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Memento: Making Sliding Windows Efficient
for Heavy Hitters

Ran Ben Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik, and Erez Waisbard

Abstract—Cloud operators require timely identification of
Heavy Hitters (HH) and Hierarchical Heavy Hitters (HHH)
for applications such as load balancing, traffic engineering,
and attack mitigation. However, existing techniques are slow in
detecting new heavy hitters.

In this paper, we present the case for identifying heavy
hitters through sliding windows. Sliding windows are quicker
and more accurate to detect new heavy hitters than current
interval-based methods, but to date had no practical algorithms.
Accordingly, we introduce, design, and analyze the Memento
family of sliding window algorithms for the HH and HHH
problems in the single-device and network-wide settings. We use
extensive evaluations to show that our single-device solutions
are orders of magnitude faster than existing sliding window
techniques and comparable in speed to state-of-the-art non-
windowed sampling based technique.

Furthermore, we exemplify our network-wide HHH detection
capabilities on a realistic testbed. To that end, we implemented
Memento as an open-source extension to the popular HAProxy
cloud load-balancer. In our evaluations, using an HTTP flood by
50 subnets, our network-wide approach detected the new subnets
faster and reduced the number of undetected flood requests by
up to 37× compared to the alternatives.

I. INTRODUCTION

Cloud operators require fast and accurate single-device and
network-wide detection of Heavy Hitters (HH) (most frequent
flows) and of Hierarchical Heavy Hitters (HHH) (most fre-
quent subnets) to attain real-time visibility of their traffic.
These capabilities are essential building blocks in network
functions that are key to network softwarization, such as load
balancing [7], [26], [31], traffic engineering [16] and attack
mitigation [37], [35], [41].

Quickly identifying changes in the HH and HHH is a key
challenge [39] and can have a dramatic impact on the perfor-
mance, reliability, and security of network components. For
example, faster detection of HH flows allows load balancing
and traffic engineering solutions to respond to traffic spikes
swiftly. For attack mitigation systems, quicker and more ac-
curate detection of HHH subnets means that less attack traffic
reaches the victim. Faster detection is particularly important
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for fighting Distributed Denial of Service (DDoS) attacks on
cloud services that grow with the increase in connected devices
(i.e., Internet of Things) [24], [27].

Contributions. We first show that sliding windows are
more accurate than interval-based measurements. Despite
their merits, existing sliding window algorithms were consid-
ered “markedly slower and less space-efficient in practice”,
to quote [32].

We introduce the Memento family of four algorithms for
the fundamental HH and HHH problems in both single-
device and network-wide measurements. We rigorously ana-
lyze them, establish accuracy guarantees and maximize accu-
racy given a per-packet control bandwidth budget. Using ex-
tensive evaluations on real packet traces, we show that the
Memento algorithms achieve speedups of up to 14× in HH
and up to 273× in HHH when compared to existing sliding-
window solutions. These speedups come from utilizing our
sampling-based approach at the cost of weaker approximation
guarantees. We further show that they match the speed of the
fastest interval-based algorithm [10].

Next, we implement a proof-of-concept network-wide HH
and HHH measurement system. We evaluate the achievable
accuracy when limiting the communication overhead for re-
porting results to the controller. We experiment with different
reporting strategies and evaluate their impact on accuracy.

We create an HTTP flood attack from 50 subnets and
show that the detection time is near-optimal while using a
bandwidth budget of 1 byte per packet. For the same budget,
our methods exhibit a reduction of up to 37× in the number of
undetected flood requests compared to the alternative. Finally,
we open-source the Memento algorithms and the HAProxy
cloud load-balancer extension [3].

II. WHY SLIDING WINDOWS?

We first show that sliding windows identify new heavy hit-
ters quicker than interval methods. We consider accurate mea-
surements, but the results are also valid for approximate ones.

Window vs. interval. We start by comparing sliding windows
to the Interval method that is commonly used in HHH-based
DDoS mitigation systems [41], [35], [37]. As depicted in
Figure 1a, the Interval method relies on sequential interval
measurements. Usually, the measurement data is available at
the end of each measurement interval. We also consider an
improved Interval method, in which it is accessible throughout
each measurement period. There are two possible failure
modes, namely: failing to detect a new heavy hitter (false
negative) or falsely declaring a heavy hitter (false positive).
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Algorithms that follow the improved Interval method can have
both false positives and false negatives. In contrast, sliding
windows can avoid both errors. To show this, we start with
the following definitions.

Definition 1 (Window Frequency). We denote by fWx the
window frequency of flow x, i.e., the number of packets
transmitted by x over the last W packets.

Definition 2 (Normalized Window Frequency). We denote
by fWx

W the normalized window frequency of flow x, i.e., the
fraction of x’s packets within the last W packets.

Next, window heavy hitters are flows whose normalized
window frequency is larger than a user-defined threshold:

Definition 3 (Window Heavy Hitter). Flow x is a window
heavy hitter if its normalized window frequency fWx

W is larger
than θ, where θ ∈ (0, 1) is a user-defined threshold.

We formalize the basic window frequency estimation problem:

Definition 4. An algorithm solves (ε, δ) - WINDOW FRE-
QUENCY ESTIMATION if given a query for a flow (x), it
provides f̂Wx such that Pr

[∣∣∣fWx − f̂Wx ∣∣∣ ≤ εW] ≥ 1− δ.

Window optimality. The optimal detection point for new
window heavy hitters is simply once their normalized window
frequency is above a user-defined threshold. Reporting a flow
earlier is wrong (false positive), and reporting it afterwards is
(too) late. Thus, sliding window measurements, by definition,
have an optimal detection time.

Motivation. We motivate the definition for window heavy
hitters with an experimental scenario where a new flow appears
during the measurement and consumes, at a constant rate, a
larger-than-the-threshold portion of the traffic after its initial
appearance. We measure how long it takes for each measure-
ment method to identify the new heavy hitter and evaluate the
following measurement methods:

(i) Interval: The window frequency of each flow is estimated
at the end of every measurement. This method represents
limitations of sampling techniques (e.g., [21], [10]) that require
time to converge and thus cannot provide estimates during
the measurement. (ii) Improved interval: Same as interval, but
flow frequencies are estimated upon the arrival of each packet.
That is, Improved Interval finds heavy hitters once they appear
enough times in the interval and does not need to wait to its
end before reporting. This represents the best case scenario
for the Interval method. (iii) Window: Sliding window, where
frequencies are estimated upon packet arrivals.

Figure 1b plots the detection time for each method as a
function of the normalized frequency of the new heavy hitter.
Intuitively, larger heavy hitters are detected faster, because less
time passes before their normalized window frequency reaches
the threshold. Indeed, the sliding window approach is always
faster than the Interval and Improved Interval methods. When
the frequency is close to the detection threshold, we get up to
40% faster detection time compared to the Interval method.
At the end of the tested range, sliding windows are still over
5% quicker. The Interval method is the slowest, as it estimates

(a) An example of the periodic interval and sliding window methods. In
this scenario, consider a threshold of nine packets. The solid-green flow is a
window heavy-hitter as it has ten packets within the sliding window. However,
the measurement interval method does not detect the green flow, as it only
has five packets within the current interval (false negative). Intuitively, one
can identify the green flow by lowering the threshold to four packets, but in
that case, the striped red flow is detected as well (false positive).

(b) Effect of a new heavy hitter’s frequency on its detection time. The x-axis
is the ratio of the normalized heavy hitter’s frequency and the user-defined
threshold. The y-axis is the expected detection time in windows. For instance,
when the frequency is twice the threshold, it takes a window algorithm half
a window to detect the new heavy hitter whereas interval-based algorithms
require between 0.6-1.0 windows.

Fig. 1: Sliding windows compared to intervals.

frequencies only at the end of the measurement. Thus, such a
usage pattern is undesired for systems such as load balancing
and attack mitigation.

III. SLIDING WINDOW ALGORITHMS

Our next step is to make sliding windows accessible to cloud
operators. We do so by first introducing new single-device
algorithms that are significantly faster than existing techniques,
and then extend them to efficient network-wide algorithms that
combine information from many measurement points to obtain
a global perspective.

A. Heavy Hitters on Sliding Windows

Here, we present Memento – an algorithms that solves the
(ε, δ) - WINDOW FREQUENCY ESTIMATION problem. First,
we discuss a straw man approach.
Straightforward approach. Our goal is to produce faster
sliding window algorithms. Intuitively, one can accelerate the
performance of a heavy hitter algorithm by sub-sampling
the packets. That is, we would like to sample packets with
a probability of τ , use an HH algorithm with a window
size of W · τ packets, and then multiply its estimations
by a factor of τ−1. Unfortunately, this does not yield the
desired outcome as the number of samples from the window
varies, whereas sliding-window HH algorithms are designed
for fixed-sized windows. Specifically, the actual number of
samples in each W -sized window varies, which results in
an additional error of ±Θ

(√
W (1− τ) · τ−1

)
in the size
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Fig. 2: High-level overview of the WCSS algorithm (adapted
from a figure in [13]).

of the reference window. Since we are interested in small
values of τ to achieve speedup (see Section IV-C), this
approach results in a considerable error.

