DRAM of access
latency b, and assuming sequencial access to the SRAM
partitions, the hash table throughput tends to

(

1 · γ1
β + 2 ·

(

γβ − γ1
β

)

+ (2 + b) · (1− γβ)
)−1

. (5)

Following Corollary 17, it is possible to compute
the optimal partition β that maximizes the hash table
throughput. We further evaluate this in Section 7.6.

6 BIPARTITE GRAPHS WITH MORE THAN 2
CHOICES

We are now interested in checking how powerful
multiple-choice hashing can be when we allow more
than 2 hash functions per element. Of course, using more
hash functions will result in an increase in implementa-
tion complexity, and therefore one goal of this study is to
point out the tradeoff between efficiency and complexity.

In this section we briefly show how our method can
be applied to find an upper bound on the expected
maximum size matching where each left-side vertex has
d > 2 choices. Formally, we are given two disjoint sets
of vertices L and R of size n and m, respectively, and
a random bipartite graph Gd = 〈L+R,E〉, where each
vertex v ∈ L has d outgoing edges whose destinations
are chosen independently at random (with repetition)
among all vertices in R. We obtain the following upper
bound on the maximum matching size of the bipartite
graph Gd.

Theorem 18: Let ℓ = min
(

n,
⌊

m−1
d−1

⌋)

and q = (d− 1) ·
s+ 1. Then, µ

(

Gd
)

is at most

min

(

n,m−

ℓ
∑

s=0

(q − s)
(n

s

)(m

q

)(

1−

q

m

)d(n−s) ( q

m

)ds ds · q!

q(d−1)·s+2

)

.
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Fig. 3. Expected maximum matching size for various
values of n and m (normalized by n)..
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Fig. 4. Limit expected normalized maximum matching size
for various values of load α.

An evaluation of the upper bound and a comparison
to the simulated expected matching size is presented in
Section 7.4.

7 EVALUATION AND EXPERIMENTS

We now evaluate our theoretical results, using both
synthetic evaluations and trace-based experiments.

7.1 Expected Maximum Matching Size With d = 2

Figure 3 shows the expected maximum matching size
normalized by n for various values of n and m. It
compares simulation results with our analytical model
from Theorem 1. For each instance of n and m, we
randomized 10,000 bipartite graphs, then computed the
average value. The results confirm that our model is
fairly accurate, and also show the convergence of the
expected maximum matching size to its limit.

Figure 4 shows the expected maximum matching size
normalized by n as found in Theorem 4, for various
values of load α, both via our analytical model and
via simulations. The simulations were performed using
m = 1000 and n = α · m. For each value of α, we ran-
domized 100 bipartite graphs. Again, the model appears
fairly accurate.

7.2 Expected Maximum Matching Size With dv ≤ 2

Figure 5 shows the normalized limit expected maximum
matching size, for various values of load α and average
number of choices a, both via our analytical model (from
Theorem 8) as well as via simulations. The simulations
were performed using m = 1000 and n = α · m, where
for each instance of the simulation we randomized 100
bipartite graphs. Once again, the results confirm that our
model is fairly accurate.
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Fig. 5. limit expected normalized maximum matching size
as a function of the average number of choices a, for
various values of the load α.
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Fig. 6. limit expected normalized maximum matching size
as a function of the partition parameter β, for various
values of the load α.

7.3 Expected Maximum Matching Size With Static
Partition

Figure 6 shows the limit expected maximum matching
size normalized by n, for various values of load α
and partition β, both via our analytical model (from
Theorem 13) and via simulations. The simulations were
performed using m = 1000 and n = α · m. For each
pair of values of α and β, we randomized 100 bipartite
graphs. The results confirm the accuracy of our model.
They also illustrate how the limit expected maximum
matching size is symmetric around β = 0.5, and the
symmetric partition case reaches the optimum for this
metric.

Note that in case α = 0.5 and β < 0.5, while it seems
that the normalized limit expected maximum matching
size is 1, it is not the case. For instance, in case α = 0.5
and β = 0.45, we get that 1−γβ ≈ 1.675 ·10−7. Referring

to Corollary 15, this is because 1+
√
1−4α2

2 = 1
2 in that

extreme case. For strictly smaller loads, the imbalance
in the partition sizes does not necessarily reduce γβ and
the plot becomes true flat in the middle, as illustrated in
Corollary 15.

