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Abstract—Backpressure schemes are known to stabilize
stochastic networks through the use of congestion gradients
in routing and resource allocation decisions. Nonetheless, these
schemes share a significant drawback, namely: the delay guar-
antees are obtained only in terms of average values. As a result,
arbitrary packets may never reach their destination due to both
the starvation and last-packet problems. These problems occur
because in backpressure schemes, packet scheduling needs a
subsequent stream of packets to produce the required congestion
gradient for scheduling.

To solve these problems, we define a starvation-free stability
criterion that ensures a repeated evacuation of all network
queues. Then, we introduce SF-BP, the first backpressure routing
and resource allocation algorithm that is starvation-free stable.
We further present stronger per-queue service guarantees and
provide tools to enhance weak streams. We formally prove that
our algorithm ensures that all packets reach their destination
for wide families of networks. Finally, we verify our results
by extensive simulations using challenging topologies as well as
random static and dynamic topologies.

Keywords—Backpressure, starvation-free stability, throughput
optimality, Lyapunov stability.

I. INTRODUCTION

A. Background
The Queue-length-based BackPressure (Q-BP) routing and

resource allocation technique is known to maximize network
throughput. Since its introduction in [28], Q-BP has gained
much popularity in the context of dynamic networks, and
includes a vast collection of comprehensive theoretical as well
as practical works in the literature, e.g. [3], [5]–[13], [16]–[19],
[21], [22], [24], [26]–[35]. In such networks, the traditional
two-phase algorithms [25], in which at first paths are being
discovered and only then they are used to send data, may
be less effective, as by the time these paths are discovered
the topology changes again. This may eventually lead to an
accumulation of packets in the network and even to instability,
due to infinite looping, poor use of the network resources, and
large overhead in maintaining the routes.

Instead, Q-BP attempts to exploit congestion gradients in
order to achieve maximum network throughput. To do so, it
assumes slotted time, and at each time slot, makes routing
and resource-allocation decisions based on the maximization
of the sum of the queue-length-differentials multiplied by the
corresponding link capacities. It can be proved to achieve
stability by showing a negative drift on a quadratic Lyapunov
function that represents the sum of squared queue lengths.
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B. Related Work

Despite achieving stability within the entire capacity region
of the network, Q-BP schemes also share a significant draw-
back, namely: the delay guarantees are obtained only in terms
of average values. As a result, weak and infrequent streams
(i.e., streams with a lower arrival rate) may suffer from starva-
tion due to stronger streams (i.e., streams with a higher arrival
rate) that produce larger congestion gradients. In addition, Q-
BP schemes suffer from the last-packet problem, wherein the
last packet of a stream may experience a potentially unbounded
delay because there are no subsequent packets that could
provide the needed queue-length-based congestion gradient to
get this packet scheduled for transmission. Therefore, in Q-BP
schemes, packets may never reach their destination due to both
the starvation and the last-packet problems [11].

Many delay-reduction techniques have been introduced,
such as [3], [9], [10], [34]. However, while these solutions may
reduce the mean delay in the network, they hold no promises
regarding individual packet arrivals. Namely, individual pack-
ets may still suffer from extremely long delays and even fail
to reach their destination. In recent years, it has increasingly
appeared that a delay-based backpressure technique would
be a natural solution to solve these issues [11], [21]. The
idea behind such a technique would be to make routing and
resource-allocation decisions based on explicit delay informa-
tion, such as the delay of the Head-of-Line (HoL) packet of
each queue in the network. For instance, [21] proposed a
delay-based technique for single-hop networks and achieved
a worst-case delay bound, by discarding a small portion of the
packets. However, this technique does not apply to multi-hop
networks. A delay-based scheduling scheme was also proposed
in [11]. However, it assumes fixed routes, and thus does not
address the natural scenarios of dynamic networks where the
topology changes and routes must be adapted to fully utilize
the network. Newer works [14], [15] have suggested a delay-
based scheduling for multi-hop dynamic networks. However,
their approach does not provide routing, which presents a
significant challenge in dynamic topologies.

Recently, [2] suggested a delay enhancement for encounter-
based networks. Their idea is to use an additional set of
duplicate buffers at each node for duplicate packets with a
timeout mechanism to remove those packets from the network.
However their approach does not offer tools to enhance weak
and infrequent flows and does not provide guarantees regarding
individual packet arrivals. [4] has proposed a technique with a
queue-dependent bias function embedded into the backpressure
term to improve the delay performance in the network. While
their approach reduces the mean delay in the network, weak
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Fig. 1: Configuration with a single source S sending data
packets to a single destination D, illustrating starvation.

and infrequent flows may suffer even further from such policies
that prefer large flows over small ones. [23] has suggested a
loop-free backpressure routing using a link-reversal technique,
but formally considers only a single-commodity in a static
network. [30] has proposed stable user-defined scheduling
to the network flows, but does not consider routing. There-
fore, the establishment of a general delay-based backpressure
routing and resource allocation technique for dynamic multi-
hop networks, that maintains the desired 100% throughput
guarantee while giving guarantees about individual packet
arrivals, remains an open problem.

C. Motivation
We proceed to provide some insight regarding the fun-

damental challenges to the queue-length-based backpressure
techniques. To do so, we present two instructive examples.

(1) To demonstrate starvation, consider the network pre-
sented in Figure 1. Assume that at each time slot, the source
node S exogenously injects a single data packet to the network.
The link capacities satisfy C(e2) = C(e3) = 1, while C(e1)
is time-dependent and either equals 1 or 100 with equal
probability at each time slot. At the start, during the first time
slot, a single data packet will be sent from node S. Since
there are two allocated links during the first time slot (links
(S, V ) and (S,D)), and these links are indistinguishable to the
backpressure algorithm, this data packet may be sent to node
V . But the queue-length-differential between nodes V and S
will never become positive, because node S will always hold
one new packet at each time slot. Therefore, the packet in node
V will never come back using link e2, and will never reach its
destination D. Note that the network is heavily under-utilized,
since its arrival rate could increase to more than 50 packets
per time slot while still maintaining stability. Therefore, the
network experiences starvation even though it is quite under-
utilized.

(2) To demonstrate the last-packet problem, consider the
network presented in Figure 2. S1 and S2 exogenously inject
a single data packet each at each time slot, destined to D1

and D2 respectively. Moreover, the link capacities satisfy
C(e1) = C(e3) = 1 and C(e2) = 10. Assume that the links
e2 and e3 are in different activation sets, and therefore cannot
be activated in the same time slot. Further assume that the
exogenous arrival of packets to source node S2 stops after a
finite positive number of time slots.

Using the same arguments as above, the last remaining data
packets that arrived to S1 from S2 will never reach their
destination. The reason is that the queue-length-differential
between S1 and D1 multiplied by C(e2) never drops below
10. Thus, when the number of packets residing at S1 and

Fig. 2: Configuration with two sources S1 and S2 sending data
packets to their respective destinations D1 and D2, illustrating
the last-packet problem.

destined to D2 is below 10, with no additional arrival process
to increase the congestion gradient, these packets will never
reach their destination. Note that, once again, the network is
under-utilized, yet the last-packet problem still happens.