Memento overview. We observe that sliding window algo-
rithms have two conceptual steps in the processing of packets
to slide the window: discard the old information, and record
the new one. The key idea behind Memento is to accelerate
the computation by performing only the discarding step (which
we term Window Update) for most packets, and additionally
triggering the recording step (termed Full Update) with a small
probability τ .

Therefore, Memento alternates between the fast Window
updates and the slower Full updates. Full updates include
(1) forgetting outdated data that is no longer in the window,
and (2) adding a new item to the window. On the other hand,
Window updates only involve maintaining the window. That is,
Memento maintains a W -sized window but most of the packets
within that window are missing. Thus, it attains speedup but
avoids the additional error that is caused by uniform samples.
The concept is exemplified in Figure 3a.

Implementation. For simplicity, we build Memento on top
of an existing sliding window HH algorithm. This makes
it easier to implement, verify, and then compare with the
current approaches. We picked Window Compact Space Saving
(WCSS) [13] as the underlying algorithm, but our approach is
general and works on other window algorithms as well (e.g.,
[12], [25]). Intuitively, when τ = 1, Memento is identical to
WCSS as it performs a full update for each packet. Figure 2
provides a brief overview of WCSS. WCSS divides the stream
into W -sized frames and each frame into k equal-sized blocks.
It uses a counting algorithm with a bounded error to count the
appearances of each item within a frame. WCSS restarts the
counting from zero once per frame, but this only affects the
counts of non-heavy hitters. Each time heavy hitters reach a
certain value, they ’overflow’, and WCSS recalls the overflow
events on a per-block base. The estimated value for each
item depends on how many times it appears within blocks
intersecting the window and on its estimation in the counting
algorithm modulo the overflow value. By this description,
observe that the update procedure of WCSS maintains the
overflow list, forgets overflows that are guaranteed to be too
old to affect the sliding window, and updates the counting
algorithm. Also, notice that within the context of WCSS, the
update procedure updates the illustrated window and forgets
old overflows while also updating the approximate counting
structure (providing an accuracy guarantee within a fixed
amount of space). Thus, we can also see the natural partition
to Full and Window updates.

(a) Memento, our HH algorithm,
records the new item (4) with prob-
ability τ and always discards the
old data (2). Speedup is achieved
by rarely performing Full updates.

(b) H-Memento, our HHH algo-
rithm, simply updates Memento
with a single random prefix,
achieving constant time complex-
ity.

Fig. 3: High-level overview of our algorithms.

Algorithm 1 describes Memento (note that in the special
case of τ = 1 Memento coincides with WCSS [13]). We’ll
eventually use a union bound to bound the total error of
Memento (ε) as the sum of these two errors. The error in
Memento comes from the fact that the underlying heavy hitter
algorithm provides approximate frequencies (εa) and from the
fact that we only updated it for sampled packets (εs). So
Memento exposes a tradeoff, we can reduce εa to increase
εs the former results in higher memory consumption, while
the latter in faster operation. Thus we trade some memory
efficiency for speed.

As detailed in Algorithm 1, given an algorithmic parameter
εa such that W · εa � 1, Memento divides the stream into
frames of size W , where each frame is then further partitioned
into k ,

⌈
4
ε

⌉
equal-sized blocks.

Memento follows on similar lines as WCSS [13] but we
separate WCSS’s update process into a Window update that
updates the sliding window and ages the counters, and a Full
update that reports a new packet. For completeness, we now
describe the update process of Memento. Memento uses a
regular heavy hitter algorithm (e.g., Space Saving [30]) to
count how many times each item arrives within the last frame,
where a frame is a W fixed W sized segment. E.g., each
sliding window intersects either a single frame if the packet
count is a multiplicative of W , and two frames otherwise.
Heavy hitter algorithms conserve space and provide us with
a bounded estimation error. Since we have multiple sources
of error, we allocate that algorithm with k = d4/εae which
yields an estimation bound of at most W/k ≤ Wε/4 for the
number of occurrences within the current frame. Whenever the
estimation of an item reaches a multiple of (W/k ≤ Wε/4)-
a size which we call a Block we record such an event as
overflow, which we will remember for W packets.

At the end of the frame, we reset the heavy hitter instance,
which adds at most W/k ≤ Wε/4 to the estimation error
of all flows. This action implies that we only remember the
overflows within a frame and forget the rest. Still, it allows us
to reuse the heavy hitter algorithm for the new frame.

We now explain how Memento remembers how many times
each flow overflowed within a frame for exactly W packets
since the overflow events. Memento using a queue of queues
(b) that contains one queue for each block that overlaps with
the current window. That is, we use k+1 queues in total. Each
queue in b contains an ordered list of items that overflowed in
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the corresponding block. When a block ends, we remove the
oldest queue from b, as it no longer overlaps with the window.
Additionally, we append a new empty queue to b. Note that
Memento does not count accurately but instead uses a Space
Saving [30] instance (denoted y) to approximately count the
in-frame frequency. Critically, when adding up to W elements,
we are guaranteed that any flow with a size of at least W/k will
not lose its counter (as the sum of all counters is at most W ,
the minimum cannot be larger than W/k). Roughly speaking,
Space Saving uses k counters to track the frequencies of all
flows. Whenever a flow without a counter arrives, the minimal
counter is disassociated with its flow and allocated for the
current one (but is incremented as if it was the current flow’s
counter). This property ensures that once there is an overflow
(Line 15) x does lose its counter until the end of the frame
and is accurately tracked from now on. Finally, we clear y at
the end of each frame.

The frequency of an item is estimated by multiplying
its number of overflows by the block size and adding the
remainder of its appearance count as reported by y. In [33],
Mitzenmacher, Steinke and Thaler (MST) suggest an HHH
detection algorithm with proven approximation guarantees and
a one-sided error (the algorithm never under-approximates).
Thus, we choose to keep the error one-sided as well for
comparison purposes. To do so, Memento adds 2Wk to each
item’s estimation. It then multiplies the result by τ−1 as a
Full update is performed on average once per τ−1 packets.
The table B counts the number of overflows for each item for
quick frequency queries. Memento de-amortizes the update of
B[x], achieving constant worst case time. To that end, when
processing a packet, Memento pops (at most) one flow from
the queue of the oldest block (see lines 8-11). This ensures that
the worst case update time is constant as we are guaranteed
that by the end of the block we will have an empty queue and
B will be fully updated. Finally, for finding the heavy hitters
themselves (rather than just estimating flow sizes), Memento
iterates over the flows with entry in B and estimate their sizes.
Since every heavy hitter must overflow in the window, we are
guaranteed that it will have such an entry.

B. Extending to Hierarchical Heavy Hitters

HHHs monitor subnets and flow aggregates in addition to
individual flows. We start by introducing existing approaches
for HHH measurements on sliding windows.

Existing approaches. In MST [33], multiple HH instances
are used to solve the HHH problem. MST monitors each
prefix length separately with a dedicated Space Saving and
extracts the HHH prefixes by combining the data from all
instances. This design trivially extends to sliding windows
by replacing the HH building blocks with window algorithms
(e.g., WCSS [13]). This was proposed by [33] but dismissed
as impractical. Replacing the underlying algorithms with Me-
mento is slightly better as we can perform Window updates to
most instances. Unfortunately, the update complexity remains
Ω(H), where H is the size of the hierarchy (typically between
5 to 1089), as we explain below. For many HHH flavors, the
update complexity is too slow for real time analysis. In con-

Algorithm 1 Memento (W, ε, τ)

1: Initialization: k = d4/εe , y = SpaceSaving.init(k),M = 0, B =
Empty hash, b = Queue of k + 1 empty queues.

2: function WINDOWUPDATE() . discard old information
3: M = M + 1 mod W
4: if M = 0 then y.FLUSH() . new frame
5: if M mod W

k = 0 then . new block
6: b.POP() . Remove one item from the queue, if such exists
7: b.APPEND(new empty queue)
8: if b.tail is not empty then . remove oldest item
9: oldID = b.tail.POP() . Remove the oldest queue as its block left the

window
10: B[oldID] = B[oldID]− 1
11: if B[oldID] = 0 then B.REMOVE(oldID) . oldID has no more

overflows, delete to save space
12: function FULLUPDATE(Item x) . add item and discard old information
13: WINDOWUPDATE()
14: y.ADD(x) . add item x to the Space Saving
15: if y.QUERY(x) mod W

k = 0 then . x has overflowed, add it to the queue of
the block

16: b.head.PUSH(x)
17: if B.CONTAINS(x) then B[x] = B[x] + 1
18: else B[x] = 1 . adding x to B
19: function UPDATE(Item x)
20: if Uniform(0, 1) ≤ τ then FULLUPDATE(x) . With probability τ
21: else WINDOWUPDATE()
22: function QUERY(Item x) . Estimate the window-frequency of item x
23: if B.CONTAINS(x) then . If x had at least one overflow
24: return τ−1 ·

(
W
k · (B[x] + 2) +

(
y.QUERY(x) mod W

k

))
25: else return τ−1 ·

(
2Wk + y.QUERY(x)

)
. no overflows

trast, H-Memento achieves constant time updates, matching
the complexity of interval algorithms [10]. Another intuitive
approach comes from the Randomized Heirarchical Heavy
hitters (RHHH) [10] algorithm. RHHH shares the same data
structure as MST but randomly updates at most a single HH
instance which allows for constant time updates. Specifically,
for each packet RHHH chooses a single random prefix and
updates it at the relevant HH instance. Intuitively, if a prefix
is sufficiently frequent, it will be sampled enough times to be
identified. Additionally, it makes small changes to the query
procedure to compensate for the sampling error and guarantees
that (with high probability) it will have no false negatives.
This method does not work for sliding windows, as each HH
instance is updated a varying number of times and monitors a
possibly different window.

