
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 1

On the Capacity of Bufferless Networks-on-Chip
Alexander Shpiner, Erez Kantor, Pu Li, Israel Cidon, and Isaac Keslassy, Senior Member, IEEE

Abstract—Networks-on-Chip (NoCs) form an emerging paradigm for communications within chips. In particular, bufferless NoCs
require significantly less area and power consumption, but also pose novel major scheduling problems to achieve full capacity.
In this paper, we provide first insights on the capacity of bufferless NoCs. In particular, we present optimal periodic schedules for
several bufferless NoCs with a complete-exchange traffic pattern. These schedules particularly fit distributed-programming models
and network congestion-control mechanisms. In addition, for general traffic patterns, we also introduce efficient greedy scheduling
algorithms, that often outperform simple greedy online algorithms and cannot have deadlocks. Finally, using network simulations, we
quantify the speedup of our suggested algorithms, and show how they improve throughput by up to 35% on a torus network.

Index Terms—Networks-on-Chip, bufferless network, scheduling, collective communication, all-to-all personalized exchange,
complete-exchange, interprocessor communication.

F

1 INTRODUCTION

1.1 Background

Networks-on-Chip (NoCs) form an emerging paradigm for
communications within large VLSI systems implemented on
a single silicon chip. In a NoC system, modules such as
processor cores, memories and specialized blocks exchange
data using a network, rather than simple shared busses as
in previous systems. A NoC is constructed from multiple
point-to-point data links interconnected by routers, such that
messages can be relayed from any source module to any
destination module over several links, by making routing
decisions at the switches.

Interestingly, despite the revolution that the NoC paradigm
is causing in computer architecture, little is known on the
capacity region of NoCs. This is especially surprising because
any slight improvement in the capacity of NoCs may have a
huge impact. For instance, NoCs are present in most personal
computers currently sold around the world [1].

There are many possible NoC topologies. They include
simple line and ring topologies [2], which are widely used in
optics-based networks [3]–[5]. For instance, the Intel Sandy
Bridge CPU [1], and the IBM Cell Broadband Engine [6] use
a ring-based interconnect for their on-chip-network. The mesh
and the torus NoC topologies are also popular [7], [8]. In this
paper, we study these four main topologies: line, ring, mesh
and torus.

We are especially interested in NoCs that (a) use bufferless
switches, and (b) carry a periodic traffic. Bufferless NoCs are
NoCs that eliminate router buffers to reduce NoC cost [9].

• Alexander Shpiner, Israel Cidon and Isaac Keslassy are with the Depart-
ment of Electrical Engineering, Technion - Israel Institute of Technology.
E-mail: shalex@tx.technion.ac.il, {cidon, isaac}@ee.technion.ac.il

• Erez Kantor is with CSAIL, MIT, Cambridge, MA. This work was done
when Erez Kantor was a post-doc fellow at the Technion.
E-mail: erezk@csail.mit.edu

• Pu Li is with ASML Netherlands B.V. This work was done when Pu Li was
a research visitor at the Technion.
E-mail: puli@tx.technion.ac.il

Fig. 1. Simple case with a three-node bufferless NoC
sub-network.

As shown in [9]–[14], bufferless NoCs and NoCs with small
buffers are particularly interesting because they are claimed
to offer a lower area and power consumption than those with
buffers, in exchange for an increased scheduling complexity
and potentially reduced performance. In fact, NoC buffers can
consume significant dynamic and static energy, and occupy a
large chip area.

Second, we look at applications with a periodic traffic.
Time-critical periodic applications for embedded devices com-
bine ever-growing computing demands with hard-deadline
performance-guarantee requirements. These applications, such
as distributed-programming models and network congestion
control mechanisms, use a periodic pre-determined traffic
pattern with tight deadlines. But the embedded devices of-
ten cannot provide the required hard-deadline performance-
guarantees. This is because they often rely on NoCs with best-
effort communication, which results in an unpredictable net-
work behavior, causing a significant application performance
variability.

Our goal is to devise a periodic schedule algorithm that
can provide a capacity-optimal guaranteed service for this
traffic pattern in bufferless NoCs. We also later compare
such scheduling algorithms that use the pre-determined nature
of the periodic schedule with greedy online algorithms that
would not rely on this assumption. We introduce a novel
theoretical model of bufferless NoC architectures, and find
periodic conflict-free schedules. This is illustrated in the next
simple example.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 2

TABLE 1
Example of non-optimal schedule

time slot link 1 link 2
1 A → B B → C
2 A → C
3 A → C

TABLE 2
Example of optimal schedule

time slot link 1 link 2
1 A → C B → C
2 A → B A → C

Example 1. Consider a simple case presented in Figure 1,
where the bufferless NoC sub-network consists of three nodes
A, B and C and two links 1 and 2 connecting them. The traffic
requirement consists of three packets that need to be sent at
each period : A → B, B → C and A → C. The periodic
schedule is created by setting for each packet the time slot
at which it is sent in each period. Assume equal propagation
times on each link, such that each time slot is sufficient to
send a packet on a link. Assume first that the transmissions are
scheduled online as shown in Table 1. In this example, A → B
is scheduled in the first time slot. Next, packet B → C is also
scheduled in the first time slot, because link 2 is free. Finally,
A → C is scheduled in the second time slot. It takes two slots
to complete the transmission of A → C. Therefore, the length
of the total schedule is 3 time slots. As shown in Table 2, the
above schedule can be optimized. In the first time slot packet
A → C is scheduled on link 1, and in the second time slot
on link 2. Link 2 is free in the first time slot, therefore, packet
B → C can be scheduled. Finally, packet A → B is scheduled
in the second time slot on link 1. The links are utilized all the
time, therefore, this schedule is optimal and reaches its full
capacity. Its length is 2 time slots.

Note that if the network were buffered, then of course, there
would be no need for collision-free scheduling. The collided
packets could then be queued at the buffers. However, the
buffers would lead to significant power and area costs.

Our suggested periodic transmission of scheduled packets
over the NoC can be complemented by best-effort packet
services at a strictly lower priority. Therefore, our scheduling
algorithms can be used to provide a two-tier solution for both
guaranteed-service and best-effort communications in a NoC.

1.2 Applications

Many applications and parallel computation models rely on a
predetermined periodic traffic. We focus in this paper on a pe-
riodic uniform complete-exchange communication pattern and
on its optimal schedule in different topologies. This uniform
complete-exchange pattern, also known as all-to-all person-
alized communication, is a type of collective communication
pattern for Message Passing Interface (MPI) [15], in which all
processors need to communicate with all other processors. In
this communication pattern, each of the N processors in the
network has a distinct, but equal-size, message to send to each

of the remaining N − 1 processors. It is thus a highly dense
communication pattern that can result in many link contentions
[16]–[21]. This simple communication pattern enables many
numerical parallel algorithms. For example, it includes an
increasingly large class of parallel algorithms, such as neural
networks, large FFT (Fast Fourier Transform) computations,
parallel quick-sort, matrix transpose, array redistribution, dis-
tributed table lookup and bitonic sort [22]. More generally,
any multi-round algorithm where updates are sent to many
randomly-chosen processing elements can be enabled using
a topology that allows uniform communications with updates
sent to all other processing elements.

It is interesting to note that numerous applications have
been shown to allow restructuring that completely separates
the computation logic from the communication module. Such
structure complies to a well-established programming model
called Bulk Synchronous Parallel (BSP) [23]. In BSP, pro-
grams are represented as a series of two super-steps: first,
a computation super-step, then, a communication super-step.
BSP has gained popularity for its ability to enable predictable
performance on a variety of parallel and distributed platforms,
from super-computers to CMPs. Compilers can apply profile-
based or static code analysis to determine the pattern in the
communication super-step of a BSP application, precompute
the communication schedule for a given NoC topology, and
augment the compiled code with this information to allow its
use at runtime.

The uniform complete-exchange communication pattern
could also fit many end-to-end congestion control mechanisms
in which all nodes exchange information at regular intervals.
Such mechanisms can include the estimation of network
delays and/or losses in the best-effort network; the periodic
acknowledgment of received packets; a generalized hot-spot
rate and fairness management; as well as a source-destination
queue management [24].

1.3 Contributions
The main contribution of this paper is the introduction of
capacity-optimal periodic schedules for uniform traffic over
bufferless NoCs, under several topologies.

The optimality of the schedule is on the capacity utilization
of the links, or in other words, the length of the period.
We also leverage the fact that the traffic pattern is fixed to
compute the schedule only once offline (for instance just
after the application compilation). Therefore, by using an
optimal offline schedule, we aim to provide a higher capacity
utilization, or a shorter period, and hence transmit the same
traffic demands with higher throughput using the same buffer-
less NoC architecture. Using this optimization framework, we
prove the existence of several optimal scheduling algorithms
on different NoC topologies.