Note that the starvation and the last-packet problems can
occur even in a static network with loop-free routing. Here,
we provided examples that involve routing loops and activation
sets to correspond with our system model that allows both.

Unfortunately, existing techniques provide only a partial
solution. For instance, using either fixed priorities or an
additive bias [18] cannot solve the starvation and the last-
packet problems in general, since in order to set suitable
parameters, all the topology states and arrival rates to the
sources need to be known in advance. Furthermore, in order for
a small number of packets to be scheduled in the presence of
a much stronger stream, an extremely high priority or additive
bias should be set. Such a choice will result in a significant
and unnecessary growth of the delays of the other streams.
Another possible approach is to rely on higher virtual arrival
rates [3], [6]. Unfortunately, this will only solve the starvation
problem, as the evacuation of packets can be guaranteed using
this method, albeit at the cost of a permanent increase of the
delays of all other commodities, since it will require a higher
bandwidth across all links permanently even when it is not
needed. However, the last-packet problem remains, because the
additional virtual rate cannot be stopped in order to guarantee
the evacuation of the last remaining packets in the network.
Additionally, existing delay-reduction techniques such as [3],
[9], [10], [34] naturally favor the stronger available links and
the bigger queue-length differentials, since they strive to reduce
the mean delay of packets. Therefore, they also do not solve
the starvation and the last-packet problems in cases such as
in our examples.

The scenarios with the starvation and the last-packet prob-
lems are characterized by lonely packets that are trapped due
to the lack of a subsequent stream that could push them,
i.e. supply the needed queue-length-differential to get them
scheduled. These observations lead to our main intuition: in
order to solve the starvation and the last-packet problems
without causing an unnecessary and permanent growth of
delays, each packet should have the ability to be scheduled
independently of a subsequent stream.

D. Contributions and paper outline
Accordingly, we define a stronger, delay-based, stability

criterion. We term it starvation-free stability, and establish the
first backpressure routing and resource allocation algorithm
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for multi-hop dynamic networks that is starvation-free stable.
We further present stronger per-queue service guarantees and
provide tools to enhance weak streams. We formally prove
that using our algorithm ensures that all packets reach their
destination for wide families of networks, thus addressing the
starvation and last-packet issues.

In addition, we propose a packet reordering scheme that
makes use of explicit delay information, relaxes the out-of-
order arrivals of packets to their destination, reduces delays,
and incurs an expected computational overhead that is log-
arithmic in the size of each queue. We provide intuition and
formal arguments for how the system should be tuned to reach
the best performance using our schemes.

Using extensive simulations, we show that we can indeed
overcome the starvation and the last-packet problems of an
infrequent stream as well as enhance weak streams while
reducing the mean delay of all the other streams. We further
show a significant delay reduction using our schemes in mul-
tiple randomly-generated static and dynamic networks based
on the scale-free Barabasi-Albert model [1].

The rest of the paper is organized as follows. Section II
describes the system model. Section III presents the starvation-
free stability and its basic characteristics. Section IV presents
our starvation-free algorithm. Section V presents the packet
reordering scheme. Section VI presents extensive simulations
that verify our results. Finally, conclusions are presented in
Section VII.

II. SYSTEM MODEL

In this section, we present our system model, which largely
follows similar lines to the standard backpressure system
model [7], [18].

A. Network model
We consider a multi-hop dynamic network that operates

in slotted time t ∈ {0, 1, 2, ...}. The network is classically
represented by a directed and weighted time-dependent graph
G (t) = (V,E,C (S (t) , I (t))) , where V is the set of trans-
mitter/receiver nodes, and E is the set of links between the
nodes that can directly communicate with each other. S (t)
is the network’s topology state (as defined in [7], Ch. 1).
For simplicity, we assume that S (t) is i.i.d. between time
slots and takes values within a finite state space S. I (t)
represents a link control action taken by the network during
time slot t (considering constraints such as activation sets,
power limitations and more, depending on the topology state).
C (S (t) , I (t)) = (Cab (S (t) , I (t)))ab is the network links’
capacity vector at time slot t, where Cab (S (t) , I (t)) is the
capacity of link (a, b) at time slot t. It is expressed in number
of packets, and can take values in {0, 1, ..., Cab,max} , where
Cab,max is a finite constant.

Each node can be both a source and a destination of data.
A commodity is defined by its destination and is denoted
by c ∈ V . Packets that reach their destination are assumed
to immediately leave the network. Thus, each node needs a
maximum number of |V | − 1 (unbounded) queues for storing
packets. U (c)

i (t) is the number of packets that belong to

commodity c and reside in node i at time slot t. Let us denote
by µ(c)

ab (t) the transmission rate (in number of packets) offered
to commodity c in node a at time slot t over link (a, b).
Therefore for all links (a, b) ∈ E and all commodities c ∈ V ,

µ
(c)
ab (t) ≤ µ(c)

ab,max ≤ Cab,max ∀t (1)

since the offered transmission rate cannot exceed the link
capacity, where µab,max is a tighter bound on the service rate
that may exist due to additional restrictions on the network
(I (t)).

B. Exogenous arrival process and admissibility

Let us denote by A
(c)
i (t) the number of packets of com-

modity c that enter the network exogenously at node i at time
slot t. We assume for simplicity that, for all nodes i ∈ V , all
commodities c ∈ V \ {i} and all time slots t,

A
(c)
i (t) ∈

{
0, 1, ..., A

(c)
i,max

}
∀t, (2)

A
(c)
i (t) is i.i.d. over time slots, (3)

E
(
A

(c)
i (t)

)
= λ

(c)
i , (4)

where A
(c)
i,max is a finite constant and λ =

(
λ

(c)
i

)
is the

exogenous arrival rate vector to the network.
Let Λ be the network capacity region [7], [18]. We say that

an arrival rate vector λ is admissible if λ ∈ Λ, and it is strictly
admissible if there exists a vector ε > 0 such that λ+ ε ∈ Λ.

III. STARVATION-FREE STABILITY

In this section we define a stronger notion of stability,
namely, starvation-free stability. The motivation for this defi-
nition is the observation that, while various queue-length-based
stability criteria [19], [20] guarantee that the mean length
of the queues in the network is bounded, it is still possible
under such stability definitions that some packets may reside
at their queues for unbounded periods of time. Therefore,
a queue-length-based stability does not imply that packets
ever leave their queues since a packet may stay stuck in a
perfectly bounded queue. To address this problem, we present
the following stronger starvation-free stability criterion that
not only ensures that the mean queue lengths are bounded, but
also guarantees a repeated evacuation of all queues, even if
their arrival process is finite.

A. Starvation-free stability of a queue
Let D(t) denote the delay (in number of time slots) of the

HoL (head-of-line) packet of a FIFO queue.1 We introduce the
following definition:

Definition 1. We define a queue as starvation-free stable if

lim sup
t→∞

1

t

t−1∑
τ=0

E (D (τ)) <∞. (5)

1The results in this section would equally apply to the delay of the oldest
packet of a non-FIFO queue.
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With this definition at hand, we proceed by obtaining the
following key result.

Theorem 1. Let p be a packet that enters a starvation-free
queue. Then p will leave the queue w.p. (with probability) 1.