H-Memento’s overview. In H-Memento we maintain a sin-
gle large Memento instance and use it to monitor all the
sampled prefixes which is the main difference from previ-
ous approaches [10], [33] that use a separate approximate
counting algorithm for each prefix type. Our structure means
that we maintain a single sliding window to measure all
subnets, which the underlying Memento does in constant time.
This approach also has engineering benefits such as code
reuse, simplicity, and maintainability. The update procedure
of H-Memento is illustrated in Figure 3b. Next, we proceed
with notations and definitions for the HHH problem, which
we later use to detail H-Memento.

HHH notations and definitions. For brevity, Table I summa-
rizes the notations used in this work. These definitions extend
the problem formulation [10] to sliding windows. We consider
IP prefixes (e.g., 181.∗). A prefix without a wildcard (e.g.,
181.7.20.6) is called fully specified. The notation U is the do-
main of the fully specified items. For example, U can be all the
IPv4 (or IPv6) source addresses, all pairs of such addresses, all
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Symbol Meaning Symbol Meaning

S The packet stream. N Current number of packets (the stream length).

W The window size. H Size of the hierarchy.

τ Sampling probability. V Sampling ratio for HHH, V , H
τ .

Six Variable for the i’th appearance of a prefix x. Sx Sampled prefixes with id x.

S Sampled prefixes from all ids. U Domain of fully specified items.

ε, εs, εa Overall, sample, algorithm’s error guarantee. δ, δs, δa Overall, sample, algorithm’s confidence.

θ Threshold parameter. Cq|P Conditioned frequency of q with respect to P .

G(q|P ) Subset of P with the closest prefixes to q. fWq The window frequency of prefix q.

f̂Wq
+
, f̂Wq

−
Upper and lower bounds for fWq . Z inverse CDF of the normal distribution.

B per-packet control bandwidth budget. O the minimal header size (in bytes),

E bytes required to report a packet. m number of measurement points.

b number of samples in each report. Eb overall error in network-wide settings.

L Depth of the hierarchy. Hp and HP The fully specified elements generalized by prefix p and prefix set P .

TABLE I: Summary of notations.

5-tuples, etc. A prefix p1 generalizes another prefix p2 if p1 is
a prefix of p2. For example, 181.7.20.∗ and 181.7.∗ generalize
the (fully specified) 181.7.20.6. The parent of a prefix is the
longest generalizing prefix, e.g., 181.7.∗ is 181.7.20.∗’s parent.
The generalization does not have to be at byte-level granularity
as in the above example. Our approach is also applicable to
bit-level hierarchies; for example, using IPv4 source address
bit-level we have 208.67.222.222/31 � 208.67.222.220/30.

The size of the hierarchy (H) is the number of different
prefixes that generalize a fully specified prefix. For example,
in byte granularity one dimensional heavy hitters. The fully
specified prefix 123.234.68.1 is generalized by itself, by
123.234.68.∗, by 123.234. ∗ .∗, by 123. ∗ . ∗ .∗, and by ∗ and
thus H = 5. Similarly, H = 33 for bit-level hierarchy.

Hierarchies can also be multi-dimensional. For example,
we can consider tuples of the form (source IP, destination IP).
In that case, fully specified “prefixes” are fully determined in
both dimensions, e.g., (〈181.7.20.6〉, 〈208.67.222.222〉).
Also, observe that “prefixes” now have two
parents, e.g., (〈181.7.20.∗〉, 〈208.67.222.222〉) and
(〈181.7.20.6〉, 〈208.67.222.∗〉) are both parents to
(〈181.7.20.6〉, 〈208.67.222.222〉).

Definition 5 formalizes the generalization concept.

Definition 5 (Generalization). Let p, q be prefixes. We say
that p generalizes q and denote q � p if for each dimension i,
pi = qi or qi � pi. We denote the set of fully specified items
generalized by p using Hp , {e ∈ U | e � p}. Similarly, the
set of every fully specified item that is generalized by a set of
prefixes P is denoted by: HP , ∪p∈PHp. Moreover, denote
p ≺ q if p � q and p 6= q.

Definition 5 also deals with the multidimensional case.
Next, we consider a set of prefixes P and denote

G(p|P ) as the set of prefixes in P that are most
closely generalized by the prefix p. That is, G(p|P ) ,
{h : h ∈ P, h ≺ p,@h′ ∈ P s.t. h ≺ h′ ≺ p}.

For example, consider the prefix p =< 142.14.∗ > and
the set P = {< 142.14.13.∗ >,< 142.14.13.14 >}, then we
have G(p|P ) = {< 142.14.13.∗ >}. The window frequency
of a prefix p is the total sum of packets within the window that
are generalized by p, i.e., fWp ,

∑
e∈Hp f

W
e . Note that each

packet is generalized by H different prefixes. This motivates

us to look at the conditioned (residual) frequency that a prefix
p adds to a set of already selected prefixes P . The conditioned
frequency is defined as: Cp|P ,

∑
e∈HP∪{p}\HP f

W
e .

We denote by XW
p the number of times prefix p is sampled

in the window, X̂W
p

+
is an upper bound on XW

p and X̂W
p

−
is

a lower bound. The notation V , H
τ stands for the sampling

rate of each specific prefix. We define:
f̂Wp , X̂W

p V – an estimator for p’s frequency.

f̂Wp
+
, X̂W

p

+
V – an upper bound for p’s frequency.

f̂Wp
−
, X̂W

p

−
V – a lower bound for p’s frequency.

We now define the depth of a prefix (or a prefix tuple).
Fully specified items are of depth 0, their parents are of depth
1 and more generally, the parent of an item with depth x is
of depth x + 1. L denotes the maximal depth; In a single
dimension, L = H , but in multiple dimensions L is smaller
than H because each prefix has two parents. Hierarchical
heavy hitters are calculated by iterating over all fully specified
items (depth 0). If their frequency is larger than a threshold
of θW , we add them to the set HHH0. Then, we go over
all the items with depth 1 and if their conditioned frequency,
with regard to HHH0, is above θW , we add them to the set.
We denote the resulting set as HHH1 and repeat the process
L times until the set HHHL contains the (exact) hierarchical
heavy hitters. Unfortunately, we need space that is linear in
the stream size to calculate exact HHH (and even plain heavy
hitters) [36]. Hence, as done by previous work [10], [33], [18],
[19], [20], we solve approximate HHH.

More specifically, a solution to the approximate HHH
problem is a set of prefixes that satisfies the Accuracy and
Coverage conditions (Definition 6). Here, “Accuracy” means
that the estimated frequency of each prefix is within ac-
ceptable error bounds and “Coverage” means that the con-
ditioned frequency of prefixes not included in the set is
below the threshold. This does not mean that the condi-
tioned frequency of prefixes that are included in the set
is above the threshold. Thus, the set may contain a small
number of subnets misidentified as HHH (false positives).

Definition 6 (Approximate HHHs). An algorithm A solves
(δ, ε, θ) - APPROXIMATE WINDOW HIERARCHICAL HEAVY
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Algorithm 2 H-Memento (W, εa, τ)

Initialization: Memento.init(H · ε−1
a ,W, τ ·H)

1: function UPDATE( x)
2: Memento.update(RandomPrefix(x))

3: function OUTPUT(θ)
4: HHH = φ
5: for Level ` = 0 up to L do
6: for each p in level ` do . Only over prefixes with a counter.
7: ̂Cp|HHH = f̂Wp

+
+ calcPred(p,HHH)

8: ̂Cp|HHH = ̂Cp|HHH + 2Z1−δ
√
VW . Compensate for sampling

9: if ̂Cp|HHH ≥ θN then HHH = HHH ∪ {p}
10: return HHH

Algorithm 3 calcPred for one dimension
1: function CALCPRED(prefix p, set P )
2: R = 0

3: for each h ∈ G(p|P ) do R = R− f̂Wh
−

4: return R

HITTERS if for any run of the algorithm it returns a set of
prefixes P that satisfies:

Accuracy: If p ∈ P then Pr
(∣∣∣fWp − f̂Wp ∣∣∣ ≤ εW) ≥ 1− δ.

Coverage: If q /∈ P then Pr
(
Cq|P < θW

)
≥ 1− δ.