First, we present an algorithm, named Algorithm DTNS
(Degree-Two NoC Scheduling), for complete-exchange com-
munication in degree-two networks, e.g., line and ring NoC
topologies. We prove its optimality and also provide several
results on its period length.

Second, we present an algorithm, named Algorithm TNS
(Torus NoC Scheduling), for complete-exchange in N × N

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 3

torus NoC topologies, and prove its optimality. We later
provide lower and upper bounds on the performance of any
minimal schedule in the mesh NoC topology. We also provide
a constant bound on the ratio between the performance of the
TNS algorithm in a mesh and its optimal performance in a
torus.

In addition, we also want to provide a more practical
algorithm that can deal with general traffic patterns. To do so,
we introduce a greedy latency-based scheduling algorithm. In
this case the input to our scheduling mechanism is the set of
flows with their bandwidths and pre-computed routes [25]–
[27]. Then our algorithm allocates the time-slots to the flows
in order to minimize the length of the schedule period. This
schedule provides both guaranteed throughput and guaranteed
latency while using bufferless routers. Note that it could
also be used in congestion-free NoCs like optical NoCs; this
is, however, beyond the scope of the paper. Finally, using
simulations, we show that the proposed schedules outperform
approximations of previously-known online algorithms, typi-
cally by over 20% in the ring and torus topologies, and 5-15%
in the mesh topologies, depending on the number of nodes.

2 RELATED WORK

The periodic traffic pattern enables us to rely on a bufferless
NoC. Providing guaranteed service using a bufferless NoC
requires finding a periodic conflict-free schedule. Note that not
all bufferless NoC designs meet the required real-time guar-
antee. For example, bufferless NoCs with deflection routing
[9], [10], [28] or dropping [29], [30] are often characterized
by a highly-unpredictable network behavior that does not fit
our requirements. In fact, [9] shows that buffered NoCs have a
better performance, lower cost and complexity than bufferless
NoCs with deflection. However, in this paper, we consider
periodic collision-free scheduling that is pre-determined and
offline, and therefore, does not waste resources on longer
routes as in deflection routing.

The works that are closest to ours have been recently
realized independently [31], [32]. They also analyze statically
scheduled bufferless NoCs with all-to-all complete exchange
communication pattern. They formulate the problem of finding
an optimal shortest-length schedule for various topologies
using an exhaustive search, and provide analytical bounds for
the schedule length [31]. In addition, they suggest a heuristic
algorithm for generating such schedules [32] and introduce
useful and interesting implementation considerations. How-
ever, unlike us, they do not attempt to provide a closed-
form optimal algorithm. They also assume a slightly different
network model, where each node can only inject and absorb
a single packet in a time slot, while in our model a node is
allowed to inject and absorb a packet to/from each of the four
directions in the same time slot.

A bufferless NoC architecture that provides guaranteed
service was introduced in Aethereal [33]–[35]. The Aethereal
architecture relies on a greedy resource-reservation algorithm
that is designed to adapt to changing traffic patterns. In partic-
ular, the UMARS algorithm relies on an offline scheduling by
ordering the flows by their bandwidth requirements prior to

scheduling them greedily by shortest and less contented route
[25]. Other works suggest algorithms for route optimization
with multiple paths and shortest latency by keeping in-order
arrivals in offline [26], [36] and online [27], [37] modes.
However, all these works do not explicitly attempt to achieve
the network capacity and do not provide an optimal solution
for the period length. These papers can nicely extend our work
on non-uniform traffic by providing efficient algorithms for
routing and mapping, which we do not consider in this paper.

In addition, there have been other works on providing
guaranteed service in buffered NoCs. Most suggested archi-
tectures, like Nostrum, have relied on router buffers to provide
guaranteed service, for instance by using temporally-disjoint
networks [38], [39]. Slot allocation in a TDM network-on-chip
was introduced in [40]. However it assumes the existence of
virtual circuits in the routers, and uses extensive search for
providing scheduling for general traffic by validating alloca-
tion of each pair of virtual circuits, thus is not optimal and not
scalable. Additional papers also focus on all-to-all collective
communication patterns in the NoCs [41]–[43]. However, they
all assume wormhole routing and buffered NoC. Finally, it
is also possible to provide statistical instead of deterministic
guarantees [44].

From the theory perspective, bufferless routing was in-
tensively studied under various of names and models. For
example, Direct Routing [45] defines the problem such
that for a given set of packets with corresponding source
and destination, the objective is to schedule the injections
times of the packets. In different versions of the problem the
specified path can be given as an input to the algorithm or
defined as another output. The solution requirement is to avoid
collisions, and to minimize the schedule period time. [45]
presents a randomized O(d2 log2 n)-approximation algorithm
for d-dimensional Mesh for general traffic pattern. They show
that finding an optimal Direct Routing is NP-hard, and for
general networks, they show that this problem cannot be easily
approximated. Also, algorithms for the complete-exchange
pattern for wormhole routing are presented for the torus [46]
and mesh [47], [48] topologies. [49] presents a scheduling
scheme for complete-exchange in tree networks. Also, in
unbuffered optical networks, [50] considers how to schedule
packets optimally given several wavelengths, and [51] presents
algorithms for a Clos topology.

Another related problem is hot-potato-routing studied in
[52]–[54], where for a given set of packets, where each
packet consists of a source vertex, a destination vertex and an
injection time. However, the packets are deflected from their
shortest route, therefore the provided solution is not optimal. In
addition, packet scheduling in bufferless linear networks was
investigated before in offline [55] and online [56] versions.
However, no assumption on uniformity or periodicity of the
traffic was considered, therefore they could not provide an
optimal solution. The baked potato routing algorithm [57]
was also among the first to consider switch scheduling in
a bufferless network for periodic traffic. However, it only
provided a solution for a spanning tree network.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 4

3 PROBLEM DEFINITION

In the paper we investigate a bufferless network-on-chip archi-
tecture in which the traffic is produced under some periodic
traffic demand pattern. The objective is to find a periodic
schedule ∆ with minimal period length S needed to service
traffic pattern λ, i.e. to maximize the capacity utilization. The
periodic schedule ∆ has to provide congestion-free routing, so
that each packet reaches its destination using a shortest route.

Formally, consider a network of n nodes in line, ring,
torus or mesh topology. Each node is composed of a router
connected to up to 4 neighbor nodes and to a single local
module (traffic producer/consumer unit , which, for example,
can be a processor core). The nodes do not buffer, drop or
deflect packets.

Assume that the traffic is produced under some periodic traf-
fic demand pattern. Denote as uniform or complete exchange
a traffic pattern in which each local module of a node, during
each period, injects exactly one packet destined to each local
module of other nodes in the network. In other words, the
normalized traffic demand pattern is λi→j = 1,∀i, j, where i
and j are nodes in the network. Further assume that all link
capacities are equal to a normalized unit capacity, equivalent
to sending one unit-sized packet per time-slot, and denote by
Ctot the total link capacity, i.e. the number of links in the
network.

Note that larger packets can be subdivided into the unit-size
packets that we consider, and which are also sometimes called
flits. Then, multi-flit packets can be sent over several schedule
periods. These flits can be queued in the nodes before being
injected into the network, but once they enter the network, they
are not queued in any router before reaching their destination.
In the paper, we will use the generic term of packets to denote
these unit-sized flits.

Each router must forward the packets immediately at the
next slot. At each time slot, each router can send a single
packet to, and can receive a single packet from, each adjacent
router. In addition it can send and receive up to 4 packets from
its adjacent module.

Note that since the schedule is periodic and pre-determined,
there are no deadlocks and no livelocks. Finally, we say that an
algorithm A is optimal, if A produces a minimal period length
schedule for the complete-exchange traffic requirements.

A generally-known parameter of a packet injection rate i is
defined as the average number of new packets that the nodes
send into the network per time unit. The injection rate can
be expressed as function of the schedule period length S as
i = n−1

S per node, or i = n(n−1)
S for the whole network, since,

as defined in the complete-exchange traffic, at each period of
length S, the n nodes inject n− 1 packets each.

4 OPTIMAL ALGORITHM FOR COMPLETE EX-
CHANGE IN DEGREE-TWO NOCS

A degree-two NoC is a NoC topology in which all nodes have
a degree of either one or two. There are two types of degree-
two NoCs. We denote by n-Line a NoC consisting of n nodes
connected by n− 1 bi-directional links in a line topologyand

by n-Ring a NoC consisting of n nodes connected by n bi-
directional links in a ring topology.

4.1 DTNS Algorithm Description

We start by designing a collision-free scheduling algorithm
for complete-exchange in degree-two networks, called DTNS
(Degree-Two NoC Scheduling). The DTNS algorithm gives a
higher priority to the retransmitted packets over new packets
at each node, and thus avoids congestions on several types of
NoC topologies, as formulated next.