7.4 Expected Maximum Matching Size With d > 2

We evaluate the upper bound found for the expected
matching size (Theorem 18). Figure 7 shows our upper
bound as well as simulation results for various values of
the number of choices d. We took n = m = 100, while for
each instance of d, we randomized 105 bipartite graphs.
In the case of d = 2, our upper bound matches the exact
expression found in Theorem 1 and thus matches the
simulation results. In addition, we can compare simula-
tion results for higher values of d with our bounds. For
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γ
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Fig. 7. comparison of the simulation results and the
theoretical upper bound for the normalized expected max-
imum matching size, as a function of the number of
choices d in any multiple-choice hashing scheme. The
load is α = 1.
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Fig. 8. Experiment using real-life traces and hash func-
tions of the normalized number of elements in the DRAM,
and comparison to the theoretical model.

instance, in the case of d = 3 the normalized expected
maximum matching size via the simulation is 0.9402,
while our upper bound is 0.9508. In case d = 4, we get
a simulation value of 0.9795, while the corresponding
upper bound is 0.9820.

7.5 Trace-Driven Experiments

We have also conducted experiments using real-life
traces recorded on a single direction of an OC192 back-
bone link [42], where packets are hashed using a real
64-bit mix function [43]. Our goal is two-folded. First,
we would like to verify that our analysis agrees with
results of real-life traces. And second, we want to verify
that the distribution of the overflow list size is highly
concentrated around its mean, as stated in Theorem 2.

We took m = 10,000, and set a number of elements
n as corresponding to various values of load α. We
repeated each experiment 100 times. Fig. 8 shows that the
results of our experiments are very close to our model.
Furthermore, it also shows that the minimum and the
maximum off-chip DRAM size are close to the mean.

7.6 Evaluation of Access Throughput

We now compare the access throughput of network hash
tables using our suggested method whose performance
is found in Corollary 17.

Figure 9 plots the access throughput when the off-chip
memory is b = 5 times slower than the on-chip memory.
In the case of partitioned hashing with d = 2, it assumes
an optimal partitioning for each load, as provided by
Corollary 17. It is clear that there is a limited difference
between the cases of d = 2 with partitioning and d = 2



13

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

load

A
cc

es
s 

th
ro

ug
hp

ut

 

 
d=2 partition
d = 2 no partition
d = 3 no partition

Fig. 9. Expected access throughput given that the off-chip
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Fig. 10. Ratio of the throughput in the cases of using
maximum size matching (MSM) with d = 3 and d = 4
by the throughput of optimally-partitioned maximum size
matching based hashing with d = 2. A comparison with
d-left hashing scheme is also plotted.

without partitioning, and therefore by simplicity we only
consider one of them below. More importantly, it shows
that up to a load of approximately 0.7, and for loads
above approximately 1, it is better to use d = 2 than d = 3.
Intuitively, this is because the decrease in the number of
needed SRAM accesses more than compensates for the
resulting loss of efficiency and therefore the increase in
the number of DRAM accesses.

Figure 10 further highlights this result. It plots the ratio
of the throughput in the cases of d = 3 and d = 4 by
the throughput of our suggested method with d = 2 and
optimal partitioning. It also plots the corresponding ratio
when d-left [2] is used to utilize the memory (instead of
maximum matching). Therefore, Figure 10 emphasizes
the throughput gain (or loss) with respect to our method.

In Figure 10(a), when DRAM accesses are b = 5 slower
than SRAM accesses, we can see more clearly the out-
performance of our suggested algorithm with d = 2
under most loads, and compared to most hashing algo-
rithms. For instance, at load α = 1, i.e. when the SRAM is
highly loaded, our algorithm with d = 2 is (surprisingly)
better then d = 3. By Theorem 13 and Theorem 16,
we can find that the optimal memory partitioning is
β = 57.0% for the first subtable and 1 − β = 43.0% for

the second subtable, and that 47.2% of the elements are
stored in the first subtable, 36.2% in the second one, and
16.6% in the off-chip DRAM. The resulting throughput
is (1 · 0.472 + 2 · 0.362 + (2 + 5) · 0.166)−1 ≈ 0.4241. This
is indeed higher than the throughput with d = 3 with no
partitioning, which is found to be 0.4194 in simulations.

Finally, Figure 10(b) shows that for b = 15, the cost of
DRAM accesses becomes higher, and therefore there is
more incentive to be efficient in the SRAM. Using d = 3
outperforms other settings in most cases. Most often, the
cost of DRAM is not high enough to justify d = 4.