Proof: We observe that, while the delay of the HoL packet
of a FIFO queue may experience large drops, it can only grow
by at most 1 from one time slot to another. Next, let us define
two auxiliary stochastic precesses a(t) and b(t) as follows:

a (t) =

{
1 if D (t+ 1) = D (t) + 1
0 otherwise,

(6)

and

b (t) =

{
0 if D (t+ 1) = D (t) + 1
D (t)−D (t+ 1) otherwise.

(7)

Then we can recursively express the changes in the HoL delay
D(t) of this queue using a(t) and b(t):

D (t+ 1) = max {D (t)− b (t) , 0}+ a (t) . (8)

We observe that for all t, 0 ≤ a (t) and b− (t)
∆
=

−min {b (t) , 0} ≡ 0. Therefore, a (t) + b− (t) ≤ 1, satisfying
the boundedness condition that is required by Theorem 4 of
[20] (case (b)) for a stochastic process with queue dynamics.
Specifically, the proof of Theorem 4 of [20] applies to any
arbitrary stochastic processes a(t) and b(t) that obey the
boundedness condition. Namely, the result holds even though
a(t) and b(t) depend non-causally on D(t+1). Thus, applying
Theorem 4 of [20] on (5) yields:

lim
t→∞

D (t)

t
= 0 w.p.1. (9)

Now, assume by way of contradiction that packet p never
leaves the queue. Then its delay would linearly grow to infinity.
Since the delay of packet p is upper-bounded by the HoL delay
of the queue, we get a contradiction to (9), which concludes
the proof.

Note that the proof of Theorem 1 requires only the bound-
edness condition of [20] (Theorem 4, case (b)). Thus, this
result is not restricted to our system model, but holds whenever
starvation-free stability and the boundedness condition are met.

B. Comparison with strong stability
We begin by presenting the well-known queue-length-based

strong stability [19], [20].

Definition 2. Let U(t) denote the number of packets in a
queue. Then, the queue is strongly stable if

lim
t→∞

sup
1

t

t−1∑
τ=0

E (U (τ)) <∞. (10)

We proceed by showing that, whenever the arrival rate to the
queue has a finite support, starvation-free stability is a strictly
stronger stability criterion than strong stability.

Property 1. (i) If a queue is starvation-free stable, then it is
also strongly stable.

(ii) On the contrary, if a queue is strongly stable, then it may
not be starvation-free stable.

Proof: (i) The number of packets in the queue is bounded
by the number of packets that have entered since the HoL last
entered, i.e. by the product of the HoL delay by the number
of packets that can enter at each slot. Let c denote the upper
bound on the number of packets that can enter the queue during
a single time slot. Then, we obtain:

U (t) ≤ c ·D (t) ∀t (11)

This inequality deterministically holds at all time-slots. In
addition, by Definition 1, in a starvation-free stable queue, the
expected time-averaged delay of the HoL packet is bounded.
Therefore, the expected time-averaged queue size is also
bounded, yielding the result.
(ii) Consider a queue with a single arrival at time 0, and no ad-
ditional arrivals or departures. Such a queue is clearly strongly
stable. However, since the HoL packet is stuck in the queue
and never leaves it, then in this simple deterministic process,
according to Theorem 1, this queue cannot be starvation-free
stable.

Note that the proof of Property 1 requires only a bound
on the number of packets that can enter the queue during a
single time slot. Thus, this result is not restricted by our system
model, but holds whenever the arrival rate to the queue has a
finite support.

C. Starvation-free stability of a network
We now naturally proceed to generalize the starvation-free

stability of a queue, and define the starvation-free stability of
a network of queues.

Definition 3. We define a network as starvation-free stable if
all its queues are starvation-free stable.

In order to point out the guarantees that this definition
provide, we start our analysis by establishing the following
theorem.

Theorem 2. Let p denote an arbitrary packet that enters a
starvation-free stable network. Then w.p. 1, packet p will either
reach its destination or it will be transmitted for an unbounded
number of times.

Proof: Let us assume by contradiction that packet p never
leaves the network and is transmitted for some finite number of
times M . Then, after packet p is transmitted for the M ’th time,
its delay will linearly grow to infinity. Since the delay of packet
p is upper-bounded by the HoL delay of its residence queue,
we get a contradiction to (9), which concludes the proof.

We proceed by making the following observation. In a
network in which loop-free routing can be assumed, every
packet can be transmitted for only a bounded number of times,
thus packet delays in such a network are bounded by the (finite)
sum of the corresponding HoL delays. Using this observation,
we obtain the following result:

Corollary 1. In a starvation-free stable network with loop-free
routing, all packets reach their destination w.p. 1.
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Let us emphasize that this result is fundamentally different
and stronger than results that are obtained using typical back-
pressure schemes. The reason is that the latter rely on Little’s
Law, which can guarantee a finite expected mean delay for the
network packets, while potentially allowing some packets to
reside in the network forever. Therefore, these schemes can
suffer from starvation. On the contrary, our result applies to
each and every packet in the network.

To illustrate this fact, consider the example given in Fig-
ure 2. In this configuration, when using Q-BP, some data
packets will reside in the network forever, even though the
mean delay is bounded by Little’s Law. However, when using
a starvation-free stable scheme, such starvation cannot occur.

Note that the loop-free routing assumption covers a wide
family of topologies including general 1-hop networks, DAGs
(Directed Acyclic Graphs), networks with fixed routes, as well
as all cases where one can ensure that any routing loop would
be eventually broken.

IV. STARVATION-FREE BACKPRESSURE ALGORITHM

We proceed to introduce our starvation-free backpressure
algorithm. We begin by constructing our potential functions,
such that the potential function of each queue upper-bounds
the sum of its queue size and the product of its HoL delay by
a constant factor.

A. Constructing the potential functions

We begin our analysis by assuming that each packet holds
a timestamp that represents the time-slot number at which it
entered its current queue. Let us denote by D(c)

i,k (t) the number
of time slots that the kth packet in the queue of commodity c
at node i has stayed in this queue by time t; namely, it entered
that queue at time slot t − D(c)

i,k (t). In particular, we denote
D

(c)
i (t) ≡ D(c)

i,1 (t) the HoL delay. Since D(c)
i,k (t) can be easily

calculated by subtracting the packet’s timestamp from the
current time-slot number, it does not incur any constant update
of dedicated fields with a heavy computational overhead.

We continue by introducing a novel approach of tracking
the HoL delay changes of queues, without any additional
assumption on either the network’s topology state or the
exogenous arrival processes, while incurring no calculation
overhead. We would like the potential of each queue Z(c)

i (t)
to upper-bound the sum of the queue size and the product of
the HoL delay by a constant factor, i.e.

Z
(c)
i (t) ≥ U (c)

i (t) + δ
(c)
i ·D

(c)
i (t) . (12)

Intuitively, δ(c)
i is a non-negative constant that represents the

importance of the delay component D(c)
i (t) versus the queue-

length component U (c)
i (t). It should be tuned according to

the stream characteristics, as we later explain. The stability of
this linear combination of queue length and HoL delay will
provide the needed delay guarantees. Let us further denote by
δ =

(
δ

(c)
i

)
the vector of commodity delay coefficients δ(c)

i .