Define a ℓ-hopped packet as a packet whose source-to-
destination distance in the shortest route is ℓ links. The
algorithm is built in the following way. Each node i at each
time slot t operates according to the scheme:

• If in time slot t − 1 the node receives a packet for
forwarding, then it forwards it at time t.

• Otherwise, it starts transmitting an ℓmax -hopped packet,
where ℓmax is the largest number of hops ℓ of all packets
left with the node i as their source node.

For the ring topology, the algorithm assumes a shortest
routing. The n-Ring with even number of nodes n, has two
shortest routing alternatives for the n

2 -hopped packets. The
choice between the two alternatives can be arbitrary. However,
an optimal schedule can be achieved with overlapping periods,
by combining the periods into pairs and scheduling the n

2 -
hopped packets of one period in the pair at the same time
with the n

2 -hopped packets of the next period, over the two
alternative routes.
As an example, note that DTNS for n = 3 Line produces
the schedule presented in Table 2. We obtain the following
properties of the DTNS algorithm on degree-two networks.

Property 1 (n-Line). Given an n-Line of n nodes, the schedule
period length SL(n) of the DTNS-based schedule is:

SL(n) =

{
n2

4 if n is even;
n2−1

4 if n is odd.
(1)

Proof: The traffic in the n-Line network can be separated
into two distinct groups, one for each direction. Therefore, for
simplicity, we consider only a single direction in the analysis.
By the rules of a DTNS algorithm the packet from node 1
to node n (1 → n) with propagation time n − 1 slots is
transmitted first. It is easy to see that during its transmission,
all the packets 1 → a and a → n, where a = 2, . . . , n− 1 are
transmitted. Next, packet 2 → n − 1 is transmitted in n − 3
time slots, during which all the packets 2 → a and a → n−1
where a = 3, . . . , n − 2 are transmitted. Summing over all
successive packets times, we directly obtain the following
schedule length:

SL(n) =

{∑n
2 −1
i=0 (n− 2i− 1) = n2

4 if n is even;∑n−1
2 −1

i=0 (n− 2i− 1) = n2−1
4 if n is odd.

Property 2 (n-Ring). Given an n-Ring of n nodes, the
schedule period length SR(n) of the DTNS-based schedule

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 5

TABLE 3
Example of optimal schedule for 4-node ring.

Clockwise Direction.
time slot link 1 → 2 link 2 → 3 link 3 → 4 link 4 → 1

1 1 → 3 2 → 4 3 → 1 4 → 2
2 4 → 2 1 → 3 2 → 4 3 → 1
3 1 → 2 2 → 3 3 → 4 4 → 1

Counter-clockwise Direction.
time slot link 2 → 1 link 3 → 2 link 4 → 3 link 1 → 4

1 2 → 1 3 → 2 4 → 3 1 → 4

is

SR(n) =

{
n2

8 if n is even;
(n−1)(n+1)

8 if n is odd.
(2)

Proof Outline: The proof is very similar to the proof of
Property 1, and consists of summing over all successive packet
times. We then obtain:

SR(n) =

{∑n
2 −1
i=1 i+ n

4 = n2

8 if n is even;∑n−1
2

i=1 i = (n−1)(n+1)
8 if n is odd.

Note that the above property assumes that consecutive
periods might overlap. In other words, the transmissions of
a new period can be started before the last period was ended.
Otherwise, if overlapping is forbidden, we obtain a worse
result for even n’s. This is because overlapping enables an
alternate routing of n

2 -hop packets: one period in clockwise
direction, and the next period in counter-clockwise direction.
Without overlap, we obtain the following result:

Property 3 (n-Ring without overlap). Given an n-Ring of n
nodes in which period overlapping is forbidden, the schedule
period length SR,no(n) of the DTNS-based schedule is

SR,no(n) =

{
n(n+2)

8 if n is even;
(n−1)(n+1)

8 if n is odd.
(3)

Proof Outline: The proof is similar again to the proofs
above, and simply consists of summing over all successive
packet times. We then obtain:

SR,no(n) =

{∑n
2
i=1 i =

n(n+2)
8 if n is even;∑n−1

2
i=1 i = (n−1)(n+1)

8 if n is odd.

For the clarity of the algorithm we provide a scheduling
example for the 4-node ring in Table 3. The two last slots in
the counter-clockwise direction can be used for transmitting
the 2-hop packets of the next period. Therefore, the sum of
the schedule lengths of the two periods will be 4.

4.2 Optimality of DTNS Algorithm
Theorem 4. The DTNS algorithm is optimal on n-Lines and
n-Rings with complete-exchange traffic.

Proof: The proof is based on the fact that the bottleneck
links are always utilized in the N-Line, and likewise that all the
links are always utilized in the n-Ring (they are all bottleneck

links). As a consequence, no other schedule can be more
efficient using a smaller period length S. We prove that the
DTNS schedule length is equal to the number of transmissions
on the bottleneck link.

First we prove optimality on the n-Line. We consider two
cases.

Case 1: n = 2k + 1 is odd. Let lmid = (k, k + 1) be the
directed link that connects between node k and node k+1. It
is easy to verify that lmid requires to deliver k ·(k+1) = n2−1

4
packets, which is clearly a lower bound of the period length.

Case 2: n = 2k is even. The number of packets that lmid

requires to deliver is (k/2)2 = n2/4.
Next, we prove optimality on the n-Ring. Again, we con-

sider two cases.
Case 1: n = 2k + 1 is odd. It is easy to see that each

link transmits i times i-hopped packet, when i = 1, . . . , k.
Summing the transmission of all the packets we get the length
of the optimal period S(n) = (n−1)(n+1)

8 which is equal to
the result in Equations (2) and (3).

Case 2: n = 2k is even. The k-hopped packets have two
shortest paths. Therefore, in each period k-hopped packets
are transmitted only in one direction, while the links on the
another direction are idle. Therefore the length of the period
consists of the time for the transmission of i-hopped packets
(i = 1, . . . , k − 1), which is equal to

∑k−1
i=1 i time slots, and

the time for the the transition of the k-hopped packets, which
is equal to k time slots. Summing above, we get the result in
Equation (3). Of course, this result is not optimal, because of
the idle links. If overlapping of the scheduling between the
two adjacent periods is allowed, then the idle links can used
to transmit the k-hopped packets of the next period, and thus
the average number of time slots to schedule the k-hopped
packets is equal to k

2 . Thus, we get the result in Equation (2).

5 OPTIMAL ALGORITHM FOR COMPLETE EX-
CHANGE IN TORUS NOCS
In this section, we present an algorithm, named TNS (Torus
NoC Scheduling), which is designed to provide a periodic
schedule over the Torus NoC topology for the complete-
exchange traffic pattern. We will demonstrate that TNS is
guaranteed to achieve the network capacity in an N × N
Torus network with n = N2 nodes, using the same setting
assumptions of uniform traffic and unit capacities.

The TNS algorithm provides the injection time to the
network and the minimal-length route for each packet within
the period, based on the source and destination of the packet. It
also guarantees that there are no packet collisions. Therefore,
the TNS algorithm does not rely on buffering or dropping
packets, and it also has no deadlocks.

5.1 TNS Algorithm Description
Consider an N × N torus network with n = N2 nodes, and
total allowed capacity Ctot for all links in the network. Each
node is composed of a router connected to 4 neighbor nodes
and to a single local module (traffic producer/consumer unit).
Denote the nodes as a set of tuples {(x, y) | x, y ∈ {1, ..., N}},

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 6

where the first entity refers to the rows on the torus and the
second entity refers to the columns on the torus. Denote by
DIST (a, b) = min{ |a − b| , N − |a − b| }, the distance
between a and b, for every a, b ∈ {1, ..., N}.

We now present the TNS algorithm in detail. Intuitively,
TNS decomposes the period of length S into several phases of
unequal lengths. In each phase, it transmits all the packets be-
tween all source-destination pairs that have the same maximum
distance across dimensions. TNS further decomposes each
phase into several sub-phases called epochs. In each epoch,
it connects nodes that are not only at the same maximum
distance, but that also follow a given pattern. We now define
the TNS algorithm more formally.

Phases — The schedule period is divided into ⌊N/2⌋
phases. We say that a packet belongs to the envelope of a
square of nodes (i + 1) × (i + 1), if the maximum distance
across all dimensions between its source and its destination is
equal to i. In other words, consider a packet from node (a, b) to
node (c, d). We denote i = max{DIST (a, c), DIST (b, d)}.
Then, the packet belongs to the envelope of a square of nodes
(i + 1) × (i + 1). In phase i, packets in all the envelopes of
squares of size (i+1)×(i+1) are scheduled to be transmitted.
For example, the packets on Figure 2 belongs to an envelope
of 3× 3.