8 CONCLUSION

In this work, we considered multiple-choice hashing
schemes that are implemented using combined memory.
We set d = 2, and suggested that the largest number
of elements possible are stored in the fast memory. For
that, we provided an exact expression for the expected
maximum matching size of a random bipartite graph
with each left-side vertex picking d = 2 right-side ver-
tices, for any number of left-side and right-side vertices.
Then, we deduced asymptotic results as the memory
size goes to infinity. Both results serve as upper bounds
for any multiple-choice hashing algorithm with d = 2
choices. Thus, introducing a capacity region for these
schemes. We further analyzed several hashing variants,
in which the memory is statically partitioned, we have
more than two hash functions or we have (on average)
less than two functions. Our results illustrate the impact
of the SRAM/DRAM access time ratio on the parameters
choice. In particular, we show that the common intuition
of avoiding DRAM accesses by using highly efficient
schemes is not always correct.
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APPENDIX A
OMITTED PROOFS

A.1 Proof of Lemma 1

The proof follows by induction on s. For s = 1, there
are 2 edges in the graph and therefore every graph with
q ≥ 3 is not connected. Assume that the claim holds up
until s = s′, we next prove that it holds for any bipartite
graph H ′ such that |LH′ | = s′ + 1 and |RH′ | ≥ s′ + 3.
Assume towards a contradiction that there is a graph
H ′ that is connected. We first show that there is a vertex
in RH′ with a degree 1: This follows from the fact that

the average right-side degree is 2(s′+1)
s′+3 < 2, implying

that there is at least one vertex with degree strictly less
than 2; since the graph is connected, there are no right-
side vertices with degree 0. Let vr be such a vertex and
let vℓ ∈ LH′ be the (only) left-side vertex to which it
is connected. By the induction hypothesis, the graph
induced by LH′ \ {vℓ} and RH′ \ {vr} is not connected,
implying it has at least two connected components. In
H ′, vℓ is connected to vr and since its degree is 2 it can be
connected only to one of these components. This implies
that H ′ is also not connected, and the claim follows.

A.2 Proof of Lemma 2

We first consider the case where s = q. For S ⊆ LH ,
let d(S) ⊆ RH be the set of vertices that are adjacent
to any vertex in S. Hall’s Theorem [44] implies that
to prove that µ (H) = q (namely, there is a perfect
matching in H) it suffices to prove that for every S ⊆
LH , |S| ≤ |d(S)|. Assume towards a contradiction that
there is a subset S ⊆ LH such that |S| > |d(S)|, and
denote |d(S)| as ℓ. Furthermore, consider the bipartite

graph Ĥ =
〈

L̂H + R̂H , ÊH

〉

, in which L̂H = LH \ S,

R̂H = RH ∪{v̂R} \d(S) (where v̂R is a newly-introduced
vertex) and any edge in E(H) of the form (vℓ, vr) such
that vℓ ∈ LH \S and vr ∈ d(S) is replaced with the edge
(vℓ, v̂R) in ÊH . Notice that since H is connected, Ĥ must

be connected as well. Recall that |S| > ℓ, thus
∣

∣

∣
L̂H

∣

∣

∣
=

|LH\S| ≤ s − ℓ − 1, while
∣

∣

∣
R̂H

∣

∣

∣
= |RH ∪ {v̂R} \ d(S)| =

|RH | − |d(S)|+ 1 = s− b+ 1. This contradicts Lemma 1,
implying that for every S ⊆ LH , |S| ≤ |d(S)| and by
Hall’s Theorem µ (H) = q.

For s > q, trivially µ(H) ≤ q. Therefore, it suffices to
show that there exists a subset S ⊆ LH of size q, such that
the corresponding bipartite subgraph is connected (and
hence has a perfect matching of size q). We construct S in
q iterations such that at the end of iteration n we end up
with some subsets Sn ⊆ LH and Qn ⊆ RH of the same
size n, whose corresponding subgraph is connected. We
start by n = 1 and pick some vertex vR ∈ RH and one of
its adjacent vertices vL ∈ LH . Assuming that at the end
of iteration n, sets Sn and Qn were chosen (and their
corresponding graph is connected), we next construct
Sn+1 and Qn+1. Let v1 be an arbitrary vertex in Sn and
let v2 be an arbitrary vertex in LH \ Sn (such a vertex