In order to construct the potential function Z(c)
i (t), we first

introduce an equation that tracks the HoL delay changes in a
queue, so that:

D
(c)
i (t+ 1) = D

(c)
i (t) + d

(c)
i,in (t)− d(c)

i,out (t) . (13)

Incoming delay. Intuitively, we want d(c)
i,in (t) to represent the

delay entering the queue and increasing its HoL delay. To
that end, we assign to d

(c)
i,in (t) the value of 1 iff the queue

remains non-empty at the following time slot. Since the value
of d(c)

i,in (t) should be determined at time slot t, we observe
that the queue is not empty at the following time slot iff at
least one of the following two conditions holds: (a) the total
service rate given to this queue at time slot t is smaller than
its occupancy, or (b) there is exogenous or endogenous arrival
of packets to this queue at time slot t. Thus, we get:

d
(c)
i,in (t) =


1

(∑
b

µ
(c)
ib (t) < U

(c)
i (t)

)
or(∑

a
µ

(c)
ai (t) +A

(c)
i (t) > 0

)
0 otherwise

Outgoing delay. Similarly, we would like d(c)
i,out (t) to repre-

sent the delay leaving the queue. To that end we assign to
d

(c)
i,out (t) the difference between the HoL delay at time t and

the HoL delay after packets depart the queue at time t. For
instance, assume that the HoL packet has spent 17 time slots
in the queue while the 3rd packet has only spent 4 slots, and
that the first two packets depart the queue. Then the delay
leaving the queue is the difference in delay between the 1st and
3rd packets, i.e. 17− 4 = 13. We further make the additional
observation that if all the packets leave the queue at time slot t,
then the leaving delay is precisely the delay of the HoL packet.
Note that whenever the queue is empty or there is no service
rate, the leaving delay is zero, so whenever U (c)

i (t) = 0 or∑
b

µ
(c)
ib (t) = 0, we define d(c)

i,out (t) = 0. We obtain:

d
(c)
i,out (t) =



D
(c)
i (t) 0 < U

(c)
i (t) ≤

∑
b

µ
(c)
ib (t)

0
(
U

(c)
i (t) = 0

)
or
(∑

b

µ
(c)
ib (t) = 0

)
D

(c)
i (t)−D(c)

i,1+
∑
b

µ
(c)
ib (t)

(t) otherwise

Bound on outgoing delay. In addition, since our goal is
to prevent starvation and enhance weaker commodities, we
introduce an additional novel mechanism to that end. We notice
that weaker commodities have fewer packets that can stay to
help reinforce their potential. When their packets leave, the
network essentially forgets that it should give some priority to
these commodities. As a result, we want to bound d

(c)
i,out (t)

such that leaving packets will not immediately reset their
accumulated delay upon their departure. Therefore, we further
define a vector dmax =

(
d

(c)
i,max

)
such that

∀i, c, d
(c)
i,max ∈ R+ ∪∞. (14)
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We then construct a variable that represents the regulated
outgoing delay:

d̃
(c)
i,out (t) = min

(
d

(c)
i,out (t) , d

(c)
i,max

)
. (15)

d
(c)
i,max can be interpreted as the inverse to the memory of

the network, as we shall further discuss in Section IV-D. This
parameter can be used to enhance weaker commodities by re-
membering the delays that were experienced by earlier packets
even after their departure. For instance, assume d(c)

i,max = 100.
If the unique packet of commodity c in node i experiences a
large delay of 1000, then upon its departure, we do not reset
the potential of the commodity in the node to 0, but set it to
reflect a delay of about 1000 − 100 = 900. The goal is for
this node to remember that this commodity should get some
priority over stronger commodities.

Note that as a result, whenever d(c)
i,max <∞, we will see that

the corresponding potential function Z
(c)
i (t) may be strictly

positive even when the queue is empty. This may lead to a
temporary waste of bandwidth, since a link may be allocated
for this queue solely for the purpose of decrementing the
previously-accumulated delay potential. This effect is similar
to a virtual queue [3] that might reflect strictly positive
potential even if there are no packets to send. The main
difference is that our potential function does not grow if there
are no packets in the queue, whereas the potential of a virtual
queue may be constantly growing.

On the other hand, whenever d(c)
i,max = ∞, there may be

an unbounded change in the value of the potential function
between time slots, due to a possible arbitrary large drop in
the delay of the HoL packet. In such a case, the inequality
(12) becomes an equality.
Potential functions. Finally, after all these preparations, we
get to formally define recursively the potential functions used
by our algorithm by incorporating the above HoL delay
considerations.

Definition 4. We recursively define the potential function
Z

(c)
i (t) of our algorithm using:

Z
(c)
i (t+ 1) = max

(
Z

(c)
i (t)−

∑
b

µ
(c)
ib (t)− δ(c)

i · d̃
(c)
i,out (t) , 0

)
+
∑
a
µ

(c)
ai (t) +A

(c)
i (t) + δ

(c)
i · d

(c)
i,in (t)

Additionally, we initialize the potential as

Z
(c)
i (0) = U

(c)
i (0) + δ

(c)
i ·D

(c)
i (0) (16)

under the assumption that

Z
(c)
i (0) <∞. (17)

The potential at the commodity destination is always zero,
i.e. Z(i)

i (t) = 0 ∀i, t.

With the potential functions at hand, we are ready now to
introduce our starvation-free algorithm.

B. The SF-BP algorithm
We now follow the standard backpressure framework to

define our SF-BP (Starvation-Free BackPressure) algorithm.
We define a weight for each link in the network as follows:

Wab (t) = max

[
Z

(coptab (t))
a (t)− Z(coptab (t))

b (t) , 0

]
(18)

where
coptab (t)

∆
= arg max

c

[
Z(c)
a (t)− Z(c)

b (t)
]

(19)

Given these weights and the current topology state S (t), we
can now formulate the following optimization problem:

max
∑
ab

Wab (t)Cab (I (t) , S (t))

s.t. : I (t) ∈ Is (t)
(20)

The solution of this optimization problem dictates the algo-
rithm’s choice of the resource allocation between the different
links, where Is (t) is the set of all possible control actions
available under the current topology state S (t). Note that
a network with independent links allows a fully distributed
implementation of the solution algorithm.

For each Wab (t) > 0, the network offers a transmission rate
as follows (see [7], [18]):

µ
(c)
ab (t) =

{
Cab (I (t) , S (t)) c = coptab (t)
0 otherwise. (21)

Whenever more than a single outgoing link is offered to a
commodity at some node, the allocation of data packets among
the outgoing links is random. As done in the classical Q-BP
schemes [7], if there are not enough packets for commodity
coptab (t) in node a to transmit over all outgoing links, null
packets will be transmitted, with a random allocation of data
packets and null packets over the corresponding outgoing links.

C. Obtaining starvation-free stability
We proceed to show that our algorithm is starvation-free

stable. We begin our analysis by using the Lyapunov drift
technique to prove the expected boundedness of our potential
functions.