Epochs — Each phase consists of several epochs. The
number of epochs per phase depends on the phase number.
Specifically, phase i consists of 2i epochs for 1 ≤ i < N/2.
In addition, the number of epochs in phase N/2 depends on
whether N is odd or even. If N is odd, phase N/2 also consists
of i = N epochs. However, if N is even, phase N/2 consists
of only N

2 + 1 epochs.
On epoch j ∈ {0, 1, ..., 2i−1} of phase i, each node injects

four packets to four different destinations by crossing exactly
i+ j′ links, where j′ = j, if j ≤ i and otherwise, j′ = j − i.
First i links in one direction and the other j′ links in the
perpendicular direction, as explained below. The destinations
are given by the following three steps, for each of the four
packets, one for each direction:

1) First, the packet follows a direct traversal walk on i
links;

2) Then, in epoch 0 it stops; in the epoch (j|0 < j ≤ i),
it “turns right” in a clockwise direction; in the epoch
(j|i < j < 2i), it “turns left” in counter-clockwise di-
rection.

3) Finally, there is another direct traversal walk through j′

additional links.
For clarity, all the packets that are scheduled to be trans-

mitted during the epoch, are injected in the first time slot of
the epoch. Since all the packets in the epoch have an equal
distance to traverse between the source and destination, the
length of the epoch simply equals the number of time slots
that a packet takes to reach the destination in the epoch.
Thus, epoch j of phase i takes i + j′ time-slots. Finally,
after completing all the N/2 phases, all the pairs of nodes in
the Torus have been connected and have transmitted a packet
exactly once.

The example in Figure 2 shows the transmission during
phase i = 3 and epoch j = 1 (a) and j = 4 (b). All

(b)

1

d

d

2

d1

d2

d4

d3
r d3

4

s
i=3

j’=1

r

r

r

l

l

ls
i=3

j’=1

l

(a)

d

Fig. 2. Two epochs in phase i = 3. (a) illustrates epoch
j = 1, with the traversal walk and a turn in a clockwise
direction. (b) illustrates epoch j = 3 + 1 = 4, with the
traversal walk and a turn in a counter-clockwise direction.

the nodes simultaneously inject the packets in four direction.
Every packet is transmitted over i = 3 hops in the direction it
was injected. Then, every packet is transmitted j′ = 1 more
hop left (a) or right (b). The total length of the epoch is
i+ j′ = 4.

Now that we have formally defined TNS, we show in which
epoch each packet is transmitted. First, for a given source node
(a, b) and destination node (c, d), denote by (a, b) → (c, b) →
(c, d) a shorter path that goes from (a, b) to (c, d) via (c, b).
If DIST (a, c) ≥ DIST (b, d), then we say that this path is
a long-then-short shorter path. (Note that the TNS algorithm
uses only long-then-short shorter paths.) The algorithm sets a
unique phase i and epoch j for each source-destination pair,
denoted by the pair (i, j). For instance, consider a packet from
source node (a, b) to destination node (c, d). The phase i in
which the packet is transmitted is given by:

i = max {DIST (a, c), DIST (b, d)} .

Moreover, the epoch in which the packet is transmitted is either
j = j∗ or j = j∗ + i, where

j∗ = min {DIST (a, c), DIST (b, d)} .

The exact epoch is decided by the direction (clockwise or
counter-clockwise) of the traversal walk of a long-then-short
shorter path between source node (a, b) and destination node
(c, d). If there exist two different long-then-short shorter paths
(i.e., for the case where DIST (a, b) = DIST (c, d), that is
i = N/2 for even N), then the packet is delivered on epoch
j = j∗.

For example, a packet from (3,4) to (4,1) is transmitted in
phase i = max {DIST (3, 4), DIST (4, 1)} = max {1, 3} =
3. Then, j∗ = min {1, 3} = 1, and due to the fact that the
long-then-short transmission is counter-clockwise, the epoch
is j = j∗ + i = 4. The packet will be transmitted in parallel
with all other packets destined from (3+x,4+y) to (4+x,1+y),
with packets from (3,4) to (6,5), (2,7), (0,3) and with all their
parallel packets.

5.2 Correctness of TNS Algorithm Collision-free
Property
In this section we prove the correctness of the collision-
free property of the TNS algorithm. Since the propagation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 7

times in all the links are equal, and only a single packet is
injected by each node in each direction, there are no collisions
during the first step. In the second step, all the packets turn
left in epochs (j|0 < j ≤ i) or all the packets turn right in
epochs (j|i < j < 2i). Later, in the third step, they all continue
straight. Hence the algorithm makes all packets turn in the
same way at the precise same time slots, and therefore ensures
that there are no collisions during these three steps.

Theorem 5. TNS Algorithm provides collision-free packets
scheduling.

Proof: Negatively suppose that two different packets A
and B collided, i.e. were transmitted on the same link at the
same time slot. The TNS algorithm describes the same traffic
pattern at each epoch, at which all the packets pass i hops in
one direction and all the packets turn at the same slot to the
same relative direction (left or right). Therefore, packets have
the same route in the network. Since, the propagation times in
all the links are equal, and the packets that are transmitted at
each epoch pass an equal number of hops, packets A and B
were injected by the same source to the same direction. That
contradicts the rule that each source node injects only a single
packet to each direction.

5.3 Optimality of TNS Algorithm
In this section we prove the optimality of the TNS algorithm.
First, we develop expressions for the period length of the TNS
schedule in Property 6. Next we prove the algorithm optimality
in Theorem 7, by showing that the period length equals the
ratio of the traffic requirements by the achievable network
capacity.

Property 6 (TNS schedule period length). Given an n = N×
N Torus, the length of the schedule period ST (n = N ×N)
of the TNS-based schedule is:

ST (n = N ×N) =

⌊N/2⌋∑
i=1

2
2i∑
j=i

j − 3i

=

N3 −N

8
=

n
√
n−

√
n

8
, (4)

for odd N and

ST (n = N ×N) =
N3 + 2N

8
=

n
√
n+ 2

√
n

8

for even N . Furthermore, when overlap is forbidden, the result
for even N becomes

ST (n = N ×N) =
N3

8
+N =

n
√
n

8
+
√
n

Proof: Consider an odd N . For N × N Torus, all
connections between all the nodes are covered within ⌊N/2⌋
phases. It is the maximum distance across all dimensions
between the sources and the destinations of all the packets.

The shortest epoch in the phase i is the one that transmits
packets in one dimension, i.e., c = a or d = b. Its length
is i time slots, because packets with latency of i hops are
scheduled within it. The longest epoch in the phase i is the

one that transmits packets between the corners of the (i +
1) × (i + 1) square (DIST (a, c) = DIST (b, d)). Its length
is 2i time slots. Other epochs are scheduled twice, one for
each direction. Therefore, phase i consists of one epoch for
one-dimensional packets, one epoch for corner packets and
two epochs for other packets, one in each direction. Thus, the
length of phase i is

ST,i(n = N ×N) = 2

2i∑
j=i

j − 3i = 3i 2 (5)

time slots, for every i < N/2. For even N , the last phase
(phase N/2) has only N/2 + 1 epochs that takes

∑N
j=N/2 j

time slots. It is simply counted differently whether or not there
is overlap.

Note that when overlapping is allowed, it is possible to yield
a non-integer period time. For instance, it is possible to pack
two periods into three time-slots (for N = 2). Actually, N = 2
is an extreme case when a pair of periods is fully overlapped.

Theorem 7. The TNS algorithm is optimal on Torus NoCs
topology with complete-exchange traffic.

Proof: Depending on whether N is odd or even. These
two cases are considered separately.

Case 1: N is odd: Denote L(i,j)→(k,l) as the minimum
number of hops that a packet passes from node (i, j) to node
(k, l) (i, j, k, l ∈ {1, ..., N}), and it is given as the sum of the
distances on both axes:

L(i,j)→(k,l) = DIST (i, k) +DIST (j, l). (6)

For the uniform traffic, the total number of hops for all packets
in a period St(N) is given by:

Lt =
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

L(i,j)→(k,l) =
N3(N2 − 1)

2
. (7)

Divide Lt by ST using Equation (4), and get

Ctot = Lt/ST = 4N2, (8)

where Ctot is the capacity of the torus, i.e., the total number
of available links in the network. It indicates that by this
scheduling algorithm, all the links are always utilized during
the transmission. Thus, the algorithm is optimal.