always exists since s > q > n). Similarly, let v′1 be an
arbitrary vertex in Qn and let v′2 be an arbitrary vertex
in RH \Qn. Since H is connected there is a path between
v1 and v2, and let v be the first vertex along this path
that is not in Sn. Similarly, v′ is the first vertex along the
path between v′1 and v′2 that is not in Qn. We differentiate
between three cases: (i) v is adjacent to Qn and v′ is to
Sn. In this case Sn+1 = Sn ∪ {v} and Qn+1 = Qn ∪ {v′}
and the corresponding subgraph is connected; (ii) v is
not adjacent to a Qn. Let w be the vertex before v in the
path between v1 and v2, and let w′ be the vertex before
w in the path. Note that w′ ∈ Sn by the choice of v, and
that w /∈ Qn (otherwise v is adjacent to a Qn). Thus, for
Sn+1 = Sn∪{v} and Qn+1 = Qn∪{w}, the corresponding
subgraph is connected; (iii) v′ is not adjacent to a Sn.
The claim holds similarly to case (ii) by looking at the
path between v′1 and v′2. We continue this construction
for q iterations, resulting in two subsets Sq ⊆ LH and
Qq ⊆ RH of size q each, whose corresponding subgraph
is connected.

A.3 Proof of Lemma 3

Since each vertex in LH has a degree of two, the sum
of the degrees of all the vertices in RH is 2s = 2q − 2.
Therefore, there must be at least one vertex vr ∈ RH

with degree 1 (there cannot be a vertex with degree 0
since H is connected). Let vL ∈ LH be the (only) vertex
that is connected to vR and v̂R ∈ RH be the other vertex
that is connected to vL. Also consider the bipartite graph

Ĥ =
〈

L̂H + R̂H , ÊH

〉

that is given by removing vR from

H and adding a new edge (vL, v̂R). By the construction
of Ĥ , the degree of each vertex in L̂H is exactly 2.
Moreover, since H is connected, Ĥ is also connected.
Hence, Lemma 2 implies that there is a matching of size
s in Ĥ . By the construction of Ĥ , this is also a matching
in graph H .

A.4 Proof of Lemma 4

First, if H is a tree then it is connected by definition.
To show the other direction, we assume towards a
contradiction that H is a connected graph with cycles;
let C be a cycle in H , and consider an edge e = (vL, vR)
that resides at cycle C (where vL ∈ LH and vR ∈ RH ).

We build the bipartite graph Ĥ =
〈

L̂H + R̂H , ÊH

〉

, such

that L̂H = LH , R̂H = RH ∪ {v̂R}, where v̂R is a newly-
introduced vertex, and ÊH = EH \ {e} ∪ {ê}, where
ê = (vL, v̂R). Intuitively, we replace one of the edges in
the cycle to reach for a newly-introduced vertex, and by
that we increase the size of the connected component.
Notice that Ĥ is connected and all vertices in L̂H have

a degree of 2. But,
∣

∣

∣
L̂H

∣

∣

∣
<
∣

∣

∣
R̂H

∣

∣

∣
− 1, thus contradicting

Lemma 1 and the claim follows.

A.5 Proof of Lemma 5

We count the connected bipartite graphs with two dis-
joint sets LH and RH . By Lemma 4, we have to count the
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number of trees over the set LH ∪RH , where edges must
be of the form (vL, vR), such that vL ∈ LH and vR ∈ RH .
We build (and count) the set as follows: The number of
trees over the set RH is (s+ 1)

s−1 (Cayley’s formula). For
each such tree instance, we put a new vertex (originally
from LH ) between each pair of adjacent vertices. There
are s! possibilities to do so.

A.6 Proof of Theorem 2

Our notations follow those of [39]. We first define an ex-
posure martingale, which exposes one left-side vertex at
a time, along with all its outgoing edges. This martingale
is equivalent to a regular vertex exposure martingale, in
which all right-side vertices are exposed first, and then
left-side vertices are exposed one by one.

Specifically, let G be the probability space of all two-
choice bipartite graphs as defined in Section 2 and f
the size of the maximum size matching of a specific
instance. Assume an arbitrary order of the left-side ver-
tices L = {v1, . . . vn}, and define X0, . . . , Xn by Xi(H) =
E[f(G) | ∀x ≤ i, ∀vy ∈ R, (vx, vy) ∈ G iff (vx, vy) ∈ H].
Note that X0(H) = µ(G) since no edges were exposed,
while Xn(H) = µ(H) as all edges are exposed.