Lemma 1. Let λ denote a strictly admissible arrival rate
vector. Assume that the algorithm uses a vector δ such that
λ + δ is also strictly admissible, i.e, there exists ε > 0 such
that λ+ δ + ε ∈ Λ. Then

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E
(
Z

(c)
i (τ)

)
≤ B

2εmin
.

where

B =
∑
ic

(∑
b

µ
(c)
ib,max

)2

+
∑
ic

(∑
a
µ

(c)
ai,max +A

(c)
i,max + δ

(c)
i

)2 (22)

and εmin = min (ε).
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Proof: We start with the observation that d̃(c)
i,out (t) ≥ 0

and d(c)
i,in (t) ≤ 1 for all t and (i, c). We apply it on Definition

4 (i.e., the potential dynamics) and immediately obtain:

Z
(c)
i (t+ 1) ≤ max

(
Z

(c)
i (t)−

∑
b

µ
(c)
ib (t), 0

)
+
∑
a
µ

(c)
ai (t) +A

(c)
i (t) + δ

(c)
i

(23)

Now, Equation (23) yields an upper bound at each time slot
on the potential functions used by our algorithm. For brevity,
we omit the rest of the proof, as Equation (23) is determined
by the standard Lyapunov technique presented in [7].

We proceed with our analysis by showing that the potential
of each queue upper-bounds a combination of its length and
its HoL delay. This result provides the desired property of the
potential functions that allows us to establish starvation-free
stability.

Lemma 2. ∀t, i 6= c, Z
(c)
i (t) ≥ U (c)

i (t) + δ
(c)
i D

(c)
i (t)

Proof outline: Due to space limits, we present a proof
outline, as the proof is relatively simple. The proof is by
induction. The base is immediately derived from (16). Next
we prove the inductive step by splitting into 3 different cases.
The first case considers the scenario in which the result of the
max(,) operator in the definition of the potential function is 0.
The other two cases consider the scenarios in which the result
of the max(,) operator is strictly greater than 0, with outgoing
service rate that is either greater than, or smaller or equal to
the queue occupancy.

With Lemmas 1 and 2 at hand, we can finally establish the
starvation-free stability of our algorithm.

Theorem 3. Assume that λ+ δ is strictly admissible. Then

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E
(
D

(c)
i (τ)

)
≤ B

2δminεmin

where

B =
∑
ic

(∑
b

µ
(c)
ib,max

)2

+
∑
ic

(∑
a
µ

(c)
ai,max +A

(c)
i,max + δ

(c)
i

)2

,

(24)

εmin = min (ε) and δmin = min (δ). Thus the algorithm is
starvation-free stable within the entire capacity region.

Proof: Applying Lemma 2 to Lemma 1 yields:

δmin · lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E
(
D

(c)
i (τ)

)
≤

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E
(
U

(c)
i (τ) + δ

(c)
i ·D

(c)
i (τ)

)
≤

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E
(
Z

(c)
i (τ)

)
≤ B

2εmin

dividing both sides by δmin to yield the result.

Note that, throughout the proof, we did not make any
assumptions regarding the values of dmax. Thus, starvation-
free stability of our algorithm is ensured for all d(c)

i,max ∈ [0,∞]
Next, we obtain the following corollaries:

Corollary 2. Assume that λ + δ is strictly admissible. Then
the network is strongly stable.

The correctness of this corollary follows immediately both
from Property 1 and by applying Lemma 2 to Lemma 1.

Corollary 3. Assume that λ+δ is strictly admissible. Then w.p.
1, all packets in the network either reach their destination or
are transmitted for an unbounded number of times. In partic-
ular, in loop-free scenarios, all packets reach their destination
w.p. 1.

The correctness of this corollary follows immediately from
Theorem 2, Theorem 3 and Corollary 1.

We proceed to analyze the influence of the vector parameters
dmax and δ on system performance and provide further per-
queue service guarantees.

D. The significance of dmax and δ

Intuitively, d(c)
i,max can be viewed as inversely proportional

to the memory of the potential function. Specifically, when
d

(c)
i,max = 0, the memory is infinite. The potential function

grows in every time slot where the queue is not empty, and it
carries congestion information from the beginning. Conversely,
when d

(c)
i,max → ∞, there is negligible memory, and the

outgoing packets reset the potential on their departure from
the congestion they experienced. More generally, assigning
d

(c)
i,max = k means that the potential function will carry the

information about all the packets that experienced delay greater
that k while residing in that queue.

In addition, δ(c)
i can be viewed as the intensity in which the

delay of the HoL packet affects the potential function.
Therefore, jointly adjusting δ and dmax can either enhance

weak streams or provide better service to large streams. In ad-
dition, they can be adjusted to adapt to the topological changes.
For example, in static and i.i.d. networks, the assignment of
small dmax values will be the better choice as we would like
the potential to have more memory. Conversely, in a highly
dynamic network with unpredictable topology state evolution,
we will prefer a memoryless system and therefore larger values
of dmax, because the reordering of nodes can create potential
barriers that will take longer to reset.

Note that the δ values must respect the restriction that λ+δ
is strictly admissible. Therefore, to set arbitrary δ values that
respect this restriction, one must know the capacity region and
the arrival rates. This limitation also holds for similar past
techniques, such as the shadow queues technique [3]. However,
when the capacity region and the arrival rates are unknown,
it is still possible to obtain the results in the paper and the
guarantee of starvation-free stability, as the δ values can be
set to arbitrarily small values.

We turn to providing further insight on the influence of dmax

and δ on system performance, and evaluating their mutual
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effect on queue lengths and HoL delay dynamics. We start
our analysis by proving the following lemmas.

Lemma 3. Define:

P
(c)
i (t) , δ

(c)
i max

{
d

(c)
i,out (t)− d(c)

i,max, 0
}

−max

{∑
b

µ
(c)
ib (t)− U (c)

i (t) , 0

}
.

(25)

Assume that λ+ δ is strictly admissible. Then, w.p. 1:

lim sup
t→∞

1

t

[
t−1∑
τ=0

P
(c)
i (τ)

]
≤ 0.

Proof: See Appendix A.

Lemma 4. Assume that λ+δ is strictly admissible. Then, w.p.
1, for each queue (i, c) such that δ(c)

i > 0:

lim
t→∞

1

t

t−1∑
τ=0

[
d

(c)
i,out (τ)− d(c)

i,in (τ)
]

= 0.

Proof: See Appendix B.
Lemma 3 is derived from the stability of the network

potentials (Lemma 1). It relates the network parameters δ and
dmax to the queue length and HoL delay dynamics. In addition,
Lemma 4 is derived from the rate-stability of the HoL packet
delay of the network queues (i.e., (9)). Note that these results
hold for each queue independently. Next, we use these results
in order to obtain stronger guarantees for weak and preferred
streams by setting appropriate dmax and δ values, as we further
show in Section IV-E.

E. Mean evacuation period guarantees
So far, we have obtained a starvation-free stability for the

entire network. Now, in order to evaluate the service guarantees
provided by the dmax and δ values for each queue in the
network independently, we proceed to define the following
indicator function:

1
(c)
i,Q(t) =

{
1
∑
b

µ
(c)
ib (t) ≥ U (c)

i (t)

0 otherwise,
(26)

Essentially, 1(c)
i,Q(t) = 1 means that all packets of commodity

c that arrived at node i before time slot t must have left their
queue by time slot t. We term the time period between two
such events the evacuation period of the queue. We next turn
to providing a bound on the mean evacuation period that can
be experienced by any queue in the network. Specifically, we
obtain the following result.