Case 2: N is even: Denote edge packets as the packets
that have two paths with equal distances of N/2 in one of
the dimensions, for a shortest routing from source node to
the destination node. For example, if the equal distance is
in the X axis, the source node is (i, k), then the destination
node is ((i + N/2) (mod N), l). We first consider the case
when overlapping is allowed and calculate the transmission
of the edge packets in this period twice on account of their
transmission in the next period. The duration of transmission
of the packets that are not the edge packets is the duration of
the transmission of phases 1 to N/2− 1:

St,N/2−1 =

N/2−1∑
i=1

2

2i∑
j=i

j − 3i

=

N(N − 1)(N − 2)

8
(9)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 8

time slots. The sum of latencies of the packets that are not the
edge packets is:

Lt, non-edge =

= 2N(N − 1)
∑
i

∑
k ̸=(i+N/2) mod N

DIST (i, k) =

=
N3(N − 1)(N − 2)

2
. (10)

When dividing the sum of latencies Lt, non-edge by the time slots
St,N/2−1, we get 4N2, which is equal to the total capacity of
the links Ctot, and indicates that all links are utilized all the
time during the transmission. Thus, for the transmission of
non-edge packets, the scheduling algorithm is optimal. The
edge packets are transmitted in the phase N/2. As we seen
before, the edge packets have two shortest paths. Therefore,
they can be transmitted twice during a single phase, each on
the one of the two shortest paths. Therefore, the duration of
transmission of the edge packets twice is the duration of phase
N/2:

SN/2 =

2

2i∑
j=i

j − 3i

∣∣∣∣∣
i=N/2

= 2

2i∑
j=i

j − 3N

2
=

3N2

4
.

(11)
By considering all possible cases, we find that the sum of

the latencies of the edge packets is:

Lt,edge =

= 2N2
∑
i

∑
k=(i+N/2) mod N

DIST (i, k) +

+2N
∑
i

∑
k

DIST (i, k) =

= 2N2 ·N ·N/2 + 2N

N

N/2−1∑
d=1

2d+N/2

 =

= N4 +N4/2 =
3N4

2
. (12)

Therefore, the following equality holds:

Ctot = 4N2 =
2Lt,edge

SN/2
,

which means that transmitting the edge packets twice during
the phase N/2 maximally utilizes the links. One can consider
the second transmission of the edge packets for the next
schedule period. We showed that with uniform traffic and unit
link capacities, the links in the Torus are always utilized, hence
the algorithm is optimal.

6 SCHEDULING BOUNDS FOR COMPLETE EX-
CHANGE IN MESH
We now want to provide some intuition on the schedule
period in a NoC Mesh topology. In such a topology, the
TNS algorithm is not optimal anymore, and we have not
found any characterization of a generally optimal algorithm.
Therefore, we will provide instead lower- and upper-bounds
on the schedule period, and compare it with the torus schedule
period.

6.1 Lower Bound for Mesh Schedule Length
We now establish a lower bound on the period length in the
Mesh NoC topology.

Theorem 8. Given an n = N × N Mesh, the period length
SM (n = N×N) of any schedule for complete-exchange traffic
satisfies{

SM (n = N ×N) ≥ N3

4 = n
√
n

4 if N is even,
SM (n = N ×N) ≥ N3−N

4 = n
√
n−

√
n

4 if N is odd.
(13)

Proof: As previously, the proof relies on computing the
load on the bottleneck links, and using this load for the lower-
bound on the period length. In the proof we assume XY
routing, however, the result can be generalized for every traffic
pattern, as will be shown later. Then, we calculate the load
on the link that transmits the largest number of packets (the
bottleneck link). The lower bound of the period length is the
time which is taken to transmit the packets over the bottleneck
link.

According to the properties of the XY routing, each horizon-
tal link ((i, j) → (i + 1, j)) transmits packets from j nodes
((i, 1), (i, 2), . . . , (i, j)) to N · (N − j) nodes (k, l), where
k = 1, . . . , N and l = i+ 1, . . . , N .

Thus, the number of packets Pi,j→i+1,j that are transmitted
on link ((i, j) → (i+ 1, j))(N) in each period is:

Pi,j→i+1,j(N) = j ·N · (N − j) (14)

Similar calculations can be obtained for the vertical links.
Equation (14) is maximized on links where j = N

2 when
N is even and j = N−1

2 when N is odd, therefore the most
utilized link transmits Pmax(N) packets:

Pmax(N) =

{
N3

4 if N is even;
N
4

(
N2 − 1

)
if N is odd.

Therefore,
SM (n = N ×N) = Pmax

and the result stands.
Initially we assumed XY routing and show that the maxi-

mally loaded links are all the central links that connect the left
part with the right part of the mesh. Therefore, the traffic load
connecting the two parts is equally spread over those central
links. We can use this maximal load as the lowest bound for
the schedule length. Since the load is equally spread, using
any other type of routing cannot decrease the load on the
maximally utilized link, and thus cannot decrease the lower
bound. Therefore, the final result can be generalized for each
type of routing.

6.2 Upper Bound for Mesh Schedule Length Using
TNS
We now want to provide an upper bound on the period length
in a mesh. The application of the TNS algorithm in a mesh
topology is as follows. Consider an instance of the TNS
algorithm on a 2N×2N torus. The N×N mesh is embedded
in a 2N × 2N torus by an N ×N subgraph combined from

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 9

nodes (i, j), where N/2 < i, j ≤ 3N/2. Using the TNS
algorithm on the 2N × 2N torus, the shortest paths between
the nodes in this subgraph are routed within the subgraph
(contrary to some other shortest paths outside this subgraph
that are routed through the boundaries of the torus). For the
above N ×N mesh subgraph we use the TNS scheduling of
the full 2N×2N torus, transmitting only the packets between
the nodes of the N × N mesh subgraph, and leaving empty
the scheduling slots for the packets outside the subgraph. We
can now prove the following result:

Theorem 9. Let SM (n = N×N) denote the minimal schedule
length in an n = N ×N Mesh, and ST (n = N ×N) denote
the minimal schedule length in an n = N × N Torus. Then
SM (n = N ×N) satisfies:

SM (n) ≤ ST (4n) (15)

Proof: From Property 6, we know the schedule length
ST (n) of TNS in an N × N torus. It is easy to see that
ST (n = N×N) grows as O(N3), i.e. increases by a factor of
8, for doubling N . Moreover, we showed that we can schedule
an N×N mesh using the TNS algorithm applied in a 2N×2N
torus. The length of this schedule is ST (4n = 2N × 2N).
Therefore, the upper bound of SM (n) is ST (4n).

The results of Theorems 8 and 9 provide an asymptotic ratio
of at most 4 between the upper-bound and the lower-bound,
because

n
√
n

4
≤ SM (n = N ×N)

≤ ST (4n = 2N × 2N) =
8n

√
n+ 4

√
n

8
.

Therefore, we are able to determine the growth rate of the
periodic schedule length within a 4+ 2

n - constant approxima-
tion.

7 GREEDY SCHEDULING ALGORITHM FOR
GENERAL PERIODIC TRAFFIC PATTERN

The generalized scheduling problem of non-uniform traffic
is NP-hard [45]. Therefore, we want to design an efficient
heuristic algorithm to schedule an arbitrary traffic pattern in a
general NoC topology with a general traffic demand pattern.
Algorithm Overview: We introduce the Latency-based
Scheduling Algorithm. The input of the algorithm is a periodic
flow requirement that is given together with a predefined
routing. The algorithm outputs a schedule that guarantees
periodic service of the traffic without any collisions.

Before defining the algorithm formally, let’s first provide
some intuition. The algorithm runs offline. It relies on a
centralized scheduler that uses given traffic demands and
routes to provide a schedule. Its goal is to make the schedule
period as small as possible. Intuitively, the packets that are
hardest to schedule are those that take the most delay in their
transmission, since they occupy more slots and therefore can
experience more conflicts. Therefore, to minimize conflicts, in
the latency-based algorithm, we first schedule the packets with
the longest latencies.

Note that in the example of Figure 1, the latency-based
scheduling will always produce the optimal schedule that
is shown in Table 2, while a random greedy scheduling
can produce either of the two schedules. We will show in
simulations below that latency-based heuristics also often work
better in more complex cases as well.

Also, note that Ref. [32] independently introduced a similar
heuristic algorithm for the collision-free scheduling under a
slightly different model. However, it is not destined to provide
a schedule for any general periodic traffic, but to provide
a symmetric schedule for the uniform traffic in symmetric
topologies. Since it has a smaller number of scheduling
alternatives, it converges faster.
Algorithm Description: Let’s now formally introduce the
latency-based scheduling algorithm. We first consider the
given list of traffic demands, and sort all traffic demands by
latencies in a decreasing order. Specifically, denote by l(di)
the latency of a flow demand i. It is defined as the length
of its predefined route between the source and the destination
nodes. Assuming for n flow demands that l(d1) ≥ l(d2) ≥
. . . ≥ l(dn), then the ordered set is (d1, d2, . . . , dn).