Clearly, f satisfies the vertex Lipschitz condition since
if two graphs H and H ′ differ at only one left-side vertex,
|f(H)−f(H ′)| ≤ 1 (either that vertex is in the maximum
matching or not). Thus, since each left-side vertex makes
independent choices, [39, Theorem 7.2.3] implies that
the corresponding vertex exposure martingale satisfies
|Xi+1−Xi| ≤ 1. Hence, by applying Azuma’s inequality,
we immediately get the concentration result.

A.7 Proof of Corollary 3

If a stash of size n − µ (G) +
√

2n · ln 1/ǫ is used, any
hashing scheme fails if and only if n − µ(H) > n −
µ (G) +

√

2n · ln 1/ǫ, or by rewriting it, µ(G) − µ(H) >
√

2n · ln 1/ǫ. By substituting λ =
√

2 · ln 1/ǫ in the above
one-sided bound, we get the claimed result.

A.8 An Alternative Proof outline of Theorem 4

Considering the random graph with m vertices and n
edges such that a vertex m1 is connected to vertex m2

if and only if there exists an element that hashes into
m1 and m2. This random graph is called the cuckoo
graph [18]. Neglecting the O(1) loops, this graph is
equivalent to the Erdös-Renyi random graph Gm,n that
assigns equal probability to all graphs with exactly n
edges (and m vertices)

A matching in Gm,n corresponds to directing some of
the edges in the random graph such that the in-degree is
at most 1. For each connected component C in Gm,n, if C
is a tree we can direct all edges, while in all other cases
we can direct as much edges as the number of vertices.

The number of such edges and vertices can be found
in [39], [40], yielding the exact same result.

A.9 Proof of Lemma 6

Assume on the contrary that H is connected but that
there is (at least) a single vertex vL ∈ LH with degree 1.

Consider the bipartite graph Ĥ =
〈

L̂H + R̂H , ÊH

〉

, that

is given by removing the vertex vL (and its connected
edge) from H . By the construction of Ĥ , we get that

Ĥ is connected, but
∣

∣

∣
L̂H

∣

∣

∣
+ 1 <

∣

∣

∣
R̂H

∣

∣

∣
, which contradicts

Lemma 1.

A.10 Proof of Lemma 7

The proof is identical to the proof of Lemma 4 with
two modifications. First, instead of initially counting the
number of trees over the set RH , we count the number
of parity trees [45] over the disjoint sets RHu

and RHd
.

By [45] we are given that the number of parity trees is
ij−1 · ji−1. Second, we do not have to color the edges
because of the partition.

A.11 Proof of Theorem 8
We compute the limit of µ(Ga)

n as n → ∞. We consider
the case where α = n

m and a = d1+2·d2

n > 1 are fixed. So

γa = limn→∞
µ(Ga)

n , that is,

γa= lim
n→∞

1

n

(

m−
ℓ
∑

s=0

(

d2

s

)(

m

s+ 1

)

(

1−
s+ 1

m

)2(d2−s)+d1

·

(

s+ 1

m

)2s

· Ps

)

Given that a = d1+2·d2

n and n = d1 + d2, we find that
d2 = (a− 1) ·n and d1 = (2− a) ·n. Similarly to the proof
of Theorem 4, we first have to find that each term in the
summation is an increasing function with respect to n.

We discover that
(

1− s+1
m

)2(d2−s)+d1
=
(

1− s+1
m

)a·n−s
is

an increasing function (using differentiation), and also

find that 1
n ·

(

(a−1)·n
s

)(

m
s+1

)

·
(

s+1
m

)2s
is an increasing

function as previously. Consequentially, each term in the
sum is an increasing function and, by the monotone
convergence theorem [38], we can put the limit inside
the sum. By further simplifying the above expression as
in the proof of Theorem 4 we eventually get:

γa=
1

α
−

1

2α2 · (a− 1)
·

∞
∑

j=1

(−j)j−2

j!
·
(

−α · 2 · (a− 1) · e−aα
)j

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a Taylor expansion,

where by substituting x = −α ·2 ·(a− 1) ·e−aα we get the
above expression. Similarly to the proof of Theorem 4,
we get that