H-Memento’s full description. A pseudo-code for
H-Memento is given in Algorithm 2. The output method
performs the HHH set calculation as explained for exact
HHH. The calculation yields an approximate result as we
only have an approximation for the frequency of each prefix.
Thus, we conservatively estimate conditioned frequencies.

For two dimensions, we use inclusion-exclusion (Defini-
tion 7, herein) to avoid double counting.

Definition 7. Given prefixes h, h′, the greatest lower bound
of h, h′ is the most generalized shared descendant of h, h′.
That is, denoted by q = glb(h, h′), the greatest lower bound
satisfies: ∀p : ((p � h) ∧ (p � h′)⇒ p � q). If h and h′ have
no common descendants, glb(h, h′) = 0.

Pseudo-code for the update method is given in Algorithm 2,
which is the same for one and two dimensions. The difference
between these is encapsulated in the CALCPRED method which
uses Algorithm 3 for one dimension and Algorithm 4 for
two. In two dimensions, Cp|HHH is first set in Line 7 of
Algorithm 2. Then, we remove previously selected descendant
heavy hitters (Line 3, Algorithm 4) and finally we add back
the common descendants (Line 6, Algorithm 4). The sampling
error is accounted for in Line 8. Intuitively, our analysis
shows which τ values guarantee that H-Memento solves the
approximate HHHs problem. A formal proof of the algorithm’s
correctness appears in Section VI.

C. Network-Wide Measurements

As Figure 4 illustrates, we now discuss a centralized con-
troller that receives data from multiple clients and forms a
network-wide view of the traffic (e.g., network-wide HH or
HHH). Similarly to [22], [6] we assume that there are several
measurement points and that each packet is measured once.
Our design focus is on two critical aspects of this system: (1)
a communication method between the clients and the controller

Algorithm 4 calcPred for two dimensions
1: function CALCPRED(prefix p, set P )
2: R = 0

3: for each h ∈ G(p|P ) do R = R− f̂Wh
−

4: for each pair h, h′ ∈ G(p|P ) do
5: q = glb(h, h′)

6: if 6 ∃h3 6= h, h′ ∈ G(p|P ), q � h3 then R = R + f̂Wh
+

7: return R

that conveys the information in a timely and bandwidth-
efficient manner, and (2) a fast controller algorithm.
Formal model. First, we define a sliding window in the
network-wide model as the last W packets that were measured
somewhere in the network. Intuitively, we want the controller
to analyze the traffic of the most recent W packets in the
entire network, as monitored by the measurement points. When
considering natural sampling based communication methods,
the main challenge is to maintain the sliding window despite
not knowing the exact order, and the number of packets.
We extend Memento’s sampling approach, as well as the
natural communication patterns to allow for provably accurate
measurement with these methods. Specifically, whenever a
measurement point reports to the controller, it includes the
sampled packets as well as the total number of unsampled
packets. In turn, Memento performs Window updates for each
unsampled packet and Full updates for each sampled packet.
This approach maintains the measurement with respect to a
fixed sized window, but we remain with uncertainty about
the correct packet order and may include outdated packets
in the window. However, we formally establish that this error
is controllably small.
(1) Communication method. We now propose three controller
algorithms for common communication patterns. Each method
must adhere to a per-packet bandwidth budget (B). This
implies that smaller reports can be sent more frequently but
also deliver less information.
Aggregation. The content of two HH instances can often be
efficiently merged [8]. MST [33] and RHHH [10] use HH
algorithms as building blocks, and can, therefore, be merged
as well. This capability motivates the Aggregation commu-
nication method where each client periodically transmits all
the entries of its HH instances to the controller. Given enough
bandwidth, this method is intuitively the most communication-
efficient, as all data is transmitted. However, as each message
is large, we infrequently report to the controller to meet the
bandwidth budget.
Sample. Most network devices are capable of transmitting
uniform packet samples to the controller. Motivated by this
capability, the Sample method samples packets with a fixed
probability τ , and sends a report to the controller once per
τ−1 packets. Thus on average, each message contains a single
sample. This information is enveloped by the usual packet
headers that are required to deliver the packet in the network.
We observe that this uses a significant portion of the bandwidth
for the header fields of the transmitted packet. Yet, the Sample
method is considerably easier to deploy than the Aggregate
option, as the nodes only sample packets and do not run
the measurement algorithms. The communication pattern is



7

Switches

Load

Balancers

Backend

Servers

Centralized

Controller

Internet

Fig. 4: An overview of our system. The clients (load-balancers)
perform the measurements and periodically send information
to a centralized controller. The controller then runs a global
sliding-window analysis. For example, in the case of an HTTP
flood, it can mitigate the attack by instructing the clients which
subnets to rate-limit or block.

network-friendly as we get a stable flow of traffic from the
clients to the controller.
Batch. The Batch approach balances between reporting delay
and bandwidth efficiency. The idea is simple: we send on
average b samples (e.g., 100) per report. That is, we send
a report once per τ−1b packets, containing all the sampled
packets within this period. Our analysis finds the the optimal
batch size b that minimizes the total error.
(2) Controller algorithm. The controller maintains an in-
stance of Memento or H-Memento where we term the respec-
tive algorithms D-Memento and D-H-Memento. The controller
behaves slightly differently in each option.
Aggregation. Aggregation is used in this study only as a base-
line. Thus, instead of implementing a specific algorithm, we
simulate an idealized aggregation technique with an unlimited
space at the controller and no accuracy losses upon merging.
Sample and Batch. In the Sample and Batch schemes,
the controller maintains a Memento or H-Memento instance.
When receiving a report, it first performs a Full update for
each sampled packet and then makes Window updates for the
un-sampled ones. In total, the Sample performs τ−1 updates
and the Batch performs τ−1b updates.

IV. EVALUATION

Server. Our evaluation was performed on a Dell 730 server
running Ubuntu 16.04.01 release. The server has 128GB of
RAM and an Intel Xeon CPU E5-2667 v4@ 3.20GHz.
Traces. We use real packet traces collected from an edge
router (Edge) [5], a datacenter (Datacenter) [15], and a
CAIDA backbone link (Backbone) [23].
Algorithms and implementation. For the HH problem, we
compare Memento and WCSS [13]. For WCSS we use our
Memento implementation without sampling (τ = 1). For the
HHH problem, we compare H-Memento to MST [33] and
RHHH [10] (interval algorithms). We use the code released
by the original authors of these algorithms. We also form the
Baseline sliding window algorithm by replacing the underly-
ing algorithm in MST [33] with WCSS. Specifically, MST
proposed to use Lee and Ting’s algorithm [28] as WCSS was
not known at the time. By replacing the algorithm with the

WCSS, a state of the art window algorithm, we compare with
the best variant known today.

Yardsticks. We consider source IP hierarchies in byte gran-
ularity (H = 5) and two-dimensional source/destination hi-
erarchies (H = 25). Such hierarchies are also used in [10],
[33], [20]. We run each data point 5 times and use two-sided
Student’s t-tests to determine the 95% confidence intervals.
We evaluate the empirical error in the On Arrival model [13],
[14], where for each packet we estimate its flow (denoted st)
size. We then calculate the Root Mean Square Error (RMSE),
i.e., RMSE(Alg) ,

√
1
|N |
∑N
t=1(f̂Wst − fWst )2.

A. Heavy Hitters Evaluation

We evaluate the effect of the sampling probability τ on the
operation speed and empirical accuracy of Memento, and use
the speed and accuracy of WCSS as a reference point for
this evaluation. The notation X-WCSS stands for WCSS that
is allocated X counters (for X∈ {64, 512, 4096}). Similarly,
X-Memento is for Memento with X counters. The window
size is set to W , 5 million packets and the interval length
is set to N , 16 million packets.

As depicted in Figure 5, the update speed is determined by
the sampling probability and is almost indifferent to changes
in the number of counters. Memento achieves a speedup of
up to 14× compared to WCSS. As expected, allocating more
counters also improves the accuracy. It is also evident that the
error of Memento is almost identical to that of WCSS, which
indicates that it works well for the range. The smallest eval-
uated τ , namely, τ = 2−10, already exhibits slight accuracy
degradation, which shows the limit of our approach. It appears
that a larger number of counters, or heavy-tailed workloads
(such as the Backbone trace), allow for even smaller sampling
probabilities without a impact to the attained accuracy.

B. Hierarchical Heavy Hitters Evaluation

H-Memento vs. existing window algorithm. Next, we
evaluate H-Memento and compare it to the Baseline algo-
rithm. We consider two common types of hierarchies, namely
a one-dimensional source hierarchy (H = 5) and two-
dimensional source/destination hierarchies (H = 25). Note
that H-Memento performs updates in constant time while the
Baseline does it in O(H). Following the insights of Figure 5,
we evaluate H-Memento with a sampling rate τ such that
τ ≥ H · 2−10, so that each of the H prefixes is sampled
with a probability of at least 2−10. That is, we do not allow
sampling probabilities of τ < H · 2−10 to get an effective
sampling rate of at least 2−10, which is the range in which
Memento is accurate.