The scheduler considers an empty slot table consisting of
links on one axis and time slots on the second axis, for the
switching schedule [33] (as illustrated in Tables 1 and 2),
and successively attempts to fill it. To do so, the algorithm
iterates over the set of unallocated flows, and each time picks
a flow demand with the largest latency, which is defined by the
number of hops in the flow route. It then attempts to schedule
the flow demand by placing it in the earliest available time-
slots. Specifically, given the set of flow demands ordered by
the latency, from the largest to the smallest, (d1, d2, . . . , dn),
the scheduler picks demand d1 and removes it from the set.
For all of the node routers on the flow route, it allocates the
earliest available time-slots. The injection time of the flow is
the allocated time-slot in its first node router on the route (as
also described in [25]). When the flow demand set is empty,
all the flows are allocated. The period length is set as the
latest allocated time-slot on all the routers. For example, the
period lengths of the schedules in Tables 1 and 2 are 3 and 2,
respectively.

8 EVALUATION

8.1 Baseline Random-Greedy Algorithm
We define the random-greedy algorithm as a baseline in our
simulations. Our goal is to approximate the typical algorithms
that consider traffic pattern demands in an online fashion, even
though we compute our schedule only once at the start in an
offline way. To approximate online computations, we consider
the demands of the traffic pattern in a random order. To do
so, we run a random permutation of all the demands, and
then consider them one after the other. In other words, unlike
in our latency-based scheduling algorithm, we do not order
flows by latency before scheduling them. We skip the ordering
by latency step of our latency-based scheduling algorithm.
Therefore, the scheduler iterates over a set of unallocated
flows, randomly picks one and attempts to schedule it in a
greedy manner, by placing it in the earliest available slots.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 10

While the online random-greedy algorithm obtains a single
schedule, we can obtain a better result in our offline setting. To
do so, we run the algorithm many times using different random
permutations of the demand order, and obtain the schedule
with the lowest period length out of all runs. In our simulations
graphs we denote the best simulation run by random-greedy
offline. In the figures 3 we show the distribution of the
performance of the different runs of the algorithm.

8.2 Period Length with Complete Exchange Traffic
We simulate three NoC architectures: Ring, Torus and Mesh.
We assume a complete exchange traffic pattern with a unit-
sized packet to send in each period from each source to each
destination. The simulations are written in Matlab. Fig. 3 plots
the distribution of the period length S in each of the three
NoC topologies, given several algorithms. First, Fig. 3(a) plots
the period length distribution in an N-Ring topology with
N = 16. It compares the performances of the random-greedy
and latency-based greedy algorithms, described in Section 7,
together with the optimal TNS algorithm. We remind that
random-greedy is meant to approximate the performance of
an online algorithm that would service traffic requests in
their random order of arrival. On the other hand, the other
algorithms attempt to benefit from the fact that the entire traffic
demand pattern is known in advance. To obtain an approximate
practical distribution, each of the greedy algorithms is run 100
times.

We can see that DTNS manages to schedule all packets
within 33 slots; while the random-greedy algorithm needs
between 39 and 47 slots with an average of 41.93, and the
latency-based algorithm improves upon the random-greedy
algorithm by reaching between 35 and 42 slots with an average
of 37.94.

Next, Fig. 3(b) plots the period length distribution in an N×
N Torus topology with N = 8, i.e. N2 = 64 nodes. Again, we
can see that TNS, the optimal algorithm, performs significantly
better than the greedy algorithms, with a meaningful difference
with even the best greedy result out of 100 runs.

Last, Fig. 3(c) plots the period length distribution in an
N × N Mesh topology with N = 8, i.e. N2 = 64 nodes.
This time, we do not know the optimal algorithm. Therefore,
we plot the lower bound achieved in Section 6.1. We see that
the distributions of the random-greedy and the latency-based
greedy algorithms are disjoint after 100 runs, indicating that
latency-based significantly outperforms random-greedy in this
topology and it is relatively close to the lower bound.

8.3 Scaling
We now want to study how scaling N impacts the results.
We define speedup as the ratio of the average throughput
under a specific algorithm to the average throughput under
the basic random-greedy algorithm. The higher the speedup,
the better the throughput gain. Fig. 4 shows the speedup
gained by several algorithms described versus the average
performance of the random-greedy algorithm achieved in our
simulations. The three sub-figures illustrate the three different
NoC topologies: the Ring with N nodes, the N × N Torus,

and the N × N Mesh. In all the sub-figures, N varies from
3 to 10. For each N we run 100 iterations of random greedy
and latency-based algorithms.

In all sub-figures, we show the best speedup result for
the random-greedy algorithm (when compared to its average
result). We also only show the best result for the latency-based
algorithm, since it is run in offline mode, and the developer
can run several iterations in order to use the best result. For
the Ring and Torus we also compare with the optimal TNS
algorithm. In all topologies, we can see that the variances tend
to decrease as N is scaled. We can also notice successive
improvements when going from online to offline mode, by
considering the speedup of the best random-greedy run vs. its
average run. Next, we can see a further improvement given the
best latency-based run compared to the best random-greedy
run. Finally, the optimal algorithm clearly outperforms the
greedy algorithms in most cases.

8.4 Non-uniform Traffic
Next, we compare the algorithms given non-uniform traffic.
Two synthetic patterns are used: uniform-random [58] and bit-
permutation [59]. The uniform-random pattern is created by
uniformly randomly choosing one destination for each source
node. The bit-permutation pattern is a pattern where each node
sends packet to exactly one other node, and receives packet
from exactly one node. Note that even though the choice of
destination node in the traffic patterns is uniform, both traffic
patterns are non-uniform, since after the traffic patterns are
determined, each node is sending packets to a single specific
destination only.

Figures 5 and 6 show the distribution of the simulation
results with the random-greedy and latency-based algorithms
on the 8×8 Torus and 8×8 Mesh topologies for the uniform-
random and bit-permutation traffic patterns, respectively. In
all cases the latency-based algorithm achieves a slightly better
distribution.

8.5 Analytical Evaluation
We now want to study the tradeoff between the additional
capacity needed in the Torus NoC topology when compared
to the Mesh NoC topology, and the resulting additional per-
formance. Figure 7 compares the performance ratio and the
capacity ratio of the Torus and the Mesh NoC topologies.

• The performance ratio is defined as the ratio between
the average period length in the random-greedy algorithm
given the Torus topology, by the same parameter given
the Mesh topology.

• The capacity ratio is defined as the ratio between the
link capacities of the Torus and those of the Mesh, i.e.
Torus capacity
Mesh capacity = N2+N

N2 .
• The link cost ratio is defined as the ratio between

the lengths of the links in the Torus and those of the
Mesh. The link length is directly correlated with the chip
area required for a link. Assuming the simplified drawn
topology, the link cost ratio is equal to 2 for every N ≥ 2.

We can see that as we scale the topologies, the performance
ratio seems to stabilize around 1.68, while the capacity ratio

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 11

30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Slots

D
is

tr
ib

ut
io

n

random−greedy
latency−based
DTNS

(a) Ring

65 70 75 80 85 90 95
0

0.2

0.4

0.6

0.8

1

Slots

D
is

tr
ib

ut
io

n

random−greedy
latency−based
TNS

(b) Torus

125 130 135 140 145 150
0

0.2

0.4

0.6

0.8

1

Slots

D
is

tr
ib

ut
io

n

random−greedy
latency−based
low bound

(c) Mesh

Fig. 3. Period length distribution for different topologies (smaller is better). The latency-based algorithm clearly
outperforms the baseline random-greedy algorithm in all topologies. In addition, none of these algorithms can yield
the same performance as our optimal DTNS and TNS algorithms in Ring and Torus.

3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N

S
pe

ed
up

random−greedy (offline)
latency−based (offline)
DTNS (optimal)

(a) Ring

3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N

S
pe

ed
up

random−greedy (offline)
latency−based (offline)
TNS (optimal)

(b) Torus

3 4 5 6 7 8 9 10
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

N

S
pe

ed
up

random−greedy (offline)
latency−based (offline)
low bound

(c) Mesh

Fig. 4. Speedup for different topologies when compared to the average random-greedy online performance. The
offline random-greedy algorithm, defined as its best run out of 100, improves upon the average online performance.
The offline latency-based algorithm further improves the performance. The optimal algorithms in Ring and Torus
provide a speedup above 20% in all cases.

7.5 8 8.5 9 9.5
0

10

20

30

40

Slots

D
is

tr
ib

ut
io

n

random−greedy
latency−based

(a) 8× 8 Torus

11.5 12 12.5 13 13.5
0

10

20

30

40

Slots

D
is

tr
ib

ut
io

n

random−greedy
latency−based

(b) 8× 8 Mesh

Fig. 5. Period Length Distribution with the Uniform-Random traffic pattern. In all cases the latency-based algorithm
achieves a slightly better distribution.

converges to 1. At first look, this might indicate that the
torus topology is more adapted. However, bear in mind that
torus links might need to be longer, and therefore their cost
might be higher when compared to mesh links than indicated
in this simplistic model. On a more theoretical level, notice
that the ratio is indeed always between 1 and 8, as proved in
Theorem 9.