T (x) = −W (x)− 1

2
W 2 (x) ,

with convergence within |x| ≤ e−1 [37].
Since the function f (α) = −α · 2 · (a− 1) · e−aα gets its

minimum at α = a−1, where it equals − 2(a−1)
a e−1, and

∣

∣

∣
− 2(a−1)

a e−1
∣

∣

∣
≤ e−1 for all a ∈ [1, 2], then for all α we can

substitute x = −α · 2 · (a− 1) · e−aα. Hence, it is within
the radius of convergence of T (x).
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Finally, for the case where a = 1, then d2 = 0 and d1 =
n. Therefore, the expression for the expected maximum
matching size is reduced to m−

(

m ·
(

1− 1
m

)n)
. Thus,

γa = lim
n→∞

µ (Ga)

n
= lim

n→∞

1

n
·
(

m−
(

m ·
(

1− 1

m

)n))

=
1

α
− 1

α
· e−α.

A.12 Proof of Theorem 10

We compute the limit of
µ(Gp)

n as n → ∞.

γp = lim
n→∞

µ (Gp)

n

= lim
n→∞

1

n

n
∑

d2=0

(

n

d2

)

· pd2 · (1− p)
n−d2 · µ

(

G
a=1+

d2
n

)

Let X ∼ Bin (n, p) be the random variable counting the
number of vertices in L that choose 2 vertices in R. By
summing over three disjoint ranges of possible values
for d2, we get

γp = lim
n→∞

⌊np−n
3
4 ⌋

∑

d2=0

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

+

lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

+

lim
n→∞

n
∑

d2=⌊np−n
3
4 ⌋

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

By Chebyshev’s inequality we get that

Pr
{

|X − np| > n
1
4

√

np (1− p)
}

≤ 1

n
1
4

. Since

p (1− p) ≤ 1, we get that Pr
{

|X − np| > n
3
4

}

≤ 1

n
1
4

. By

the fact that 1
n · µ

(

G
a=1+

d2
n

)

≤ 1, we find that the first

and the third limits go to zero.
Since the function µ (Ga) is increasing with respect to a

(this can be shown by a simple combinatorial argument),
we get the following lower bound:

γp = lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

≥ lim
n→∞

(

1−
1

n
1
4

)

·
1

n
· µ

(

G
a=1+

⌊np−n
3
4 ⌋+1

n

)

as well as the following upper bound:

γp = lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

≤ lim
n→∞

1 ·
1

n
· µ

(

G
a=1+

⌊np+n
3
4 ⌋−1

n

)

.

By the squeeze theorem, we get the claimed result.

A.13 Proof of Theorem 18

We first establish a few lemmas before proving the
result. As before, we start by considering a deterministic
bipartite graph H = 〈LH +RH , EH〉 with degree d of
each vertex in LH , where |LH | = s and |RH | = q.

Lemma 8: If (d− 1) ·s ≤ q−2, then H is not connected.
Proof: As in the proof of Lemma 1, the proof follows

by induction on s. For s = 1, there are d edges in the
graph and therefore every graph with q ≥ d + 1 is not
connected. Assuming that the claim holds up until s =
s′, we next prove that it holds for any bipartite graph H ′

such that |LH′ | = s′ +1 and |RH′ | ≥ (d− 1) · (s′ + 1)+ 2.
Assume towards a contradiction that there is a graph H ′

which is connected.
We first show that there are d − 1 vertices

vr1 , vr2 , . . . , vrd−1
in RH′ , all of a degree 1 such that

they are connected to the same vertex vℓ ∈ RH′ : The
sum of right-side vertex degree is d · (s′ + 1). Also,
since the graph is connected there are no right-side
vertices with degree 0. This implies that there are at least
(d− 2) · (s′ + 1)+2 vertices of degree 1, thus there exists
a vertex vℓ ∈ RH′ as claimed.

By the induction hypothesis, the graph induced by
LH′ \ {vℓ} and RH′ \ {vr1 , vr2 , . . . , vrd−1

} is not con-
nected, which implies that it has at least two con-
nected components. In H ′, vℓ is connected to all vertices
vr1 , vr2 , . . . , vrd−1

. Since its degree is d it can be connected
only to one of these components. This implies that H ′ is
not connected as well, and the claim follows.

Lemma 9: If H is connected and (d− 1) · s = q− 1 then
µ (H) = s.

Proof: Assume towards a contradiction that µ (H) <
s, and consider some maximum matching M . Let vℓ ∈
LH be a vertex that is not in the maximum matching M ,
and vr1 , vr2 , . . . , vrd−1

be the vertices in R (which are not
necessarily distinct) that are connected to vℓ. All vertices
vr1 , vr2 , . . . , vrd−1

are connected also to another vertex in
LH , otherwise vℓ was in the maximum matching M .