We evaluate three configurations for each algorithm, with
a varying number of counters. The notation 64H denotes the
use of 64 · 5 = 320 counters when H = 5, and 1600 counters
when H = 25. The notations 512H and 4096H follow the
same rule. In the Baseline algorithm, the counters are utilized
in H equally-sized WCSS instances, while H-Memento has a
single Memento instance with that many counters.

Figure 6 shows the evaluation results. We can see how τ is
the dominating performance parameter. H-Memento achieves
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(a) Edge Trace: Speed (b) Edge Trace: Error

(c) Datacenter Trace: Speed (d) Datacenter Trace: Error

(e) Backbone Trace: Speed (f) Backbone Trace: Error

Fig. 5: Effect of the sampling probability τ on the speed
and accuracy for a given memory constraint (i.e., number
of counters) given three different traces and a window size
W = 5M . Memento is considerably faster than WCSS, but
the accuracy of both algorithms is almost the same despite
Memento’s use of sampling, except when the sampling rate
is low and the number of counters is high. Even then, this is
mainly evident in the skewed Datacenter trace.

up to a 52× speedup in source hierarchies and a 273× speedup
in source/destination hierarchies. This difference is explained
by the fact that the Baseline algorithm makes H expensive Full
updates for each packet, while H-Memento usually performs
a single Window update.

H-Memento vs. interval algorithm. Next, we compare
the throughput of H-Memento to the previously suggested
RHHH [10]. H-Memento and RHHH are similar in their use
of samples to increase performance. Moreover, RHHH is the
fastest known interval algorithm for the HHH problem. Our
results, presented in Figure 7, show that H-Memento is
faster than RHHH for small sampling ratios. The reason lies
in the implementation of the sampling. Namely, in RHHH,
sampling is implemented as a geometric random variable,
which is inefficient for small sampling probabilities, whereas
in H-Memento, it is performed using a random number
table. To see this, notice that the heavy operation in geometric
variation is the coin-toss that happens once for every sampled
packet. For unsampled packets, one just needs to decrement
a counter until the next sample. Using a random number
table, we avoid the coin-toss and only increment the offset

(a) Backbone trace - 1 D (H=5) (b) Backbone trace - 2 D (H=25)

Fig. 6: Effect of the sampling probability on the speed
of H-Memento, compared to the Baseline algorithm in the
Backbone trace. Note that H-Memento achieves a speedup of
up to 53× in 1D and up to 273× in 2D. Results for the Edge
and Datacenter traces are similar.

(a) One dimension (H=5) (b) Two dimensions (H=25)

Fig. 7: Speed comparison between RHHH (interval algorithm)
and H-Memento (window algorithm) on the Backbone dataset.
The annotated point shows the throughput of the (τ = 1/10)-
RHHH algorithm that is reported to meet the 10G line speed
using a single core [10]. That is, H-Memento is slightly faster
than RHHH in the parameter range of 10G lines.

in the table. Notice that this is a tradeoff, as the table requires
additional space.

Still, as the sampling probability gets lower, the geometric
calculation becomes more efficient, and eventually, RHHH is
faster than H-Memento. This is because H-Memento per-
forms a Window update for most packets, while RHHH only
decrements a counter. Looking at both performance figures
independently, we conclude that H-Memento achieves very
high performance and is likely to incur little overheads in a
virtual switch implementation in a similar manner to RHHH.

C. Network-Wide Evaluation

This section describes our proof-of-concept system. We
incorporated H-Memento into HAProxy which provides the
capability to monitor traffic from subnets which allows to rate
limit subnets. Our controller periodically receives information
from (in the Batch, Sample or Aggregate method) the load-
balancers and uses it to perform the HHH measurement (with
the D-H-Memento algorithm). Then, the HHH output is used
as a threshold-based attack mitigation where a subnet is rate-
limited if its window frequency is above the threshold.

HAProxy. We implemented and integrated our algorithms
into the open-source HAProxy load-balancer (version 1.8.1).
Specifically, we leveraged and extended HAProxy’s Access
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Control List (ACL) capabilities, to allow the updates of our
algorithms with new arriving data as well as to perform
mitigation (i.e., Deny or Tarpit) when an attacker is identified.

Traffic generation. Our goal is to obtain realistic measure-
ments involving multiple simultaneous stateful connections
such as HTTP GET and POST requests from multiple clients
towards the load-balancers. To that end, we developed a tool
that enables a single commodity desktop to maintain and
initiate stateful HTTP GET and POST requests sourcing from
multiple IP addresses. Our solution requires the cooperation
of both ends (i.e., the traffic generators and the load-balancer
servers) for an arbitrarily large IP pool.

It is based on the NFQUEUE and libnetfilter-queue Linux
targets that enable the delegation of the decision on packets
to a userspace software. As reported by the Apache ab load
testing tool, using a single commodity computer, we can
initiate and maintain up to 30,000 stateful HTTP requests per
second from different IPs without using the HTTP keep-alive
feature. We are only limited by the pace at which the Linux
kernel opens and closes sockets (e.g., TCP timeout).

Controller. We implemented in C a test controller that com-
municates with the load-balancers via sockets. It holds a local
HHH algorithm implementation and exchanges information
with the load-balancers (e.g., receives aggregations, samples,
or batches). The controller then generates a global and coher-
ent window view of the ingress traffic.

Testbed. We built a testbed involving three physical servers.
The first is used for traffic generation towards the load-
balancers. Specifically, we used several apache ab instances
augmented with our tool to generate realistic stateful traffic
from multiple IP addresses with delay and racing among
different clients. The second station holds ten autonomous
instances (i.e., separate processes) of HAProxy load-balancers
listening on different ports for incoming requests. Finally, at
the third station, we used docker to deploy Apache server
instances listening on different sockets.

1) H-Memento’s Accuracy: In this experiment, we evalu-
ate MST (denoted as Interval), the Baseline algorithm and
H-Memento with a single load-balancer client. Our goal is to
monitor the last 1,000,000 HTTP requests that have entered
the load-balancer. The Baseline algorithm and H-Memento are
set at εa = 0.1% and a window size of 1,000,000 requests.
The MST Interval instance is using a measurement period of
1,000,000 requests and is configured with εa = 0.025%, re-
sulting in comparable memory usage. For each new incoming
HTTP request, each algorithm estimates the frequency of each
of its IP prefixes. The results are depicted in Figure 8. In all
the traces, the Interval approach is the least accurate, while as
expected, H-Memento is slightly less accurate than the Base-
line algorithm due to its use of sampling. These conclusions
hold for every prefix length and testbed workload.

2) Accuracy and Traffic Budget: In this experiment, we
generate traffic towards ten load-balancers communicating
with a centralized controller that maintains a global window
view of the last 1,000,000 requests that entered the system.
We evaluate the three different transmission methods (Aggre-

(a) Backbone Trace (b) Datacenter Trace (c) Edge Trace

Fig. 8: Comparing the error of H-Memento.

(a) Backbone Trace (b) Datacenter Trace (c) Edge Trace

Fig. 9: Network-wide evaluation. Accuracy attained by D-
H-Memento with a bandwidth limit of 1B per ingress packet
under different transmission options.

gation, Sample, and Batch) with the same 1-byte per packet
control traffic budget.

Results. Figure 9 depicts the results. As indicated, the best
accuracy is achieved by the Batch approach, while Sample
significantly outperforms Aggregation. Intuitively, the Aggre-
gation method sends the largest messages, each of which
contains the full information known to the measurement point.
Its drawback is a long delay between controller updates. The
Sample method has a smaller delay but utilizes the bandwidth
inefficiently due to the packet header overheads. Finally, Batch
has a slightly higher delay but delivers more data within the
bandwidth budget, which improves the controller’s accuracy.

D. HTTP Flood Evaluation

Our deployment consists of ten HAProxy load-balancers
that serve as the entry point and direct requests to Apache
servers. The load-balancers report to the centralized con-
troller that discovers subnets that exceed the user-defined
threshold. The bandwidth budget is set to 1-byte per packet
and the window size is W = 1 million packets.

Traffic. We inject flood traffic on top of the Backbone packet
trace. Specifically, we select a random time at which we inject
50 randomly-picked 8-bit subnets that account for 70% of the
total traffic once the flood begins. We generate a new trace as
follows. (1) We select 50 subnets by randomly choosing 8-bits
for each, and (2) a random trace line in the range (0,106). Until
that line the trace is unmodified. (3) From that line on, with
probability 0.7 we add a flood line from a uniformly picked
flooding sub-network.

This attack is motivated by recent efforts (e.g., [2], [1], [4])
in protecting against HTTP floods generated by swarms of
infected devices via botnets. Such attacks aim to generate high
volume traffic from many different geographic locations.