Next, we compare the length of the optimal schedule of
DTNS and TNS algorithms under the line, ring and torus

topologies as a function of the number of nodes (Figure 8) and
a function of the total link capacities (Figure 9). The graphs
were obtained using Properties 1 and 2 and Property 6. Note
that the impact of potential overlapping periods is negligible
with a large number of nodes (and links) and, therefore, we
did not refer to it in the plots. The results show the gained
speedup of torus over degree-two topologies, and the gained
speedup of ring over line.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 12

7.5 8 8.5 9 9.5 10 10.5
0

5

10

15

20

Slots

D
is

tr
ib

ut
io

n

random−greedy
latency−based

(a) 8× 8 Torus

9 10 11 12 13 14
0

5

10

15

Slots

D
is

tr
ib

ut
io

n

random−greedy
latency−based

(b) 8× 8 Mesh

Fig. 6. Period Length Distribution with the Bit-Permutation traffic pattern. In all cases the latency-based algorithm
achieves a slightly better distribution.

3 4 5 6 7 8 9 10
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N

R
at

io

Performance ratio
Capacity ratio

Fig. 7. Comparison of the performance ratio and the
capacity ratio of the Torus and the Mesh using average
online performance random-greedy algorithm. Note that
although the Torus outperforms the Mesh in the band-
width performance and the capacity, it has also a twice
larger link cost ratio.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Num. of nodes

P
er

io
d

Le
ng

th
 (

S
)

DTNS (line)
DTNS (ring)
TNS (torus)

Fig. 8. Period length as function of number of nodes of
the optimal algorithms in line, ring and torus topologies.

Next, we compare the throughput of the DTNS algorithm in
the line and the ring, and the TNS algorithm in the torus, with
the achievable capacity in the networks under varying number
of nodes. Figure 10 shows that the DTNS in a line topology is
not capable of achieving full capacity, because the links in the

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Link Capacities

P
er

io
d

Le
ng

th
 (

S
)

DTNS (line)
DTNS (ring)
TNS (torus)

Fig. 9. Period length as function of the total link capacities
of the optimal algorithms in line, ring and torus topologies.
The capacity of a single link between two adjacent nodes
is equal to 1.

0 20 40 60 80 100
0

20

40

60

80

100

Num. of nodes

T
hr

ou
gh

pu
t

 DTNS (line)
DTNS (ring)
TNS (torus)
Achievable in line
Achievable in ring
Achievable in torus

Fig. 10. Comparison of throughput of DTNS and TNS
algorithms vs. the achievable capacity as function of the
number of nodes.

middle of the line transmit more packets than the links closer
to the edges of the line. However, DTNS in ring topology
achieves full capacity under all number of nodes, as proved
in Theorem 4. Finally, TNS in a torus topology achieves full
capacity with odd N , and almost achieves capacity with even
N . Note that it is optimal in the sense that no other schedule
can achieve a better throughput in a torus topology, as proved

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 13

in Theorem 7. Finally, also note that given a number of nodes,
it is the torus topology that scales best, since it grows as
Θ(

√
n).

9 CONCLUSION

In this paper, we provided several periodic scheduling algo-
rithms for bufferless NoCs, that are designed to meet the hard
communication deadlines of real-time applications, applica-
tions based on the BSP programming model, and network
congestion-control applications. In particular, we introduced
DTNS and TNS scheduling algorithms that were proved to
be optimal for complete exchange traffic on degree-two and
torus networks. We also provided an application of the TNS
algorithm on mesh NoCs, and showed that it achieves a
constant bounded schedule length compared to the optimal
scheduling. The performance-guarantee-based framework for
the complete-exchange traffic pattern can also be used for other
patterns, which require an almost uniform communication
between the nodes, leaving some of the scheduling slots empty.
Then, we provided a Latency-based scheduling algorithm for
general periodic traffic pattern. We showed that latency-based
scheduling algorithm is more efficient than random greedy
scheduling on such NoC topologies as rings, tori and mesh.

In future work, we would like to investigate the following
open problems: proving that the collision-free scheduling
problem for periodic arbitrary traffic is NP-hard, providing
improvements to our Latency-based algorithm, and to apply
our results to other collision-free networks, like optical net-
works, which consist of arbitrary topologies.

ACKNOWLEDGMENTS

The authors would like to thank Mark Silberstein, Ori Rot-
tenstreich and Tsahee Zidenberg for their helpful comments.
This work was partly supported by European Research Council
Starting Grant No. 210389, the Intel ICRI-CI Center, and by
the Technion Funds for Security Research. Alex Shpiner was
supported by an Hasso-Plattner-Institut fellowship, and Erez
Kantor was supported by an Eshkol fellowship from the Israel
Ministry of Science and Technology and by NSF grants Nos.
CCF-1217506, CCF-0939370 and CCF-AF-0937274.

REFERENCES
[1] A. L. Shimpi, “Intel’s Sandy Bridge architecture exposed,”

www.anandtech.com/show/3922/intels-sandy-bridge-architecture-
exposed/4, 2010.

[2] T. Krishna, A. Kumar, P. Chiang, M. Erez, and L.-S. Peh, “NoC with
near-ideal express virtual channels using global-line communication,”
HotI, Aug. 2008.

[3] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn,
“Corona: System implications of emerging nanophotonic technology,”
SIGARCH Comput. Archit. News, vol. 36, pp. 153–164, June 2008.

[4] J. Liu, J. Psota, N. Beckmann, J. Miller, J. Michel, J. Eastep, G. Kurian,
L. Kimerling, A. Agarwal, and M. Beals, “ATAC: A manycore processor
with on-chip optical network,” MIT Dspace, Tech. Rep., 2009.

[5] S. Le Beux, J. Trajkovic, I. O’Connor, G. Nicolescu, G. Bois, and
P. Paulin, “Optical ring network-on-chip (ORNoC): Architecture and
design methodology,” DATE, 2011.

[6] T. Chen, R. Raghavan, J. Dale, and E. Iwata, “Cell
broadband engine architecture and its first implementation,”
www.ibm.com/developerworks/power/library/pa-cellperf/, 2005.

[7] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram, “An
empirical investigation of mesh and torus NoC topologies under different
routing algorithms and traffic models,” DSD, 2007.

[8] A. Guerre, N. Ventroux, R. David, and A. Merigot, “Hierarchical
network-on-chip for embedded many-core architectures,” NOCS, May
2010.

[9] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis,
“Evaluating bufferless flow control for on-chip networks,” NOCS, 2010.

[10] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” ISCA, 2009.

[11] X. Chen and L.-S. Peh, “Leakage power modeling and optimization in
interconnection networks,” ISLPED, 2003.

[12] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: a fast
and accurate NoC power and area model for early-stage design space
exploration,” DATE, 2009.

[13] A. Kodi, A. Sarathy, and A. Louri, “Design of adaptive communication
channel buffers for low-power area-efficient network-on-chip architec-
ture,” ANCS, 2007.

[14] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, Sep.
2007.

[15] D. W. Walker and J. J. Dongarra, “MPI: A standard message passing
interface,” Supercomputer, vol. 12, 1996.

[16] R. Thakur and A. Choudhary, “All-to-all communication on meshes with
wormhole routing,” Parallel Processing Symposium, Apr. 1994.

[17] Y.-C. Tseng and S. Gupta, “All-to-all personalized communication in a
wormhole-routed torus,” Parallel and Distributed Systems, vol. 7, no. 5,
May 1996.

[18] F. Petrini, “Total-exchange on wormhole k-ary n-cubes with adaptive
routing,” IPPS/SPDP, 1998.

[19] Y.-J. Suh and S. Valamanchili, “All to-all communication with minimum
start-up costs in 2d/3d tori and meshes,” Parallel and Distributed
Systems, vol. 9, no. 5, pp. 442 –458, May 1998.

[20] Y.-J. Suh and K. Shin, “Efficient all-to-all personalized exchange in
multidimensional torus networks,” Parallel Processing, 1998.

[21] Y.-J. Suh and S. Yalamanchili, “Configurable algorithms for complete
exchange in 2d meshes,” Parallel and Distributed Systems, 2000.

[22] D. Vainbrand and R. Ginosar, “Network-on-chip architectures for neural
networks,” NOCS, 2010.

[23] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, 1990.

[24] A. Singh, W. J. Dally, B. Towles, and A. K. Gupta, “Globally adaptive
load-balanced routing on tori,” IEEE Comput. Archit. Lett., vol. 3,
January 2004.

[25] A. Hansson, K. Goossens, and A. Radulescu, “A unified approach to
mapping and routing on a network-on-chip for both best-effort and
guaranteed service traffic,” VLSI Design, 2007.

[26] R. Stefan and K. Goossens, “Multi-path routing in time-division-
multiplexed networks on chip,” VLSI-SoC, Oct. 2009.

[27] O. Moreira, J. J.-D. Mol, and M. Bekooij, “Online resource management
in a multiprocessor with a network-on-chip,” SAC, 2007.