Theorem 4. Assume that λ + δ is strictly admissible. Then,
w.p. 1, for each queue (i, c) such that δ(c)

i > 0:

lim inf
t→∞

1

t

t−1∑
τ=0

1
(c)
i,Q(τ) ≥

δ
(c)
i

(
1− d(c)

i,max

)
δ

(c)
i + µ

(c)
i,O

where µ(c)
i,O =

∑
b

µ
(c)
ib,max.

Proof: We begin by rewriting (25), yielding:

P
(c)
i (t) ≥ δ(c)

i (d
(c)
i,out (t)− d(c)

i,max)− 1(c)
i,Q(t) · µ(c)

i,O. (27)

Next, we add and subtract δ(c)
i d

(c)
i,in(τ) to the right hand side

of (27) and rearrange. This yields:

P
(c)
i (t) ≥ δ(c)

i (d
(c)
i,out (t)− d(c)

i,in (t))− δ(c)
i d

(c)
i,max

− 1(c)
i,Q(t) · µ(c)

i,O + δ
(c)
i d

(c)
i,in (t) .

(28)

We observe that the following inequality holds by definition:

1
(c)
i,Q(t+ 1) ≥ 1− d(c)

i,in (t) . (29)

Applying (29) on (28), adding and subtracting δ
(c)
i · 1

(c)
i,Q(t)

and rearranging yields:

P
(c)
i (t) ≥ δ

(c)
i (1− d(c)

i,max)− 1(c)
i,Q(t) · (µ(c)

i,O + δ
(c)
i )

+ δ
(c)
i (d

(c)
i,out (τ)− d(c)

i,in (t))

− δ(c)
i

(
1

(c)
i,Q(t+ 1)− 1(c)

i,Q(t)
) (30)

Rearranging (30), summing over time slots [0, 1, ..., t− 1] and
dividing by t yields:

− δ(c)
i (1− d(c)

i,max) +
1

t

t−1∑
τ=0

P
(c)
i (τ) ≥

δ
(c)
i

1

t

t−1∑
τ=0

(
d

(c)
i,out (τ)− d(c)

i,in (τ)
)

− δ
(c)
i

t

(
1

(c)
i,Q(t)− 1(c)

i,Q(0)
)

− 1

t

t−1∑
τ=0

1
(c)
i,Q(τ) · (µ(c)

i,O + δ
(c)
i )

(31)

Taking limits of (31) and applying Lemmas 3 and 4 yields:

− δ(c)
i (1− d(c)

i,max) ≥

(µ
(c)
i,O + δ

(c)
i ) · lim sup

t→∞
−1

t

[
t−1∑
τ=0

(
1

(c)
i,Q(τ)

)]
.

(32)

Rearranging (32) and dividing by µ(c)
i,O + δ

(c)
i yields the result.

Now, as discussed in Section IV-D, for static and i.i.d
networks, the desired case is d(c)

i,max = 0. For this, we are
able to provide with a stronger guarantee.

Corollary 4. Assume that λ + δ is strictly admissible. Then
for each queue (i, c) such that δ(c)

i > 0 and d
(c)
i,max = 0, we

have w.p. 1:

lim inf
t→∞

1

t

t−1∑
τ=0

1
(c)
i,Q(τ) ≥ δ

(c)
i

δ
(c)
i + µ

(c)
i,O

.

We already found in Lemma 1 that the expected time-
averaged sum of the potential functions is upper-bounded by
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a term that grows quadratically with respect to the incom-
ing/outgoing link capacities, and is inversely proportional to
ε. This result is the standard upper-bound obtained by the
Lyapunov analysis, and also applies to Q-BP [7].

However, Corollary 4 states three significantly stronger
results. First, the mean evacuation period of each queue in the
network is constant. Namely, for each queue in the network, in
addition to starvation-free stability, we obtain that the number
of time slots in which all the packets at the queue must have
left it before that time slot is proportional to time itself.

Second, our bound is expressed in terms of pure values,
whereas the standard Lyapunov technique yields a bound that
is expressed in terms of expected values.

Finally, since the result in Corollary 4 is independent of the
arrival rate vector λ,2 this result can be used in order to further
enhance weak commodities and to ensure fairer resource
sharing between commodities with significant differences in
their arrival rates as illustrated above. As an example, consider
two queues that are served by the same link. Then, setting
their corresponding δ entries unambiguously determines the
upper bound on the mean evacuation period and, in turn, the
starvation that they experience without any knowledge about
their arrival rates.

V. PACKET REORDERING SCHEME

In order to reduce the maximum residence time of packets
in the network and to relax the out-of-order arrivals to the
destinations, we introduce a reordering technique for packets
in queues. This technique incurs reasonable computational
overhead and has no effect on the capacity region.

To that end, in addition to the assumption that each packet
has a local timestamp that indicates at which time slot it
entered its current queue, we assume that it also has a global
timestamp that indicates at which time slot it entered the
network at its source node.

The global time of each entering packet determines its place
in the queue, such that older (global) packets are at the head of
the queue and the first to leave it. Note that the correct place
in the queue for a real packet that enters node i at time t
and belongs to commodity c can be found in logarithmic time,
i.e. O

(
log
(
U

(c)
i (t)

))
operations using a priority queue data

structure.
The global timestamp of null packets is ignored and treated

as infinite, meaning that null packets are always kept as last
priority for forwarding. However, we note that if an entering
packet (with a local time of 0) can immediately move to be
the HoL packet, this would mean that the local time of the
HoL can arbitrarily jump in unexpected ways. This would be
inconsistent with the purpose of the Lyapunov potentials, since
the HoL delay would be negligible while there may be packets
in the queue that have been waiting for a long time. Therefore,
as illustrated in Figure 3, we need to redefine the local times.
We keep the local timestamps in a separate queue, such that
the kth local time is associated with the kth global time. The

2The arrival rates do restrict the possible choices for δ values as λ+δ must
be strictly admissible. Within the allowed values, in Corollary 4, the bound
on the mean evacuation period of each queue only depends on δ.

(a) Time slot 1027. There are three packets in the queue. As a result,
the list of local timestamps contains three local timestamps (e.g., the
first one is 1021, which arrived 1027−1021 = 6 slots ago). Likewise,
the list of global timestamps also contains three timestamps (e.g., the
first one is 1019, of a packet that entered the network 8 slots ago).

(b) Time slot 1028. Two packets enter the queue: a data packet with a
global time stamp of 1021, and a null packet. Their local and global
timestamps (filled in grey) enter the corresponding lists, each one
according to its order. Thus, note that the fourth local time is not
necessarily the time that the packet with the fourth global time stayed
in the queue. Finally, at time slot 1028, a single packet leaves the
queue. It is the one that is associated with the smallest global time
stamp, and it removes from the local-time list the smallest local time.

Fig. 3: Illustration of the reordering technique. The upper
queue holds the local time stamps and the lower queue holds
the global time stamps.

reordering of packets does not harm the delay guarantees,
due to the simple observation that the global residence time
of a packet is necessarily upper-bounded by the sum of the
corresponding HoL delays of its previous residence nodes.