10

(a) Identification over Time (b) Identification (zoom) (c) Percentage of missed attack packets

Fig. 10: Detection time in HTTP flood detection experiment with 50 attacking LANs on top of the backbone trace.
Results. Figure 10 depicts the results. Figure 10a and Fig-
ure 10b show the detection speed of the flooding subnets by
the three different approaches at the controller. We compare
among the three approaches and additionally outline an op-
timal algorithm that uses an accurate window and “knows”
exactly what traffic enters the load-balancers without delay
(OPT). It is notable that the Batch approach achieves near-
optimal performance, and outperforms Sample and Aggre-
gation. Figure 10c shows that the Batch method identifies
almost all of the attack messages as is expected by our
theoretical analysis. Further, its miss rate is 37× smaller
under the 1-byte per packet bandwidth budget when compared
to the ideal Aggregation method.

V. RELATED WORK

Heavy hitters are an active research area on both inter-
vals [12], [42], [30], [14] and sliding windows [13], [12]. HH
integration in the single-device mode is a research challenge.

NetQRE [45] allows the network administrator to write a
measurement program. The program can describe HH and
HHH as well as sliding windows. However, their algorithm is
exact rather than approximate and requires a space that is lin-
ear in the window size which is expensive for large windows.
Hierarchical heavy hitters. The HHH problem was intro-

duced by [18], which also presented the first algorithm. The
problem then attracted a large body of follow-up work as
well as an extension to multiple dimensions [33], [11], [17].
MST [33] is a conceptually simple multidimensional HHH
algorithm that uses multiple independent HH instances; one
instance is used for each prefix pattern. Upon a packet arrival,
all instances are updated with their corresponding prefixes.
The set of hierarchical heavy hitters is then calculated from the
set of (plain) heavy hitters of each prefix type. The algorithm
requires O

(
H
ε

)
space and O (H) update time. Memento and

H-Memento are the first sliding window algorithms that lever-
age a sampling-like approach for additional speed. As such,
they are considerably faster but are (slightly) less accurate.

Network-wide measurement. The problem of network-wide
measurement is becoming increasingly popular [22], [44],
[43], [29], [9]. A centralized controller collects data from all
measurement points to form a network-wide perspective. Mea-
surement points are placed in the network so that each packet
is measured only once. The work of [6] suggests marking mon-
itored packets and allows for more flexible measurement point

placement. Our work diverges from these approaches since
we view network-wide measurements for sliding windows. As
such, the trade-offs between accuracy and bandwidth that we
experience are different than that of interval based measure-
ments. For instance, our work shows that the Batch method is
superior to the commonly used Aggregation method.

VI. ANALYSIS

We analyze Memento and H-Memento in Section VI-A, and
D-Memento and D-H-Memento in Section VI-B.

A. Memento’s and H-Memento’s Analyses

We focus on the correctness of H-Memento, as the cor-
rectness of Memento follows (one can view Memento as the
special case of H-Memento, i.e., with H = 1). We prove that
the HHH set returned by H-Memento satisfies the accuracy
and coverage properties (see Definition 6).

We model the H-Memento’s update procedure as a balls
and bins experiment where we select one out of H prefixes
and then update that prefix with probability τ . For simplicity,
we assume that H

τ ∈ N. Thus, we have V , H
τ bins and

W balls. Upon a packet arrival, we place a ball in one of
the bins; if the bin is one of the first H , we perform a
full update for the sampled prefix; otherwise, we perform a
window update. Definition 8 formulates this model. Alter-
natively, Memento is modeled as the degenerate case where
|H| = 1 and we update the fully specified prefix.

Definition 8. For each bin (i) and set of packets (K), denote
by XK

i the number of balls (from K) in bin i. When the set
K contains all packets, we use the notation Xi.

We require confidence intervals for any Xi and a set K.
However, the Xi’s are correlated as

∑V
i=1Xi = W and

therefore we use the technique of Poisson approximation. It
enables us to compute confidence intervals for independent
Poisson variables {Yi} and convert back to the balls and
bins case. Formally, let Y K1 , ..., Y KV ∼ Poisson

(
K
V

)
, be

independent variables representing the number of balls in
each bin. We now use Lemma 1 to get intervals for the Xi’s.

Lemma 1 (Corollary 5.11, page 103 of [34]). Let E be
an event whose probability monotonically increases with the
number of balls. If the probability of E is p in the Poisson
case, then it is at most 2p in the exact case.
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Accuracy Analysis: To prove accuracy, we show that, for
every prefix (p): Pr

(∣∣∣fWp − f̂Wp ∣∣∣ ≤ εW) ≥ 1 − δ. We
have multiple sources of error and thus we first quantify the
sampling error. Let Y pi be the Poisson variable corresponding
to a prefix p. That is, the set K contains all the packets that are
generalized by p. Therefore: E(Y pi ) =

fWp
V . We need to show

that: Pr
(
|Y pi − E(Y pi )| ≤ εs WV

)
≥ 1 − δ. Confidence intervals

for Poisson variables are well studied [38], we use Lemma 2.

Lemma 2 (Proved in [40]). Let Y be a Poisson random
variable. Then Pr

(
|Y − E (Y )| ≥ Z1−δ

√
E (Y )

)
≤ δ; here,

Zα is the z value that satisfies Φ(z) = α and Φ(z) is the
cumulative density of the normal distribution with mean 0 and
standard deviation of 1.

Lemma 2 lays the groundwork for our main accuracy result.

Theorem 1. Pr
(∣∣∣XipV − fWp ∣∣∣ ≥ εsW) ≤ δs. for τ ≥ Z2

1− δ
2

HW−1εs
−2

Proof. Use Lem. 2 to get: Pr

(∣∣∣∣Yip − fWp
V

∣∣∣∣ ≥ Z1− δs
2

√
fWp
V

)
≤ δs

2 .

Since we do not know the exact value of fWp , we assert that

fWp ≤ W to get: Pr

(∣∣∣∣Yip − fWp
V

∣∣∣∣ ≥ Z1− δs2

√
W
V

)
≤ δs

2 .

We need error of the form: εs·W
V and thus set: εs·W

V =

Z1− δs2

√
W
V = Z1− δs2

√
Wτ
H We extract τ to get: τ ≥

Z2
1− δs2

H
W εs

−2. Thus, when τ ≥ Z2
1− δ2

HW−1εs
−2, we have

that: Pr

(∣∣∣∣Yip − fWp
V

∣∣∣∣ ≥ εsW
V

)
≤ δs

2 . We multiply by V

and get: Pr
(∣∣YipV − fWp ∣∣ ≥ εsW ) ≤ δs

2
. Finally, since Y pi is

monotonically increasing with the number of balls (fWp ), use
Lemma 1 to conclude: Pr

(∣∣Xi
pV − fWp

∣∣ ≥ εsW ) ≤ δs.
To reduce clutter, we denote ψ , Z2

1− δ2
HW−1εs

−2.
Theorem 1 shows that when τ ≥ ψ the sample is accurate
enough. The error of the underlying Memento algorithm is
proportional to the number of sampled packets. We compen-
sate for fluctuations in sample size by allocating (slightly)
more counters as explained in Corollary 1.

Corollary 1. Consider the number of updates (from the last
W items) to the underlying algorithm (X). If τ ≥ ψ, then
Pr
(
X ≤ W

V (1 + εs)
)
≥ 1− δs.

Proof. Theorem 1 yields: Pr
(∣∣X − W

V

∣∣ ≥ εsW ) ≤ δs. Thus:
Pr
(
X ≤ W

V (1 + εs)
)
≥ 1− δs.

Corollary 1 means that, by allocating slightly more space
to the underlying algorithm, we can compensate for possible
oversampling. Generally, we configure an algorithm (A) that
solves (εa, δa) - WINDOW FREQUENCY ESTIMATION with
ε′a , εa

1+εs
. Applying Corollary 1, we get that, with probability

1 − δs, there are at most (1 + εs)
W
V sampled packets. Using

the union bound we have that with probability 1 − δa − δs:∣∣∣Xp − X̂p
∣∣∣ ≤ εa′ (1 + εs)

W
V = εa(1+εs)

1+εs
W
V = εa

W
V . For

example, WCSS requires 4, 000 counters for εa = 0.001. If
we set εs = 0.001, we now require 4004 counters. Hereafter,
we assume that the algorithm is already configured to accom-
modate this problem.

Theorem 2. Consider an algorithm (A) that solves the (εa, δa)
-WINDOW FREQUENCY ESTIMATION problem. If τ ≥ ψ, then
for δ ≥ δa+ 2 · δs and ε ≥ εa+ εs, A solves (ε, δ) - WINDOW
FREQUENCY ESTIMATION.

Proof. We employ Theorem 1. That is, we have that:
Pr
[∣∣fWp −XpV

∣∣ ≥ εsW ] ≤ δs. (1)
A solves (εa, δa) - WINDOW FREQUENCY ESTIMATION and
provides us with an estimator X̂p for Xp – the num-
ber of updates for a prefix p. According to Corollary 1:
Pr
(∣∣∣Xp − X̂p

∣∣∣ ≤ εaW
V

)
≥ 1−δa−δs. Multiplying by V yields:

Pr
(∣∣∣XpV − X̂pV

∣∣∣ ≥ εaW) ≤ δa + δs. (2)

We need to show that: Pr
(∣∣∣fWp − X̂pV

∣∣∣ ≤ εW) ≥ 1 − δ.