[28] Z. Zhang, Z. Guo, and Y. Yang, “Bufferless routing in optical gaussian
macrochip interconnect,” High-Performance Interconnects (HOTI), 2012
IEEE 20th Annual Symposium on, pp. 56 –63, aug. 2012.

[29] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato, “BPS: A bufferless
switching technique for NoCs,” Workshop on Interconn. Netw. Arch.,
2008.

[30] M. Hayenga, N. Jerger, and M. Lipasti, “Scarab: A single cycle adaptive
routing and bufferless network,” MICRO, 2009.

[31] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, “A statically
scheduled time-division-multiplexed network-on-chip for real-time sys-
tems,” NOCS, 2012.

[32] F. Brandner and M. Schoeberl, “Static routing in symmetric real-time
network-on-chips,” RTNS, 2012.

[33] K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal network on
chip: concepts, architectures, and implementations,” Design Test of
Computers, IEEE, vol. 22, no. 5, 2005.

[34] A. Hansson, M. Coenen, and K. Goossens, “Channel trees: reducing
latency by sharing time slots in time-multiplexed networks on chip,”
CODES+ISSS, 2007.

[35] A. Hansson, M. Subburaman, and K. Goossens, “Aelite: a flit-
synchronous network on chip with composable and predictable services,”
DATE, 2009.

[36] R. Stefan and K. Goossens, “An improved algorithm for slot selection
in the Aethereal network-on-chip,” INA-OCMC, 2011.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 14

[37] T. Marescaux, B. Bricke, P. Debacker, V. Nollet, and H. Corporaal,
“Dynamic time-slot allocation for QoS enabled networks on chip,”
Embedded Systems for Real-Time Multimedia, 2005.

[38] J. Liu, L.-R. Zheng, and H. Tenhunen, “A guaranteed-throughput switch
for network-on-chip,” System-on-Chip, 2003.

[39] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within
the nostrum network on chip,” DATE, 2004.

[40] Z. Lu and A. Jantsch, “TDM virtual-circuit configuration for network-
on-chip,” IEEE Trans. on VLSI Systems, 2008.

[41] V. Dvorak and J. Jaros, “Optimizing collective communications on 2D-
mesh and fat tree NoC,” ICN, 2010.

[42] J. Jaros, M. Ohlidal, and V. Dvorak, “Complexity of collective commu-
nications on NoCs,” Parallel Computing, 2006.

[43] H. C. de Freitas, L. M. Schnorr, M. A. Z. Alves, and P. O. A. Navaux,
“Impact of parallel workloads on NoC architecture design,” Parallel,
Distributed, and Network-Based Processing, 2010.

[44] I. Cohen, O. Rottenstreich, and I. Keslassy, “Statistical approach to
networks-on-chip,” IEEE Trans. Computers, vol. 59, no. 6, pp. 748–
761, 2010.

[45] C. Busch, M. Magdon-Ismail, M. Mavronicolas, and P. G. Spirakis,
“Direct routing: Algorithms and complexity,” Algorithmica, 2006.

[46] Y.-C. Tseng, T.-H. Lin, S. Gupta, and D. Panda, “Bandwidth-optimal
complete exchange on wormhole-routed 2d/3d torus networks: a
diagonal-propagation approach,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 8, no. 4, pp. 380 –396, apr 1997.

[47] N. S. Sundar, D. N. Jayasimha, and D. K. Panda, “Hybrid algorithms for
complete exchange in 2d meshes,” IEEE Trans. Parallel Distrib. Syst.,
vol. 12, no. 12, pp. 1201–1218, 2001.

[48] B. Juurlink, J. Sibeyn, and P. Rao, “Gossiping on meshes and tori,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 9, no. 6,
pp. 513 –525, jun 1998.

[49] A. Faraj, X. Yuan, and P. Patarasuk, “A message scheduling scheme
for all-to-all personalized communication on ethernet switched clusters,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 18, no. 2,
pp. 264 –276, feb. 2007.

[50] I. Keslassy, M. S. Kodialam, T. V. Lakshman, and D. Stiliadis, “Schedul-
ing schemes for delay graphs with applications to optical packet net-
works,” HPSR, 2003.

[51] Y. Kao and H. Chao, “Design of a bufferless photonic clos network-on-
chip architecture,” Computers, IEEE Transactions on, vol. PP, no. 99,
p. 1, 2012.

[52] A. Ben-Dor, S. Halevi, and A. Schuster, “Potential function analysis of
greedy hot-potato routing,” Theory Comput. Syst., 1998.

[53] C. Busch, “Õ(congestion + dilation) hot-potato routing on leveled
networks,” SPAA, 2002.

[54] U. Feige and P. Raghavan, “Exact analysis of hot-potato routing (ex-
tended abstract),” FOCS, 1992.

[55] M. Adler, A. L. Rosenberg, R. K. Sitaraman, and W. Unger, “Scheduling
time-constrained communication in linear networks,” Theory of Comput-
ing Systems, 2002.

[56] J. S. Naor, A. Rosen, and G. Scalosub, “Online time-constrained
scheduling in linear and ring networks,” Journal of Discrete Algorithms,
2010.

[57] S. Dolev, E. Kranakis, and D. Krizanc, “Baked-potato routing,” Journal
of Algorithms, 1999.

[58] P. Gratz and S. W. Keclker, “Realistic Workload Characterization and
Analysis for Networks-on-Chip Design,” The 4th Workshop on Chip
Multiprocessor Memory Systems and Interconnects (CMP-MSI), 2010.

[59] C. Feng, J. Li, Z. Lu, A. Jantsch, and M. Zhang, “Evaluation of
deflection routing on various noc topologies,” ASIC (ASICON), 2011
IEEE 9th International Conference on, pp. 163–166, 2011.

Alexander Shpiner is currently working in the
system architecture group of Mellanox Technolo-
gies. He received a B.S. in computer engineer-
ing in 2004 and recently has completed a Ph.D.
in electrical engineering at the Technion, Haifa,
Israel. His research interests are in the fields of
computer networks: congestion control, switch
scheduling, network processors and networks
on chip.

Erez Kantor is a post-doc fellow at the CSAIL,
MIT, Cambridge, MA. Previously he was a post-
doc fellow at the Electrical Engineering depart-
ment at the Technion - Israel Institute of Tech-
nology. He is a recipient of Eshkol post-doc
fellowship from the Ministry of Science and Tech-
nology, Israel. Erez received its Ph.D. and M.Sc.
from the Weizmann Institute of Science- Israel in
2005 and 2009 respectively.

Pu Li was in the Department of Electrical En-
gineering, Technion, between November 2009
and July 2010. He is now working as New Tech-
nology Introduction Engineer in ASML, Nether-
lands. Previously, he received the B.S. and
M.Sc. from Zhejiang University, China, and Tech-
nical University Eindhoven, the Netherlands, in
2007 and 2009, respectively. He conducted mul-
tiple research projects in the Chinese University
of Hong Kong, TNO Netherlands and Philips
Research Europe, in the field of communication

network. His research interests include wireless technologies, high-
performance switching network and network-on-chip.

Israel Cidon is a professor of Electrical En-
gineering at the Technion - Israel Institute of
Technology. In 2012, he co-founded Sookasa, a
provider of unstructured data security and man-
agement for storage cloud services. In 2005-
2010 he was the dean of the Electrical Engi-
neering Faculty at the Technion. In 2000, he
co-founded Actona Technologies (acquired by
Cisco in 2004), which pioneered the technol-
ogy of Wide Area File Systems (WAFS). This
technology, also termed WAN optimization, was

adopted by most world large enterprises. In 1998 he co-founded Viola
Networks a provider network and VoIP performance diagnostic suite
(acquired by Fluke Networks, 2008). In 1994-5 he founded and managed
the high-speed networking group at Sun Microsystems Labs, Mountain
View. Between 1985-94 he was the manager of the Network Architecture
and Algorithms at IBM T. J. Watson Research Center, NY, where he led
several computer networking projects, where he lead several computer
networks projects including the first implementations of a packet based
multi-media network and IBM first storage area network. For these
works, he received twice the IBM outstanding innovation award. In
1981 he co-founded Micronet Ltd., an early vendor of mobile data-entry
terminals (Israeli IPO, 2006). He is the co-author of over 170 refereed
papers and 27 US patents. His current research involves wire-line and
wireless communication networks and on chip interconnects networks.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 20XX 15

Isaac Keslassy (M’02, SM’11) received his M.S.
and Ph.D. degrees in Electrical Engineering from
Stanford University, Stanford, CA, in 2000 and
2004, respectively.

He is currently an associate professor in the
Electrical Engineering department of the Tech-
nion, Haifa, Israel. His recent research inter-
ests include the design and analysis of high-
performance routers and on-chip networks. He
is the recipient of the European Research Coun-
cil Starting Grant, the Alon Fellowship and the

Yanai Award.