Consider the bipartite graph Ĥ =
〈

L̂H + R̂H , ÊH

〉

,

which is given by removing vℓ from H . Since the right-
side vertices vr1 , vr2 , . . . , vrd−1

are also connected to the

other left-side vertices (except vℓ), the bipartite graph Ĥ

is connected. However, we get that
∣

∣

∣
L̂H

∣

∣

∣
= s − 1 and

∣

∣

∣
R̂H

∣

∣

∣
= (d− 1) · s+ 1, which contradicts with Lemma 8.

We note that in contrast to Lemma 2, the correspond-
ing proposition is not true for d > 2; that is, if H is
connected and s ≤ q, then the maximum matching size
is not necessarily s. As a counter example, consider the
case where d = 3 and s = q = 3, where two left-side
vertices choose the same single right-side vertex (using
all their 3 choices), and the other left-side vertex chooses
all 3 right-side vertices. The resulting bipartite graph is
clearly connected, but the maximum matching size is
only 2 (only one of the first two left-vertices can be in
the matching).
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Lemma 10: If (d− 1) · s = q − 1 then H is connected if
and only if it is a tree.

Proof: The proof consists of the exact same construc-
tion Ĥ as in the proof of Lemma 4, where we eventually
get a contradiction with Lemma 8.

Lemma 11: The number T d
s of connected bipartite

graphs H whose |LH | = s and |RH | = 2 (d− 1) · s+ 1 is

T d
s = ((d−1)·s+1)!

((d−1)!)s ((d− 1) · s+ 1)
s−2.

Proof: By Lemma 10, we have to count the number
of bipartite trees over the two disjoint sets LH and RH of
size s and (d− 1) · · ·+1. Since H is a tree, then there are
no cycles. Consequently, each one of the vertices in LH

is connected to d distinct vertices in RH . Moreover, no
two vertices in LH share more than 1 vertex in RH . For
each vertex vℓ ∈ LH , let Sv be the set of the d right-side
vertices that vℓ is connected to and also let the cycle Cvℓ

be a cycle that consists of the d vertices of Sv .

Consider the graph Ĥ =
〈

R̂H , ÊH

〉

, which is given

by connecting each cycle Cvℓ1
to Cvℓ2

using a common
vertex vr if and only if vr is connected to both vℓ1 and vℓ2 .
The resulting graph Ĥ is a Husimi graph over (d− 1) ·
s+1 vertices, where the number of such (labeled) graphs

is ((d−1)·s+1)!
((d−1)!)s·s! ((d− 1) · s+ 1)

s−2 [46].
Finally, each set Sv is determined by the (labeled) ver-

tex in RL. Thus, we multiply by s! the above expression.

We are now able to prove the result.
Let M be a maximum matching of G. Similarly to the

proof of Theorem 1, the proof is based on counting the
expected number of vertices in R that are not part of
M , and on the decomposition of G into its connected
components.

We count the expected number of connected compo-
nents with s left-side vertices and q = (d− 1) ·s+1 right-
side vertices. By Lemma 9, the maximum matching size
of each such connected component is exactly s. Thus,
there are q − s right-side vertices that are not in M .

Let H be a bipartite graph H = 〈LH +RH , EH〉, with
degree d for all vertices in LH , where |LH | = s and
|RH | = q. The probability Ps that H is connected is given

by Ps =
(d!)sTd

s

qd·s
.

The remainder of the proof is similar to the proof of
Theorem 1.

APPENDIX B
THE LAMBERT-W FUNCTION

The Lambert-W function, usually denoted by W (·), is
given by the following implicit representation:

z = W (z) · eW (z),

where z is a complex number [37].
For real valued arguments, i.e. z is real valued, W (z)

has two real-valued branches: the principal branch, de-
noted by W0 (·) and the branch W−1 (·). Figure 11 shows
the two real-valued branches. For instance, W0

(

−e−1
)

=
W−1

(

−e−1
)

= −1 and W0 (0) = 0.
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Fig. 11. the Lambert-W function

Note that the notation W (·) usually relates to the prin-
ciple branch, i.e. W0 (·). Thus, although one would expect
that for real-valued z, W (z · ez) = z, this is only the case
for z ≥ −1; in case z < −1, W−1 (z · ez) = z 6= W (z · ez).