Note that: fWp = E(Xp)V and f̂Wp , X̂pV . Thus,

Pr
(∣∣∣fWp − f̂Wp ∣∣∣ ≥ εW) = Pr

(∣∣∣fWp − X̂pV
∣∣∣ ≥ εW) = (3)

Pr
(∣∣∣fWp + (XpV −XpV )− V X̂p

∣∣∣ ≥ (εa + εs)W
)
≤ (4)

Pr
([∣∣∣fWp −XpV

∣∣∣ ≥ εsW] ∨ [∣∣∣XpV − X̂pV
∣∣∣ ≥ εaW]) .

The last inequality follows from the observation that if
the error of (3) exceeds εW , then one of the events
occurs. We bound this expression with the Union bound.
Pr
(∣∣∣fWp − f̂Wp ∣∣∣ ≥ εW) ≤ Pr

(∣∣fWp −XpV
∣∣ ≥ εsW )+

Pr
(∣∣∣XpV − X̂pH

∣∣∣ ≥ εaW) ≤ δa + 2δs,

where the last inequality follows from Eq. (1) and (2).

Theorem 2 implies accuracy, as it guarantees that, with
probability 1 − δ, the estimated frequency of any prefix is
within εW of its real frequency. In particular, this means that
the HHH prefix estimations are within εW bound as shown
by Corollary 2.

Corollary 2. If τ ≥ ψ, then H-Memento satisfies accuracy
for δ = δa + 2δs and ε = εa + εs.

Furthermore, by considering the degenerate case where we
always select fully specified items (i.e., H = 1 and V =
τ−1), we conclude the correctness of Memento, as stated in
the following Corollary 3.

Corollary 3. If τ ≥ Z2
1− δs2

W−1ε−2s then Memento solves
the (ε, δ) - WINDOW FREQUENCY ESTIMATION problem for
δ = 2 · δs and ε = εa + εs.

Coverage Analysis: We now show that H-Memento
satisfies the coverage property (Definition 6). That is,
Pr
(
Ĉq|P ≥ Cq|P

)
≥ 1 − δ. Conditioned frequencies are

calculated differently for 1D and 2D, thus Section VI-A1
shows coverage for 1D and Section VI-A2 for 2D.

1) 1D: Lemma 3 shows an expression for Cq|P .

Lemma 3 (Proved in [33]). In one dimension: Cq|P = fWq −∑
h∈G(q|P ) f

W
h .

We use Lemma 3 to show that the estimations of Algo-
rithm 2 are conservative.

Lemma 4. The conditioned frequency estimation of Algo-

rithm 2 is: Ĉq|P = f̂Wq
+
−
∑
h∈G(q|P ) f̂

W
h

−
+ 2Z1−δ

√
WV .
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Proof. Looking at Line 7 in Algorithm 2, we get that: Ĉq|P =

f̂Wq
+

+ calcPred(q, P ). That is, we need to verify that the
return value calcPred(q, P ) in one dimension (Algorithm 3)

is
∑
h∈G(q|P ) f̂

W
h

−
. Finally, the addition of 2Z1−δ

√
WV is

done in line 8.

Theorem 3. Pr
(
Ĉq|P ≥ Cq|P

)
≥ 1− δ.

Proof. From Lemma 4, we have Ĉq|P = f̂Wq
+
−∑

h∈G(q|P )

f̂Wh
−

+ 2Z1− δ
8

√
WV . It is enough to show that the

randomness is bounded by 2Z1− δ8

√
WV with probability 1−δ

as f̂Wp
+
≥ fWp and fWh ≤ f̂Wh

−
. We denote by K the

set of packets that affect the calculation of Ĉq|P . We split
K into two: K+ contains packets that increase the value of
Ĉq|P and K− contains these that decrease it. We use K+

to estimate the sample error in f̂Wq and K− for estimating

the error in
∑

h∈G(q|P )

f̂Wh
−

.

We denote by Y K
+

the number of balls in the positive
sum and use Lemma 2. Cq|p is non-negative. Thus

E
(
Y K
−
)
≤ W

V
and Pr

(∣∣∣Y K+ − E
(
Y K

+
)∣∣∣ ≥ Z1− δ

8

√
W
V

)
≤ δ

4
.

Similarly, we use Lemma 2 to bound the error of Y K
−

.
Pr
(∣∣∣Y K− − E (Y K−)∣∣∣ ≥ Z1− δ8

√
W
V

)
≤ δ

4 .

Y K
+

and Y K
−

are monotonic with the number
of balls. We apply Lemma 1 and use the
Union bound to conclude: Pr

(
Ĉq|P ≥ Cq|P

)
≤

2Pr
(
H
(
Y K
−

+ Y K
+
)
≥ V E

(
Y K
−

+ Y K
+
)

+ 2Z
1− δ

8

√
NV

)
≤

1− 2 δ
2
= 1− δ.

Theorem 4. Algorithm 2 solves (δ, ε, θ) - APPROXIMATE
WINDOW HHH for τ ≥ ψ, δ = δa + 2δs, ε = εs + εa.

Proof. We need to prove that Algorithm 2 satisfies both
accuracy and coverage. Corollary 2 shows accuracy, while
Theorem 3 says that: Pr

(
Ĉq|P ≥ Cq|P

)
≥ 1− δ.

Consider a prefix q such that q /∈ P , where P is the set of
HHH. We know that Ĉq|P < θW because otherwise q would
have been an HHH prefix. Thus, with probability 1−δ, we get:
Cq|P < Ĉq|P < θW , which implies that Pr

(
Cq|P < θW

)
≥

1− δ and hence Algorithm 2 satisfies coverage as well.

2) 2D: Next, we establish that H-Memento is correct for
two dimensions. To that end, we introduce the notation of
G(q|P ), which stands for the closest prefixes to q in set P .

Definition 9 (Best generalization). Define G(q|P ) as
the set {p : p ∈ P, q ≺ p,¬∃p′ ∈ P : q ≺ p′ ≺ p}. Intuitively,
G(q|P ) contains the prefixes that are the closest ancestors
(from P ) of q. Thus, q does not generalize any prefix that
generalizes a prefix in G(q|P ).

Lemma 5 quantifies 2D conditioned frequencies.

Lemma 5 (Proved in [33]). In two dimensions, Cq|P = fWq −∑
h∈G(q|P )

fWh +
∑

h,h′∈G(q|P )

fWglb(h,h′)

Next, Lemma 6 formalizes the expression Algorithm 2 uses
to calculate conditioned frequencies in two dimensions. Then,
Theorem 5 lays the groundwork for coverage.

Lemma 6. In two dimensions, Algorithm 2 calculates the

conditioned frequency as: Ĉq|P = f̂Wq
+
−

∑
h∈G(q|P )

f̂Wh
−

+∑
h,h′∈G(q|P )

̂fWglb(h,h′)
+

+ 2Z1− δ8

√
WV .

Proof. The proof follows from Algorithm 2. Line 7 adds
f̂+q while Line 8 is responsible for the last element
(2Z1− δ8

√
WV ). The rest is from the calcPredecessors method

in Algorithm 4.

Theorem 5. Pr
(
Ĉq|P ≥ Cq|P

)
≥ 1− δ.

Proof. Observe Lemma 5 and notice that if there is no
sampling error: f̂Wq

+
−

∑
h∈G(q|P )

f̂Wh
−

+
∑

h,h′∈G(q|P )

f̂W
+

glb(h,h′)

is a conservative estimate. Thus, we now show that this error
is less than 2Z1− δ8

√
WV with probability 1 − δ. We denote

by K the packets that affect Cq|P and since the expression
of Ĉq|P is not monotonic. As before, we split in two: K+

are packets that increase Ĉq|P , while and K− decrease it.
Similarly, we denote by {Y Ki } the number of packets from
K in bin i of the Poisson model. We also denote the random
variable Y K

+

that counts how many balls from K had
increased Ĉq|P . Lemma 2 binds Y K

+

in the following

manner: Pr

(∣∣∣Y K+

− E
(
Y K

+
)∣∣∣ ≥ Z1− δ

8

√
W
V

)
≤ δ

4
.

Similarly, we denote by Y K
−

the number of packets from
K with negative impact on Ĉq|P . Using Lemma 2 results in:

Pr

(∣∣∣Y K− − E (Y K−)∣∣∣ ≥ Z1− δ
8

√
W
V

)
≤ δ

4
. Y K

+

and

Y K
−

are monotonic with the number of balls. Thus,
we apply Lemma 1 and conclude: Pr

(
Ĉq|P ≥ Cq|P

)
≤

2Pr
(
V
(
Y K
−
+Y K

+
)
≥
(
V E

(
Y K
−

+ Y K
+
)
+2Z

1− δ
8

√
WV

))
≤

1− 2 δ
2
= 1− δ.

3) Putting It All Together:

Corollary 4. If τ > ψ then H-Memento satisfies coverage.
That is, let P be the HHH set of H-Memento; given a prefix
q /∈ P we have Pr

(
Cq|P < θW

)
> 1− δ.