We expect that the reordering scheme will provide an addi-
tional significant performance enhancement especially when
the network in not heavily loaded. The intuition for this
improvement is the observation that the number of null packets
in the network increases as the load decreases. Thus, prioritiz-
ing data packets over null packets can enhance performance
significantly by using these null packets as a basis for the
potential functions. Essentially, the delays of data packets will
drop at the expense of null packets that will suffer from
extremely large delays.

VI. SIMULATIONS

In this section, we compare between the usual queue-
based backpressure algorithm Q-BP and our starvation-free
backpressure algorithm SF-BP algorithm, as well as between
Q-BP with our reordering scheme (denoted QR-BP) and our
SF-BP with our reordering scheme (denoted SFR-BP).
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Fig. 4: Configuration with 10 nodes. The capacity of all links
is identical.

Fig. 5: Assumptions on the Poisson arrival rates of the three
commodities according to simulation time, to illustrate the
elimination of the starvation and the last-packet problem.

Fig. 6: Elimination of the last-packet problem. The figure plots
the number of Non-Null packets of commodity 1 residing in
the network as time evolves. It shows how following the last-
packet problem, the traditional backpressure scheme cannot
empty the network, even with the reordering feature, while
our suggested algorithms do.

A. Elimination of starvation and the last-packet problem
To illustrate the elimination of the starvation and the last-

packet problems, we consider the network presented in Fig-
ure 4 and a scenario with three commodities, namely, nodes 5,
6 and 7 are the sources, and nodes 10, 9 and 8 are the respective
destinations. The capacity of all links is 10. The Poisson arrival
rates of the three commodities are presented in Figure 5.
This scenario is especially challenging for the weak stream of
commodity 1, which faces two challenges, namely: (a) nodes
1-4 present a potential well for packets; and (b) the stronger
streams of commodities 2 and 3 cause starvation at nodes
6-9. When using our starvation-free scenario, guided by the
intuition gained from Corollary 4, we assign d(c)

i,max = 0∀i, c,
and δ

(10)
i = 0.5−ε

|V | ∀i 6= 10, δ(9)
i = 0.4−ε

|V | ∀i 6= 9 and

δ
(8)
i = 0.1−ε

|V | ∀i 6= 8 where ε = 10−4, since we want to
enhance the weaker streams.

Fig. 7: Elimination of the last-packet problem. Mean delay of
packets in number of time slots. Only the best 80% of the
packets are taken into account, since in traditional schemes
the last-packet problem can prevent some packets from ever
leaving the network.

Figures 6 and 7 present the results. When using the back-
pressure techniques (denoted Q-BP in the usual form, and
QR-BP with our suggested reordering scheme), 133 and 10
packets (respectively) of commodity 1 remain in the network
for a potentially unbounded time. On the other hand, in both
of our starvation-free techniques (denoted SF-BP in the simple
form, and SFR-BP with the reordering improvement), there is a
complete elimination of the last-packet problem, and the delays
of all streams are relaxed significantly. The use of SF-BP and
SFR-BP results in the delivery of all packets of commodity 1
to their destination shortly after the stream stops.

B. Performance enhancement
We consider the example presented in Figure 8. This net-

work presents routing challenges, since nodes 4, 5, and 6 create
a potential well for packets. When using our starvation-free
algorithm, guided by the intuition gained from Section IV-E,
we assign d

(12)
i,max = 0 ∀i and δ

(12)
i = (λmax−λ−ε)

|V | for indices
i 6= 12, where ε = 0.0001 and λmax, λ are, respectively, the
maximum possible load and the given load to the source.

Figure 9 presents the results. There is a significant delay
reduction in both of our techniques compared to the queue-
length based scenes for the entire range of the load parameter.
Additionally, in both of our starvation-free scenarios, the mean
delay of the 99th percentile of packets exhibits a 53% decrease
in SF-BP compared to Q-BP and a 45% decrease in SFR-BP
compared to QR-BP.

This example shows that the SF-PB algorithm improves
performance in terms of mean queue occupancy and end-to-
end packet delay even in the case of a single commodity. As
can be seen in Figure 10, for both our starvation-free schemes,
the mean number of data packets in the networks is lower than
in Q-BP and QR-BP. In addition, for all scenarios, there is no
packet accumulation in the intermediate queues.

C. Random topologies
In this experiment we randomly generated 30 different

topologies using the scale-free Barabasi-Albert model [1] with
out-degree distribution equal to 2 for |V | = 12. There are
two streams with Poisson arrivals and parameters λ(12)

1 and
λ

(11)
2 such that λ(12)

1 is 80% of the maximal flow between
nodes 1 and 12 and λ(11)

2 is 10% of the maximal flow between
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Fig. 8: Configuration with |V | = 12. All link capacities
are i.i.d. between time slots and follow a geometric random
distribution of mean value 5. Node 1 is the source having
exogenous Poisson arrival process with parameter λ, and node
12 is the destination.

Fig. 9: Mean delay of packets as a function of the load offered
to the source, using the configuration of Figure 8.

nodes 2 and 11. For our starvation-free scenarios, guided by the
intuition gained from Section IV-E, we assign d(c)

i,max = 0∀i, c
and δ(12)

i = 0.02−ε
|V | ∀i 6= 12 and δ(11)

i = 0.08−ε
|V | ∀i 6= 11 where

ε = 10−4, since we want to enhance the weaker stream.

D. Static random topologies
The results for the first ten randomly generated topologies

are illustrated in Figures 11a and 11c . In all randomly created
topologies, using our starvation-free scenarios results in a
performance enhancement of both commodities. Specifically,
there is a 65% decrease in the mean delay of all 30 topologies
in SF-BP compared to Q-BP, and a 48% decrease in SFR-
BP compared to QR-BP. Additionally, the mean delay over all
topologies of the weaker commodity destined to node 11 is
decreased by a factor of 2.44 when compared to the standard
technique. Finally, in all of these random topologies, the mean
delay of the stronger commodity decreased as well, with the
exception of similar performance in trivial topologies, i.e. the

Fig. 10: Mean sum of data packets in the network as a function
of the load offered to the source, using the configuration of
Figure 8.

improvement of the weaker commodity was not at the expense
of the stronger one.

E. Dynamic random topologies
In this experiment, the link capacities in the randomly

created graphs are i.i.d. from slot to slot and are geometrically
distributed with mean value of 5. The results are presented in
Figures 11b and 11d. In all randomly generated topologies,
using our starvation-free scenarios results in a performance en-
hancement3 for both commodities. However, as expected, the
enhancement of our starvation-free scenarios is smaller than in
the static case since the delay and congestion information are
less effective when used in a network in which the topology
changes occur on a per-slot basis. Specifically, there is a 44%
decrease in the mean delay of all 30 topologies in SF-BP
compared to Q-BP, and a 13% decrease in SFR-BP compared
to QR-BP. Additionally, the mean delay over all topologies of
the weaker commodity destined to node 11 decreased by up
to 140% when compared to the standard technique, while the
mean delay of the stronger commodity decreased as well again
in all topologies. In fact, in all of our simulations with both
dynamic and static topologies, we never found a non-trivial
case when Q-BP outperformed SF-BP for some commodity.