Proof. Theorem 3 shows coverage in one dimension
and Theorem 5 in two. These theorems guarantee that:
Pr
(
Cq|P < Ĉq|P

)
> 1 − δ. Let q /∈ P , which means that

Ĉq|P < θW . However, with probability 1−δ, Cq|P < Ĉq|P <
θW and therefore Cq|P < θW as well.

H-Memento’s analysis conclusion.

Theorem 6. H-Memento solves (δ, ε, θ) - APPROXIMATE
WINDOW HIERARCHICAL HEAVY HITTERS for τ ≥
Z2
1− δ2

HW−1εs
−2.

Proof. H-Memento provides both accuracy by Corollary 2 and
coverage by Corollary 4 (see definition 6).
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Note that H-Memento is correct when τ > ψ. That is,
larger windows (W ), or larger εs, allow for more aggressive
sampling. Finally, Memento and H-Memento perform updates
in constant time and that H-Memento requires O(H/ε) space.

B. D-Memento and D-H-Memento Analysis

Intuitively, the error in D-Memento and D-H-Memento
comes from two origins. First, there is the error due to
sampling, which is quantified by Corollary 3 and Theorem 6.
However, there is an additional error that is caused by the
delay in transmission, as the measurement points only send the
sampled packets once in every bτ−1 packets. If a measurement
point has a low traffic rate, it may take a long time for it to see
bτ−1 packets; in this case, all of its samples may be obsolete
and may not belong in the most recent window. Therefore, our
first step is to reason about the delayed reporting error.

Notations and definitions. We denote the bandwidth budget
as B bytes/packet. This communication is done using standard
packets, which have header field overheads. We denote by O
the minimal header size (in bytes) of the chosen transmission
protocol (e.g., 64 bytes for TCP). Next, reporting a sampled
packet requires E bytes (e.g., 4 bytes for srcip, or 8 bytes for
(srcip,dstip) pair). We also denote by m the total number of
measurement points.

Model. Intuitively, we can choose two (dependent) parameters:
the sampling rate, τ , and the batch size b. That is, each
measurement point samples with probability τ until it gathers
b packets. At this point, it assembles an (O+Eb)-sized packet
that encodes the sampled packet and sends it to the controller.
As the expected number of packets required to gather a b
sized batch is bτ−1, the bandwidth constraint can be written as
(O+Eb)/(bτ−1) ≤ B. Specifically, this allows to express the
maximum allowed sampling probability as τ = Bb/(O+Eb)
since sampling at a lower rate would not utilize the entire
bandwidth and would result in sub-optimal accuracy.

Accuracy of the Batch and Sample methods. We can
now quantify the error of the Batch and Sample methods.
Intuitively, we have to factor the delays in communication (as
we only report per a fixed number of packets to stay within the
bandwidth budget). For example, if there are two measurement
points in which one processes a million requests per second
while the other only a thousand, the batches of the second
point would include many obsolete packets that are not within
the current window. However, recall that these reports only
reflect bτ−1 packets at each of the m points. Thus:

Theorem 7. Batch method’s delayed reporting error is
bounded by mbτ−1.

Next, Corollary 3 and Theorem 6 enable us to bound the
sampling error as a function of τ , while Theorem 7 bounds
the delayed reporting error. The following theorem applies for
D-Memento (using H = 1) and for D-H-Memento (using
the appropriate H value). As the round trip time inside the
data center is small compared to window sizes that are of
interest, the error caused by the delay of packet transmissions
is negligible, and thus we do not factor it here. Theorem 8

quantifies the overall error in the Batch method; the error of
the Sample method is derived when setting b = 1.

Theorem 8. Given overhead O, batch size b, bandwidth bud-
get B, sample payload size S, window size W and confidence
δs, the overall error Eb (in packets) is at most:

Eb = m(O + Eb)/B +
√
HWZ1− δs2

(O + Eb)/(Bb).

Proof. According to Theorem 6, we have that
εs =

√
HW−1Z1− δs2

τ−1. This means that our

overall error is bounded by: Eb = bmτ−1 + Wεs =

bmτ−1 +
√
HWZ1− δs2

τ−1 = m(O + Eb)/B +√
HWZ1− δs2

(O + Eb)/(Bb).

Formally, we showed a bound of Eb, for each choice of b.
The guarantees for the Sample method are given by fixing
b = 1. The next step is to use Theorem 8 to calculate
the optimal batch size b given a bandwidth budget B. Thus,
we get the best achievable accuracy for the Batch method
within the bandwidth limitation. We have: ∂Eb

∂b = mE/B +
HWZ

1− δs
2

(E/B−O/(Bb2))

2
√

(O+Eb)/(Bb)
. We then compare this expression to

zero to compute the optimal batch size b. This is easily done
with numerical methods.

For example, for a TCP connection (O = 64); ten measure-
ment points (k = 10); source IP hierarchy (E = 4, H = 5);
error probability of δ = 0.01%; a window of size W = 106;
and a bandwidth quota of B = 1 byte per packet, the
optimal batch size is b = 44. The resulting (overall) error
guarantee is 13K packets (i.e., an error of 1.3%). Increasing
the bandwidth budget to B = 5 bytes decreases the absolute
error to 5.3K packets (0.53%) while increasing the optimal
batch size to b = 68. When increasing the window size (W ),
the absolute error increases by an O

(√
W
)

factor and the
error (as a fraction of W ) decreases. For example, increasing
the window size to 107 increases the optimal batch size to
b = 109, while reducing the error to 0.15%. Alternatively,
2D source/destination hierarchies (increasing H from 5 to 25)
result in a slightly larger error and a higher optimal batch size.

Figure 11 illustrates the accuracy guarantee provided by
each method. We compare three synchronization variants –
Sample, Batch with b = 100, and Batch with an optimal b
(varies with B), as explained above. As depicted, Sample has
the smallest delay error and yet provides the worst guarantees
as it conveys little information within the bandwidth budget.
The 100-Batch method has lower a sampling error (as its
sampling rate is higher), but its reporting delay makes the
overall error larger. For larger values of B, the optimal batch
size grows closer to 100 and the accuracy gap narrows.

VII. CONCLUSIONS

Our study highlights the potential benefits of sliding-
window measurements and makes them practical for net-
work applications. Specifically, we showed that window-
based measurements detect traffic changes faster, and thus
enable more agile applications. Existing window algorithms
are slow and and do not provide a network-wide view. Our
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Fig. 11: Comparing the accuracy guarantees of varying
synchronization techniques. The parts hatched with cir-
cles quantify the bound on the error that is caused by
the delayed synchronization.

window algorithms have higher throughput than existing algo-
rithms and thus would require fewer resources to implement
them (although existing algorithms can also potentially be
used with parallelism) Accordingly, we introduced the Me-
mento family of HH and HHH algorithms for both single-
device and network-wide measurements. We analyzed the
algorithms and extensively evaluated them on real traffic
traces. Our evaluations indicate that the Memento algorithms
meet the necessary speed and efficiently to provide network-
wide visibility. Therefore, our study makes sliding-window
HH and HHH measurements be a practical option for the
next generation of network applications. We note that while
our HHH algorithm processes packets faster than previous art,
it does not improve their query time. We believe that real-time
identification of HHH is a promising future research direction.

We open-sourced the Memento algorithms and the HAProxy
load-balancer extension that provides capabilities to block and
rate-limit traffic from entire sub-networks (rather than from
individual flows) [3].

REFERENCES

[1] Cloudflare. What is an HTTP flood DDoS attack?
[2] Imperva Inc, Learning Center. What is an HTTP flood attack.
[3] Memento algorithms code and HAProxy extension.

https://github.com/DHMementoz/Memento.
[4] NETSCOUT. What is an HTTP Flooding DDoS Attack?
[5] see http://www.lasr.cs.ucla.edu/ddos/traces/.
[6] Y. Afek, A. Bremler-Barr, S. L. Feibish, and L. Schiff. Detecting heavy

flows in the SDN match and action model. Computer Networks, 136:1
– 12, 2018.

[7] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. pFabric: Minimal Near-optimal Datacenter Transport.
ACM SIGCOMM, pages 435–446, 2013.

[8] D. Anderson, P. Bevan, K. Lang, E. Liberty, L. Rhodes, and J. Thaler.
A high-performance algorithm for identifying frequent items in data
streams. In ACM Internet Measurement Conference, pages 268–282,
2017.

[9] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz.
Network-wide routing-oblivious heavy hitters. ACM ANCS, 2018.

[10] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard.
Constant time updates in hierarchical heavy hitters. ACM SIGCOMM,
2017.

[11] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard.
Volumetric hierarchical heavy hitters. In IEEE MASCOTS, 2018.

[12] R. Ben Basat, G. Einziger, and R. Friedman. Fast flow volume
estimation. In ICDCN, 2018.

[13] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Heavy Hitters
in Streams and Sliding Windows. In IEEE INFOCOM, 2016.

[14] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Randomized
admission policy for efficient top-k and frequency estimation. In IEEE
INFOCOM, 2017.

[15] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of
data centers in the wild (univ 1 dataset). In ACM Internet Measurement
Conference, 2010.
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