VII. CONCLUSIONS

We introduced the starvation-free stability criterion, and
established the first starvation-free stable backpressure routing-
and-resource-allocation algorithm for multi-hop dynamic net-
works. We showed that our algorithm fully overcomes both
the starvation and the last-packet problems while providing

3Note that in topology 3 in Figure 11d for example, when using the
reordering scheme, the measured mean delay of the weak commodity is similar
in SF-BP and QR-BP. However, a closer investigation showed that the mean
delay of packets in the network was much higher in QR-BP due to starvation.
Taking this into consideration yielded the claimed result.
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(a) First 10 static topologies.
Mean delay of λ(11)

2 .
(b) First 10 dynamic topolo-
gies.

(c) Reordering scheme: First 10
static topologies.

(d) Reordering scheme: First
10 dynamic topologies.

Fig. 11: Mean delay of the weak commodity λ
(11)
2 for both

static and dynamic randomly generated topologies.

100% throughput. Furthermore, we established a stronger per-
queue mean evacuation period guarantee, and we provided
schemes for the enhancement of weak streams. We formally
established that our algorithm ensures that all packets reach
their destination in wide classes of networks. In addition, we
presented a packet reordering scheme that further reduces the
maximal delays of packets in the network and relaxes the
out-of-order arrivals to the destinations. Finally, we verified
our results through extensive simulations using particularly
challenging topologies as well as random static and dynamic
topologies.
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APPENDIX

A. Proof of Lemma 3
We observe that for any x, y ∈ R it holds that:

x = min {x, y}+ max {x− y, 0} . (33)

Next using (33) we make the following observations:

∑
b

µ
(c)
ib (t) = min

{
U

(c)
i (t) ,

∑
b

µ
(c)
ib (t)

}

+ max

{∑
b

µ
(c)
ib (t)− U (c)

i (t) , 0

}
,

(34)

d
(c)
i,out (t) = min

{
d

(c)
i,out (t) , d

(c)
i,max

}
+ max

{
d

(c)
i,out (t)− d(c)

i,max, 0
}
,

(35)

U
(c)
i (t+ 1) = max

{
U

(c)
i (t)−

∑
b

µ
(c)
ib (t), 0

}
+∑

a

µ
(c)
ai (t) +A

(c)
i (t) = U

(c)
i (t)−

min

{
U

(c)
i (t) ,

∑
b

µ
(c)
ib (t)

}
+
∑
a

µ
(c)
ai (t) +A

(c)
i (t) .

(36)

We additionally apply (33) to (15) and obtain:

d̃
(c)
i,out (t) = min

{
d

(c)
i,out (t) , d

(c)
i,max

}
=

d
(c)
i,out (t)−max

{
d

(c)
i,out (t)− d(c)

i,max, 0
} (37)

Next, we reexamine Definition 4 and obtain:

Z
(c)
i (t+ 1) =

max

(
Z

(c)
i (t)−

∑
b

µ
(c)
ib (t)− δ(c)

i d̃
(c)
i,out (t) , 0

)
+∑

a

µ
(c)
ai (t) +A

(c)
i (t) + δ

(c)
i · d

(c)
i,in (t) ≥

Z
(c)
i (t)−

∑
b

µ
(c)
ib (t)− δ(c)

i · d̃
(c)
i,out (t) +∑

a

µ
(c)
ai (t) +A

(c)
i (t) + δ

(c)
i · d

(c)
i,in (t) .

(38)

Applying (34), (35), (36) and (37) to (38) yields:

Z
(c)
i (t+ 1) ≥

Z
(c)
i (t)−

∑
b

µ
(c)
ib (t)− δ(c)

i · d̃
(c)
i,out (t) +∑

a

µ
(c)
ai (t) +A

(c)
i (t) + δ

(c)
i · d

(c)
i,in (t) =

Z
(c)
i (t) +

∑
a

µ
(c)
ai (t) +A

(c)
i (t) + δ

(c)
i d

(c)
i,in (t)−

min

{∑
b

µ
(c)
ib (t), U

(c)
i (t)

}
−

max

{∑
b

µ
(c)
ib (t)− U (c)

i (t) , 0

}
−

δ
(c)
i

(
d

(c)
i,out (t)−max

{
d

(c)
i,out (t)− d(c)

i,max, 0
})

.

(39)

Rearranging (39) yields:

Z
(c)
i (t+ 1)− Z(c)

i (t) ≥∑
a

µ
(c)
ai (t) +A

(c)
i (t)−min

{∑
b

µ
(c)
ib (t), U

(c)
i (t)

}
+ δ

(c)
i

(
d

(c)
i,in (t)− d(c)

i,out (t)
)
−
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b

µ
(c)
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i (t) , 0

}
+

δ
(c)
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{
d

(c)
i,out (t)− d(c)
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}
.

(40)

Applying (13) and (36) to (40) yields:

Z
(c)
i (t+ 1)− Z(c)

i (t) ≥(
U

(c)
i (t+ 1)− U (c)

i (t)
)
−
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{∑
b

µ
(c)
ib (t)− U (c)
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}
+

δ
(c)
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(
D

(c)
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δ
(c)
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d
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.
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Rearranging (41), summing over time slots from τ = 0 to
τ = t− 1 and dividing by t yields:

1

t

t−1∑
τ=0

P
(c)
i (τ) ≤ 1

t

(
Z

(c)
i (t)− Z(c)

i (0)
)
−

1

t

(
U

(c)
i (t)− U (c)

i (0)
)
− δ

(c)
i

t

(
D

(c)
i (t)−D(c)

i (0)
)
.

(42)

Taking limits of (42) and applying (16) and (17) yields:

lim sup
t→∞

1

t

t−1∑
t=0

P
(c)
i (τ) ≤ lim sup

t→∞

Z
(c)
i (t)

t
. (43)

Next, we reexamine Definition 4. Similarly to the analysis
presented in Theorem 1, we define two auxiliary stochastic
precesses a(t) and b(t) as follows:

Z
(c)
i (t+ 1) =

max

Z(c)
i (t)−

(∑
b

µ
(c)
ib (t) + δ

(c)
i · d̃

(c)
i,out (t)

)
︸ ︷︷ ︸

b(t)

, 0


+
∑
a

µ
(c)
ai (t) +A

(c)
i (t) + δ

(c)
i · d

(c)
i,in (t)︸ ︷︷ ︸

a(t)

.

(44)

We observe that, again, similarly to the analysis presented
in the proof of Theorem 1, Z(c)

i (t) respects the boundedness
condition that is required by Theorem 4 of [20] (case (b))
for a stochastic process with queue dynamics. Thus, applying
Lemma 1 and Theorem 4 of [20] on Z(c)

i (t) yields the result.

B. Proof of Lemma 4
Rearranging (13), summing over time slots [0, 1, ..., t − 1]

and dividing by t yields:

1

t

t−1∑
τ=0

[
d

(c)
i,out (τ)− d(c)

i,in (τ)
]

=
1

t

(
D

(c)
i (0)−D(c)

i (t)
)
(45)

Taking the limit of (45) and applying (16) and (17) yields:

lim
t→∞

1

t

t−1∑
τ=0

[
d

(c)
i,out (τ)− d(c)

i,in (τ)
]

= − lim
t→∞

D
(c)
i (t)

t
. (46)

Next, according to Theorem 3, we obtain starvation-free sta-
bility. Thus, we apply (9) on (46) and this yields the result.
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